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Abstract

We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the
original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al.
(1980), by adding color constraints. It also provides an improved bound for the (topological) colored
Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically
optimal in the general case. The proof is based on relative equivariant obstruction theory.

1 Introduction

Tverberg’s theorem from 1966 [17] [12, Sect. 8.3] claims that any family of (d+1)(r− 1)+1 points in Rd

can be partitioned into r sets whose convex hulls intersect; a look at the codimensions of intersections
shows that the number (d + 1)(r − 1) + 1 of points is minimal for this.

In their 1990 study of halving lines and halving planes, Bárány, Füredi & Lovász [2] observed “we need
a colored version of Tverberg’s theorem” and provided a first case, for three triangles in the plane. In
response to this, Bárány & Larman [3] in 1992 formulated the following general problem and proved it
for the planar case.

The colored Tverberg problem: Determine the smallest number t = t(d, r) such that for every
collection C = C0 ⊔ · · · ⊔ Cd of points in Rd with |Ci| ≥ t, there are r disjoint subcollections F1, . . . , Fr

of C satisfying

|Fi ∩ Cj | ≤ 1 for every i ∈ {1, . . . , r}, j ∈ {0, . . . , d}, and conv (F1) ∩ · · · ∩ conv (Fr) 6= ∅.

A family of such disjoint subcollections F1, . . . , Fr that contain at most one point from each color class
Ci is called a rainbow r-partition. (We do not require F1 ∪ · · · ∪ Fr = C for this.) Multiple points are
allowed in these collections of points, but then the cardinalities have to account for these.

A trivial lower bound is t(d, r) ≥ r: Collections C with only (r − 1)(d + 1) points in general position do
not admit an intersecting r-partition, again by codimension reasons.
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Bárány and Larman showed that the trivial lower bound is tight in the cases t(1, r) = r and t(2, r) = r,
presented a proof by Lovász for t(d, 2) = 2, and conjectured the following equality.

The Bárány–Larman conjecture: t(d, r) = r for all r ≥ 2 and d ≥ 1.

Still in 1992, Živaljević & Vrećica [18] established for r prime the upper bound t(d, r) ≤ 2r−1. The same
bound holds for prime powers according to Živaljević [23]. The bound for primes also yields bounds for
arbitrary r: For example, one gets t(d, r) ≤ 4r−3, since there is a prime p (and certainly a prime power!)
between r and 2r.

As in the case of Tverberg’s classical theorem, one can consider a topological version of the colored
Tverberg problem.

The topological Tverberg theorem: ([4] [13, Sect. 6.4]) Let r ≥ 2 be a prime power, d ≥ 1, and
N = (d + 1)(r − 1). Then for every continuous map of an N -simplex ∆N to Rd there are r disjoint faces
F1, . . . , Fr of ∆N whose images under f intersect in Rd.

The topological colored Tverberg problem: Determine the smallest number t = tt(d, r) such that
for every simplex ∆ with (d + 1)-colored vertex set C = C0 ⊔ · · · ⊔ Cd, |Ci| ≥ t, and every continous map
f : ∆ → Rd there are r disjoint faces F1, . . . , Fr of ∆ satisfying

|Fi ∩ Cj | ≤ 1 for every i ∈ {1, . . . , r}, j ∈ {0, . . . , d}, and f(F1) ∩ · · · ∩ f(Fr) 6= ∅.

The family of faces F1, . . . , Fr is called a topological rainbow partition.

The argument from [18] and [23] gives the same upper bound tt(d, r) ≤ 2r − 1 for r a prime power, and
consequently the upper bound tt(d, r) ≤ 4r − 3 for arbitrary r. Notice that t(d, r) ≤ tt(d, r).

The topological Bárány–Larman conjecture: tt(d, r) = r for all r ≥ 2 and d ≥ 1.

The Lovász proof for t(d, 2) = 2 presented in [3] is topological and thus also valid for the topological
Bárány–Larman conjecture. Therefore tt(d, 2) = 2.

The general case of the topological Bárány–Larman conjecture would classically be approached via a
study of the existence of an Sr-equivariant map

∆r,|C0| ∗ · · · ∗ ∆r,|Cd| −→Sr
S(W⊕(d+1)

r ) ≃ S(r−1)(d+1)−1, (1)

where Wr is the standard (r − 1)-dimensional real representation of Sr obtained by restricting the
coordinate permutation action on Rr to {(ξ1, . . . , ξr) ∈ Rr : ξ1 + · · · + ξr = 0} and ∆r,n denotes the
r × n chessboard complex ([r])∗n

∆(2); cf. [13, Remark after Thm. 6.8.2]. However, we will establish in
Proposition 4.1 that this approach fails when applied to the colored Tverberg problem directly, due
to the fact that the square chessboard complexes ∆r,r admit Sr-equivariant collapses that reduce the
dimension.

