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OPERATORS
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Communicated by Gilles Pisier

ABSTRACT. If T(t) = e %4 is a bounded strongly continuous semigroup
on some Banach space X, and if C': D{(A™) — Y is a continuous mapping
valued in some Banach space Y, we say that C is a-admissible if it satisfies an
estimate of the form [5° t*||CT(t)x||? dt < M?||z||?. This extends the usual
notion of admissibility, which corresponds to & = 0. In the case when T'(t)
is a bounded analytic semigroup and A has a ‘square function estimate’, the
second named author showed the validity of the so-called Weiss conjecture:
C is admissible if and only if {t%C(t + A)~1 : ¢ > 0} is a bounded set.
In this paper, we extend that characterisation to our new setting. We show
(under the same conditions on 7T'(t) and A) that a-admissibility is equivalent
to an appropriate resolvent estimate.

1. INTRODUCTION

Let X be a Banach space, and let —A be the generator of a bounded strongly
continuous semigroup T'(t) on X. Let Y be another Banach space and let
C: D(A) — Y be a linear operator defined on the domain of A. Assume that
C is continuous with respect to the norm [|z||; = ||(Ix + 4)z||x on D(A). By
definition, C is admissible for A if there is a constant M > 0 such that

w | ey de <yl

for any € D(A). The problem of whether an operator C' is admissible for A has
received much attention recently. For a wide information on this topic, we refer
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the reader to the excellent survey [4] and the references therein. A key observation
due to Weiss [18] is that if C' is admissible for A, then there is a constant K > 0
such that

2) (=Re(V)2[lC(A— )Y < K

for any complex number A with Re(\) < 0. To find conditions on X,Y or A that
ensure that the converse implication ‘(2) = (1)’ holds true is one of the most
important questions in the area. Weiss observed very early that this converse
is wrong on general Banach spaces. However, the question whether ‘(2) = (1)’
when X and Y are Hilbert spaces remained open for a while under the name of
‘Weiss conjecture’. This conjecture was disproved by Jacob, Partington and Pott
[5] in the case when X =Y = (2, and by Jacob and Zwart [6] in the case when
X=FandY =C.

In this paper we introduce a generalisation of admissibility that we call a-
admissibility. An operator C' will be a-admissible (for a > —1) if it satisfies an
estimate

(3) /0 e lleT@e| dt < M2

Here the observation operator C' may be defined only on the domain D(A™) of
a power of A (see Sections 2 and 3 for precise definitions). In this context, there
is a natural analogue of (2) which is implied by a-admissibility (see Lemma 3.3)
and again, the main question is to find conditions which ensure that the converse
holds true.

Condition (3) is quite natural in the case when T'(¢) is a bounded analytic
semigroup, and we will mainly focus on that case. In [11], the second named
author showed that if 7'(¢) is bounded analytic, then Az is admissible for A if
and only if for any Y and any C: D(A) — Y, the two conditions (2) and (1)
are equivalent. Our main result, namely Theorem 4.2, is a generalisation of that
result to a-admissibility. We will also consider the dual situation, that is, a-
admissible control operators. As in [11], we will make use of the H*® functional
calculus ([1, 13]), which is briefly explained in the next section.

2. PRELIMINARIES ON SEMIGROUPS AND H® FUNCTIONAL CALCULUS

We will use standard notation and results on semigroups that the reader can
easily find in e.g. [15] or [2]. Let —A be the generator of a bounded strongly
continuous semigroup 7'(t) on X. We let g(A) denote the resolvent set of A,
and for any X € p(4), we let R(\, A) = (A—A)~! denote the associated resolvent
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operator. Let Ix denote the identity on X. We are going to use the notions of
interpolation and extrapolation spaces in the sense of [2, Section II.5]. For any
integer m > 1, the interpolation space X, is the domain D(A™) of the mth power
of A, equipped with the norm ||z|,, = [|(Ix + A)™z||. We set Xo = X. Then
for any m > 1, the extrapolation space X _,, is the completion of X for the norm
l|lz||—m = [|R(=1, A)™z|| = ||(Ix + A)~™z||. The restriction or extension of T'(t)
to one of these spaces X,,, (for m € Z) is denoted by T, (t).

