A parametrized version of the Borsuk–Ulam–Bourgin–Yang–Volovikov theorem

Benjamin Matschke*

September 27, 2013

Abstract

We present a parametrized version of Volovikov's powerful Borsuk–Ulam–Bourgin– Yang type theorem, based on a new Fadell-Husseini type ideal-valued index of G-bundles which makes computations easy.

As an application we provide a parametrized version of the following waist of the sphere theorem due to Gromov, Memarian, and Karasev–Volovikov: Any map f from an n-sphere to a k-manifold $(n \ge k)$ has a preimage $f^{-1}(z)$ whose epsilon-neighborhoods are at least as large as the epsilon-neighborhoods of the equator S^{n-k} (if n = k we further need that f has even degree).

1 Introduction

Volovikiv's theorem. Volovikov presented in [Vol92, Theorem 1] a strong Bourgin–Yang type theorem on point coincidences that also generalizes the Borsuk–Ulam theorem. The notation, in particular the index $\operatorname{ind}_{G}^{FH}(X)$ of a G-space, will be explained in section 3.

Theorem 1.1 (Volovikov). Let $q = p^k$ be a prime power, $G = \mathbb{Z}_p^k$ the corresponding elementary Abelian group, and let X be a free G-space of index $\operatorname{ind}_G^{FH}(X) \subseteq H^{* \ge m(p^k - 1) + N}(G)$ with $N \ge 1$. Let M be a compact m-manifold that is orientable if p > 2. Suppose the $f^*: H^*(M) \to H^*(X)$ is zero for $i \ge 1$. Then the set

$$S := \{ x \in X \mid |f(G \cdot x)| = 1 \}$$

is non-empty and has index $\operatorname{ind}_G^{FH} S \subseteq H^{* \geq N}(G)$.

For k = 1, this theorem was already obtained in Volovikov [Vol80] and [Vol83]. Karasev and Volovikov [KV11] generalized theorem 1.1 further to non-orientable manifolds and to arbitrary groups $\mathbb{Z}_p^k \subseteq G \subseteq \text{Syl}_p(S_q)$.

The main methodological tool for this paper is a parametrized version of Volovikov's theorem, which we state in Section 4.

Many other parametrized versions of the Borsuk–Ulam theorem are known. We refer to Jaworowski [Jaw81a], [Jaw81b] and [Jaw04], Dold [Dol88], Nakaoka [Nak84] and [Nak89], Fadell– Husseini [FH87a], [FH88] and [FH89], Živaljević–Vrećica [ŽV90], Izydorek–Jaworowski [IJ92],

^{*}Supported by NSF Grant DMS-0635607 at IAS and by an EPDI fellowship at IHES and FIM (ETH Zürich).

Izydorek–Rybicki [IR92], Mramor-Kosta [MK95], Volovikov [Vol96], Koikara–Mukerjee [KM96], Živaljević [Živ99], de Mattos–dos Santos [dMdS07], Crabb–Jaworowski [CJ09], Schick–Simon– Spiecż–Toruńczyk [SSST11], Blagojević–M.–Ziegler [BMZ11] and [Mat11], and Singh [Sin11].

Main application. Gromov proved in [Gro03] the following version of the Borsuk–Ulam theorem.

Theorem 1.2 (Gromov's waist of the sphere theorem). Let $f : S^n \to \mathbb{R}^k$ be a continuous map where $n \ge k \ge 0$.

Then there exists a point $z \in \mathbb{R}^k$ such that for any $\varepsilon > 0$,

$$\operatorname{vol}_n\left(U_{\varepsilon}(f^{-1}(z))\right) \ge \operatorname{vol}_n\left(U_{\varepsilon}(S^{n-k})\right).$$

Here, vol_n denotes the standard measure on S^n , $U_{\varepsilon}(X)$ denotes the ε -neighborhood of a set $X \subseteq S^n$ with respect to the standard metric on S^n , and S^{n-k} is the (n-k)-dimensional equator of S^n .

Memarian [Mem09] gave a more detailed proof of Gromov's theorem. Karasev and Volovikov [KV11] generalized it to maps $f : S^n \to M$ of even degree from the *n*-sphere to arbitrary *k*-manifolds M, see figure 1.

Figure 1: Example of the Gromov–Memarian–Karasev–Volovikov theorem for n = 2 and $M = S^1$. In this example, $f^{-1}(z)$ is not a large preimage.

The main application of this paper is a parametrized version of this Gromov–Memarian–Karasev–Volovikov theorem.

