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Abstract

We prove the following optimal colorful Tverberg–Vrećica type transversal theorem: For prime r and
for any k + 1 colored collections of points Cℓ in Rd, Cℓ =

U

Cℓ
i , |Cℓ| = (r − 1)(d − k + 1) + 1,

|Cℓ
i | ≤ r − 1, ℓ = 0, . . . , k, there are partition of the collections Cℓ into colorful sets F ℓ

1 , . . . , F ℓ
r such

that there is a k-plane that meets all the convex hulls conv(F ℓ
j ), under the assumption that r(d − k)

is even or k = 0.
Along the proof we obtain three results of independent interest: We present two alternative proofs

for the special case k = 0 (our optimal colored Tverberg theorem (2009)), calculate the cohomological
index for joins of chessboard complexes, and establish a new Borsuk–Ulam type theorem for (Zp)

m-
equivariant bundles that generalizes results of Volovikov (1996) and Živaljević (1999).

1 Introduction

In their 1993 paper [TV93] H. Tverberg and S. Vrećica presented a conjectured common generalization
of some Tverberg type theorems, some ham sandwich type theorems and many intermediate results. See
[Živ99] for a further collection of implications.

Conjecture 1.1 (Tverberg–Vrećica Conjecture). Let 0 ≤ k ≤ d and let C0, . . . , Ck be finite point sets
in Rd of cardinality |Cℓ| = (rℓ−1)(d−k+1)+1. Then one can partition each Cℓ into rℓ sets F ℓ

1 , . . . , F ℓ
rℓ

such that there is a k-plane P in Rd that intersects all the convex hulls conv(F ℓ
j ), 0 ≤ ℓ ≤ k, 1 ≤ j ≤ rℓ.

The Tverberg–Vrećica Conjecture has been verified for the following special cases:

• k = d (trivial),
• k = 0 (Tverberg’s theorem [Tve66]),
• k = d − 1 (Tverberg & Vrećica [TV93]),
• for k = d − 2 a weakened version was shown in [TV93] (one requires two more points for each Cℓ),
• k and d are odd, and r0 = · · · = rk is an odd prime (Živaljević [Živ99]),
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• r0 = · · · = rk = 2 (Vrećica [Vre08]), and
• rℓ = paℓ , aℓ ≥ 0, for some prime p, and p(d − k) is even or k = 0 (Karasev [Kar07]).

In this paper we consider the following colorful generalization of the Tverberg–Vrećica conjecture.

Conjecture 1.2. Let 0 ≤ k ≤ d, rℓ ≥ 2 (ℓ = 0, . . . , k) and let Cℓ (ℓ = 0, . . . , k) be subsets of Rd of
cardinality |Cℓ| = (rℓ − 1)(d − k + 1) + 1. Let the Cℓ be colored,

Cℓ =
⊎

Cℓ
i ,

such that no color class is too large, |Cℓ
i | ≤ rℓ − 1. Then we can partition each Cℓ into sets F ℓ

1 , . . . , F ℓ
rℓ

that are colorful (in the sense that |Cℓ
i ∩F ℓ

j | ≤ 1 for all i, j, ℓ) and find a k-plane P that intersects all the
convex hulls conv(F ℓ

j ).

The Tverberg–Vrećica Conjecture 1.1 is the special case of the previous conjecture when all color
classes are given by singletons. The main result of this paper is the following special case.

Theorem 1.3 (Main Theorem). Let r be prime and 0 ≤ k ≤ d such that r(d − k) is even or k = 0.
Let Cℓ (ℓ = 0, . . . , k) be subsets of Rd of cardinality |Cℓ| = (r − 1)(d − k + 1) + 1. Let the Cℓ be colored,

Cℓ =
⊎

Cℓ
i ,

such that no color class is too large, |Cℓ
i | ≤ r − 1. Then we can partition each Cℓ into colorful sets

F ℓ
1 , . . . , F ℓ

r and find a k-plane P that intersects all the convex hulls conv(F ℓ
j ).

In Section 5 we will see that this theorem is quite tight in the sense that it becomes false if one single
color class Cℓ

i has rℓ elements and all the other ones are singletons.
Since we will prove Theorem 1.3 topologically it has a natural topological extension, Theorem 3.1.
Recently we had obtained the first case k = 0 using equivariant obstruction theory [BMZ09]. In

Section 2 we present two alternative proofs, based on the configuration space/test map scheme from
[BMZ09]. The first one is more elementary and shorter; it uses a degree argument. The second proof
puts the first one into the language of cohomological index theory. For this, we calculate the cohomological
index of joins of chessboard complexes. This allows for a more direct proof of the case k = 0, which is
the first of two keys for the Main Theorem 1.3.

The second key is a new Borsuk–Ulam type theorem for equivariant bundles. We establish it in
Section 4, and prove the Main Theorem in Section 5. The new Borsuk–Ulam type theorem can also be
applied to obtain an alternative proof of Karasev’s above-mentioned result from [Kar07]; see Section 5.
Karasev has also obtained a colored version of the Tverberg–Vrećica conjecture, different from ours, even
for prime powers, which can also alternatively be obtained from our new Borsuk–Ulam type theorem.

2 The topological colored Tverberg problem revisited

In [BMZ09] we have shown the following new colored version of the topological Tverberg theorem. It is
the special case k = 0 of the Topological Main Theorem 3.1.

Theorem 2.1 ([BMZ09]). Let r ≥ 2 be prime, d ≥ 1, and N := (r−1)(d+1). Let σN be an N -dimensional
simplex with a partition of the vertex set into “color classes” C0, . . . , Cm such that |Ci| ≤ r − 1 for all i.