We now give a brief account on sectorial operators and H*° functional calculus.
We refer the reader e.g. to [13, 1, 10, 7] for details and complements. Given any
0 < 6 <7, welet S() be the open sector of all z € C\{0} such that Arg(z) €
(—6,0). Then we let I'y be the boundary of S(), oriented counterclockwise. The
set of all bounded holomorphic functions f on S(f) is denoted by H>(S(6)).
This is a Banach algebra for the norm ||f||g = sup{|f(2)| : z € S(6)}. We let
H§?(S()) be the subalgebra of all f € H*>(S(f)) for which there exist positive
numbers ¢ > 0, e > 0 such that |f(z)| = O(]z| %) at oo, and |f(2)| = O(|z|) at 0.

Let 0 < w < 7. A densely defined operator (A, D(A)) on X is called sectorial of

type w if its spectrum is contained in the closure of S(w), and if for any 6 € (w, 7),
there is a constant Cy such that

lzR(z, Al < Cp, 2 & 5S(0).
It is clear that if —A generates a bounded strongly continuous semigroup, then A
is sectorial of type 5. Furthermore, —A generates a bounded analytic semigroup
if and only if A is sectorial of type w < .

Assume that A is a sectorial operator of type w. Let 8 € (w,n) and let f €
H§e(S(0)). We set

£A) = g [ FCIRG,4)d

where I' = T, for some v € (w,#). Then f(A) is well defined and belongs
to B(X), and its definition does not depend on the choice of . Moreover the
mapping f — f(A) is an algebra homomorphism on H§®(S(6)).

Definition 2.1. Let A be a sectorial operator of type w € (0,7) on a Banach
space X and let § € (w, 7). Then A admits a bounded H*°(S(6)) calculus if there
is a constant K > 0 such that

I (AN < Kllflle,  f € Hg™(S(0))
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If a sectorial operator A has a dense range, then it is also 1-1 by [1, Theorem
3.8]. In that case, there is a natural way to define a closed, possibly unbounded
operator f(A) for any f € H*(S(#)). Furthermore it is shown in [13, 1] that A
admits a bounded H>(S(#)) calculus in the above sense if and only if f(A) is
bounded for any f € H*(S(6)).

Lemma 2.2. Let A be a sectorial operator with a dense range. Then for any
integer k > 1, the operator A*(Ix + A)~* Y has a dense range.

PRrROOF. This is a well-known fact. Indeed, nA(Ix + nA)~! — Ix and n(n +
A)~! — Ix pointwise when n — oc. Hence for a fixed integer k > 1, the
sequence

A, =nP AR 4 A) Y (Ix +nA)F

converges pointwise to Ix. Moreover the ranges of A, and Ak (Ix + A)_(k+1)
coincide for any n > 1. Thus for any € X, (A,(z)),>1 is a sequence in the
range of A¥(Ix + A)~(+1) converging to z. O

Square functions associated to sectorial operators play a key role in our paper.
If A is sectorial of type w and if F is a non-zero function belonging to H§°(S(#))
for some 6 € (w, ), we set

ol = </OOOHF(tA)J;||§( c;t) reX.

Note that ||z||r may be equal to +o0o. These square functions were introduced by
MclIntosh in [13], see also [14]. The following was proved by McIntosh and Yagi
in the case when X is a Hilbert space. Its proof extends verbatim to the Banach
space case.

Theorem 2.3. ([14, Theorem 5]) Let A be a sectorial operator of type w on a
Banach space X, and assume that A has dense range. Let F,G € H{°(S(0))\ {0},
where 0 > w. Then there exist two positive constants c¢; > 0 and co > 0 such that

allzlle < llzllr < collzlle, =€ X.

This leads to the following

Definition 2.4. Let A be as in Theorem 2.3, and let F' € H{°(S(0)) \ {0}, where
0 > w. We say that A has a square function estimate if there is a constant ¢ > 0
such that

lz||r < cl|z]|x, z € X.



a-ADMISSIBILITY 5

By Theorem 2.3, this definition does not depend on F.

