THE STOCHASTIC WEISS CONJECTURE FOR BOUNDED
ANALYTIC SEMIGROUPS

JAMIL ABREU, BERNHARD HAAK, AND JAN VAN NEERVEN

ABSTRACT. Suppose —A admits a bounded H-calculus of angle less than
7> on a Banach space E which has Pisier’s property («), let B be a bounded
linear operator from a Hilbert space H into the extrapolation space E_1 of
E with respect to A, and let W denote an H-cylindrical Brownian motion.
Let v(H, E) denote the space of all y-radonifying operators from H to E. We
prove that the following assertions are equivalent:
(a) the stochastic Cauchy problem dU(t) = AU(¢)dt + BdWg (t) admits
an invariant measure on F;
(b) (~A)~72B € y(H, B);
(c) the Gaussiansum ) 22 R(2™, A) B converges in v(H, E) in prob-
ability.
This solves the stochastic Weiss conjecture of [7].

1. INTRODUCTION

Let A be the generator of a strongly continuous bounded analytic semigroup
S = (S(t))i>0 on a Banach space E, let F' be another Banach space, and let
C :D(A) — F be a bounded operator. If there exists a constant M > 0 such that

/ |CS(t)z|2dt < M2|z]|3, Ve € D(A),
0

an easy Laplace transform argument shows that

sup A2 [CR(A, A) | 2 < M.
A>0

Here, as usual, R()\, A) = (A — A)~! denotes the resolvent of A at \.

The celebrated Weiss conjecture in linear systems theory is the assertion that the
converse also holds. It was solved affirmatively for normal operators A acting on
a Hilbert space by Weiss [24], for generators of analytic Hilbert space contraction
semigroups with F' = C by Jacob and Partington [9], and subsequently for operators
admitting a bounded H *°-calculus of angle < ™, acting on an LP-space, 1 < p < o0,
by Le Merdy [16, 17]. Counterexamples to the general statement were found by
Jacob, Partington and Pott [10], Zwart, Jacob, and Staffans [25], and Jacob and
Zwart [11].

Whereas the Weiss conjecture is concerned with observation operators, in the
context of stochastic evolution equations it is natural to consider a ‘dual’ version
of the conjecture in terms of control operators. To be more precise, we consider the
following situation. Let Wy = (Wx(t)):e[o,r) be a cylindrical Brownian motion in
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a Hilbert space H and let B € #(H, E_1) be a bounded linear operator. Here, E_;
denotes the extrapolation space of E with respect to A (see Subsection 2.5). The
stochastic Weiss conjecture, proposed recently in [7], is the assertion that, under
suitable assumptions on the linear operator A, the existence of an invariant measure
for the linear stochastic Cauchy problem

(SCP) 4,5

dU(t) = AU(t)dt + BdWy(t),  te€[0,T),
U(0) =0,

is equivalent to an appropriate condition on the operator-valued function A\ —
)\1/2R()\, A)B. This conjecture is justified by the observation (cf. Proposition 2.4
below) that an invariant measure exists if and only if ¢ — S(¢)B defines an element
of the space v(L?(Ry; H), E) (see Subsection 2.3 for the definition of this space).

In the paper just cited, an affirmative solution was given in the case where A
and B are simultaneously diagonalisable. The aim of this article is to prove the
stochastic Weiss conjecture for the class of operators admitting a bounded H>°-
calculus of angle < 7. Denoting by S(FE) the class of all sectorial operators —A on
E of angle < T, that are injective and have dense range, our main result reads as
follows.

Theorem 1.1. Let E have property («) and assume that —A € S(E) admits a
bounded H*> —calculus of angle < %o on E. Let B : H — E_ be a bounded operator.
Then the following assertions are equivalent:

(a) (SCP)(A py admits an invariant measure on E;

(b) (~A)~"=B € ~(H,E);

(¢) A+ A2R(X, A)B defines an element in v(L2(R., d)\}‘,H) E);

(d) for all A > 0 we have R(X\,A)B € v(H, E) and the Gaussian sum

> m2”R(2", A)B

neZ

converges iny(H, E) in probability (equivalently, in LP(Q2;v(H, E)) for some
(all) 1 < p < 0).

Since B maps into the extrapolation space E_1, some care has to be taken in
giving a rigorous interpretations of these assertions. The details will be explained
below.

In the special case when FE is a Hilbert space and H is a separable Hilbert space
with orthonormal basis (hg)r>1, condition (a) is equivalent to

Z/ 1S(6) Bh |2 dt < oo, (1.1)
k=170

and condition (d) reduces to

SN 9n|R(2", A)Bhy|? < oo, (1.2)

k=1n€eZ

Compared to the Weiss conjecture, we see that a uniform boundedness condition
on A2R(X\, A)B gets replaced by a (dyadic) square summability condition along
(hg)r>1 in (1.2); this is consistent with the square summability condition along
(hk)k>1 in (11)

All spaces are real. When we use spectral arguments, we turn to the complexi-
fications without further notice.
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2. PRELIMINARIES

In this section we collect some notations and results that will be used in the
proof of Theorem 1.1.