Theorem 1.3 (Parametrized Gromov–Memarian–Karasev–Volovikov waist of the sphere theorem). Let $f: B \times S^n \to E$ be a bundle map over B, where $S^n \hookrightarrow B \times S^n \to B$ is the trivial S^n bundle over B and $M \hookrightarrow E \xrightarrow{p} B$ is a fiber bundle over B whose fiber is a k-manifold M. If n = k then we further assume that the fiber maps $f_b: S^n \to M$ have even degree at every base point $b \in B$.

Then there exist a subset $Z \subseteq E$ such that for all $z \in Z$ and $\varepsilon > 0$,

$$\operatorname{vol}_n\left(U_{\varepsilon}(f^{-1}(z))\right) \ge \operatorname{vol}_n\left(U_{\varepsilon}(S^{n-k})\right),\tag{1}$$

and such that Z is the set of limit points of a sequence of subsets $Z_i \subseteq E$ with

$$(p_E|_Z)^* : H^*(B; \mathbb{F}_2) \to H^*(Z_i; \mathbb{F}_2)$$

being injective. Here, vol_n is the standard measure on the fiber S^n over $p_E(z)$, $U_{\varepsilon}(.)$ denotes the ε -neighborhood in that fiber, and H^* denotes Čech cohomology. **Remark 1.4.** It may happen the set Z^* of all points $z \in E$ that satisfy the volume bound (1) for all $\varepsilon > 0$ has the property that $H^*(B; \mathbb{F}_2) \to H^*(Z^*; \mathbb{F}_2)$ is not injective. For example this happens when $M = S^n$, the rank n + 1 vector bundle associated to p has non-trivial Stiefel–Whitney classes, and f is wrapping enough to make $Z^* = E$.

The paper is organized as follows: We briefly discuss what we mean by parametrized theorems in section 2 (this section is rather philosophical and the reader may skip it without danger). In section 3 we define the index theories for G-bundles that are used in this paper and we discuss their basic properties. The parametrized Borsuk–Ulam–Bourgin–Yang–Volovikov–Karasev theorem is stated in section 4 and it is proved in section 5. Finally, we prove the parametrized waist of the sphere theorem 1.3 in section 6.

2 Parametrized discrete geometry

Many more theorems in discete geometry apart from Gromov's waist theorem have a parametrized version. A large class of such theorems are those that can be proved via what we would call the *preimage method*: For these theorems, the solution set can be described as a preimage $f^{-1}(Z)$ for some usually equivariant map $X \to Y \supset Z$, such that an invariant such as the equivariant bordism class of $f^{-1}(Z)$ does not vanish, which implies that the solution set is nonempty. This is a specialization of the Configuration Space/Test Map scheme, see Živaljević [Živ96], [Živ98].

Some theorems from discrete geometry turn out to admit "stronger" parametrizations than others. Let's make this precise. Consider a theorem T that asserts for every valid input datum $d \in D$ the existence of a solution s in the space of candidates of solutions X. Here, Dand T are assumed to be topological spaces. There may be several natural choices for D and especially for X.

Let us assume right away that X is a fiber bundle over $D, p : X \to D$, and that the solution set S(d) for $d \in D$ lies in the fiber over d. If X does not naturally have such a structure, then simply replace it with the trivial bundle $pr_2 : X \times D \to D$. Thus $S : D \to 2^X$ is a set-valued section of p. In discrete geometry it is often upper hemicontinuous, i.e. its graph is closed.

The strongest form of a parametrization for theorem T would be a section $s: D \to X$ such that $s(d) \in S(d)$ for all $d \in D$. This appears often when T admits a constructive existence proof. Let's call this a solution selection map.

Convex solution sets. Slightly weaker parametrizations occur when there is set-valued function $S': D \to 2^X$ with $S'(d) \subseteq S(d)$ such that S'(d) is convex, where here we require $p: X \to D$ to be a vector bundle.

The easiest example is probably Helly's theorem [Hel23] (see also Matoušek [Mat02]).

Theorem 2.1 (Helly). Any given family of convex sets $C_i, i \in I$ in \mathbb{R}^d have a point in common if any d + 1 of them do.

For an input datum $d = (C_i)_{i \in I}$ (topologized by the Hausdorff topology with respect to some finite metric on \mathbb{R}^d , and the product topology) the solution set $S(d) = \bigcap_i C_i$ is already convex. However there is no solution selection map, a counter-example is depicted in figure 2.

Figure 2: Example showing that there is no solution selection map for Helly's theorem.

A parametrized Helly theorem on vector bundles was proved and used by Dol'nikov [Dol87] and [Dol92] to establish the *center transversal theorem*, which is a generalization and interpolation between Banach's ham sandwich theorem and Rado's center point theorem.