If X is a Hilbert space, then A has a bounded H*(S()) calculus if and only if
A and A* admit square function estimates in the above sense [13, Section 8]. Note
however, that the situation is quite different on non-Hilbertian Banach spaces. We
will come back to this question in Remark 4.4 (1) below.

3. a- ADMISSIBILITY

Let T'(t) be a bounded strongly continuous semigroup on X, with generator
equal to —A. For simplicity we will assume throughout this section that A has a
dense range, so that Theorem 2.3 and Definition 2.4 apply to A.

By definition, an observation operator (for A) is a linear map C: X,, =
D(A™) - Y defined on the domain of A™ for some m > 1, which is continuous
when X, is equipped with its norm || ||,,. Here Y is an arbitrary Banach space.
For any x € D(A.,), the function ¢ = CT'(t)x is continuous from (0, c0) into Y.
This allows to define the integral in the next definition.

Definition 3.1. Let C: X,,, — Y be an observation operator for A, and let
a > —1. We say that C is a-admissible for A, if there is a constant M > 0, such
that

o0
For all # € X, / ©CT@)2| dt < M2|2]%.
0

Of course, admissibility of order 0 corresponds to the usual admissibility. To
explain the motivation for this generalised form of admissibility, it is instructive
to have a look at the analytic case. Assume that A is sectorial of type < 7. Let
o be defined by ¢g(2) = 21/2e7*. Then ¢, € H§(S(6)) for any § < . As was
observed in [11], we have

Ak 2 > e 2 di = 2 dt

; |AZT ()|l dt = | I(tA) 2T ()=l x F = ; llpo(tA)zllx F-
Thus A'/? is admissible for A if and only if A has a square function estimate.
Likewise, for any a > —1, we let
Then ¢, € H§®(S(0)) for any 6 < 7, and

(o'} N 1ta ) o'}
/0 | A T ()l dt = / lia (EA) ][ .

This yields the following
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Lemma 3.2. If A is sectorial of type < T, then A is a-admissible for A if
and only if A has a square function estimate.

Note that according to Theorem 2.3, A'/? is admissible for A if and only if
14+
A™® is a-admissible for A. The following is an analogue of the Weiss necessary
condition.

Lemma 3.3. Let C: X,,, — Y be an observation operator for some m > 1. Let

a > —1 and f > —1 be two real numbers such that k = azﬂ s a monnegative

integer. If C is a-admissible for A, then there exists a constant K > 0 such that
|| 1+8

(—Re(A)) > CR(\, A)f+'|| < K, A€ C, Re()) <0.
PRrROOF. Let M be the constant appearing in Definition 3.1. We start from the
fact that for any A € C with negative real part and for any z € X, we have
—1 k+1 o]
= / tFeM T (t)x dt .

If z € X,, = D(A™), then R(\,A)'T*z € X,,. Furthermore t — T(t)z is
continuous with values in X,,. Since C is continuous on X,,, we deduce that

(~DkHt [

—— / tkeMCOT (t)z dt .
k! 0

Hence by Cauchy-Schwarz, we have

R\, A)rg =

CR(\, A) Ty =

1 X .
||CR()\,A)1+%||§E/O 1318 RN | OT ()| dt

<= / t|CT(t)x|? dt / 19 2ReN1 gt

Mgl 1\
= (—2Re()\)) LA+,

where I' is the usual Gamma function. This shows our result. O

4. MAIN RESULT

We now come to the main result characterizing a-admissibility in the analytic
case. We will prove a generalization of [11, Theorem 4.1] which says that (2)
implies (1) if A is sectorial of type < 7 and has a square function estimate. We
start with a technical result on holomorphic functions. The next statement in the
case k = 1 appears in [9]. We are grateful to Nigel Kalton who showed us a proof
of the general case.
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Lemma 4.1. Let 0 € (0,7), let ¢ € H{*(S(0)), and let k > 1 be an integer.
There exist a function f € HS(S(0)) and a constant a € C such that

k
4 =2k f0) SR AN .
@ o) = I0C) + gy 2€5(0)
Furthermore, if §,¢ € (0,1) are positive numbers such that
(5) [o(2)] = O(|2[7°) atoo  and  |p(2)] = O(|z[) atO,

then f can be chosen so that we also have |f(z)| = O(|z|~°) at oo, and |f(2)] =
O(]z]%) at 0.