2.1. Property («). A Rademacher sequence is a sequence of independent random
variables taking the values +1 with probability }5. Let (r})32, and (r})72; be
Rademacher sequences on probability spaces (€2, P') and (2", P"), and let (rjk)j‘?f’kzl
be a doubly indexed Rademacher sequence on a probability space (2, #,P). It is
important to observe that the sequence (r;r;’ )szl is not a Rademacher sequence.
By standard randomisation techniques one proves (see, e.g., [21]):

Proposition 2.1. For a Banach space E the following assertions are equivalent:

(1) there exists a constant C > 0 such that for all finite sequences (a;k)} —; in
R and (zjx)} -, in E we have
E/]E//

n n
2 2
2
E ajkr;rg:rij < C*( max |aj|) E'E” E r;-rngkH ;
1<), k<n

J.k=1 j,k=1

(2) there exists a constant C > 0 such that for all finite sequences (z k)7 _; in
E we have

1 " 2
35| 32 e <
J,k=1

n 2 n 2
/Wi 2
E rjrkxij <C ]EH E rjkxij .
J.k=1 J

k=1

)

A Banach space F is said to have property (a) if it satisfies the above equivalent
conditions. Examples of spaces having this property are Hilbert spaces and the
spaces LP(u) with 1 < p < oo. Property (a) was introduced by Pisier [22], who
proved that a Banach lattice has property () if and only if it has finite cotype. In
particular, the space ¢ fails property («).

2.2. v-Boundedness. A family 7 C Z(E, F) is called y-bounded if there exists
a constant C' > 0 such that for all finite sequences (T,,)Y_; in 7 and (z,,))_, in E

we have
N 5 N
EH > mTnzn|| < C2EH > Antn
n=1 n=1

The least admissible constant in this inequality is called the v-bound of 7.

By letting N=1 it is seen that y-bounded families are uniformly bounded. For
Hilbert spaces E and F, the notions of uniform boundedness and y-boundedness
are equivalent. For detailed expositions on y-boundedness and the closely related
notion of R-boundedness, as well as for references to the extensive literature we
refer the reader to [2, 4, 15, 23].

2

2.3. 7-Radonifying operators. Let 7 be a Hilbert space and E a Banach space.
For a finite rank operator T : 7 — E of the form

N
T = Zhn®xn,
n=1

where (h,)N

N_| is an orthonormal sequence in 2 and (z,)..
we define

n—1 s a sequence in I,

(2.1)

N
1Tl m) == H > nn
n=1

Here, (v,)Y_; is a sequence of independent standard Gaussian random variables on
a probability space (Q,P). The Banach space (57, F) is defined as the completion
of the linear space of finite rank operators with respect to this norm.

L2(E)
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The following v-Fatou lemma holds (see [13, 18]). Suppose (7,,)5; is a bounded

n=1

sequence in y(, E) and T € £(5, E) is an operator such that
lim (T, h,z*) = (Th,z*), Yhe A, z* € E".
n—oo

Then, if F does not contain a closed subspace isomorphic to cg, we have T €
(4, F) and
11y < liminf [T, ] o) (2:2)

The Kalton—Weis extension theorem [13, Proposition 4.4] (see also [18]) asserts
that if T : Hy — Hsy is a bounded linear operator, then the tensor extension
T-HQ®FE—H,®F,

Thez)=Thex
extends to a bounded operator (with the same norm) from v(Hy, E) to v(Has, E).

The Kalton—Weis multiplier theorem [13, Proposition 4.11] (see [18] for the for-
mulation given here) asserts that if (X, u) is a o-finite measure space, E and F' are
Banach spaces with F' not containing a closed subspace isomorphic to ¢y, and if
M : X — Z(E, F) is measurable with respect to the strong operator topology and
has y-bounded range, then the mapping

1p®h)@z— (1p®@h)® Mz

has a unique extension to a bounded linear operator from ~(L?(X, u; H), E) into
Y(L?(X, p; H), F) (with norm equal to the y-bound of the range of M).

Below we shall use (see [21]) that a Banach space E has property () if and only
if, whenever % and 4 are nonzero Hilbert spaces, the mapping (ho ® h1) ® T
ho ® (h1 ® z) extends to an isomorphism of Banach spaces

V(MBI E) ~ ~(H,v(H4, E)).

Here, 54 &4 denotes the Hilbert space completion of the algebraic tensor product
I, @ 4. We will be particularly interested in the case 54 = L*(R,, %)7 in which
case the above isomorphism then takes the form

VLR, %; H), B) = y(L* R+, %), 7(H, E)).

2.4. Stochastic integration. Let H be a Hilbert space and let (2, P) be a proba-
bility space. A cylindrical Brownian motion in H is a mapping Wy : L2(Ry; H) —
L?(Q) such that Wy f is a centred Gaussian random variable for all f € L?(R; H)
and

EWuf - -Wug) = [f, 92w, )
for all f,g € L?>(R,; H). Such a mapping is linear and bounded.

A function ® : Ry — Z(H, E) is said to be stochastically integrable with respect
to Wy if it is scalarly square integrable, i.e., for all z* € E* the function ®*z* :
t — ®*(t)z* belongs to L?(Ry; H), and for all Borel sets B C Ry there exists a
random variable Xp € L?(); E) such that

/ O r* dWpy := Wyr(1p®*2™) = (Xp,z*), Vz*e E*.
B
In that case we define
/ P dWH = XB-
B
The following result was proved in [19].

Proposition 2.2. A scalarly square integrable function ® : Ry — Z(H,E) is
stochastically integrable with respect to Wy if and only if there exists an operator
R e ~(L*(Ry; H), E) such that R*x* = ®*z* in L*(Ry; H) for all z* € E*.



