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Abstract

Any continuous map of an N-dimensional simplex ∆N with colored vertices to a d-
dimensional manifold M must map r points from disjoint rainbow faces of ∆N to the same
point in M ; assuming that N ≥ (r − 1)(d + 1), no r vertices of ∆N get the same color, and
our proof needs that r is a prime. A face of ∆N is called rainbow face if all vertices have
different colors.

This result is an extension of our recent new colored Tverberg theorem, the special case of
M = R

d. It is also a generalization of Volovikov’s 1996 topological Tverberg theorem for maps
to manifolds, which arises when all color classes have size 1 (i.e., without color constraints);
for this special case Volovikov’s proofs, as well as ours, work when r is a prime power.

1 Introduction

Recently, we formulated a new version of the 1992 colored Tverberg conjecture by Bárány and
Larman [1], and proved this new version in the case of primes.

Theorem 1.1 (Tight colored Tverberg theorem [3]). For d ≥ 1 and a prime r ≥ 2, set N :=
(d + 1)(r − 1), and let the N + 1 vertices of an N -dimensional simplex ∆N be colored such that

all color classes are of size at most r − 1.
Then for every continuous map f : ∆N → R

d, there are r disjoint faces F1, . . . , Fr of ∆N such

that the vertices of each face Fi have all different colors, and such that the images under f have

a point in common: f(F1) ∩ · · · ∩ f(Fr) 6= ∅.

Here a coloring of the vertices of the simplex ∆N is a partition of the vertex set into color
classes, C1 ⊎ · · · ⊎ Cm. The condition |Ci| ≤ r − 1 implies that there are at least d + 2 different
color classes. In the following, a face all whose vertices have different colors, |Fj ∩Ci| ≤ i for all i,
will be called a rainbow face.

Theorem 1.1 is tight in the sense that it fails for maps of a simplex of smaller dimension, or if r
vertices have the same color. It implies an optimal result for the Bárány–Larman conjecture in the
case where r + 1 is a prime, and an asymptotically-optimal bound in general; see [3]. The special
case where all vertices of ∆N have different colors, |Ci| = 1, is the prime case of the topological
Tverberg theorem of Bárány, Shlosman & Szűcs [2].

In this paper we present an extension of Theorem 1.1 that treats continuous maps ∆N → M
from the N -simplex to an arbitrary d-dimensional manifold M in place of R

d.
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Theorem 1.2 (Tight colored Tverberg theorem for M). For d ≥ 1 and a prime r ≥ 2, set

N := (d + 1)(r − 1), and let the N + 1 vertices of an N -dimensional simplex ∆N be colored such

that all color classes are of size at most r − 1.
Then for every continuous map f : ∆N → M to a d-dimensional manifold, the simplex ∆N

has r disjoint rainbow faces whose images under f have a point in common.

Theorem 1.2 without color constraints (that is, when all color classes are of size 1, and thus
all faces are rainbow faces) was previously obtained by Volovikov [9], using different methods.
His proof (as well as ours in the case without color constraints) works for prime powers r; see
Section 3.1.

The prime power case for the colored version, Theorem 1.2, seems however out of reach at this
point, even in the case M = R

d. Similarly, there currently does not seem to be a viable approach
to the case without color constraints, even for M = R

d, when r is not a prime power. This is the
remaining open case of the topological Tverberg conjecture [2].

We expect that the conclusion of Theorem 1.2 remains valid if we only consider a continuous
map f : R → M , where R denotes the subcomplex of rainbow faces of ∆N . This is trivial in the
case when M is contractible, but not in general. See the discussion in Section 3.2.

2 Proof

We prove Theorem 1.2 in two steps:
• First, a geometric reduction lemma implies that it suffice to consider only manifolds M that are

of the form M = N × Ig. Here I stands for the interval [0, 1] and N is another manifold. This
is done in Section 2.1.

• In the second step, we prove Theorem 1.2 for maps ∆N → N×Ig via the configuration space/test
map scheme and Fadell–Husseini index theory, see Sections 2.2 and 2.4.

In the second step we rely on the computation of the Fadell–Husseini index of joins of chessboard
complexes that we obtained in [4].