Theorem 2.2 (Rado). Let μ be a probability measure on the Borel- σ -algebra of \mathbb{R}^d . Then there exists a point $c \in \mathbb{R}^d$, called the center point of μ , such that any halfspace H that contains C satisfies $\mu(H) \ge 1/(d+1)$.

Since the solutions set of all centerpoints of a given measure μ is convex, we get again immediately a parametrized version. This was first observed by Živaljević–Vrećica [ŽV90] who used it to prove the center transversal theorem, independently from Dol'nikov.

Weak parametrizations. Most often the there is not even a convex set valued solution selection function. Still there might be more quantitative assertions about the solution set $\mathbb{S} := \bigcup_{d \in D} S(d)$, such as the *injectivity* of the map induced in some continuous cohomology $H^*(D) \to H^*(\mathbb{S})$, or the *surjectivity* of the map induced in some homology $H_*(\mathbb{S}) \to H_*(D)$. A basic example is of course the Borsuk–Ulam theorem [Bor33].

Theorem 2.3 (Borsuk–Ulam). Any map $f : S^d \to \mathbb{R}^d$ sends some pair of antipodal points $x, -x \in S^d$ to the same point f(x) = f(-x).

The solution set represents the generator of $H_0(\mathbb{R}P^d;\mathbb{F}_2) = \mathbb{F}_2$, meaning that the generic number of solutions is odd. Jaworowski's parametrized version [Jaw81a] concerns bundle maps from an S^d -bundle to a rank d vector bundle φ over the same base space B. He proved that if all Stiefel–Whitney classes up to ω_i of φ are trivial, then $H^{d-i}(B;\mathbb{F}_2) \to H^{d-i}(\mathbb{S};\mathbb{F}_2)$ is injective, H^* being any continuous cohomology and d being the cohomology dimension of B. For many more versions see the above references in the paragraph below remark 1.4.

Another example is Tverberg's theorem [Tve66], [Tve81].

Theorem 2.4 (Tverberg). Let N := (r-1)(d+1). Any N+1 points in \mathbb{R}^d can be partitioned into r parts whose convex hulls have a point in common.

We could replace \mathbb{R}^d by some rank d vector bundle φ over a base space D, and replace the given point set by N + 1 sections in φ . The union \mathbb{S} of the solution sets of Tverberg's theorem for every fiber of φ will be over generic points $d \in D$ only a finite point set. But one can show that if $r = p^k$ is prime power then φ induces an *injection* on Čech-cohomology $H^*(D; \mathbb{F}_p) \to H^*(\mathbb{S}; \mathbb{F}_p)$, see Živaljević [Živ99], Vrećica [Vre03], Karasev [Kar07], and Blagojević-M.-Ziegler [BMZ11]. These parametrized versions are then used to prove cases of the so-called transversal versions of Tverberg's theorem, the Tverberg-Vrećica conjecture [TV93]. More transversal versions of standard theorems in discrete geometry can be found in Karasev [Kar07], [Kar09b], and Montejano-Karasev [MK11]

3 Topological notations

Let us fix some notation that will be used throughout the paper.

All spaces are paracompact, all maps are continuous. By a bundle we simply mean a map $X \to B$, where X is called total space and B base space. A G-bundle is a G-map $X \longrightarrow_G B$ from a G-space X to a trivial G-space B. Base spaces will always be trivial G-spaces in this paper. In particular, G acts fiberwise on X. When we write $F \hookrightarrow E \to B$ we mean a fiber bundle. Fiber bundles will always be locally trivial. A (Serre) G-fibration is a G-bundle with the G-equivariant lifting property for G-CW-complexes (usually G-fibrations are also defined for base spaces with non-trivial G-action, but not in this paper).

Let $q = p^k$ be a prime power. In this paper we consider only symmetry groups G with $\mathbb{Z}_p^k \subseteq G \subseteq \operatorname{Syl}_p(S_q)$. Here, S_q is the symmetric group on q elements, $\mathbb{Z}_p = \mathbb{Z}/(p\mathbb{Z})$, and $\operatorname{Syl}_p(S_q) = \mathbb{Z}_p \wr \ldots \wr \mathbb{Z}_p$ is some p-Sylow subgroup of S_q . Cohomology groups $H^*(X)$ always denote Čech cohomology with \mathbb{F}_p -coefficients, which are constant coefficients except when we are talking about equivariant cohomology. In that case, the coefficients \mathbb{F}_p are twisted by the sign of the permutation (remember that $G \subseteq S_q$).