THE STOCHASTIC WEISS CONJECTURE 5

2.5. Existence, uniqueness and invariant measures. Let A be the generator
of a strongly continuous semigroup S = (S(¢))¢>0 on a Banach space E. We define
E_;:=(ExXE)/9(A), where 9(A) = {(z, Az) : x € D(A)} is the graph of A. The
mapping
i1z (0,2) +9(A)
defines a dense embedding ¢_; from F into E_;. We shall always identify E with
it image i_1(E) in E_q.
The operator A extends to a bounded operator A_; from E into E_; by defining
A1z :=(—z,0) + 9 (A).
To see that this indeed gives an extension of A, note that for z € D(A) we have
i1Az = (0,Az) + 9(A) = (—2,0) + 9(A) = A_qx.

It is easy to see that the operator A_;, which is densely defined and closed as a
linear operator in E_; with domain D(A_;) = E, generates a strongly continuous
semigroup S_1 = (S_1(t))i>0 on E_; which satisfies S_1(t)i_1z = i_1S(¢t)z for all
z € Fandt>0.

For a bounded operator B : H — E_; we are interested in F-valued solutions to
the stochastic evolution equation (SCP)( AB) To formulate this problem rigorously,

we first consider the problem (SCP) 4 | 5)in E_;:

(SCP)(a_, )

del(t) :AflUfl(t) dt-i—BdWH(t), te [07T},
U_1(0) = 0.

Here, as always, Wy is a cylindrical Brownian motion in H, and we adopt the
standard notation Wy (t)h := Wg (1) ® h).

An E-valued process U = (U(t))seo,r) is called a weak solution of (SCP) 4 g if
the E_;-valued process i U = (i_1U(t))se[o,7) is a weak solution of (SCP)(AH’B),
ie., for all z*; € D(A*,) the function t — (i_1U(t), A* ;2 ;) is integrable almost
surely and if for each ¢ € [0,7] we have, almost surely,

(AU (@), 2, :/0 (i_1U(s), A" 2™ ) ds + Wi (8) B2 .

An E-valued process U is called a mild solution of (SCP) 4 p, if the E_;-valued
process i—1U is a mild solution of (SCP) 4 | p), i.e., if the function ¢ — S_1(t)B
is stochastically integrable in F_; with respect to Wy and if for each t € [0,7T] we
have, almost surely,

i_lU(t) = /Ot S_l(t—S)BdWH(S). (23)

The following proposition is an extension of the main result of [19] (where the
case B € Z(H, E) was considered).

Proposition 2.3. Under the above assumptions, for an E-valued process U the
following assertions are equivalent:

(a) U is weak solution of (SCP) 4 p);
(b) U is mild solution of (SCP) 4 p);
(c) there exists an operator Ry € v(L?(0,T; H), E) such that for all z* | € E*

Ri(i* 2" ,) = B*S*,()a*, in L2(0,T; H). (2.4)

Proof. Let us prove the equivalence (b)<(c), because this is what we need in the
sequel. The proof of (a)<(b) is left to the reader.
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(b)=(c): By assumption there is a strongly measurable random variable U(T) :
) — FE such that in EF_; we have

’L,lU(T) = /0 571(T — S)B dWH(S)

For all *, € E*,, the random variable (U(T),* ;2* ) is Gaussian. Since F :=
{i* 2%, : z*, € E*,} is weak*-dense in E* and the range of U(T) is separable up
to a null set, from [1, Corollary 1.3] it follows that (U(T),z*) is Gaussian for all
x* € E* ie, U(T) is Gaussian distributed.

By the results of [19] the operator R_q 7 : L?(0,T; H) — E_1, defined by

T
Roynf = / S_A(T — 5)Bf(s) ds,

belongs to v(L?(0,T; H), E_1). Define the linear operator R : F — L%*(0,T; H)
by

R}Zilxil = Ril,Tx*fl'
Then

)

||R;“ii1x*—1”2L2(0,T;H) = ||Rt1,T$*—1||%2(0,T;H)
T
= [ BT = o) s
0

T 2
_ E‘/ B*S* (T — s)z* | dWg(s)
0 H

= E(U(T),ily2%1)% = ||igit 274 (54,
where i is the canonical inclusion mapping of the reproducing kernel Hilbert space
A, associated with the Gaussian random variable U(T), into E. This shows that
R} is well-defined and bounded on F'. At this point we would like to use a density
argument to infer that R} extends to a bounded operator from E* into L*(0,7T; H)
which satisfies
IRy 2oy = 5 |2, Vo' € B, (2.6)
However, this will not work, since F' is only weak*-dense in E*. The correct way
to proceed is as follows. The injectivity of i_; o i implies that % o* | has weak*-
dense range in . As 7 is reflexive, this range is weakly dense and therefore,
by the Hahn-Banach theorem, it is dense. Fixing an arbitrary z* € E*, we may
choose a sequence (z*;,)n>1 in E*; such that i}i* 2, — i72* in 7. By
(2.5) the sequence (Rpi* 2, ,)n>1 is Cauchy in L*(0,T; H) and converges to
some f,« € L2(0,T;H). It is routine to check that f,« is independent of the
approximating sequence. Thus we may extend the R} to E* by putting

Rra™ := for.

Clearly, for this extended operator the identity (2.6) is obtained.

We claim that its adjoint R3* : L?(0,T; H) — E** actually takes values in E,
and that this operator is the one we are looking for.