In the following, we circumvent this problem by a different, particular choice of parameters, which
produces chessboard complexes ∆r,r−1 that are closed pseudomanifolds and thus do not admit collapses.

2 Statement of the main results

Our main result is the following strengthening of (the prime case of) the topological Tverberg theorem.

Theorem 2.1. Let r ≥ 2 be prime, d ≥ 1, and N := (r−1)(d+1). Let ∆N be an N -dimensional simplex
with a partition of the vertex set into parts (“color classes”)

C = C0 ⊔ · · · ⊔ Cm,

with |Ci| ≤ r − 1 for all i.

Then for every continous map f : ∆N → Rd, there are r disjoint “rainbow” faces F1, . . . , Fr of ∆N whose
images under f intersect, that is,

|Fi ∩ Cj | ≤ 1 for every i ∈ {1, . . . , r}, j ∈ {0, . . . ,m}, and f(F1) ∩ · · · ∩ f(Fr) 6= ∅.

2



The requirement |Ci| ≤ r − 1 forces that there are at least d + 2 non-empty color classes. Theorem 2.1
is tight in the sense that there would exist counter-examples f if |C0| = r and |C1| = . . . = |Cm|.

Our first step will be to reduce Theorem 2.1 to the following special case.

Theorem 2.2. Let r ≥ 2 be prime, d ≥ 1, and N := (r−1)(d+1). Let ∆N be an N -dimensional simplex
with a partition of the vertex set into d + 2 parts

C = C0 ⊔ · · · ⊔ Cd ⊔ Cd+1,

with |Ci| = r − 1 for i ≤ d and |Cd+1| = 1.

Then for every continous map f : ∆N → Rd, there are r disjoint faces F1, . . . , Fr of ∆N satisfying

|Fi ∩ Cj | ≤ 1 for every i ∈ {1, . . . , r}, j ∈ {0, . . . , d + 1}, and f(F1) ∩ · · · ∩ f(Fr) 6= ∅.

Reduction of Theorem 2.1 to Theorem 2.2. Suppose we are given such a map f and a coloring C1 ⊔ · · · ⊔
Cm of the vertex set of ∆N . Let N ′ := (r − 1)m and Cm+1 := ∅. We enlarge the color classes Ci by
N ′ −N = (r− 1)(m− (d + 1)) new vertices and obtain color classes C ′

1, . . . , C
′
m+1, such that Ci ⊆ C ′

i for

all i, and |C ′
1| = · · · = |C ′

m| = r − 1 and |C ′
m+1| = 1. We construct out of f a new map f ′ : ∆N ′ → Rd′

,

where d′ := m − 1, as follows: We regard Rd as the subspace of Rd′

where the last d′ − d coordinates
are zero. So we let f ′ be the same as f on the N -dimensional front face of ∆N ′ . We assemble the
further N ′ −N vertices into d′ − d groups V1, . . . , Vd′−d of r− 1 vertices each. The vertices in Vi shall be
mapped to ed+i, the (d + i)st standard basis vector of Rd′

. We extend this map linearly to all of ∆N ′

and we obtain f ′. We apply Theorem 2.2 to f ′ and the coloring C ′
1, . . . , C

′
m+1 and obtain disjoint faces

F ′
1, . . . , F

′
r of ∆n′ . Let Fi := F ′

i ∩∆N be the intersection of F ′
i with the N -dimensional front face of ∆N ′ .

By construction of f ′, the intersection f ′(F ′
1) ∩ · · · ∩ f ′(F ′

r) lies in Rd. Therefore, already F1, . . . , Fr is a
colorful Tverberg partition for f ′, and hence it is for f : We have f(F1) ∩ · · · ∩ f(Fr) = ∅.

Such a reduction previously appears in Sarkaria’s proof for the prime power Tverberg theorem [16, (2.7.3)];
see also Longueville’s exposition [10, Prop. 2.5].

Remark 2.3. Soon after completion of the first version of the preprint for this paper we noticed (see
[7, Sect. 2]) that Theorem 2.2 also has a simpler proof, using degrees rather than equivariant obstruction
theory; a very similar proof was provided by Vrećica and Živaljević [19]. We provide it in [7] as a special
case of a Vrećica–Tverberg type transversal theorem, accompanied by much more complete cohomological
index calculations, which also yield a second new proof that establishes Theorem 2.1 directly, without a
reduction to Theorem 2.2.

The simpler proof, however, does not imply that the equivariant map proposed by the natural configura-
tion space/test map scheme of Theorem 4.2 does exists if r divides (r − 1)!d. This we prove at the end
of the current paper.