For a G-space X, we write $X_G := EG \times_G X$, which is the total space of the fibration $X \hookrightarrow X_G \to B$ called Borel construction. The G-equivariant cohomology (equivariant bundle cohomology, or Borel cohomology) of X is $H^*_G(X) := H^*(X_G)$. In particular for a trivial G-space B we have $H^*_G(B) = H^*(B_G) = H^*(G) \otimes H^*(B)$.

Let $W_q := \{x \in \mathbb{R}^q \mid \sum x_i = 0\}$ denote the standard representation of S_q . The *G*-equivariant Euler class of a *G*-bundle $F \hookrightarrow E \to B$ is the ordinary Euler class of the bundle $F \hookrightarrow E_G \to B_G$. The Euler class e(V) of a *G*-representation *V* is the equivariant Euler class of the bundle $V \hookrightarrow V \to pt$, that is, the ordinary Euler class of $V \hookrightarrow V_G \to BG$.

For a vector bundle $F \hookrightarrow E \to B$ we denote the associated sphere and disk bundles by $S(F) \hookrightarrow S(E) \to B$ and $D(F) \hookrightarrow D(E) \to B$.

3.1 Index theories

In many situations one wants to disprove the existence of G-equivariant maps $X \longrightarrow_G Y \setminus Z$, or more generally that for some G-map $f : X \to Y \supset Z$ the preimage $f^{-1}(Z)$ is 'large' in some specific sense.

In our situation we are interested in G-bundle maps $f: X \to Y \supset Z$ over some trivial base space B. In this paper we will connect two different index theories, the first of which was defined and studied by Fadell and Husseini [FH87b], [FH88].

Definition 3.1. Let $f: X \to B$ be a *G*-bundle. The **Fadell–Husseini index** of f is defined as

$$\operatorname{ind}_{B,G}^{FH}(X) := \operatorname{ker}(H^*_G(B) \xrightarrow{J^*} H^*_G(X)) \subseteq H^*(G) \otimes H^*(B).$$

When B is a point, we also write

$$\operatorname{ind}_{G}^{FH}(X) := \operatorname{ind}_{\operatorname{pt},G}^{FH}(X) \subseteq H^{*}(G)$$

Lemma 3.2 (Properties of $\operatorname{ind}_{B,G}^{FH}$). Let $f: X \longrightarrow_G B$ and $g: Y \longrightarrow_G B$ be G-maps with B a trivial G-space as above. Then:

a) If there is a G-bundle map $h: X \longrightarrow_G Y$, that is $f = g \circ h$, then

$$ind_{B,G}^{FH}(X) \supseteq ind_{B,G}^{FH}(Y)$$

b) If X is n-connected then

$$\operatorname{ind}_{G}^{FH}(X) \subseteq H^{* \ge n+2}(G)$$

c) If $F \hookrightarrow X \to B$ is a G-fibration and F is n-connected, then

$$\operatorname{ind}_{B,G}^{FH}(X) \subseteq H^{* \ge n+2}(BG \times B)$$

d) If $f: F \times B \to B$ is the projection to the second coordinate, then

$$\operatorname{ind}_{B,G}^{FH}(F \times B) = \operatorname{ind}_G(F) \otimes H^*(B).$$

e) If $G = \mathbb{Z}_p^k$ then for any G-space X, $\operatorname{ind}_G^{FH}(X) = \emptyset$ if and only if X has a fixed point. f) If $\operatorname{ind}_{B,G}^{FH}(X) \cap H^0(G) \otimes H^*(B) = 0$, then $f^* : H^*(B) \to H^*(X)$ is injective.

Proof. a) follows immediately from the definition and b) is the special case of c) for F = Xand B = pt. c follows from chasing the Leray–Serre spectral sequence of $F \hookrightarrow X_G \xrightarrow{f_G} B_G$: Note that the index defining map $H^*_G(B) \xrightarrow{f^*} H^*_G(X)$ coincides with the bottom edge homomorphism. Hence the elements of the index $\operatorname{ind}_{B,G}^{FH}(X)$ are exactly the elements in the bottom row of the spectral sequence that lie in the image of some differential. Since F is n-connected, the only non-zero differentials hit the bottom row in filtration degree n + 2 or higher.

d) follows from Künnet's theorem. For e), see tom Dieck [tD87, Prop. 3.14, p. 196]. f) follows immediately from the definition. $\hfill\square$

3.2 A spectral sequence based index

Let $f: X \to B$ be a *G*-bundle. If *f* is not a *G*-fibration then we replace *X* by $X' := \{(x, \gamma) \mid x \in X, \gamma : I \to B, \gamma(0) = f(x)\}$ and *f* by the map $f': X' \to B$ that sends (x, γ) to $\gamma(1)$. This replacement makes *f* into a *G*-fibration, it is functorial, and if *f* is a already a *G*-fibration then *f* and *f'* are *G*-fiber homotopy equivalent. This gives several ways to define spectral-sequence based indices of *f*. For example, Blagojević–Blagojević–McCleary [BBM11] defined the spectral sequence witness of a pair of *G*-spaces *X* and *X'* which gives a criterion for the non-existence of *G*-maps $X \to X'$.