Then for every continuous map f : σN → R
d there are r disjoint rainbow faces F1, . . . , Fr of σN (that

is, |Ci ∩ Fj | ≤ 1) such that
f(F1) ∩ · · · ∩ f(Fr) ̸= ∅.

This implies the optimal colored Tverberg theorem (the Bárány–Larman conjecture) for the case when
the number of disjoint faces is a prime minus one, even its topological extension. This conjecture being
proven implies new complexity bounds in computational geometry; see the introduction of [BMZ09] for
three examples.

In this section we present two new proofs of Theorem 2.1. The first one uses an elementary degree
argument. The second proof puts the first one into the language of cohomological index theory, as
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developed by Fadell and Husseini [FH88]. Even though the second proof looks more difficult it actually
allows for a more direct path, since it avoids the non-topological reduction of Lemma 2.2. This requires
more index calculations, which however are valuable since they provide a first key step towards our proof
of the Main Theorem 1.3 in Section 5.

The configuration space/test map scheme

Suppose we are given a continuous map
f : σN −→ R

d

and a coloring of the vertex set vert(σN ) = [N +1] := {1, . . . , N +1} = C0⊎· · ·⊎Cm such that |Ci| ≤ r−1.
We want to find a colored Tverberg partition F1, . . . , Fr.

As in [BMZ09] we construct a test-map F out of f . Let f∗r : (σN )∗r −→Zr (Rd)∗r be the r-fold join
of f , which is equivariant with respect to the Zr-action that shifts the join constituents cyclically. Since
we are interested in pairwise disjoint faces F1, . . . , Fr, we restrict the domain of f∗r to the r-fold 2-wise
deleted join of σN , (σN )∗r

∆(2) = [r]∗(N+1). (See [Mat03] for an introduction to these notions.) Since we
are interested in colorful Fjs, we restrict the domain further to the subcomplex

K := (C0 ∗ . . . ∗ Cm)∗r
∆(2) = [r]∗|C0|

∆(2) ∗ · · · ∗ [r]∗|Cm|
∆(2) .

The space [n]∗m
∆(2) is known as the chessboard complex ∆n,m. Hence K can be written as

K = ∆r,|C0| ∗ · · · ∗ ∆r,|Cm|. (1)

Thus by restricting the domain of f∗r to K we get a Zr-equivariant map

F ′′ : K −→Zr (Rd)∗r.

Let R[Zr] ∼= R
r be the regular representation of Zr and Wr ⊆ R

r the orthogonal complement of the all-
one vector 1 = e1 + · · ·+ er. We write W d+1

r for (Wr)⊕(d+1). The orthogonal projection p : Rr −→Zr Wr

yields a Zr-equivariant map

(Rd)∗r −→Zr W d+1
r∑r

j=1 λjxj 7−→ (p(λ1, . . . , λr), p(λ1x1,1, . . . , λrxr,1), . . . , p(λ1x1,d, . . . , λrxr,d).

The composition of this map with F ′′ gives us the test-map F ′,

F ′ : K −→Zr W d+1
r .

The pre-images (F ′)−1(0) of zero correspond exactly to the colored Tverberg partitions. Hence the image
of F ′ contains 0 if and only if the map f admits a colored Tverberg partition. Suppose that 0 is not in
the image, then we get a map

F : K −→Zr S(W d+1
r ) (2)

into the representation sphere by composing F ′ with the radial projection map. We will derive contra-
dictions to the existence of such an equivariant map.

The first proof of the non-existence establishes a key special case of Theorem 2.1, which implies the
general result by the following reduction.

Lemma 2.2 ([BMZ09]). It suffices to prove Theorem 2.1 for m = d + 1 with |C0| = · · · = |Cd| = r − 1
and |Cd+1| = 1.

For the elementary proof of this lemma see [BMZ09, Reduction of Thm. 2.1 to Thm. 2.2]. This lemma is
the special case k = 0 of Lemma 5.1, which we prove later.

Therefore it suffices to consider K = K ′ ∗ [r] where K ′ = (∆r,r−1)∗(d+1). Let M = F |K′ : K ′ →
S(W d+1

r ) be the restriction of F to K ′. The chessboard complex ∆r,r−1 for r ≥ 3 is a connected orientable
pseudo-manifold, hence K ′ is one as well. For r = 2, K ′ is the boundary of a d + 1-dimensional cross-
polytope, hence a d-sphere. The dimensions dimK ′ = N − 1 = dim S(W d+1

r ) coincide. Thus we can talk
about the degree deg(M) ∈ Z. Here we are not interested in the actual sign, hence we do not need to fix
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orientations. Since K ′ is a free Zr-space and SN−1 is (N − 2)-connected, the degree deg(M) is uniquely
determined modulo r: This is because M is unique up to Zr-homotopy on the codimension one skeleton
of K ′, and changing M on top-dimensional cells of K ′ has to be done Zr-equivariantly, hence it affects
deg(M) by a multiple of r.

To determine deg(M) mod r, we let f be the affine map that takes the vertices in C0 to −1 =
−(e1 + · · · + ed) and the vertices in Ci (1 ≤ i ≤ d) to ei, where ei is the ith standard basis vector
of Rd. The singleton Cd+1 does not matter, we can choose it arbitrarily in Rd. Let P ∈ S(W d+1

r ) be the
normalization of the point (p(1, . . . , 1, 0), 0, . . . , 0) ∈ W d+1

r . The pre-image M−1(P ) is exactly the set of
barycenters of the (r − 1)!d+1 top-dimensional faces of K ′ ∩ (∆r−1,r−1)∗(d+1). With ∆r−1,r−1 we mean
the full subcomplex [r− 1]∗(r−1)

∆(2) of ∆r,r−1. One checks that all pre-images of P have the same pre-image
orientation. This was essentially done in [BMZ09] when we calculated that cf (Φ) = (r − 1)!dζ. Hence

deg(M) = ±(r − 1)!d+1 = ±1 mod r. (3)

Alternatively one can take any map m : ∆r,r−1 −→Zr S(Wr), show that its degree is ±1 by a similar
pre-image argument in dimension d = 1, and deduce that

deg(M) = deg(m∗(d+1)) = deg(m)d+1 = ±1 mod r.