2.1 A geometric reduction lemma

The topological calculations in the next section will require that M has trivial cohomology in high
dimensions. More precisely we need

(r − 1) dim(M) > r · cohdim(M), (1)

where cohdim(M) is the cohomology dimension of M . We may assume that the inequality (1)
holds by the following reduction lemma.

Lemma 2.1. Theorem 1.2 for parameters (d, r, M, f) can be derived from the case with parameters

(d′, r′, M ′, f ′) = (d + 1, r, M × I, f ′), where the continuous map f ′ is defined in the proof.

Proof. Suppose we have to prove the theorem for the parameters (d, r, M, f). Let d′ = d + 1,
r′ = r, and M ′ = M × I. Then N ′ := (d′ + 1)(r − 1) = N + r − 1. Let v0, . . . , vN , vN+1, . . . , vN ′

denote the vertices of ∆N ′ . We regard ∆N as the front face of ∆N ′ with vertices v0, . . . , vN . We
give the new vertices vN+1, . . . , vN ′ a new color. Define a new map f ′ : ∆N ′ → M ′ by

λ0v0 + . . . + λN ′vN ′ 7−→ (f(λ0v0 + . . . + λN−1vN−1 + (λN + . . . + λN ′)vn), λN+1 + . . . + λN ′) .

Suppose we can show Theorem 1.2 for the parameters (d′, r′, M ′, f ′). That is, we found a Tverberg
partition F ′

1, . . . , F
′
r for these parameters. Put Fi := F ′

i ∩ ∆N . Since f ′ maps the front face ∆N

to M ×{0} and since ∆N ′ has only r− 1 < r vertices more than ∆N , already the Fi will intersect
in M × {0}. Hence the r faces F1, . . . , Fr form a solution for the original parameters (d, r, M, f).
This reduction is sketched in Figure 1.
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Figure 1: Exemplary reduction in the case d = 1, r = 2, N = 2.

If the reduction lemma is applied g = 1 +
⌊

d
r−1

⌋
times, the problem is reduced from the arbitrary

parameters (d, r, M, f) to parameters (d′′, r′′, M ′′, f ′′) where M ′′ = M×Ig. Thus M ′′ has vanishing
cohomology in its g top dimensions. Therefore (r − 1) dim(M ′′) > r · cohdim(M ′′).

Having this reduction in mind, in what follows we may simply assume that the manifold M
already satisfies inequality (1).

2.2 The configuration space/test map scheme

Suppose we are given a continuous map

f : ∆N −→ M,

and a coloring of the vertex set vert(∆N ) = [N +1] = C0 ⊎ · · · ⊎Cm such that the color classes Ci

are of size |Ci| ≤ r − 1. We want to find a colored Tverberg partition, that is, pairwise disjoint
rainbow faces F1, . . . , Fr of ∆N , |Fj ∩ Ci| ≤ 1, whose images under f intersect.

The test map F is constructed using f in the following way. Let f∗r : (∆N )∗r −→Zr
M∗r be

the r-fold join of f . Since we are interested in pairwise disjoint faces F1, . . . , Fr, we restrict the
domain of f∗r to the simplicial r-fold 2-wise deleted join of ∆N , (∆N )∗r

∆(2) = [r]∗(N+1). This is

the subcomplex of (∆N )∗r consisting of all joins F1 ∗ . . . ∗Fr of pairwise disjoint faces. (See [8] for
an introduction to these notions.) Since we are interested in colored Fjs, we restrict the domain
further to the subcomplex

(C0 ∗ · · · ∗ Cm)
∗r

∆(2) = [r]
∗|C0|
∆(2) ∗ · · · ∗ [r]

∗|Cm|
∆(2) .

This is the subcomplex of (∆N )∗r consisting of all joins F1 ∗ . . . ∗ Fr of pairwise disjoint rainbow
faces. The space [n]∗m

∆(2) is known as the chessboard complex ∆n,m [8]. We write

K := (∆r,|C0|) ∗ · · · ∗ (∆r,|Cm|). (2)

Hence we get a map
F ′ : K −→Zr

M∗r.

Let TM∗r := {
∑r

i=1
1
r
· x : x ∈ M} be the thin diagonal of M∗r. Its complement M∗r\TM∗r is

called the topological r-fold r-wise deleted join of M and it is denoted by M∗r
∆(r).