The index we will be interested in in this paper is the Leray-Serre spectral sequence of the map $X'_G \to B$ given by $[e, (x, \gamma)] \mapsto f(\gamma(1))$. Here we need that B is a trivial G-space. There is a natural map from $X'_G \to B$ to $B_G \to B$, where $B_G = BG \times B$, which induces a morphism of associated spectral sequences.

Note that the spectral sequence of $B_G \to B$ collapse at $E_2^{*,*} = H^*(B) \otimes H^*(G)$. Also, any map bundle map $X \to Y$ over B gives rise to a commutative triangle of maps between the associated spectral sequences.

In this paper it will be enough to consider the E_{∞} -page.

Definition 3.3. Let $f: X \to B$ be a *G*-bundle. We define the E_{∞} -index of $X \to B$ as

$$\operatorname{ind}_{G,B}^{\infty}(X) := \ker \left(E_{\infty}^{*,*}(B_G \to B) \to E_{\infty}^{*,*}(X'_G \to B) \right) \subseteq H^*(G) \otimes H^*(B)$$

By the multiplicativity of the Leray–Serre spectral sequence $\operatorname{ind}_{G,B}^{\infty}(X)$ is a bi-homogeneous ideal in $H^*(G) \otimes H^*(B)$.

Lemma 3.4 (Properties of $\operatorname{ind}_{B,G}^{\infty}$). Let $X \to B$ be a *G*-bundle. a) Let $X \to Y$ be a map of *G*-bundles over *B*. Then

$$\operatorname{ind}_{B,G}^{\infty}(X) \supseteq \operatorname{ind}_{B,G}^{\infty}(Y).$$

b) If $F \times B \to B$ is the projection to the second coordinate then

$$\operatorname{ind}_{B,G}^{\infty}(F \times B) = \operatorname{ind}_{\operatorname{pt},G}^{FH}(F) \otimes H^*(B) = \operatorname{ind}_{B,G}^{FH}(F \times B).$$

c) If $\operatorname{ind}_{B,G}^{\infty}(X) \subseteq H^{*\geq 1}(G) \otimes H^{*}(B)$, then $f^{*}: H^{*}(B) \to H^{*}(X)$ is injective. If moreover B is a compact manifold, then the map in singular homology $f_{*}: H_{*}(U_{\varepsilon}(X)) \to H_{*}(B)$ is surjective for any $\varepsilon > 0$.

Proof. a) is a trivial chase in the diagram of the index defining spectral sequences. b) is trivial. c) follows from the definition and the edge-homomorphism. \Box

Comparing ind^{FH} and $\operatorname{ind}^{\infty}$. Although both indices ind^{FH} and $\operatorname{ind}^{\infty}$ are similarly defined, there are substantial differences: First of all, $\operatorname{ind}^{\infty}$ is a \mathbb{Z}^2 -graded ideal of $H^*(G) \otimes H^*(B)$, whereas ind^{FH} is only a \mathbb{Z} -graded ideal (with respect to the total grading).

Definition 3.5. We define the **leading term** $\operatorname{lt}(\alpha)$ of a homogeneous element $\alpha \in H^*(G) \otimes H^*(B)$ as the first non-zero α_i , where $\alpha = \alpha_0 + \alpha_1 + \ldots$ with $\alpha_i \in H^*(G) \otimes H^i(B)$. This extends degree-wise (with respect to the total degree) to a maps of sets $\operatorname{lt} : H^*(G) \otimes H^*(B) \to H^*(G) \otimes H^*(B)$.

Lemma 3.6. Any *G*-bundle $X \to B$ satisfies $\operatorname{lt}(\operatorname{ind}_{B,G}^{FH}(X)) \subseteq \operatorname{ind}_{B,G}^{\infty}(X)$.