First proof of Theorem 2.1. Since deg(M) ̸= 0, M is not null-homotopic. Thus M does not extend to a
map with domain K ′ ∗ [1] ⊆ K. Therefore the test-map F of (2) does not exist.

Remark 2.3. The degree deg(M) is even uniquely determined modulo r!. To see this one uses the
Sr-equivariance of M and the fact that M is given uniquely up to Sr-homotopy on the non-free part,
which lies in the codimension one skeleton of K ′. The latter can be shown with the modified test-map
F0 from [BMZ09]. This might possibly be an Ansatz for a proof of the affine version of Theorem 2.1 for
non-primes r.

Matoušek, Wagner, and Tancer [MTW10] found a point configuration for the non-prime case r = 4
where the degree is 0. In their example however, the desired colored Tverberg partition does exist
nevertheless.

Index computations

Let H∗ denote Čech cohomology with Zr-coefficients, where r is prime. The equivariant cohomology of
a G-space X is defined as

H∗
G(X) := H∗(EG ×G X),

where EG is a contractible free G-CW complex and EG ×G X := (EG × X)/G. The classifying space
of G is BG := EG/G. If p : X → B is furthermore a projection to a trivial G-space B, we denote the
cohomological index of X over B, also called the Fadell–Husseini index [FH88], by

IndB
G(X) := ker

(
H∗

G(B)
p∗

−→ H∗
G(X)

)
⊆ H∗

G(B) ∼= H∗(BG) ⊗ H∗(B).

If B = pt is a point then one also writes H∗
G(pt) = H∗(G) and IndG(X) := Indpt

G (X).

The cohomological index has the four properties

• Monotonicity: If there is a bundle map X −→G Y then

IndB
G(X) ⊇ IndB

G(Y ). (4)

• Additivity: If (X1 ∪ X2, X1, X2) is excisive, then

IndB
G(X1) · IndB

G(X2) ⊆ IndB
G(X1 ∪ X2).

• Joins:
IndB

G(X) · IndB
G(Y ) ⊆ IndB

G(X ∗ Y ).
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• Subbundles: If there is a is a bundle map f : X −→G Y and a closed subbundle Z ⊆ Y then

IndB
G(f−1(Z)) · IndB

G(Y ) ⊆ IndB
G(X). (5)

The first two properties imply the other two. The last one uses furthermore the continuity of Čech
cohomology H∗. For more information about this index theory see [FH87] and [FH88].

If r is odd then the cohomology of Zr as a Zr-algebra is

H∗(Zr) = H∗(BZr) ∼= Zr[x, y]/(y2),

where deg(x) = 2 and deg(y) = 1. If r is even, then r = 2 and H∗(Z2) ∼= Z2[t], deg t = 1.

Theorem 2.4. Let r be a prime. Let K be an n-dimensional connected free Zr-CW complex and let S
be an n-dimensional (n − 1)-connected free Zr-CW complex. If there is a Zr-map M : K −→Zr

S that
induces an isomorphism on Hn, then

Indpt
Zr

(K) = H∗≥n+1(BZr).

Proof. The Zr-equivariant map M : K −→Zr S induces a map of fibrations,

K
M //

²²

S

²²

EZr ×Zr K
(id,M)

//

²²

EZr ×Zr K

²²

BZr
id // BZr.

Consequently, M induces a morphism E∗,∗
∗ (M) between associated Leray–Serre spectral sequences E∗,∗

∗ (K)
and E∗,∗

∗ (S), see Figure 1. It has the property that E∗,0
2 (M) = idH∗(BZr). For background on Leray–Serre

spectral sequences see [McC01, Chapters 5 and 6]. Moreover, the nth rows E∗,n
2 (K) = H∗(Zr; Hn(K))

and E∗,n
2 (S) = H∗(Zr;Hn(S)) at the E2-pages are identified via E∗,n

2 (M).

0

n

0

n

EZr ×Zr S → BZrEZr ×Zr K → BZr

E∗,∗
∗ (M) dN+1

H∗(BZr)

w H∗(BZr; Hn(S))

H∗(BZr)

dN+1

z H∗(BZr; Hn(K))

∗
n + 1

∗
n + 1

Figure 1: The morphism M∗ between the spectral sequences E∗,∗
∗ (S) and E∗,∗

∗ (K).