PRrooOF. We start with a general integration principle, stated as a

Claim: If g : S(o) — C is a holomorphic function such that |g(z)| = O(]z|™") at
oo for some 7 > 1, there exists a (necessarily unique) holomorphic function
G: S(o) = C such that G’ = g and |G(2)] = O(|z|7"1) at co. If further
lg(2)] = O(]z] %) at 0 for some s > 1, then we have |G(z)| = O(|z|**!) at
0. Moreover if g is bounded away from 0 (i.e. {g(2) : z € S(0), |2| > n}
is bounded for any n > 0), then G also is bounded away from 0.

Indeed, note that since |g(z)| = O(|z|~") at oo, with r > 1, one can define
GG == [ swadr,  zes),
z

this integral being defined on any reasonable contour. For example, if z = |z|e®’
with |0'| < o, we can write

. 0 . !
G(z) = —e"” / g(te' ) dt.
||

Clearly G is holomorphic and we have G' = g. Moreover if |g(z)| < K|z|™" for
|z| large enough, then we find that

o

K
|G(2)] < Kt "dt = ——|z| "t

2| r—1
This proves the estimate at infinity. Then the assertion on boundedness away
from 0 is clear. For the estimate at 0, note that we have

RIS
M<K
s < { {0 hie o

for some K > 0. Hence we have an estimate |G(z)| < c|z|' ™% + d, for |z] < 1.
Since s > 1, we deduce that G(z) = O(|s|*T1) at zero as expected.
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We now prove our lemma. Let ¢ in H§°(S(0)), and let § € (0,1) and € € (0,1)
such that (5) holds true. We apply the above claim with the function g(z) = “;(,f)
and the exponent r = k + 6. We let Gp_1 = — foo ‘p)fi) d)\ denote the associated

function. Then we have |Gy_1(2)] = O(|z|7*+17?) at infinity. We set G = ¢
for convenience. Next (if ¥ > 2), we can use our claim repeatedly to define
by induction holomorphic functions Gg_o,...,Gg such that G; = Gpy1 for any
0 <p < k-2,and |G,(2)| = O(|z|7P77) at infinity. Thus we obtain a holomorphic
function Gy : S(o) — C such that

) () = ue) = 22,
and
(7 Go(2) = Ozl ) at oo.

Moreover G is bounded away from 0. For the behaviour at zero, we can also use
the claim repeatedly, using the fact that € < 1. We obtain that

(8) |G1(2)] = 0(]z| ") at 0.

Since € < 1, this implies that G is integrable on (0, 0c). We can therefore define
a constant

c::—/OOOGl(t)dt.

Then we set

[(2)=Go(d) = {1, z€50).

This obviously defines a holomorphic function, which is bounded away from 0. It
readily follows from (6) that (4) is satisfied, with a = ¢(—1)*k!. Thus it remains
to check that f belongs to H§°(S(0)) and has the desired estimates at co and 0.
On the one hand, (7) ensures that |f(z)| = O(|z|~%) at infinity (here we use the
fact that § < 1). On the other hand, we see using holomorphy that

= Golz) = — /O G,z e S(o).

Hence arguing as in the claim, we deduce from (8) that |Go(z) — ¢| = O(|z|¢) at
zero. Now writing

£(2) = (Golz) = ) +e =,

we deduce that we also have |f(z)] = O(]z|) at zero. O
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Throughout the rest of this paper, we let T'(¢) be a bounded strongly continuous
semigroup on X, we let —A denote its generator, and we assume as in Section 3
that A has a dense range.