However, the non-leading bihomogeneous parts of $\alpha \in \operatorname{ind}_{B,G}^{FH}(X)$ may not be in $\operatorname{ind}_{B,G}^{\infty}(X)$. Also bihomogeneous elements $\beta \in \operatorname{ind}_{B,G}^{\infty}(X)$ may not lie in $\operatorname{ind}_{B,G}^{FH}(X)$, because $\beta \in \operatorname{ind}_{B,G}^{\infty}(X)$ means that its image is zero in some filtration quotient of $H_G^*(X)$.

Example 3.7. As an example, let $p: X \to B$ be the associated circle bundle of the tangent bundle of $\mathbb{R}P^2$. Suppose that $G = \mathbb{Z}_2$ acts antipodally on each fiber of X. Then, $H^*(G) = \mathbb{F}_2[t]$ and $H^*(B) = \mathbb{F}_2[u]/(u^3)$. The associated fibration of Borel constructions, $X_{\mathbb{Z}_2} \to BG \times B$, is a circle bundle with (mod 2) Euler class $e = u^2 + t^2$. This is the generator for $\operatorname{ind}_{B,G}^{FH}(X)$. We have $\operatorname{lt}(e) = t^2 \in \operatorname{ind}_{B,G}^{\infty}(X)$, and in fact t^2 is the generator of $\operatorname{ind}_{B,G}^{\infty}(X)$. Hence in this example, the other bihomogeneous part u^2 of $e \in \operatorname{ind}_{B,G}^{FH}(X)$ does not lie in $\operatorname{ind}_{B,G}^{\infty}(X)$, and the bihomogeneous element $t^2 \in \operatorname{ind}_{B,G}^{\infty}(X)$ does not lie in $\operatorname{ind}_{B,G}^{FH}(X)$.

3.2.1 More general versions

The following versions and generalizations of ind^{∞} may be useful for different problems, but we won't need them in this paper.

We can define to any G-bundle $f : X \to B$ the spectral sequence valued index ind^{SS}_{G,B}(X) as the Leray–Serre spectral sequence of $X'_G \to B$ together with the morphism of spectral sequences from the spectral sequence of $B_G \to B$. In abstract terms this index is a functor from the category of G-bundles over B to the category whose objects are morphisms from one spectral sequence to the spectral sequence of $B_G \to B$. Two other useful indices can be defined in a similar way using the fibrations $X \hookrightarrow X_G \to BG$ and $F \hookrightarrow X'_G \to B_G$, where F is the homotopy fiber of $X \to B$. If B is a point then both of them coincide. The latter contains all information of the Fadell–Husseini index, since $\operatorname{ind}_{G,B}(X)$ is the set of all elements in the 0-row of the spectral sequence of $X'_G \to B_G$ that are in the image of some differential.

In some sense these three spectral sequence valued indices can be unified using a "higher spectral sequence" that will be constructed in [Mat12]. The corresponding sequence of two fibrations is $X_G \to B_G \to B$.

4 Parametrized Volovikov theorem

The main methodological tool in this paper is the following parametrized Volovikov theorem. It relates the ∞ -index of the configuration space X to the Fadell–Husseini index of the solution set S.

Theorem 4.1 (Parametrized Volovikov theorem). Let

- $q = p^k$,
- G be a subgroup of S_q such that $\mathbb{Z}_p^k \subseteq G \subseteq \operatorname{Syl}_p(S_q)$,
- B be a path-connected trivial G-space,
- $p_X: E_X \to B$ be a *G*-bundle,
- Y be a paracompact space and let G act on Y^q by permuting the coordinates,
- $Y \hookrightarrow E_Y \to B$ be a fiber bundle,
- M be a connected (paracompact) smooth m-manifold,
- $M \hookrightarrow E_M \to B$ be a fiber bundle.

Let $i: E_X \longrightarrow_G E_Y^{\oplus q}$ be a *G*-bundle map over *B*,

Let F be a fiber bundle map,

Assume that over some (and hence any) base point $b \in B$, the map $F_b := F|_{p_Y^{-1}(b)} = F|_Y$ induces the zero map in positive cohomology $H^{*\geq 1}(M, \mathbb{F}_p) \to H^{*\geq 1}(Y, \mathbb{F}_p)$.