First, for f = 1(,) ® h and 2™ € E* of the form z* = i* ;2* ; we have

(", RT" f) = [R*Tiiﬂiuf]L?(o,T;H)
b
- / (S_1(T — 5)Bh,z* 1) ds = (i_yy, 2" ) = {y, 7).

where y = f: S_1(T — s)Bhds belongs to D(A_1) = E. It follows that R maps
the dense subspace of all H-valued step functions into F, and therefore it maps all
of L?(0,T; H) into E.
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Viewing Rr := R} as an operator from L?(0,T; H) to E, we finally note that
the identity (2.6) exhibits Ry o R% = ip o i} as the covariance operator of the
E-valued Gaussian random variable U(T'). This means that Ry is vy-radonifying as
an operator from L2(0,T; H) to E (see, e.g., [18]).

(c)=(b): We follow the ideas of [19]. We have L?(0,T; H) = N(R7) & R(R%.).
By the general theory of y-radonifying operators, G := R(R%}) is separable (see
[18]). By a Gram-Schmidt argument we may select a sequence (z* ,)n>1 in E*4
such that (gn)n>1 = (R74%12% ,)n>1 is an orthonormal basis for G. Then the
Gaussian random variables

T
Tn ::/ B*S™ (T - s)z*, ,, dWg(s)
0

are independent and normalised. Since Ry is y-radonifying, the E-valued random
variable
U(T) = ¥nRrgn
n>1
is well-defined, and it is easy to check that it satisfies (2.3) with ¢ replaced by T
By well-known routine arguments, this is enough to assure that (SCP) (a,p) has a
mild solution U in E.

Suppose now that the problem (SCP)(AA’B) admits a mild solution U_; in
E_; and let pu_1,; denote the distribution of the random variable U_1(t). The
weak limit p_ o of these measures, if it exists, is called the (minimal) invariant
measure associated with (SCP) (A_1,B)" Thus, by definition, the invariant measure,
if it exists, is the unique Radon probability measure on E_; which satisfies

| tause =t [ fdu e,
E_, t—o00 E_,

For an explanation of this terminology and a more systematic approach we refer
the reader to [3]. This references deals with Hilbert spaces F; extensions of the
linear theory to the Banach space setting were presented in [6, 20].

A Radon probability measure 1 on E is an invariant measure for (SCP) 4 p)
if the image measure i_1(u) on E_; is an invariant measure for (SCP) 4 | p).
Extending a result from [20] (where the case B € Z(H, E) was considered) we
have the following result. A proof is obtained along the same line of reasoning as
in the previous proposition and is left as an exercise to the reader.

Proposition 2.4. Under the above assumptions, for a Radon probability measure
w on E the following assertions are equivalent:

(a) (SCP) 4 p) admits an invariant measure;
(b) there exists an operator Ry, € Y(L*(Ry; H), E) such that for allz* | € E* |

R (i%ya%y) = B*S* 1 ()z%y in L*(Ry; H). (2.7)

Formally, (2.4) and (2.7) express that the operators Ry and R., are integral
operators with kernels S(-)B. Strictly speaking this makes no sense, since B maps
into F_q rather than into E. It will be convenient, however, to refer to R and R,
as the operators ‘associated with S(-)B’ and we shall do so in the sequel without
further warning.

2.6. Sectorial operators and H*-calculus. For 6 € (0,7) let

Yo :={2€C\{0}: |arg(z)| < 6}
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denote the open sector of angle . A densely defined closed linear operator —A in
a Banach space E is called sectorial (of angle € (0,7)) if the spectrum of —A is
contained in Yy and

sup ||z (z 4+ A)7Y| < oo.

£
The infimum of all § € (0, 7) such that —A is sectorial of angle 6 is called the angle
of sectoriality of —A.

It is well known (see [5, Theorem I11.4.6]) that —A is sectorial of angle less than
Ty if and only if A generates a strongly continuous bounded analytic semigroup on
E.

Following [14] we denote by S(FE) the set of all densely defined, closed, injective
operators in F that are sectorial of angle less than 7, and have dense range. The
injectivity and dense range conditions are not very restrictive: if A is a sectorial
operator on a reflexive Banach space F, then we have the direct sum decomposition

E=N(A)®R(A)
in terms of the null space and closure of the range of A. In that case, the part
of A in R(A) is sectorial and satisfies the additional injectivity and dense range
conditions.

Let —A € S(E) be sectorial of angle 6 € (0,7) and fix n € (0,7-). We denote
by H§°(X,) the linear space of all bounded analytic functions f : ¥, — C with
some power type decay at zero and infinity, i.e., for which there exists an € > 0
such that

If() < ClzF/(1+ [2)*, Vzex,
For such functions we may define a bounded operator

1
f(=4A) = o— (2)(z +A) " dz,
2me 0%,
with " € (6,n). The operator —A is said to have a bounded H°-calculus if there
exists a constant C, independent of f, such that

[f (AN < Cliflloe,  VF € HG(En).

The infimum of all admissible 7 is called the angle of the H>°-calculus of —A.

Examples of operators A for which —A has a bounded H °-calculus of angle less
than 7, are generators of strongly continuous analytic contraction semigroups on
Hilbert spaces and second order elliptic operators on LP-spaces whose coefficients
satisfy mild regularity assumptions. We refer to [4, 8, 15] for more details and
examples.