The preimages (F ′)−1(TM∗r ) of the thin diagonal correspond exactly to the colored Tverberg
partitions. Hence the image of F ′ intersects the diagonal if and only if f admits a colored Tverberg
partition.
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Suppose that there f admits no colored Tverberg partition, then we get a test map

F : K −→Zr
M∗r

∆(r). (3)

We will derive a contradiction to the existence of such an equivariant map using the Fadell–Husseini
index theory.

2.3 The Fadell–Husseini index

Let in the following H∗ denote singular or Čech cohomology with Fr-coefficients, where r is prime,
and G a finite group.

The equivariant cohomology of a G-space X is defined as

H∗
G(X) := H∗(EG ×G X),

where EG is a contractible free G-CW complex and EG ×G X := (EG × X)/G. The classifying
space of the group G is BG := EG/G.

If X is a G-space, we denote the cohomological index of X , also called the Fadell–Husseini

index [6, 7], by

IndG(X) := ker
(
H∗

G(pt)
p∗

−→ H∗
G(X)

)
⊆ H∗

G(pt),

the kernel of the map in cohomology induced by the projection from X to a point.
The cohomological index is monotone in the sense that if there is a G-map X −→G Y then

IndG(X) ⊇ IndG(Y ). (4)

If r is odd then the cohomology of Zr with Fr-coefficients as an Fr-algebra is

H∗(Zr) = H∗(BZr) ∼= Fr[x, y]/(y2),

where deg(x) = 2 and deg(y) = 1. If r is even, then r = 2 and H∗(Zr) ∼= F2[t], deg t = 1.

The index of the complex K was computed in [4, Corollary 2.6]:

Theorem 2.2. IndZr
(K) = H∗≥N+1(BZr).

Therefore in the proof of Theorem 1.2 it remains to show that IndZr
(M∗r

∆(r)) contains a non-zero

element in dimension less or equal to N . Indeed, the monotonicity of the index (4) implies thereby
the non-existence of a test map (3), which in turn implies the existence of a colored Tverberg
partition.

2.4 The index of the deleted join of the manifold

We have inclusions

TM∗r →֒
{∑

λixi ∈ M∗r : λi > 0,
∑

λi = 1, xi ∈ M
}

= M × ∆r−1 →֒ M∗r.

Since M is a smooth Zr-invariant manifold there exists a Zr-equivariant tubular neighborhood of
TM∗r in M∗r, see [5]. Its closure can be described as the disk bundle D(ξ) of an equivariant vector
bundle ξ over M . We denote its sphere bundle by S(ξ). The fiber F of ξ is as a Zr-representation
the (d + 1)-fold sum of Wr, where Wr = {x ∈ R[Zr] : x1 + . . . + xr = 0} is the so-called
augmentation ideal of R[Zr ].

The representation sphere S(F ) is of dimension N − 1. It is a free Zr-space, hence its index is

IndZr
(S(F )) = H∗≥N (BZr). (5)
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This can be directly deduced from the Leray–Serre spectral sequence associated to the Borel
construction EZr ×Zr

S(F ) → BZr, noting that the images of the differentials give precisely the
index of S(F ), which can be seen from the edge-homomorphism.

The Leray–Serre spectral sequence associated to the fibration S(ξ) → M collapses at E2, since
N = (r − 1)(d + 1) ≥ d + 1 and hence there is no differential between non-zero entries. Thus the
map i∗ : HN−1(S(ξ)) → HN−1(S(F )) induced by inclusion is surjective.

The Mayer–Vietoris sequence associated to the triple (D(ξ), M∗r
∆(r), M

∗r) contains the subse-
quence

HN−1(M∗r
∆(r)) ⊕ HN−1(D(ξ))

j∗+k∗

−→ HN−1(S(ξ))
δ

−→ HN (M∗r).

We see that HN (M∗r) is zero. This follows from the formula

H̃∗+(r−1)(M∗r) ∼=
(
H̃∗(M)

)⊗r

,

as long as N − (r − 1) > re, where e is the cohomological dimension of M . This inequality is
equivalent to d > r

r−1e, which can be assumed by applying the reduction from Section 2.1 at least⌊
1 + e

r−1

⌋
times. Hence we can assume that HN(M∗r) = 0.