Either of our Theorems 2.1 and 2.2 immediately implies the topological Tverberg theorem for the case
when r is a prime, as it holds for an arbitrary partition of the vertex set into color classes of the specified
sizes. Thus it is a “constrained” Tverberg theorem as discussed recently by Hell [8].

It remains to be explored how the constraints can be used to derive lower bounds for the number of
Tverberg partitions; compare Vućić & Živaljević [20] [13, Sect. 6.3].

More importantly, however, Theorem 2.2 implies the topological Bárány–Larman conjecture for the case
when r + 1 is a prime, as follows.

Corollary 2.4. If r + 1 is prime, then t(d, r) = tt(d, r) = r.

Proof. We prove that if r ≥ 3 is prime, then tt(d, r − 1) ≤ r − 1. For this, let ∆N−1 be a simplex with
vertex set C = C0 ⊔ · · · ⊔ Cd, |Ci| = r − 1, and let f : ∆N−1 → Rd be continuous. Extend this to a map
∆N → Rd, where ∆N has an extra vertex vN , and set Cd+1 := {vN}. Then Theorem 2.1 can be applied,
and yields a topological colored Tverberg partition into r parts. Ignore the part that contains vN .
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Using estimates on prime numbers one can derive from this tight bounds for the colored Tverberg problem
also in the general case. The classical Bertrand’s postulate (“For every r there is a prime p with r + 1 ≤
p < 2r”) can be used here, but there are also much stronger estimates available, such as the existence of
a prime p between r and r + r6/11+ε for arbitrary ε > 0 if r is large enough according to Lou & Yao [11].

Corollary 2.5. r ≤ t(d, r) ≤ tt(d, r) ≤ 2r − 2 for all d ≥ 1 and r ≥ 2.

r ≤ t(d, r) ≤ tt(d, r) ≤ (1 + o(1)) r for d ≥ 1 and r → ∞.

Proof. The first, explicit estimate is obtained from Bertrand’s postulate: For any given r there is a prime
p with r + 1 ≤ p < 2r. We use |Ci| ≥ 2r − 2 ≥ p − 1 to derive the existence of a colored Tverberg
(p − 1)-partition, which in particular yields an r-partition since p − 1 ≥ r.

The second, asymptotic estimate uses the Lou & Yao bound instead.

Remark 2.6. The colored Tverberg problem as originally posed by Bárány & Larman [3] in 1992 was
different from the version we have given above (following Bárány, Fur̈edi & Lovász [2] and Vrećica &
Živaljević [18]): Bárány and Larman had asked for an upper bound N(d, r) on the cardinality of the
union |C| that together with |Ci| ≥ r would force the existence of a rainbow r-partition. This original
formulation has two major disadvantages: One is that the Vrećica–Živaljević result does not apply to it.
A second one is that it does not lend itself to estimates for the general case in terms of the prime case.

However, our Corollary 2.4 also solves the original version for the case when r + 1 is a prime.

The colored Tverberg problem originally arose as a tool to obtain complexity bounds in computational
geometry. As a consequence, our new bounds can be applied to improve these bounds, as follows. Note
that in some of these results t(d, d + 1)d appears in the exponent, so even slightly improved estimates on
t(d, d + 1) have considerable effect. For surveys see [1], [12, Sect. 9.2], and [22, Sect. 11.4.2].

Let S ⊆ Rd be a set in general position of size n, that is, such that no d + 1 points of S are on a
hyperplane. Let hd(n) denote the number of hyperplanes that bisect the set S and are spanned by the
elements of the set S. According to Bárány [1, p. 239],

hd(n) = O(nd−εd) with εd = t(d, d + 1)−(d+1).

Thus we obtain the following bound and equality.

Corollary 2.7. If d + 2 is a prime then

hd(n) = O(nd−εd) with εd = (d + 1)−(d+1).

For general d, we obtain e.g. εd ≥ (d + 1)−(d+1)−O(log d).

Let C ⊆ Rd be a finite set. A C-simplex is the convex hull of some collection of d + 1 points of C. The
second selection lemma [12, Thm. 9.2.1] claims that for an n-point set C ⊆ Rd and the family F of
α
(

n
d+1

)
C-simplices with α ∈ (0, 1] there exists a point contained in at least c · αsd

(
n

d+1

)
C-simplices of

F . Here c = c(d) > 0 and sd are constants. For dimensions d > 2, the presently known proof gives that
sd ≈ t(d, d + 1)d+1. Again, Corollary 2.5 yields the following, much better bounds for the constant sd.

Corollary 2.8. If d + 2 > 4 is a prime then the second selection lemma holds for sd = (d + 1)d+1, and
in general e.g. for sd = (2d + 2)d+1.