At the E∞-pages both spectral sequences have to satisfy Ep,q
∞ = 0 whenever the total degree p + q ≥

n+1. This is because K is free Zr-space, hence H∗
Zr

(K) ∼= H∗(K/Zr), which is zero in degrees ∗ ≥ n+1.
The same holds for S. Therefore, the elements E∗≥n+1,0

∗ (S) = H∗≥n+1(Zr) in the bottom row of the
spectral sequence E∗,∗

∗ (S) must be hit by some differential. These differentials can come only from the nth
row at the En+1-page (this argument even gives us the H∗(Zr)-module structure of the nth row). Hence
there is a non-zero transgressive element w ∈ E0,n

2 (S) = H0(Zr; Hn(S)) = Hn(S)Zr , that is, dn+1(w) ̸= 0.
Let z := E0,n

r (M)(w) ∈ E0,n
2 (K) = Hn(K)Zr . Then di(z) = di(E0,n

r (M)(w)) = Ei,n−i+1
r (M)(di(w)),

which is zero for i ≤ n. Therefore z survives at least until En+1. Analogously, the whole nth row survives
until En+1. We know that all elements in E∗≥1,n

n+1 (K) have to die eventually, so they do it exactly on
page En+1. Thus these elements are exactly the elements whose differentials make the part E∗≥n+2,0

∗ of
the bottom row vanish.
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We claim that no non-zero differential can arrive at the bottom row on an earlier page of E∗,∗
∗ (K).

Assume that di(α) = xayb ∈ E∗,0
i for some α and i ≤ n. This would imply that di(xkα) = xa+kyb for all

k > 0. But we already know that the elements in E∗≥n+2,0
∗ (K) survive until page En+1, which gives the

desired contradiction.
Therefore at E∞(K), the non-zero part of the bottom row is H∗≤n(Zr). The index defining map

H∗
Zr

(pt) → H∗
Zr

(K) is the edge homomorphism, which is the composition

H∗
Zr

(pt)
∼=−→ E∗,0

2 (K) ³ E∗,0
∞ ↪→ H∗

Zr
(K).

Therefore the index of K is everything in the bottom row that got hit by a differential, that is,

Indpt
Zr

(K) = H∗≥n+1(BZr).

We apply this theorem to the above maps M : K ′ → S(W d+1
r ) and (M ∗ id) : K ′ ∗ [r] → S(W d+1

r )∗ [r].

Corollary 2.5. The Zr-index of K ′ = (∆r,r−1)∗(d+1) is

Indpt
Zr

(K ′) = H∗≥N (BZr)

and the Zr-index of K ′ ∗ [r] is
Indpt

Zr
(K ′ ∗ [r]) = H∗≥N+1(BZr).

Using the first part of this corollary we can compute the index for more general joins of chessboard
complexes.

Corollary 2.6. Let 0 ≤ c0, . . . , cm ≤ r − 1 and let s :=
∑

ci. Let K := ∆r,c0 ∗ · · · ∗ ∆r,cm . Then

Indpt
Zr

(K) = H∗≥s(BZr).

Proof. Let L := ∆r,r−1−c0 ∗ · · · ∗ ∆r,r−1−cm and K ′ := (∆r,r−1)∗(m+1). Then dimK = s − 1 and
dimK ′ = (r− 1)(m+1)− 1. We calculate dim K ′ +1 = (dim K +1)+ (dimL+1). There is an inclusion
K ′ −→Zr K ∗ L. This implies

IndZr (K
′) ⊇ IndZr (K ∗ L) ⊇ IndZr (K) · IndZr (L). (6)

Since K is a free Zr-space, H∗
Zr

(K) = H∗(K/Zr), hence

IndZr (K) ⊇ H∗≥dim K+1(BZr), (7)

and analogously
IndZr (L) ⊇ H∗≥dim L+1(BZr). (8)

The dimension a := dimK ′ is odd if r is odd. Using Corollary 2.5, we find that IndZr (K
′) =

H≥a+1(BZr) = ⟨x a+1
2 ⟩ if r is odd, and IndZr

(K ′) = ⟨ta+1⟩ if r = 2. Together with equation (6), the
inclusions (7) and (8) have to hold with equality.

It is interesting that the last argument of the proof would fail for odd r if a + 1 was odd, due to the
relation y2 = 0 in H∗(Zr).

Now we plug in the configuration space K from (1) and obtain the second proof of Theorem 2.1.

Second proof of Theorem 2.1. According to the monotonicity of the index, see (4), the existence of the
test-map F : K −→Zr S(W d+1

r ) of (2) would imply that

Indpt
Zr

(K) ⊇ Indpt
Zr

(S(W d+1
r )).

This is a contradiction since Indpt
Zr

(K) = H∗≥N+1(BZr) and Indpt
Zr

(S(W d+1
r )) = H∗≥N (BZr), as

S(W d+1
r ) is an (N − 1)-dimensional free Zr-sphere.

On the surface this proof seems to be a more difficult reformulation of the first proof. However, its
view point is essential for the transversal generalization, since we do not rely on the geometric tools
of the Reduction Lemma 2.2 anymore, and such a reduction lemma does not seem to exist for the
Tverberg–Vrećica type transversal theorem. Thus we need to use the more general configuration space
∆r,|C0| ∗ · · · ∗ ∆r,|Cm| of (1) instead of (∆r,r−1)∗(d+1) ∗ [r].
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3 The configuration space/test map scheme

The proof of our Main Theorem 1.3 is based on a configuration space/test map scheme for vector bundles.
Such a proof scheme was already used in [Dol87], [Dol92], [Živ99], [Vre08] and [Kar07]. Our progress in
this paper stems from the topological index calculations of Section 2 and from the Borsuk–Ulam type
Theorem 4.1 in Section 4.

The proof gives actually the following more general topological version. The Main Theorem is the
special case when all maps fℓ are affine.