Furthermore inequality (1) implies N − 1 ≥ d > cohdim(M). Hence the term HN−1(D(ξ)) =
HN−1(M) of the sequence is zero as well.

Thus the map j∗ : HN−1(M∗r
∆(r)) → HN−1(S(ξ)) is surjective. Therefore the composition

(j ◦ i)∗ : HN−1(M∗r
∆(r)) → HN−1(S(F )) is surjective as well. We apply the Borel construction

functor EZr ×Zr
( ) → BZr to this map and apply Leray–Serre spectral sequences, see Figure 2.

0 0

N − 1 N − 1

EZr ×Zr
S(F ) → BZr EZr ×Zr

M∗r
∆(r) → BZr

(j ◦ i)∗

H∗(BZr)

z

H∗(BZr)

w

dN
dN

∗

NN

6= 0

Figure 2: We associate to the map S(F )
j◦i
−→ M∗r

∆(r) the Borel constructions and spectral sequences
to deduce that M∗r

∆(r) contains a non-zero element in dimension N .

At the E2-pages, the generator z of HN−1(S(F )) has a preimage w since (j ◦ i)∗ is surjective.
At the EN -pages (j ◦ i)∗(dN (w)) = dN (z), which is non-zero by (5). Hence dN (w) 6= 0, which is
an element in the kernel of the edge-homomorphism H∗(BZr) → H∗

Zr
(M∗

∆(r)).
Therefore, the index of M∗r

∆(r) contains a non-zero element in dimension N . This completes
the proof of Theorem 1.2.

3 Remarks

3.1 The case without color constraints

Suppose we color the vertices of ∆N in Theorem 1.2 with pairwise distinct colors. Then all faces
of ∆N are rainbow faces, hence the condition of being a rainbow face is empty. This case was
already treated by Volovikov, in a slightly stronger version.

Theorem 3.1 (Volovikov [9]). Let d ≥ 1, let r = pk be a prime power, N := (d + 1)(r − 1), and

f : ∂∆N → M be a continuous map from the boundary N -simplex to a d-dimensional topological

manifold. If p = 2 then we further assume that the degree of f is zero modulo 2. Then ∆N has r
disjoint rainbow faces whose images under f intersect.
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The proof in this paper works also for prime powers r = pk in the case without color constraints,
since then
• the configuration space is the join [r]∗(N+1), which is (N − 1)-connected and (Zp)

k-free, hence
its index is H∗≥N+1(B((Zp)

k)), and
• the group (Zp)

k acts fixed point freely on the sphere S(F ) and Ind(Zp)k(S(F )) consequently
contains an element of degree N , particularly dN (z) in the notation of Section 2.4.

3.2 Reduction to the subcomplex of rainbow faces

One could ask whether ∆N in Theorem 1.2 can be replaced by the subcomplex R that consists
of all rainbow faces. The methods of this paper seem to establish this only if we assume that
sufficiently many colors are used. (The assumptions of Theorem 1.2 imply that the N + 1 vertices
of ∆N are colored with at least

⌈
N+1
r−1

⌉
= d + 2 colors.)

Corollary 3.2. Let d ≥ 1, r ≥ 2 prime, and N := (d+1)(r−1). Let the vertices of ∆N be colored

with at least d + 3 +
⌊

d
r−1

⌋
= d + 2 + g colors such that all color classes Ci are of size |Ci| ≤ r− 1.

Let R be the subcomplex of ∆N consisting of all rainbow faces. Let f : R → M be a continuous

map from R to a d-dimensional manifold M . Then R has r disjoint faces whose images under f
intersect.

The proof of Corollary 3.2 is analogous to that of Theorem 1.2. The main change occurs in
the reduction to the case where the manifold is M ′ = M × Ig, see Section 2.1. Here one needs
to be a bit more careful. Instead of letting f send the r − 1 new vertices of ∆N ′ to points above
f(vN ) and giving them a new color, we send them above the images of possibly different vertices
and color them with the same color as the vertex below. This has to be done in such a way that
all new color classes are still of size less than r. This is possible since the number of used colors
is at least d + 2 + g.
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