If —A € S(E) has a bounded H®-calculus, the mapping f — f(—A) extends
(uniquely, in some natural sense discussed in [15]) to a bounded algebra homomor-
phism from H*°(%,) into Z(E) of norm at most C. A proof the following result
can be found in [15].

Proposition 2.5. Suppose that —A € S(E) admits a bounded H> -calculus of angle
N < and let n <n' < o. Then —A is y-sectorial of any angle n < n' < s, i.e.,
the family

{zz+A)7': 2¢ 5,1}
is y-bounded. If, in addition, E has property («), then the family
{f(=A): feH*Ey), [flle <1}
is y-bounded.
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2.7. Rademacher interpolation. If —A is a sectorial operator on E, then for
® € R we may define the Banach space Ey as the completion of D((—A)?) with
respect to the norm

Izl g, = (=4)°z].

Note that (—A)? extends uniquely to an isomorphism from Ep onto F; with some
abuse of notation this extension will also be denoted by (—A)?. In particular, E_;
is the completion of the range R(A) with respect to the norm

Az z_, = ll=]].

Note that
E+E_ =i E_ (2.8)

with equivalent norms. For the reader’s convenience we include the short proof.
We trivially have E <— E_;, and the embedding F_; — FE_; is a consequence of
the fact that for all z € D((—A)~!) = R(A), say = Ay, we have

Izl -, < CII = A)~ 2l = ClII = A~ Alllyll = ClI(T - A)~ A ll2ll_, -

It follows that E + E_; < F_; with continuous inclusion. Since I — A is surjective
from E onto E_i, every x € E_; is of the form z = y — Ay for some y € E,
which implies that x € F + E_l. It follows that the inclusion E + E'_1 — F_;1is
surjective, and the claim now follows from the open mapping theorem.

Let (Xo,X1) be an interpolation couple of Banach spaces. Let (r,)necz be a
Rademacher sequence on a probability space (2, P). For 0 < 6 < 1 the Rademacher
interpolation space (X, X1)g consists of all © € Xy + X; which can be represented
as a sum

:E:an, T, € XoN Xy, (2.9)
neZ

convergent in Xy + X7, such that

4 = E EN o’ )"
Tn)n = su T’n2 " l’n’ ) < o,
o((zn)nez) P (H : .

N0

N 2\ ¥
Gl(@nnez) = s B(|| 30 ra2n0 [ )7 < oo
N0 — X1

The norm of an element = € (Xy, X;)g is defined as

@, x1y, 1= inf (max {%o((@n)nez), Gi((@alnez)} )

where the infimum extends over all representations (2.9). This interpolation method
was introduced by Kalton, Kunstmann and Weis, who proved that if —A admits a
bounded H*—calculus (of any angle < ), then for all 0 < § < 1 and real numbers
«a < [ one has

(Fa, Eg)o = Eq_pya+tos

with equivalent norms [12, Theorem 7.4]. Applying this to the induced operator
I® Aon L*(; E), defined by (I ® A)(f @ z) :== f ® Az for f € L*(Q) and vectors
x € P(A), we obtain the following vector-valued extension of this result:

Proposition 2.6. If —A € S(E) admits a bounded H* —calculus, then
(L2 Eq), L*(Q Eg))o = L* (4 E(1-6)a-+0p)-



10 JAMIL ABREU, BERNHARD HAAK, AND JAN VAN NEERVEN

3. PROOF OF THEOREM 1.1
We begin with a useful observation.

Lemma 3.1. Let A generate a strongly continuous semigroup on E and suppose
that the equivalent conditions of Proposition 2.4 be satisfied. Then for all X € o(A)
there exists an operator S(A\)B € v(H, E) such that

i_105(\)B=R(\A_,)oB

Proof. Tt suffices to prove this for one A € g(A); then, by the resolvent identity,
this holds for all A € p(A).

Fix an arbitrary A > wo(S_1), the exponential growth bound of (S_1(¢))¢>o0.
By assumption there exists an operator R, € v(L*(Ry; H), E) such that for all
r*, € E*; we have R’ (i*,z*,) = B*S*,(-)z*, in L?(R;;H). The operator
§()\)B : H — E given by

S(\)Bh := Rao(e™ @ h)

is y-radonifying and satisfies, for all *, € E*,
o0
<¢,15(A)Bh,xt1>:/ e M(S_1(t)Bh,x* ) dt = (R(\,A_1)Bh,z* ).
0

Hence by the Hahn-Banach theorem, 5 (M) B satisfies the desired identity. g

If the semigroup generated by A is analytic, then R(A,A_;) maps F_; into
D(A_1) = FE and therefore we may interpret R(\, A_1)B as an operator from H to
E. By the injectivity of i_; this operator equals S(A\)B. From now on we simply
write

R(\,A)B :=S(\)B
to denote this operator.
Proposition 3.2. Suppose that —A € S(E) has a bounded H®-calculus of angle

w < Ty on a Banach space E with property (o). Then for all B € X (H,E_1) and
0 € (w, ) the following assertions are equivalent:

(a) Bex(H E_y,);
(b) t+ ¢(—tA)B belongs to y(L* (R, Cff,H) _y,) for all ¢ € H§(Sp);
(¢) t > »(—tA)B belongs to y(L*(Ry, %; H), E_y,), with(z) = 272 /(1+2)7.