Theorem 3.1 (Topological Main Theorem). Let r be prime and 0 ≤ k ≤ d such that r(d− k) is even or
k = 0. Let Cℓ (ℓ = 0, . . . , k) be sets of cardinality |Cℓ| = (r − 1)(d − k + 1) + 1, which we identify with
the vertex sets of simplices σ|Cℓ|−1. We color them

Cℓ =
⊎

Cℓ
i ,

such that no color class is too large, |Cℓ
i | ≤ r − 1. Let

fℓ : σ|Cℓ|−1 → R
d

be continuous maps. Then we can find r disjoint rainbow faces F ℓ
1 , . . . , F ℓ

r in each simplex σ|Cℓ|−1 (that
is, |F ℓ

j ∩ Cℓ
i | ≤ 1) and a k-plane P ⊆ R

d that intersects all the sets fℓ(F ℓ
j ).

The proof scheme for our situation works as follows. Suppose we are given Cℓs, fℓs and r as in the
assertion of Theorem 3.1 together with the colorings

Cℓ =
mℓ⊎
i=0

Cℓ
i .

A collection of rainbow faces F ℓ
j of the simplices σ|Cℓ|−1 admits a common k-plane P that intersects all

images f(F ℓ
j ) if and only if one can project these images orthogonally to a (d− k)-dimensional subspace

of Rd (namely the orthogonal complement of P ) such that the convex hulls of the projected F ℓ
j s have a

point in common (this point is the image of P under the projection).
Calculations turn out to be easier if we look first at the set of colored Tverberg points of all projections

of one single fixed Cℓ and then show that the corresponding sets for all Cℓs have to intersect.
Fix an ℓ ∈ {0, 1, . . . , k}. Let B := Gd,d−k be the Grassmannian manifold of all (d − k)-dimensional

subspaces of Rd and γ → B the tautological bundle over B. For definitions and context, see Chapter 5
of [MS74]. Let ε denote the trivial line bundle over B. Let B × Wr be the trivial bundle over B with
fiber Wr, which was defined in Section 2. Let E := (B × Wr) ⊕ γ⊕r. The group G := Zr acts on [r]
by left translations and on E by fiberwise shifting the coordinates cyclically. E is a G-bundle over the
trivial G-space B whose fixed-point subbundle ∆ := EG = (B ×Wr)G ⊕ (γ⊕r)G ∼= γ is the thin diagonal
bundle.

The space
K := ∆r,|Cℓ

0| ∗ · · · ∗ ∆r,|Cℓ
mℓ

| = (Cℓ
0 ∗ . . . ∗ Cℓ

mℓ
)∗r
∆(2) ⊆ (σ|Cℓ|−1)

∗r (9)

will again be the configuration space. For each b ∈ B, we can compose the map fℓ with the orthogonal
projection to the (d−k)-space given by b, which can be identified with the fiber over b in γ. This is gives
function

B × σ|Cℓ|−1 → γ,

which is bundle map over B, B×σ|Cℓ|−1 being the trivial bundle over B. Doing the analogous construction
as in Section 2, we get a Zr-equivariant bundle map

B × K
M−→ E,

where the r join coefficients in K = (Cℓ
0 ∗ . . . ∗ Cℓ

mℓ
)∗r
∆(2) are mapped into the r trivial summands ε of

E. Define T ℓ := im(M) ∩ ∆, which is the set of colored Tverberg points of the respective projected sets
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im(Fℓ). Each point of T ℓ ⊆ ∆, which lies in the fiber over say b ∈ B, lies in the intersection of the images
im(F ℓ

j ) of r disjoint rainbow faces projected to b.
Hence we need to show that

T 0 ∩ · · · ∩ T k ̸= ∅. (10)

We will apply our results on the index of the configuration space K, derived in Corollary 2.6, and tools
from Section 4 to show that this is indeed the case. The proof of Theorem 3.1 continues in Section 5.

4 A new Borsuk–Ulam type theorem

In this section we prove the following Borsuk–Ulam type theorem. It is the second topological main step
towards the proof of Theorem 1.3. This theorem will be applied in combination with the subsequent
intersection Lemma 4.3.

Theorem 4.1 (Borsuk–Ulam type). Let
• p be a prime,
• G = (Zp)m an elementary abelian group,
• K a G-CW-complex with index Indpt

G (K) ⊆ H∗≥n+1(BG;Zp),
• B a connected, trivial G-space,
• E

ϕ−→ B a G-vector bundle (all fibers carry the same G-representation),
• ∆ := EG → B the fixed-point subbundle of E → B,
• C → B its G-invariant orthogonal complement subbundle (E = C ⊕ ∆),
• F be the fiber of the sphere bundle S(C) → B.

Suppose that
• n = rank(C),
• π1(B) acts trivially on H∗(F ;Zp) (that is, C → B is orientable if p ̸= 2), and
• we are given a G-bundle map M ,

B × K
M //

pr1
##GG

GG
GG

GG
G E = C ⊕ ∆

ϕ
yyssssssssss

B .

Then for S := M−1(∆) and T := M(S) = im(M) ∩ ∆ the maps induced by projection

H∗(B;Zp)
(pr1|S)∗−→ H∗

G(S;Zp) and H∗(B;Zp)
(ϕ|T )∗−→ H∗(T ;Zp)

are injective.

Remark 4.2. The theorem generalizes
• a lemma of Volovikov [Vol96], which is the special case when B = pt and K is (n − 1)-Zp-acyclic,
• and Theorem 4.2 of Živaljević [Živ99], from whose proof one can extract the special case when m = 1

and K is (n − 1)-Zp-acyclic. and in particular
• the Borsuk–Ulam theorem, which is the special case when G = Z2, B = pt, K = Sn, E = R

n, E and
K with antipodal action.