Theorem 4.2. Let A be a sectorial operator of type w < § on X which has a
square function estimate. Let C': X, = Y be an observation operator for some
m > 1. Let « > —1 and let B € (—1,3) such that k = azﬂ is a nomnegative
integer. Then C' is a-admissible for A if (and only if) there is a constant K > 0
such that

(9) 5 ||CR(~t, A*| < K, t>0.

Remark 4.3. Let a > —1 and 8 > —1 be such that k = %ﬂ is a nonnegative
integer, and assume that (9) holds true for some K > 0. Let f' = § + 2 and
k' =k+1, so that k' = %’61 Since A is sectorial, the set {tR(—t, A) : ¢ > 0} is
bounded, hence for any ¢t > 0, we have

148

5 || CR(—t, A Y| < #5 |CR(—t, A)Y| |[tR(—t, A)|| < K,
for some K’ > 0. Thus (9) holds true with (8, k', K') instead of (8, k, K).

Proor. (Of Theorem 4.2) The ‘only if’ part clearly follows from Lemma 3.3,
so we only have to prove the ‘if’ part. Thus we assume throughout that (9)
holds true for C. We may assume that m = k + 1, so that we actually have
C: Xiy1 — Y. Indeed, if we had m > k + 1, then (9) ensures that we can extend
C to a continuous operator on X 1. We also assume that k£ > 1, the special case
k = 0 being treated at the end of this proof.

We will use the (unbounded) operator A~!, densely defined on the range of A.
We set Fy(z) := z*e™*. Then for any = € X}, ; and any ¢ > 0, we have

(10) t2CT(t)x =12 *CA FF(tA)x.
Let € € (0,1) and consider the decomposition Fy(z) = ¢(z)1(z) where
(11) oz) =2 (1+2)7", and P(z) = 2" (1 + 2)e .
The precise value of € € (0,1) will be decided later (it will actually depend on ).
Note that ¢ € H§(S(0)) for any 6 < 7, whereas ¢ € H§*(S(0)) for any o < 7.
By (10), we have
> « 2 o atl _ 2 2
(12) /O e lleTe| dt < /O | R A o) | oAy’ L.

We fix o € (w, ) and apply Lemma 4.1 to ¢, with § = 1—e. Welet f € HZ*(S(0))
denote the corresponding function satisfying equation (4). Note that according



10 BERNHARD HAAK AND CHRISTIAN LE MERDY

to that equation, z + 2*f(*)(2) belongs to H*(S(0)). Let T' = I, for some
v € (w,0). Our aim is to show the representation formula

(13) CAH[# 10 ()] (tA)e = £ / FOVEE CROL AR d)
We let I'' =T, for some ' € (,0). Then we have

[%ﬂwwwmzzm/v/ R, £4) d)

o Lﬁ/zgéﬁqﬂoalﬂmxmmx

- L / G / < Aj)kﬂ RO\ tA) A ] d
= & [ FOEA G 1) dc

The use of Fubini’s Theorem in this chain of equalities is justified by the fact that
since R(\,tA) = t 1R(t 1)\ A), for some appropriate constants Ko, K; > 0, we
have

IAFLf N
| e |HJWQtMM%WM<Kg/U 1 [ e a1
A=[¢]

<" Kk [ 17O %] <o

The above calculation shows that equation (13) holds true if z belongs to the
range of A¥(Ix + A)7#~L1. The latter is dense by Lemma 2.2. Hence to deduce
equation (13) for any x € X, it therefore suffices to show that

(14) /Flf(A)IIICR(A,tA)'“HIIId/\I < oo.

Let A € C* with |Arg())| > v and let s > 0. By the resolvent equation, we have
R(X\, A) = R(—s,4)(Ix — (A + s)R(), 4)).
Hence
CR(\, A)F1 = CR(—s, A" (Ix — (A + s)R(), 4)) "

Since A is sectorial of type < =, the set {(A + |A)R(\, A) : A € T'} is bounded.
Hence applying the above identity with s = |A|, and our assumption (9), we obtain
that there exists a constant K, > 0 such that

(15) AECROL A < Ky, [Arg(V)] > 7.
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As already remarked, R(\,tA) = t7'R(t~'\, A); hence we deduce that (14) holds
true provided that

/Fw# O] dA < oo

Now recall that by Lemma 4.1, we have [f(A)] = O(JA°) at 0 and |f(N\)| =
O(JA|°1) at co. Hence the above integral is finite provided that we both have
1+5 — €< 1and H'B + (1 —€) > 1, or equivalently, that we have

e<%<1+e.