Let X ⊂ Rd be an n element set. A k-facet of the set X is an oriented (d − 1)-simplex conv{x1, . . . , xd}
spanned by elements of X such that there are exactly k points of X on its strictly positive side. When
n − d is even n−d

2 -facets of the set X are called halving facets. From [12, Thm. 11.3.3] we have a new,
better estimate for the number of halving facets.

Corollary 2.9. For d > 2 and n−d even, the number of halving facets of an n-set X ⊂ Rd is O(n
d− 1

(2d)d ).
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3 The Configuration Space/Test Map scheme

According to the “deleted joins” version the general “Configuration Space/Test Map” (CS/TM) scheme
for multiple intersection problems, as pioneered by Sarkaria, Vrećica & Živaljević, and others, formalized
by Živaljević, and exposited beautifully by Matoušek [13, Chap. 6], we proceed as follows.

Assume that we want to prove the existence of a rainbow r-partition for arbitrary colored point sets
C = C0 ⊔ C1 ⊔ · · · ⊔ Ck in Rd with |Ci| = ti. So we have to show that there is no (affine) map

f : C0 ∗ C1 ∗ · · · ∗ Ck −→ Rd,

for which no r images of disjoint simplices from the simplicial complex (join of discrete sets) C0∗C1∗· · ·∗Ck

intersect in Rd. (Compare Živaljević [22, Sect. 11.4.2].)

The “deleted joins” configuration space/test map scheme now suggests to take a r-fold deleted join of
this map f , where one has to take an r-fold 2-wise deleted join in the domain and an r-fold r-wise deleted
join in the range; cf. [13, Chap. 6.3]. Thus we arrive at an equivariant map

f∗r
∆(2) : ∆r,|C0| ∗ ∆r,|C1| ∗ · · · ∗ ∆r,|Ck| −→Sr

(Rd)∗r
∆ ⊂ Rr×(d+1)\T ≃ S(W⊕(d+1)

r ). (2)

Here

• the simplicial complex X := ∆r,|C0| ∗ ∆r,|C1| ∗ · · · ∗ ∆r,|Ck| on the left hand side is a join of k + 1
chessboard complexes, where ∆r,|Ci| = (Ci)

∗r
∆(2) is the chessboard complex on r rows and |Ci| columns,

on which Sr acts by permuting the r rows.
This is a simplicial complex on r(|C0|+ |C1|+ · · ·+ |Ck|) vertices, of dimension |C0|+ |C1|+ · · ·+ |Ck|−1
if |Ci| ≤ r, and of dimension max{|C0|, r} + max{|C1|, r} + · · · + max{|Ck|, r} − 1 in general.
Points in X can be represented in the form λ1x1 + · · ·+ λrxr, where xi is a point in (a simplex of) the
i-th copy of the complex C0 ∗ C1 ∗ · · · ∗ Ck, and the λi ≥ 0,

∑
i λi = 1, denote a convex combination.

• (Rd)∗r
∆ is a deleted join, which is most easily represented as a subset of the space of all real r× (d + 1)-

matrices for which not all rows are equal, and where Sr acts by permuting the rows. To factor out
the diagonal T , which is the (d + 1)-dimensional subspace of all matrices for which all rows are equal,

we subtract the average of all rows from each row, which maps this equivariantly to W
⊕(d+1)
r \{0}, the

space of all real r × (d + 1)-matrices with column sums equal to zero but for which not all rows are
zero, and where Sr still acts by permuting the rows. This in turn is homotopy equivalent to the sphere

S(W
⊕(d+1)
r ) = (Sr−2)∗(d+1) = S(r−1)(d+1)−1 = SN−1, where π ∈ Sr reverses the orientation exactly if

(sgn π)d+1 is negative.
• The action of Sr is non-free exactly on the subcomplex A := (∆r,|C0| ∗ . . . ∗ ∆r,|Cm|)

∅,∅ ⊂ X given by
all the points λ1x1 + · · · + λrxr such that λi = λj = 0 for two distinct row indices i < j. These lie
in simplices that have no vertices in the rows i and j, so the transposition πij fixes these simplices
pointwise.

• The map f∗r
∆(2) : X → Rr×(d+1) suggested by the “deleted joins” scheme takes the point λ1x1+· · ·+λrxr

and maps it to the r × (d + 1)-matrix in Rr×(d+1) whose k-th row is (λk, λkf(xk)). For an arbitrary
map f , the image of A under f∗r

∆(2) does not intersect the diagonal T : If λi = λj = 0, then not all rows

(λk, λkf(xk)) can be equal, since
∑

k λk = 1.
However, for the following we replace f∗r

∆(2) by the map F0 : X → Rr×(d+1) that maps λ1x1+ · · ·+λrxr,

to the r × (d + 1)-matrix whose k-th row is (λk, (Πr
ℓ=1λℓ)f(xk)). The two maps f∗r

∆(2) and F0 are

homotopic as maps A → Rr×(d+1) \ {T} by a linear homotopy, so the resulting extension problems
are equivalent by [15, Prop. 3.15(ii)]. The advantage of the map F0 is that its restriction to A is
independent of f .