Proof of Theorem 4.1. We use Čech cohomology with Zp-coefficients.
(1.) Let b ∈ B be the point over which F is the fiber in the sphere bundle S(C) → B. We denote by
E∗,∗

∗ (F ) and E∗,∗
∗ (S(C)) the Leray–Serre spectral sequences associated to the fibrations

F ↪→ EG ×G F → BG × b (11)

and
F ↪→ EG ×G S(C) → BG × B, (12)

respectively, see Figure 2. For details on the Leray–Serre spectral sequence, see [McC01, Chapters 5 and
6].
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The E2-page E∗,∗
2 (F ) has only two non-zero rows, the 0-row and the (n−1)-row. The local coefficients

in Ep,q
2 (F ) = Hp(BG,Hq(F )) are given by the π1(BG)-module structure on Hq(F ). Since G = π1(BG)

is an elementary abelian group and F is a sphere, the H∗(BG)-module structure on Hq(F ) is trivial, for
the G action on Hq(F ) is induced by homeomorphisms F → F , and the degree of this homeomorphism
has to be 1 if p is odd. Therefore

Ep,q
2 (F ) = Hp(BG,Hq(F )) = Hp(BG) ⊗ Hq(F ).

The differentials are H∗(BG)-homomorphism, and

E∗,n−1
n (F ) = E∗,n−1

2 (F ) = H∗(BG) ⊗ Hn−1(F )

is a H∗(BG)-module generated by

1 ∈ E0,n−1
n (F ) = H0(BG) ⊗ Hn−1(F ),

where 1 is regarded as the generator of Hn−1(F ). Hence there is a non-vanishing differential in E∗,∗
∗ (F )

if and only if the differential dn : E0,n−1(F ) → En,0(F ) is non-zero. Since F is fixed-point free, the edge
homomorphism H∗(BG) → H∗

G(F ) is not injective [Die87, Prop. 3.14, p. 196]. Thus there must be a
non-vanishing differential. Therefore there is a non-zero element α = dn(1) ∈ Indpt

G (F ) of degree n.
(2.) Now the inclusion F ↪→ S(C) gives a bundle map from (11) to (12),

EG ×G F //

²²

EG ×G S(C)

²²

BG × b // BG × B

(13)

which induces a morphism of associated Leray–Serre spectral sequences E∗,∗
∗ (S(C)) → E∗,∗

∗ (F ), see
Figure 2.

0

n − 1

0

n − 1

EG ×G F → BG × b

1

H∗(BG)

H∗(BG)

H∗(BG) ⊗ H∗(B)

H∗(BG) ⊗ H∗(B)

α ⊗ 1 + . . .

α

1 ⊗ 1

EG ×G S(C) → BG × B

Figure 2: The morphism of spectral sequences induced by the bundle map (13).

The E2-page of E∗,∗
∗ (S(C)) is Ep,q

2 (S(C)) = Hp(BG × B,Hq(F )), where the local coefficients are
given by the π1(BG × B)-module structure on Hq(F ). Since H∗(F ) is a trivial G × π1(B)-module, the
0- and (n − 1)-rows of this spectral sequence are given by

Ep,q
2 (S) = Hp(BG × B; Hq(F )) = Hp(BG × B) =

p⊕
i=0

Hi(BG) ⊗ Hp−i(B), for q ∈ {0, n − 1}.
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The morphism of the spectral sequences E∗,∗
∗ (S(C)) → E∗,∗

∗ (F ) on the 0-row and on the (n − 1)-row of
the E2-page,

p⊕
i=0

Hi(BG) ⊗ Hp−i(B) → Hp(BG),

is zero on
⊕p

i=1 Hi(BG) ⊗ Hp−i(B). On Hp(BG) ⊗ H0(B) = Hp(BG) it is just the identity. The
differential of the generator 1⊗1 ∈ H0(BG)⊗H0(B) of E0,n−1

n (S(C)) hits an element γ ∈ En−1,0
n (S(C))

of the bottom row
⊕n

i=0 Hi(BG) ⊗ Hn−i(B). Since the differentials commute with morphisms of spec-
tral sequences, γ is an element in IndB

G(S(C)) ⊆ H∗(BG) ⊗ H∗(B) that restricts to α under the map⊕n
i=0 Hi(BG) ⊗ Hn−i(B) → Hn(BG), hence γ ̸= 0. Since α and γ are of degree n, γ has the form

γ = α ⊗ 1 +
∑

i

δi ⊗ εi, (14)

for some δi and εi with deg δi + deg εi = n and deg δi ≤ n − 1.
(3.) Formula (5) of Section 2 yields

IndB
G(S) · IndB

G(S(C)) ⊆ IndB
G(B × K) = Indpt

G (K) ⊗ H∗(B).

We know that Indpt
G (K) ⊆ H∗≥n+1(BG), and in (14) we got an element γ ∈ IndB

G(S(C)). We claim
that IndB

G(S) ⊆ H∗(BG)⊗H∗(B) does not contain any non-zero element of the form 1⊗ β, β ∈ H∗(B).
Indeed, if 1 ⊗ β ∈ IndB

G(S)\{0}, then

(1 ⊗ β) · γ = α ⊗ β +
∑

i

δi ⊗ (β · εi) ∈ Indpt
G (K) ⊗ H∗(B).

Since deg(δi) < deg(α) = n, this implies that α ∈ Indpt
G (K). This contradicts Indpt

G (K) ⊆ H∗≥n+1(BG).
Hence the following composition is injective,

H∗(B) 1⊗id−→ H∗(BG) ⊗ H∗(B) → H∗
G(S),

where both maps are induced by projection. The following diagram is induced by the obvious maps

H∗
G(S) H∗

G(T ) = H∗(BG) ⊗ H∗(T )oo H∗(T )oo

H∗(B)
inj.

iiSSSSSSSSSSSSSSS

OO 55kkkkkkkkkkkkkkk

which shows that H∗(B) → H∗(T ) has to be injective as well.