This tells us how to choose €. By assumption, 8 € (—1,3), hence # € (0,2).
Thus we can certainly find € € (0,1) satisfying the above double inequality. Then
we have proved (14), and hence (13) for any € X. In turn, that equation and
the above calculation imply that there exists a constant M > 0 such that

[t HCAFF W ()]t A)]| < M, t>0.
Let t > 0. Since 2 — (k+1) = 1+B , we have by (9)

a+1

|| 148

[ 01+ 1)1 = |l ot + 4 < K

However, by Lemma 4.1 we have
£ RCARp(tA) = t°F RFCATKRR FR) ()](tA) + at®T C(1+tA)F 1
hence we have proved that
[t°5 FCA *p(tA)| < M' == M + |a|K.
It therefore follows from (12) that

/ " el|oT (et < 1P / ety
0 0

Since A has a square function estimate, this implies that C' is a-admissible for A.

It remains to prove the theorem when k& = 0. In this case, § = —a, hence
B < 1. Let B/ = 8+ 2. According to Remark 4.3, the set {t%ﬁrCR(—t,A)Q} is
bounded. Since 8’ < 3, our theorem in the case k = 1 ensures that C is indeed
a-admissible for A. |

Remark 4.4.

(1) If X is a Banach space of cotype 2, and if A has a bounded H*(S(f))
calculus for some 6 < w, then A has a square function estimate. This is shown
in the proof of [11, Theorem 4.2], to which we refer for further explanations. We
merely recall that any LP-space with p < 2 has cotype 2. Conversely an infinite
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dimensional LP-space with p > 2 is not of cotype 2. It turns out that for any
2 < p < o0, the Laplacian A = —A on LP(R"™) admits a bounded H*(S(f))
calculus for any # > 0, but does not have a square function estimate (see [1,
Section 6]).

(2) To apply Theorem 4.2, we are facing the following (simple) question: given
areal number o > —1, what are the numbers 8 € (—1, 3) such that k = O‘zﬂ is an
integer? If a in an odd integer, there is exactly one possible value, namely g = 1.
Otherwise, there are exactly two possible values, let us call them 8 € (—1,1) and
B =pF+2¢€ (1,3). In that case, Theorem 4.2 has two variants, the first one with
B and k = O‘zﬂ, the second one with 8’ and k' = %ﬁl According to Remark
4.3, the second variant is the strongest.

Consider for example the case @ = 0. Then our two couples are (8, k) = (0,0)
and (8', k") = (1,1). If we apply Theorem 4.2 with the latter couple, we obtain the
following strengthening of [11, Theorem 4.1]: If A has a square function estimate

and if C is an observation operator, then C is admissible for A if (and only if)
the set {t2 CR(—t, A)? : t > 0} is bounded.

Remark 4.5. In this remark, we will show that the assumption that A has a
square function estimate in Theorem 4.2 cannot be omitted.

Let A be a sectorial operator of type < 7, and let 0 < s < 1. Then there is a
constant K, > 0 such that

AT R(-t A < K, t>0.

Indeed, this follows from [7, Proposition 4.2] and its proof. Let a > —1 and

B € (—1,3) be such that k = %ﬂ is a nonnegative integer. Then let n > 0 be an

integer, and 0 < s < 1 such that # =n+s. Then k> n, and

Ha=1-s5)+(k-n).

Hence we have

5 A R(—t, )M = 1AV R(—t, A) [t"R(—t, A)"] [AFR(—t, A)F]
for any ¢ > 0. Since A is sectorial, the two sets
{t"R(—t,A)" : t >0} and {A* "R(-t,A)* " :t>0}
are bounded. Therefore, there is a constant K > 0 such that

1+a

£ | A R(—t, A < K, t>0.
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Thus we have proved that A satisfies (9). Consequently, if the conclusion of
Theorem 4.2 holds true, then A™5* has to be a-admissible. Hence A must have
a square function estimate by Lemma 3.2.