Thus we have established the following.

Proposition 3.1 (CS/TM scheme for the generalized topological colored Tverberg problem). If for some
parameters (d, r, k; t0, . . . , tk) the Sr-equivariant extension (2) of the map F : A → Rr×(d+1)\T does not
exist, then the colored Tverberg r-partition exists for all continuous f : C0 ∗ C1 ∗ · · · ∗ Ck → Rd with
|Ci| ≥ ti.
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Vrećica & Živaljević achieve this for (d, r, d; 2r − 1, . . . , 2r − 1) and prime r by applying a Borsuk–Ulam
type theorem to the action of the subgroup Zr ⊂ Sr, which acts freely on the join of chessboard complexes
if r is a prime. However, they loose a factor of 2 from the fact that the chessboard-complexes ∆r,t of
dimension r − 1 are homologically (r − 2)-connected only if t ≥ 2r − 1; compare [5], [21], and [14].

Our Theorem 2.2 claims this for (d, r, d+1; r−1, . . . , r−1, 1). To prove it, we will use relative equivariant
obstruction theory, as presented by tom Dieck in [15, Sect. II.3].

4 Proof of Theorem 2.2

First we establish that the scheme of Proposition 3.1 fails when applied to the colored Tverberg problem
directly.

Proposition 4.1. For all r ≥ 2 and d ≥ 1, with N = (r − 1)(d + 1), an equivariant Sr-equivariant map

F : (∆r,r)
∗(d+1) −→Sr

W⊕(d+1)
r \ {0} ≃ SN−1

exists.

Proof. For any facet of the (r−1)-dimensional chessboard complex ∆r,r there is a collapse which removes
the facet together with its subfacet obtained by deleting the vertex in the r-th column. Performing
these collapses simultaneously, we see that ∆r,r collapses Sr-equivariantly to an (r − 2)-dimensional
subcomplexes of ∆r,r, and thus (∆r,r)

∗(d+1) equivariantly retracts to a complex whose dimension is only
(d + 1)(r − 1) − 1 = N − 1.

Thus there is no obstruction to the construction of such an equivariant map: Any generic map f : C → Rd

induces such an equivariant map on the (N − 2)-skeleton, and since the action of Sr is free on the open

(N − 1)-simplices, there is no obstruction for the equivariant extension of the map to W
⊕(d+1)
r \{0} ≃

SN−1.

We now specialize the general scheme of Proposition 3.1 to the situation of Theorem 2.2. Thus we have
to show the following.

Proposition 4.2. Let r ≥ 2 and d ≥ 1 be integers, and N = (r − 1)(d + 1).

An Sr-equivariant map

F : (∆r,r−1)
∗d ∗ ∆r,r−1 ∗ [r] −→Sr

W⊕(d+1)
r \ {0}

that extends the equivariant map F0|A which on the non-free subcomplex of the domain,

A = ((∆r,r−1)
∗d ∗ ∆r,r−1 ∗ [r])∅,∅,

maps λ1x1 + · · · + λrxr with λi = λj = 0, i < j to the r × (d + 1)-matrix with i-th row (λi, 0), exists if
and only if

r | (r − 1)!d.

The vertex set of X = (∆r,r−1)
∗d ∗ ∆r,r−1 ∗ [r] may be represented by a rectangular array of size

r × ((r − 1)(d + 1) + 1), which carries the d + 1 chessboard complexes ∆r,r−1 lined up from left to right,
and in the last column has the chessboard complex ∆r,1 = [r], which is just a discrete set. (See Figure 1)

The join of chessboard complexes (∆r,r−1)
∗d ∗ ∆r,r−1 ∗ [r] has dimension (r − 1)(d + 1) = N , while the

target sphere has dimension N − 1. On both of them, Sr acts by permuting the rows.

While the chessboard complexes ∆r,r collapse equivariantly to lower-dimensional complexes, the chess-
board complexes ∆r,r−1 are closed oriented pseudomanifolds of dimension r − 2 and thus don’t collapse;
for example, ∆3,2 is a circle and ∆4,3 is a torus. We will read the maximal simplices of such a complex
from left to right, which yields the orientation cycle in a special form with few signs that will be very
convenient.
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F :

C0 Cd−1 Cd Cd+1

Rr×(d+1)

−→Sr

∆r,r−1 ∗ · · · ∗ ∆r,r−1 ∗ ∆r,r−1 ∗ [r]

*  ...  *                         *

C                           C C        C0 d-1 d d+1

S5:

F

F

F

F

F

5 R
5×Ýd+1Þ

1

2

3

4

9

10

111

12

13

14

15

16

17

ÝAr,r?1 D. . .DAr,r?1 Þ D Ar,r?1 D ßrà

*  ...  *                         *

C                           C C        C0 d-1 d d+1

S5:

F

F

F

F

F

5 R
5×Ýd+1Þ

1

2

3

4

9

10

111

12

13

14

15

16

17

ÝAr,r?1 D. . .DAr,r?1 Þ D Ar,r?1 D ßrà

Figure 1: The vertex set, and one facet in Φ of the combinatorial configuration space for r = 5.