We will use Theorem 4.1 together with the following intersection lemma.

Lemma 4.3 (Intersection lemma). Let p be prime and ∆
pr−→ B be a vector bundle over an Zp-orientable

compact manifold B, whose mod-p Euler class e := e(∆) ∈ H∗(B;Zp) satisfies ek ̸= 0. Let T0, . . . , Tk ⊆ ∆

be closed sets such that Hdim B(B;Zp)
(pr|Ti

)∗

−→ Hdim B(Ti;Zp) is injective for all i. Then

T0 ∩ · · · ∩ Tk ̸= ∅.

A proof for the case where p is prime can be extracted from [Živ99]. For the convenience of the reader
and at the request of the referee we repeat the argument.

Proof of Lemma 4.3. In the case k = 0 we need to show that T0 ̸= ∅. This is true since (pr|T0)
∗ is

injective. So let us assume that k ≥ 1.
Let D(∆) and S(∆) be the disc and sphere bundles of ∆. As a bundle, ∆ is Zp-orientable since e ̸= 0,

and B is a Zp-orientable manifold. Hence D(∆) is a Zp-orientable manifold as well. We may assume
that the Tis lie in the interior of D(∆) by rescaling the fibers. Let b := dim(B) and r := rank(∆). Let
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τ ∈ Hr(D(∆), S(∆)) be the Thom class. We have e = i∗(τ), where i : (B, ∅) → (D(∆), S(∆)) is the
inclusion. Hence τk+1 = ekτ ̸= 0, since ek ̸= 0 and multiplication by τ is the Thom isomorphism.

Suppose that T0∩· · ·∩Tk = ∅. Then there are open neighborhoods Vi of Ti such that V0∩· · ·∩Vk = ∅.
We will derive a contradiction to that. Since the Čech-cohomology of Ti is the limit of the ordinary
cohomology over open neighborhoods in E, we can make the neighborhoods Vi smaller such that the

maps Hb(B;Zp)
(pr|Vi

)∗

−→ Hb(Vi;Zp) are injective for all i. Therefore the universal coefficient theorem for
cohomology implies that Hb(Vi;Zp) → Hb(B;Zp) is surjective, because we use field coefficients.

In the following commutative diagram, the vertical arrows are Poincaré–Alexander–Lefschetz duality
and the bottom map ji is induced by inclusion.

Hb(Vi) //

∼=
²²

Hb(B)
∼= // Hb(D(∆))

∼=
²²

Hr(D(∆), D(∆)\Vi)
ji // Hr(D(∆), S(∆))

Since τ is the Poincaré dual of the orientation class [B] ∈ Hb(B) = Hb(D(∆)) and the top map is
surjective, we find an element αi ∈ Hr(D(∆), D(∆)\Vi) such that ji(αi) = τ . Hence

τk+1 = j0(α0) · . . . · jk(αk) = j(α0 · . . . · αk),

where j is the map induced by inclusion,

j : Hr(k+1)(D(∆), D(∆)\(V0 ∩ . . . ∩ Vk)) → Hr(k+1)(D(∆), S(∆)).

Since the image of the map j contains τk+1 ̸= 0, we find that V0 ∩ . . . ∩ Vk ̸= 0.

Remark 4.4. The lemma can be extended to all positive integers p. We need to change the argument
only at the point where we need Hb(Vi;Zp) → Hb(Vi;Zp) to be surjective. This can be proven for Zp-
coefficients by a (non-standard) universal coefficient theorem that computes homology from cohomology,
using Zp as the base ring and the fact that Zp is an injective Zp-module. For details see [Mat11].

5 Proof of the colored Tverberg–Vrećica type theorem

Now we have all the topological tools to prove the Main Theorem. We continue from where we stopped
at in Section 3. We need to prove (10), that is,

T0 ∩ . . . ∩ Tk ̸= ∅.

Continued proof of Theorem 3.1. First we assume that p = 2 or that d and k are odd. The remaining
case, when p is odd and d and k are even, will be a consequence of an elementary reduction lemma at
the end of the proof.

The configuration space K is of dimension (r − 1)(d− k). The ranks of E and ∆ are r(d− k + 1)− 1
and d − k. We claim that the orthogonal complement bundle C of ∆ in E is Zr-orientable. Since all
vector bundles are Z2-orientable, we only need to deal with the case where r is odd. Then r − 1 is even
and C is stably isomorphic to γr−1, which is an even power of a bundle, hence orientable. Therefore we
can apply the Borsuk–Ulam type Theorem 4.1 and get that H∗(B) → H∗(Ti) is injective. To apply the
Intersection Lemma 4.3, we need that ek ̸= 0 for the mod-r Euler class e ∈ Hd−k(B) of ∆ ∼= γ.

If r = 2 then e is the top Stiefel–Whitney class wd−k, whose k-th power is the mod-2 fundamental
class of B (see e.g. [Hil80, Lemma 1.2]), which proves the theorem in this case. Now we come to the case
where r is odd. If rank(γ) = d − k is odd then the mod-r Euler class is zero and our method yields no
conclusion. If d − k is even then we may assume that d and k are odd, otherwise we prove the theorem
for d′ = d + 1 and k′ = k + 1 first and use the reduction lemma 5.1 below afterwards. Then ek ̸= 0
was proved in Proposition 4.9 of [Živ99], based on [FH88]. In fact, he even shows it for the tautological
bundle over the oriented Grassmannian. Since this bundle is the pullback of γ we are done by naturality
of the Euler class. Now the Intersection Lemma 4.3 gives that T0∩· · ·∩Tk ̸= ∅. Hence by the preliminary
work of Section 3 we are done.