5. FINAL REMARKS

Let T'(t) and A be as in Section 3, and assume that X is reflexive. We define
a control operator (for A) to be a bounded linear map B: U — X_,,, where U is
a Banach space and m > 1 is an integer. Let a > —1 be a real number. We say
that B is a-admissible for A if there is a constant M > 0 such that

(16) / (45T () Bu(t) n)| dt < Mllull 2z, 0 1l -

for any u € L?(R,U) and any 1 € (X _,,)*. Since X is reflexive, (X _,,)* C X*
is a dense subspace. Hence if B is a-admissible, the functional

. /0 (T (O Bu(t), ) di

uniquely extends to an element of X** = X. If we let fooo t3T (1) Bu(t) dt
denote this element (which is a Pettis integral), then (16) yields

|[ era@puod] < Ml o,
0

Since X is reflexive, —A* is the generator of the dual semigroup 7'(¢)* on
X*. For | € Nlet (X*); denote the interpolation space associated to A*. For
any m > 1, let —A_,, denote the generator of T_,,(t) on X _,,. There is an
isomorphism ¥,,: (X*),, = (X_,,)* given by

(@, Um(n) = ((Ix_,, + An) "z, (Ix + A%)"n), € X 1€ (X

According to that duality, we may regard C'= B*: (X_,,)* — U* as an observa-
tion operator for A*. Then it is not hard to check that B is a-admissible if and
only if B* is a-admissible. Thus Theorem 4.2 implies the following result.

Theorem 5.1. Let A be a sectorial operator of type w < 5 on a reflexive Banach
space X, and assume that A* has a square function estimate. Let B: U — X _,,
be a control operator for some m > 1. Let a > —1 and let 8 € (—1,3) such that
k= O‘Qﬂ is a nonnegative integer. Then B is a-admissible for A if (and only if)
there is a constant K > 0 such that

1+8
t 2

|R(-t,A_,)"*"'B| <K, t>0.
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Our last remark is that there is another way to define square functions on
non Hilbertian Banach spaces, which leads to an alternative framework for a-
admissibility. This theory will be developed in [3]. Here we will only outline the
principle ideas. We let I = (0, oc) be equipped with the measure %. Let us first
consider the case when X = LP(Q), for some 1 < p < oo. The square function
||z]|z can be defined to be the norm of F(tA)z in LP(Q), L?(I)) (instead of its
norm in L2(I, L?(Q))). In this context, a square function estimate is therefore an
inequality of the form

([ s o)

The theory of H* functional calculus shows that perhaps these square functions
are more natural if p # 2. Indeed, the existence of a bounded H* calculus implies
such a square function estimate, see [1]. Then given an operator C': X,,, — LI(Q'),
1 < ¢ < o0, one can define a-admissibility by demanding an estimate of the form

(17) H (/OOO e |C’T(t)x|2dt)%HLq < M|z|.

In this parallel setting, analogues of Theorems 4.2 and 5.1 can be shown. In-
deed, the O-admissibility of C' in the sense of (17) was already treated in [12].
It should be mentioned that in this context another notion of boundedness for
sets of the form {t# CR(—t, A)**1} naturally enters the game: Rademacher—,
or R-boundedness (see i.e. [17]). On general Banach spaces, R—boundedness
is stronger than uniform boundedness, but these notions coincide in the Hilbert
space setting.

In [8] and [9] it is shown that the norms on LP(£2, L*(I)) have a generalisation to
arbitrary Banach spaces X instead of L?({), using so-called Gaussian structures.
In this context it is possible (see [3]) to extend the two characterisation theorems
4.2 and 5.1 to arbitrary Banach spaces X, under a simple geometric condition on
the control and observation spaces U and Y, namely Pisier’s property (a) (see
[16]), which holds i.e. for Hilbert spaces and Li-spaces with ¢ € [1, 00).

< cllz|l.
Lr
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