Then the "solution set"

 $S := \{x \in E_X \mid i(x) = (y_1, \dots, y_q) \text{ satisfies } F(y_1) = \dots = F(y_q)\}$

has the following index bound: If $\alpha \in \operatorname{ind}_{B,G}^{FH}(S)$ is a homogeneous element then

$$\operatorname{lt}(\alpha)e(W_q)^m \in \operatorname{ind}_{B,G}^{\infty}(E_X).$$

In particular if $\operatorname{ind}_{B,G}^{\infty}(E_X) \cap (e(W_q)^n \otimes H^*(B)) = \emptyset$ then

$$H^*(B, \mathbb{F}_p) \xrightarrow{(p_M|_Z)^*} H^*(Z, \mathbb{F}_p)$$

is injective, where

$$Z := F^q(i(S)) \cong \{ z \in E_M \mid z = F(y_1) = \ldots = F(y_q)$$

for some $x \in E_X, (y_1, \ldots, y_q) = i(x) \}.$

Remark 4.2. In applications of theorem 4.1, E_X is usually the configuration space (the space of solution candidates), which is parametrized over B, and M is also naturally given by our description of the solution set as a preimage. But what about $Y \hookrightarrow E_Y \to B$? The assumption of the theorem that $F^{\oplus q} \circ i$ has to factor over E_Y is important for rather technical reasons. Two cases for the choice of E_Y usually appear:

- 1. $i: E_X \longrightarrow_G E_Y^{\oplus q}$ is an inclusion of *G*-spaces.
- 2. If $G = \mathbb{Z}_p^k$ and $E_X \to B$ is a fiber bundle, then one can simply choose $E_Y := E_X$ and let $i: E_X \to E_Y^{\oplus q}$ be defined as $x \mapsto (g^{-1}x)_{q \in G}$.

Remark 4.3. The set $Z \subseteq E_M$ is in general much more complicated than the image of a section of $p_M : E_M \to B$ (p_M may not even admit a section).

Remark 4.4 (Desirable extensions). It would be useful to have a version of theorem 4.1 that relates E_X and S using the *same* index theory, such that one can apply the theorem iteratively.

If the "parametrized Nakaoka lemma" $H^*_G(E^{\oplus q}_M) \cong H^*(G; H^*(E^{\oplus q}_M))$ is true (and if this isomorphism is natural in p_M) then we would have the following relation: There exists $e' \in H^{m(q-1)}_G(B)$ with $\operatorname{lt}(e') = e(W_q)^m \otimes 1$ and $e' \cdot \operatorname{ind}_{B,G}^{FH}(S) \subseteq \operatorname{ind}_{B,G}^{FH}(E_X)$.

5 Proof of the parametrized Volovikov theorem

In large parts we follow the proof of Volovikov [Vol92] (see §5 and in particular the proof of lemma 3) and Karasev–Volovikov [KV11].

We denote the q-fold Withney sum of E_M by $M^q \hookrightarrow E_M^{\oplus q} \to B$. Let Δ_{M^q} denote the thin diagonal $\{(m, \ldots, m) \in M^q\}$ of M^q . Similarly, let $\Delta_{M^q} \hookrightarrow \Delta_{E_M^{\oplus q}} \to B$ be the thin diagonal subbundle of $E_M^{\oplus q}$.

 $G \subseteq S_q$ acts on M^q and $E_M^{\oplus q}$ by permuting coordinates. Their fixed-point sets are $\Delta_{M^q} \cong M$ and $\Delta_{E_M^{\oplus q}} \cong E_M$, respectively.

Some closed tubular neighborhood $N(\Delta_{E_M^{\oplus q}}) \subset E_M^{\oplus q}$ can be regarded as a disc bundle $D^{m(q-1)} \hookrightarrow N(\Delta_{E_M^{\oplus q}}) \to \Delta_{E_M^{\oplus q}} \cong E_m$ of some *G*-vector bundle $W_q^{\oplus m} \hookrightarrow W \xrightarrow{\varphi} \Delta_{E_M^{\oplus q}}$, the normal bundle of $\Delta_{E_M^{\oplus q}}$ in $E_M^{\oplus q}$.

Let τ be the rank m vector bundle over $\Delta_{E_M^{\oplus q}}$ whose fiber at a point $e \in \Delta_{E_M^{\oplus q}}$ is the tangent space $T_e M_b$, where $M_b \cong M$ is the fiber of $\Delta_{E_M^{\oplus q}} \to B$ that contains e. Then $\varphi \oplus \tau = \tau^{\oplus q}$, and φ is stably equivalent to $\tau^{\oplus (q-1)}$. For p > 2, q-1 is even. Hence φ is \mathbb{F}_p -orientable. Furthermore all non-zero elements of G have an odd order if p > 2, thus the G-action preserves the \mathbb{F}_p -orientation on φ .

Therefore W has a G-equivariant mod-p Thom class $\tau_{E_M,G} \in H_G^{m(q-1)}(D(W), S(W))$, which is the ordinary mod-p Thom class of the bundle $W_q^m \hookrightarrow W_G \to (\Delta_{E_M^{\oplus q}})_G$, where $(\Delta_{E_M^{\oplus q}})_G = \Delta_{E_M^{\oplus q}} \times BG$.