Lemma 4.3. (cf. [5] [14], [9, p. 145]) For r > 2, the chessboard complex ∆r,r−1 is a connected, orientable
pseudomanifold of dimension r − 2. Therefore

Hr−2(∆r,r−1; Z) = Z

and an orientation cycle is

zr,r−1 =
∑

π∈Sr

(sgn π)〈(π(1), 1), . . . , (π(r − 1), r − 1)〉. (3)

Sr acts on ∆r,r−1 by permuting the rows; this affects the orientation according to π·zr,r−1 = (sgn π)zr,r−1.

Here we use the usual notation 〈w0, . . . , ŵi, . . . , wk〉 for an oriented simplex with ordered vertex set
(w0, . . . , wk) from which the vertex wi is omitted.

Proof of Proposition 4.2. For r = 2, since 2 ∤ 1, this says that there is no equivariant map SN → SN−1,
where both spheres are equipped with the antipodal action: This is the Borsuk–Ulam theorem (and the
Lovász proof). Thus we may now assume that r ≥ 3.

Let X := (∆r,r−1)
∗(d+1) ∗ [r] be our combinatorial configuration space, A ⊂ X the non-free subset, and

F0 : A →Sr
S(W

⊕(d+1)
r ) the prescribed map that we are to extend Sr-equivariantly to X.

Since dim(X) = N and dimS(W
⊕(d+1)
r ) = N − 1 with connS(W

⊕(r+1)
r ) = N − 2, by [15, Sect. II.3] the

existence of an Sr-equivariant extension (∆r,r−1)
∗(d+1) ∗ [r] → S(W

⊕(d+1)
r ) is equivalent to the vanishing

of the primary obstruction
o ∈ HN

Sr

(
X,A; ΠN−1(S(W⊕(d+1)

r ))
)
.

The Hurewicz isomorphism gives an isomorphism of the coefficient Sr-module with a homology group,

ΠN−1(S(W⊕(r+1)
r )) ∼= HN−1(S(W⊕(r+1)

r ); Z) =: Z.

As an abelian group this module Z = 〈ζ〉 is isomorphic to Z. The action of the permutation π ∈ Sr on
the module Z is given by

π · ζ = (sign π)d+1ζ.

Computing the obstruction cocycle. We will now compute an obstruction cocycle cf in the cochain
group CN

Sr

(
X,A;Z

)
, and then show that for prime r the cocycle is not a coboundary, that is, it does not

vanish when passing to o = [cf ] in the cohomology group HN
Sr

(
X,A;Z

)
.

For this, we use a specific general position map f : X → Rd, which induces a map F : X → Rr×(d+1); the
value of the obstruction cocycle cf on an oriented maximal simplex σ of X is then given by the signed
intersection number of F (σ) with the test space, the diagonal T . (Compare [15] and [6].)

Let e1, . . . , ed be the standard basis vectors of Rd, set e0 := 0 ∈ Rd, and denote by v0, . . . , vN the set of
vertices of the N -simplex ∆N in the given order, that is, such that Ci = {vi(r−1), . . . , v(i+1)(r−1)−1} for

i ≤ d and Cd+1 = {v(d+1)(r−1)}. Let f : ‖∆N‖ → Rd be the linear map defined on the vertices by

{
vi

f
7−→ e⌊i/(r−1)⌋ for 0 ≤ i ≤ N − 1,

vN
f

7−→ 1
d+1

∑d
i=0 ei,

7



that is, such that the vertices in Ci are mapped to the vertex ei of the standard d-simplex for i ≤ d,
while vN ∈ Cd+1 is mapped to the center of this simplex.

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

1

2

3

4

1716
15

16

17

Figure 2: The map f : ‖∆16‖ → R3 in the case d = 3 and r = 5

This induces a linear map f : C0 ∗ · · · ∗ Cd+1 → Rd and thus an equivariant map F : X → Rr×(d+1),
taking λ1x1 + · · · + λrxr to the r × (d + 1)-matrix whose k-th row is (λk, (Πr

ℓ=1λℓ)xk), which extends
the prescribed map F0 : A → Rr×(d+1)\T . The intersection points of the image of F with the diagonal
T correspond to the colored Tverberg r-partitions of the configuration C = C0 ⊔ · · · ⊔ Cd+1 in Rd. Since
λ1 = · · · = λr = 1

r at all these intersection points, we find that F is in general position with respect to T .