Finally we prove the elementary Reduction Lemma 5.1 that also implies the case when p is odd and
d and k are even.
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Lemma 5.1 (Reduction Lemma). If Conjecture 1.2 holds for parameters (d, k, r0, . . . , rk) then so it does
for (d′, k′, r0, . . . , rk−1) with d′ := d − 1 and k′ := max(k − 1, 0).

Proof. We will prove only the case k ≥ 1, since the case k = 0 is exactly the reduction that is used in the
proof of Lemma 2.2 [BMZ09].

Assume that Conjecture 1.2 is true for parameters (d, k, r0, . . . , rk) and suppose we are given colored
sets C0, . . . , Ck−1 ⊆ R

d−1 where we have to partition Cℓ into rℓ pieces such that some (k−1)-dimensional
plane meets the convex hulls of all pieces. To do this, view R

d−1 as the hyperplane in Rd where the last
coordinate is zero, and define Ck ⊂ R

d to be a set of (rk − 1)(d − k + 1) + 1 points all of which lie close
to (0, . . . , 0, 1). We color Ck in an arbitrary way. For example, we may give each point a different color.
Since Conjecture 1.2 is true for (d, k, r0, . . . , rk), we can partition the sets Cℓ appropriately and find a
k-plane P meeting all of the convex hulls of the pieces. Since P goes through the convex hull of Ck, it
cannot be fully contained in Rd−1. Therefore P ∩Rd−1 is a (k − 1)-plane intersecting the convex hulls
of the pieces of the sets C0, . . . , Ck−1.

This finishes the proof of the Main Theorem.

Our proof of the Main Theorem does not extend to prime powers rℓ = paℓ over the same prime p.
The basic reason is that the degree of M vanishes modulo r if and only if r divides (r − 1)!d (see (3)).
Therefore this proof can only work if r is a prime or if r = 4 and d = 1. For k = 0, even using the
full symmetry group Sr does not help since an Sr-equivariant test-map exists if and only if r divides
(r − 1)!d; see [BMZ09]. To see this one needs to take a closer look at the obstruction; the degree proof
from Section 2 does not yield this.

A new proof for Karasev’s result [Kar07]

We can extend the above proof to arbitrary powers of a fixed prime p if all color classes are singletons, or
in other words, if we omit all the color constraints. In this case, the configuration space K of (9) becomes

K = [rℓ]∗(N+1) = (σN )∗rℓ

∆(2),

which is the rℓ-wise 2-fold deleted join of an N -simplex. It follows from the connectivity relation conn(A∗
B) ≥ conn(A) + conn(B) + 2 for CW -complexes that K is (N − 1)-connected. As symmetry group we
take instead of Zr a subgroup G ∼= (Zp)mℓ of Srℓ

that acts fixed-point freely on [rℓ]. By the connectivity
of K, Indpt

G (K) ⊆ H∗≥N+1(BG), as we can directly deduce from the Leray–Serre spectral sequence of
K ↪→ EG ×G K → BG. We obtain Karasev’s result.

Theorem 5.2 ([Kar07]). The Tverberg–Vrećica Conjecture 1.1 holds in the special case rℓ = paℓ , where
p is a prime such that p(d − k) is even or k = 0.

Tightness of the Main Theorem 1.3

Observation 5.3. For any 0 ≤ k ≤ d − 1, 0 ≤ ℓ∗ ≤ k, rℓ∗ ≥ 2, we can choose point sets Cℓ ⊂ R
d of

size |Cℓ| = (rℓ − 1)(d − k + 1) + 1 and make all the color classes singletons except for one single color
class Cℓ∗

0 of size rℓ∗ such that there are no colorful partitions of the Cℓs into rℓ pieces each that admit a
common k-dimensional transversal.

Proof. Let V ℓ, 0 ≤ ℓ ≤ k, be pairwise parallel (d− k)-dimensional affine subspaces of Rd such that their
projections to an orthogonal k-space are the k+1 vertices of a k-simplex. On each V ℓ we place a standard
point configuration Cℓ: Take a (d − k)-simplex σℓ in V ℓ, let Cℓ have rℓ − 1 points on each vertex of σℓ

and put the last vertex of Cℓ into the center cℓ of σℓ.
The sets Cℓ admit only one Tverberg point, namely cℓ. Hence a potential common k-dimensional

transversal P must intersect all cℓ. Since the V ℓ have been chosen generically enough, P is uniquely
determined and P ∩ V ℓ = {cℓ}.

Now we color the points of an arbitrary Cℓ∗ at an arbitrary vertex of σℓ∗ red, together with a further
point at another vertex. Even if all other color classes in Cℓ∗ are singletons there will be no colored
Tverberg partition of Cℓ∗ . Together with P ∩ V ℓ∗ = {cℓ∗} this proves the observation.

12
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[MTW10] J. Matoušek, M. Tancer, U. Wagner. A geometric proof of the colored Tverberg theorem,
arxiv:math/1008.5275, Aug. 2010, 19 pages.

[McC01] J. McCleary. A User’s Guide to Spectral Sequences, Cambridge University Press, second edition,
2001.

[MS74] J. W. Milnor, J. D. Stasheff. Characteristic classes, Annals of Mathematics Studies 76, Princeton
University Press, 1974.

[Ste39] H. Steinhaus. A note on the ham sandwich theorem, Mathesis Polska 9 (1938), 26-28.

[Tve66] H. Tverberg. A generalization of Radon’s theorem, J. Lond. Math. Soc. 41 (1966), 123-128.
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