In this situation, for any two ¢, ¢ € H§0 (%) satisfying

/ (1) dt / () dt
we have an equivalence of norms
It OBl e, 2y, = N HABl e, s, (B)
with implied constants independent of ¢ and (b.
Proof. We shall prove the implications (a) = (b) = (¢) = (a).

(a) = (b): This follows from [13, Theorem 7.2 and Remark 7.3(2)] and [21
Theorem 5.3].

(b) = (c): This is trivial, as ¢ belongs to HZ°(Xy) for all § < ;

(c) = (a): Let (r5);>1 be a Rademacher sequence on a probability space (€2, P)
and let (h;)%_; be an orthonormal system in H. Using that ¢ € Hg®(Zg), from [8,
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Theorem 5.2.6] we obtain

k b o0 5 dt
> r;iBh; zzrj/ (~=tA)"=(1 - tA)">Bh; —
j=1 j=1 70
k on+1

=33 (—tA)” (1 — tA) =3 Bh; @

with convergence in L*(Q; E_1) = L*(; E_1) 4 L*(9; E) (cf. (2.8)). Defining the
vectors x, € L?(Q; E) N L?(Q; E_1) by

2n+1
Zr]/ (—tA)”(1 — tA)Bh; @

and setting my(t) = (27™¢) % for t € [27, 27t n = —N,..., N, and my(t) = 0
for t ¢ 27V, 2N+1) we obtain (relative to the spaces Xo = L?(; E_1) and X; =
LY E))

CKO((xn)nGZ)2
P 2 3 dt
= su EH 72 /2/ —tA)2 (1 —tA 3Bh —
sup E,::ZN : (AR t4)” e
LA 2 1 dt
— sup | Py / 9=nt) 2 (—tA)(1 — tA) 3 Bh; &
|30 3 rifa [ R - ) o)
j=ln=
E N 0o gt
=su ]EH r-?n/ my () (—tA) (1 — tA) 31 ign gn t)Bh; —
N>p1 z_:l N o N ) ) e aen(®) LY (%E_y,)
j=1ln=
L& >0 dt |2
~sup E r /m )(1—tA 31 9n gn Bh»—H.
R DOD O RS PR T
In the last step, property (a («) was used to pass from double Rademacher sums (on

(Q,P) x (,P)) to doubly indexed Rademacher sums (on some other probability
space (2',P')). Now, estimating Rademacher sums in terms of Gaussian sums we
have

Go((n)nez)’?
ziiﬁEHZlnz o || O 1) o080 G

Since the functions 1(zn, 2n1) ® hj in LQ(RJ” dt. [) are orthonormal (up to the

numerical constant (In2) /2), one may estimate the above right-hand side by

< sup ||t = my(t)¢(—tA)B|?
N>1

where ¢ € HS (%) is given by ¢(z) = z/(1 + 2)3. Finally, using the Kalton—Weis
~-multiplier theorem and the y-boundedness of the operators ( —tA)l/2 (1- tA)_a/?,
t > 0, (which follows from Proposition 2.5) we conclude that

Co((2n)nez) S|t = ¢(—tA)BJI2

V(L2 Ry 23H), By, )

V(L2 (R, G5 H), B _yy)

S/Ht = w(_tA)BH,QY(L2(R+,%;H),E_1/2)

with 1(z) = 272 /(1 + 2) 2.
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Similarly,
C@ﬂl((xn)nEZ)2
P 2n 5 dt
= su IE)H T-Fn2"/2/ —tA)2(1 —tA 3Bh —
N;pl ;n;N ’ on ( )7 A L2(OE)
Lk
= su EH TiTn
N1 Z Z "
j=ln=—N
> 1 dt 12
27) "2 (—tA)2 (1 — tA) 31 gn gns1y () Bh; —
></o ( )Rt ) L @n o) (1) BR tllL2@E_y,)

Se |t — é(— tA)B”Z (L*(Ry %:H),E_y,)

Se It = (= tA)B”z(L?(]RJr LH)E )

with ¢(2) = 22/(1 4 2)? and ¥(2) = 272 /(1 + 2)72 as before.
By Proposition 2.6 and estimating Gaussian sums by Rademacher sums, this
proves that

HZ% )

~p Hzm h‘
L2(OE —1,) iz

Se it = O(—tA)Bll 2w, 2.0) 5 )

Taking the supremum over all finite orthonormal systems in H and using that FE
has property («) and therefore does not contain an isomorphic copy of ¢q, we obtain
(using a theorem of Hoffmann-Jgrgensen and Kwapien, see [18, Theorem 4.3]) that
B is y-radonifying as an operator from H into E,l/z and

||B||’y(H,E'71/2) St 'LZJ(_tA)Bny(LZ(R+,%;H),E71/2)'
We have now proved the equivalences (a) < (b) < (c¢). It remains to check
that these equivalent conditions imply the norm equivalence (3.1). Let p be the

centred Gaussian measure on E_y, associated with the y-radonifying operator B €

~v(H, .E._l/z). Suppose ¢, ¢ € H§°(Xy) are nonzero functions. By [21, Theorems 5.2,
5.3], assertion (a) implies

It St Bl e gy = [ = )l gain, e, do)
o

(1) _

2 e Sl e g, o)
Ya

~ ||t — ¢>(—7«‘A)BH7(L2(R+ LH),B_y)

L2(%E ;)

Here, step (1) follows from [13, Proposition 7.7]. The implied constants are inde-
pendent of ¢ and ¢ under the normalisation as stated in the proposition. O