The only Tverberg r-partitions of the point configuration C (even ignoring colors) are given by r − 1
d-simplices with its vertices at e0, e1, . . . , ed, together with one singleton point (0-simplex) at the center.
Clearly there are (r − 1)!d such partitions.

We take representatives for the Sr-orbits of maximal simplices of X such that from the last ∆r,r−1 factor,
the vertices (1, 1), . . . , (r − 1, r − 1) are taken.

On the simplices of X we use the orientation that is induced by ordering all vertices left-to-right on
the array of Figure 1. This orientation is Sr-invariant, as permutation of the rows does not affect the
left-to-right ordering.

The obstruction cocycle evaluated on subcomplexes of (∆r,r−1)
∗d ∗ ∆r,r−1 ∗ [r]. Let us consider

the following chains of dimensions N resp. N − 1 (illustrated in Figure 3), where zr,r−1 denotes the
orientation cycle for the chessboard complex ∆r,r−1, as given by Lemma 4.3:

Φ = (zr,r−1)
∗d ∗ 〈(1, 1), . . . , . . . , . . . , (r − 1, r − 1), (r, r)〉,

Ωj = (zr,r−1)
∗d ∗ 〈(1, 1), . . . , . . . , . . . , (r − 1, r − 1), (j, r)〉 (1 ≤ j < r),

Θi = (zr,r−1)
∗d ∗ 〈(1, 1), . . . , (̂i, i), . . . , (r − 1, r − 1), (r, r)〉 (1 ≤ i ≤ r),

Θi,j = (zr,r−1)
∗d ∗ 〈(1, 1), . . . , (̂i, i), . . . , (r − 1, r − 1), (j, r)〉 (1 ≤ i ≤ r, 1 ≤ j < r).

Explicitly the signs in these chains are as follows. If σ denotes the facet 〈(1, 1), . . . , (r − 1, r − 1)〉 of
∆r,r−1, such that πσ = 〈(π(1), 1), . . . , (π(r − 1), r − 1)〉, then Φ is given by

Φ =
∑

π1,...,πd∈Sr

(sgn π1) · · · (sgn πd)π1σ ∗ · · · ∗ πdσ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉

and similarly for Ωj , Θi, and Θi,j

The evaluation of cf on Φ picks out the facets that correspond to colored Tverberg partitions: Since the
last part of the partition must be the singleton vertex vN , we find that the last rows of the chessboard

complex Deltar,r−1 factors are not used. We may define the orientation on S(W
⊕(d+1)
r ) such that

cf (σ ∗ · · · ∗ σ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉) = +ζ.

Then we get

cf

(
π1σ∗· · ·∗πdσ∗〈(1, 1), . . . , (r−1, r−1), (r, r)〉

)
=

{
(sgn π1) · · · (sgn πd) ζ if π1(r) = · · · = πd(r) = r,

0 otherwise.
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Φ = (∆r,r−1)
∗d ∗

Θi = (∆r,r−1)
∗d ∗

Ωj = (∆r,r−1)
∗d ∗

Θi,j = (∆r,r−1)
∗d ∗

Θj,j = (∆r,r−1)
∗d ∗

i

j

j
i

j

j

i i
j

j

® = ÝAr,r?1 Þ
Dd

D Ij = ÝAr,r?1 Þ
Dd

D

B i = ÝAr,r?1 Þ
Dd

D B i,j = ÝAr,r?1 Þ
Dd

D

B j,j = ÝAr,r?1 Þ
Dd

D

j

i i
j

j

® = ÝAr,r?1 Þ
Dd

D Ij = ÝAr,r?1 Þ
Dd

D

B i = ÝAr,r?1 Þ
Dd

D B i,j = ÝAr,r?1 Þ
Dd

D

B j,j = ÝAr,r?1 Þ
Dd

D

Figure 3: Schemes for the combinatorics of the chains Φ, Ωj , Θi, and Θi,j .

The sign (sgn π1) · · · (sgn πd) comes from the fact that F maps σ ∗ · · · ∗σ ∗ 〈(1, 1), . . . , (r− 1, r− 1), (r, r)〉

and π1σ ∗ · · · ∗ πdσ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉 to the same simplex in W
⊕(d+1)
r , however with a

different order of the vertices.

Thus,
cf (Φ) = (r − 1)!d ζ.

Moreover, for any Tverberg r-partition in our configuration the last point vN has to be a singleton, while
the facets of Ωj correspond to r-partitions where the j-th face pairs vN with a point in Cd. Thus the
cochains Ωj do not capture any Tverberg partitions, and we get

cf (Ωj) = 0 for 1 ≤ j < r.

Is the cocycle cf a coboundary? Let us assume that cf is a coboundary. Then there is an equivariant
cochain h ∈ CN−1

Sr

(
X,A;Z

)
such that cf = δh, where δ is the coboundary operator.

In order to simplify the notation, from now on we drop the join factor (∆r,r−1)
∗d from the notation

of the subcomplexes Φ, Θi and Ωi. Note that the join with this complex accounts for a global sign of
(−1)d(r−1) in the boundary/coboundary operators, since in our vertex ordering the complex (∆r,r−1)

∗d,
whose facets have d(r − 1) vertices, comes first.

Thus we have

∂Φ = (−1)d(r−1)
r∑

i=1

(−1)i−1Θi

and similarly for 1 ≤ j < r,

∂Ωj = (−1)d(r−1)
( r−1∑

i=1

(−1)i−1Θi,j + (−1)r−1Θr

)
.

Claim 1. For 1 ≤ i, j < r, i 6= j we have h(Θi,j) = 0.

Proof. We consider the effect of the transposition πir. The simplex 〈(1, 1), . . . , (̂i, i), . . . , (r−1, r−1), (j, r)〉
has no vertex in the i-th and in the r-th row, so it is fixed by πir. The d chessboard complexes in
Θi,j are invariant but change orientation under the action of πir, so the effect on the chain Θi,j is
πir · Θi,j = (−1)dΘi,j and hence

h(πir · Θi,j) = h((−1)dΘi,j) = (−1)dh(Θi,j).
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On the other hand h is equivariant, so

h(πir · Θi,j) = πir · h(Θi,j) = (−1)d+1h(Θi,j)

since Sr acts on Z by multiplication with (sgnπ)d+1.

Comparing the two evaluations of h(πir · Θi,j) yields (−1)dh(Θi,j) = (−1)d+1h(Θi,j).

Claim 2. For 1 ≤ j < r we have h(Θj,j) = −h(Θj).

Proof. The interchange of the j-th row with the r-th moves Θj,j to Θj , where we have to account for d

orientation changes for the chessboard join factors.

Thus πjrΘj,j = (−1)dΘj , which yields

(−1)dh(Θj) = h((−1)dΘj) = h(πjrΘj,j) = πjr · h(Θj,j) = (−1)d+1h(Θj,j).

We now use the two claims to evaluate h(∂Ωj). Thus we obtain

0 = cf (Ωj) = δh(Ωj) = h(∂Ωj) = (−1)d(r−1)
(
(−1)j−1h(Θj,j) + (−1)r−1h(Θr)

)

and hence
(−1)jh(Θj) = (−1)rh(Θr).

The final blow now comes from our earlier evaluation of the cochain cf on Φ:

(r − 1)!d · ζ = cf (Φ) = δh(Φ) = h(∂Φ) = h((−1)d(r−1)
r∑

j=1

(−1)j−1Θj)

= −(−1)d(r−1)
r∑

j=1

(−1)jh(Θj)

= −(−1)d(r−1)
r∑

j=1

(−1)rh(Θr)

= (−1)(d+1)(r−1)r h(Θr).

Thus, the integer coefficient of h(Θr) should be equal to (r−1)!d

r ζ, up to a sign. Consequently, when
r ∤ (r − 1)!d, the cocycle cf is not a coboundary, i.e. the cohomology class o = [cf ] does not vanish and

so there is no Sr-equivariant extension X → S(W
⊕(d+1)
r ) of F0|A.

On the other hand, when r | (r − 1)!d we can define

h(Θj) := +(−1)(d+1)(r−1)+j+r · (r−1)!d

r · ζ, for 1 ≤ j ≤ r,

h(Θj,j) := −(−1)(d+1)(r−1)+j+r · (r−1)!d

r · ζ, for 1 ≤ j < r,

h(Θi,j) := 0, for i 6= j, 1 ≤ i ≤ r, 1 ≤ j < r.

Here we actually do obstruction theory with respect to the filtration (∆r,r−1)
∗d ∗ (∆r,r−1 ∗ [r])(n) of X,

where (∆r,r−1 ∗ [r])(n) denotes the n-skeleton of ∆r,r−1 ∗ [r]. The obstruction cocycle actually lies in

Cr−1
Sr

(∆r,r−1 ∗ [r];Z ⊗ H(r−1)d−1((∆r,r−1)
∗d; Z)),

and it is the coboundary of h. Since h is only non-zero on the “cells” Θj and Θj,j , which are only invariant
under id ∈ Sr, we can solve the extension problem equivariantly.

Hence for r | (r − 1)!d an Sr-equivariant extension X → S(W
⊕(d+1)
r ) exists.
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