Remark 3.3. The only step in the proof where we made use of the boundedness
of the functional calculus is the Rademacher interpolation argument. For all other
parts, y-sectoriality of angle less than s is sufficient. However, one actually needs
only the continuous embedding

(LA B), L*(Q; E_1))y, = L*(Q E_y,)
instead of an equality. As in Proposition 2.6 this boils down to having the em-

bedding for the underlying Banach spaces (F, E_1>1/2 — E,l/2. An inspection of
the proof of [12, Theorems 4.1 and 7.4] shows that the latter embedding does not
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require the full power of the boundedness of the functional calculus but merely a
(discrete dyadic) square function estimate of the form

su exp(2F A? xH Sl
[ ewet2 ah)a] 5 ol

for some ¢ € H§®(Xy) for 6 € (0,7), where A* denotes the part of A* in E¥ =
D(A*) NR(A*) (the closures are taken in the strong topology of E*). These ‘dual’
square function estimates match the hypothesis in Le Merdy’s theorem on the Weiss
conjecture [16, Theorem 4.1] in the sense that Le Merdy treats observation oper-
ators and requires upper square function estimates for A whereas we treat control
operators and therefore need ‘dual’ square function estimates. The construction of
A? instead of A* is needed when non-reflexive Banach spaces are concerned. On
reflexive spaces one has A*=A*, and the explained duality with Le Merdy’s result
is more apparent.

In the next lemma, ]?denotes the Laplace transform of a function f.

Lemma 3.4 (Laplace transforms). For all f € L*(Ry, %; H), the function Lf(t) :=
t]?(t) belongs to L*(Ry, % H) and

ILA 2, e my < L2y, 2y
Proof. By the Cauchy-Schwarz inequahty,

e s =[] [ e, §
<[7 [T e
| [T esaas= [Cror S o

As a consequence, the mapping L : f — Lf is a contraction on LQ(R+, %; H).
By the Kalton—Weis extension theorem, L extends to a linear contraction on the
space v(L?(R,, %; H), E), for any Banach space E.

Proof of the equivalences (a) < (b) < (c¢) of Theorem 1.1. (a) = (b): By assump-
tion, t — S(t )B belongs to Y(L*(Ry; H), E). Tt follows that ¢t — n(—tA)B belongs
to y(L*(Ry, %; H), E_ v, ), with n(z) = 2 exp(—z). The Laplace transform of
t— (tz) T2 eXp( tz) equals A — 1/2\/%21/2 (A+z)~"2. Hence, by [15, Lemma 9.12] or
by using the Phillips calculus (see [8]),

VA=A 0= A) BB = [N )RS0

0
or, equivalently,

VT (—AJN)2(1 — AJN)" "B = )\/OC e Mn(—tA)B dt.

0
By Lemma 3.4 and the remark following it, we obtain that A ~— (—A/A)72(1 —
A/\)~"2 B belongs to V(LA (Ry, B H), E_ 1/2) Upon substituting 1/A = p we find
that u — 1 (—pA)B belongs to 7(L2(R+, 1), B_y,) with ¢(z) = 2P (14 2)".
Now (b) follows as an application of Proposmon 3.2.
(b) = (c): From Proposition 3.2 we get that t — (—tA)/2(1 — tA)~'B belongs
to y(L?(R, %;H),E’,yﬁ, or equivalently, that ¢ ~— t/2(1 — tA)~'B belongs to
Y(L*(Ry, %; H),E). Substituting ¢ = 1/s we obtain that s sh(s — A)"'B
belongs to v(L?(Ry, %; H), E).
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(c) = (b): By substituting ¢ = 1/s the assumption implies that s s s/2(1 —
sA)7'B belongs to v(L*(Ry, %; H), E), or equivalently, that s — (fsA)l/Q(l -
sA)~!B belongs to y(L* (R, dtt s H), E_1/2). Then by the y-multiplier lemma (using
that the operators (1 — SA)_1/27 s > 0, are y-bounded by Proposition 2.5), we obtain
that assumption (c) of Proposition 3.2 is satisfied.

(b) = (a): By Proposition 3.2, ¢ — (— tA)1/2 exp(tA)B = (—tA)l/zS(t)B belongs
to y(L*(Ry, %; H), E_ y,). This is equivalent to saying that ¢ — S(t)B belongs to

(LZ(R-‘MH)aE) U

For the proofs of the implications (b) = (d) = (c) we need some further prepa-
rations.
An interval in Ry will be called dyadic (with respect to the measure ) if it is

t
of the form [2+/2" 2(k+1)/2") ith M € N and k € Z.

Lemma 3.5. Let —A € S(E) be v-sectorial and let I, ..., In be dyadic intervals.
For any choice of the numbers sy, t, € I, we have the equivalence

" _ "
s R(sn, A B‘ = H WtER(t,, A)B
|5 o ],y =] S

with constants independent of the finite subset F C Z, the intervals I, and the
choice of sp,tn

L2 (Qy(H,E))

Proof. First note that, since T, is dyadic, |s,42 + t ’l < 4max{s/2 t/2}
We have, using the resolvent identity, the y-boundedness of the operators t R(¢, A)
for t > 0, and the contraction principle,

| 3 sl Rsn 4) = £ Rt ) B

ner

L2 (v(H,E))

HZ% S Ron A R(ta, DB

L2 (Qy(H,E))

81/2_ Y2
+HZ% R, A)B

L2 (Qy(H,E))

ny

ferd (y(H.E))’

By the triangle inequality in L?(Q;~(H, E)) it then follows that
1 1
2 R(s0, A)B| s tlR
H Z InSp (87’” ) L2(Q;V(H,E)) ~ Z Inly (
nekr neF

The converse inequality is obtained by reversing the roles of s,, and ¢,. O

n»

2(Qy(H,E))

Lemma 3.6. Let f: X9 — H be a bounded analytic function and suppose that, for
some 0 <1 < 0, the functions t — f(e*"t) belong to L*(Ry, 4; H). Then

Do IFEMIE < oo

ne”Z

Proof. Since f is continuous we may suppose that H is separable. By expanding
the values of f with respect to an orthonormal basis in H, it suffices to prove the
lemma for the case H equals the scalar field.

By considering g(z) = f(exp(z)), we may reformulate the problem on the strip
Sp={z€C: |Imz| < 0}. The objective is then to show that if the restriction of
a bounded analytic function g on Sy to the lines Im z = +n belongs to L?(R), then
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> onez lg(nln 2)|? < co. The proof of this uses the following standard technique. By
the Poisson formula for the strip we have

sup ||9]{m ==c} ||, < o0
[¢l<n

and therefore g|g, € L*(S,). For 0 < d < n consider the discs
Qn={2€C:|z—nln2| < d}, n e 2,
centred around n € Z. Taking § small enough, the functions ¢,, = \Qn\*l/QlQn have

disjoint support and are hence orthonormal in L2(Sn). By the mean value theorem
we obtain

1 2
lg(nIn2)|* = g(z +iy) du dy
> Slarl,, |

nez

= 53| [ steriwonta+ i deasf

1 2

< W"g‘SnHLQ(Sn)' U

This lemma can be restated as saying that the mapping f — (f(2"))nez is
bounded from the weighted Hardy space H*(X,, u; H) to ¢2(H), where p is the im-
age on the sector 3, of the Lebesgue measure on the strip .S, under the exponential
mapping; note that Lebesgue measure on horizontal lines in the strip .S, is mapped
to the measure dt/t on rays emanating from the origin in the sector X,).

By the Kalton—Weis extension theorem, this mapping extends to a bounded
operator from v(H?*(%,, u; H), E) to v(¢*(H), E), for any Banach space E. This is
what will be needed below.

End of the proof of Theorem 1.1. We shall now prove the remaining implications
(b) = (d) = (¢).

We begin with the proof of (b) = (d). First of all, Lemma 3.1 implies that
R(t,A)B € v(H,FE) for all t > 0. By the implication (b) = (c) applied to the
operators e*? A for a sufficiently small § > 0 we find that the functions

ts tPR(t, eF9A)B = e Tt 2 R(te™ | A)B

belong to y(L?(R, %;H),E). By Lemma 3.6 and the remark following it, we
obtain that the sequence (272R(2", A)B),cz belongs to v(¢*(H), E). But this is

the same as saying that (d) holds.

We turn to the proof of (d) = (c). Let SO denote the average of tRR(t, A)

(with respect to dt/t) over the dyadic interval 7 [ontm2 M gnet(m4+1)27 M)

Let t) — ontm2™ Lo the left endpoint of the interval IS, Then

SOM) — ][ ¢ Rr(t, A)BY
o ¢

= ][ o (R A ~ A))R(t;%),A)B%
5y

te_ tim dt (M)\ Yo 124 (M)
(]{7%) W( t (tR(t, 4) - AR(tJl))?) o [(trm’) ? R(tym, A) Bl
= UM o [(t0D) 2 R(t (D), A)B).

Since t/tgﬁ/[n) € [1,2] on I,(L%), the operators U,S%) belong (up to a constant) to the

closure of the absolute convex hull of {AR(t, A), tR(t, A) : ¢t > 0}. By ~y-sectoriality
of A (which follows from Proposition 2.5) this family is y-bounded.
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Fix a finite set F' C Z. Then,

2M_q
|3 % 100 w5008
wm Y(L?(Ry, %5 H),E)

nelF m=0
oM _q
1
RT3 v esios|
nelb m=0 V(L2 (R4, %) ,y(H,E))
(2) 1 21\/1_1
~ — n S(M)B’
oMy 7;‘ mz::() YnmPOpm L2 (H.E))
1 e (M) Y (M)
S o ( 2Rt A) BH
-2t 7; mzo o () L2(Q/(H, )
Spab> 2217 21 R(2", A)B|
2" neF m=0 " ’ L2(Qyv(H,E))
5 oM _q
U S g e2nme ]
n€F m=0 Y(L2(Ry, 4),v(H,E))

Y1, 2"723(2",A)BH

V(L2 (R4, %)y (H,E))

nel
©)
Y 222 R(2", A B‘
‘;7 ( L2(Q~(H,E))

with implicit constants independent of F' and M. In this computation, (1) follows
from property («); (2), (5), (6) from the identity (2.1) along with the fact that the

dyadic interval I has dt/t-measure ~ 2~M: Estimate (3) follows from the ~y-

(M)

boundedness of the operators Upm’; and (4) from Lemma 3.5 applied to the points
5p,=2" and tnm in I,, = [27,2"F1).

By the y-Fatou lemma (see (2.2)), the above estimate implies (c). O
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