By excision we regard $\tau_{E_M,G}$ as an element in $H_G^{m(q-1)}(E_M^{\oplus q}, E_M^{\oplus q} \setminus \Delta_{E_M^{\oplus q}})$. By the Thom isomorphism this group is isomorphic to $H_G^0(\Delta_{E_M^{\oplus q}}) = \mathbb{F}_p$.

Consider the diagram of restrictions

Let $\gamma_{E_M,G}$ denote image of $\tau_{E_M,G}$ in $H_G^{m(q-1)}(E_M^{\oplus q})$. By commutativity of the top square, $\gamma_{E_M,G}$ maps to the Euler class $e(\varphi) \in H_G^{m(q-1)}(\Delta_{E_M^{\oplus q}})$ of φ . Thus, when further restricting to $H_G^{m(q-1)}(\mathrm{pt}^q)$, pt^q being some point in $\Delta_{E_M^{\oplus q}}$, $\gamma_{E_M,G}$ maps to $e(W_q)^m$.

Remark 5.1. In case *B* is a manifold, $\tau_{E_M,G}$ can be constructed as the Poincaré dual of $E_r G \times_G \Delta_{E_M^{\oplus q}}$ in $E_r G \times_G E_M^{\oplus q}$, where $E_r G$ is an *r*-connected free *G*-manifold and $r \ge m(q-1)$, using the canonical isomorphism

$$H^{m(q-1)}\left(E_rG\times_G\left(E_M^{\oplus q}, E_M^{\oplus q}\backslash\Delta_{E_M^{\oplus q}}\right)\right) \xrightarrow{\cong} H_G^{m(q-1)}\left(E_M^{\oplus q}, E_M^{\oplus q}\backslash\Delta_{E_M^{\oplus q}}\right).$$

See Volovikov [Vol92] and Karasev–Volovikov [KV11] for details in the case when B = pt.

Let
$$\gamma_{E_X} := (F^q \circ i)^* (\gamma_{E_M,G}) \in H_G^{m(q-1)}(E_X).$$

Claim 5.2. The restiction of γ_{E_X} to $E_X \setminus S$ is zero in $H_G^{m(q-1)}(E_X \setminus S)$.

Proof. From the long exact sequence of the pair $(E_M^{\oplus q}, E_M^{\oplus q} \setminus \Delta_{E_M^{\oplus q}})$ we see that $\gamma_{E_M,G}$ restricts to zero in $H_G^{m(q-1)}(E_M^{\oplus q} \setminus \Delta_{E_M^{\oplus q}})$. Since $F^q \circ i$ sends the pair (E_X, S) to $(E_M^{\oplus q}, \Delta_{E_M^{\oplus q}})$, the claim follows.

Figure 3: Seconds pages of the spectral sequences of $(E_X)_G$, $(E_Y^{\oplus q})_G$, $(E_M^{\oplus q})_G$, and B_G over B.

The constructions of $\tau_{E_M,G}$ and $\gamma_{E_M,G}$ are natural with respect to taking subgroups of Gand restrictions of B. When restricting E_M to a fiber $M_b \cong M$ over some base point $b \in B$, $\gamma_{E_M,G}$ restricts to an element $\gamma_{M,G} \in H_G^{m(q-1)}(M^q)$.

Now consider the diagram of spectral sequences in figure 3. Here, X is the homotopy fiber of $p_X : E_X \to B$, and $e_X \in H^*_G(X)$ and $e_Y \in H^*_G(Y^{\oplus q})$ are the natural images of $e(W_q)^{m-1}$.

Claim 5.3. $E_2^{0,m(q-1)}(F^q)$ sends $\gamma_{M,G}$ to e_Y .

Proof. By Nakaoka's lemma [Nak61], we have an isomorphism

$$H^*_G(M^q) = \operatorname{Tot}(H^*(G; H^*(M)^{\otimes q})),$$

which is natural in G and M, where Tot denotes the total complex of a bigraded complex. As an $\mathbb{F}_p[G]$ -algebra, $H^*(M)^{\otimes q}$ decomposes as $\mathcal{A} + \mathcal{B}$, where $\mathcal{A} = H^0(M)^{\otimes q} = \mathbb{F}_p$ and \mathcal{B} is generated by all homogeneous elements in $H^*(M)^{\otimes q}$ of positive total degree. Hence $\gamma_{M,G}$ decomposes as $\gamma_{M,G} = \gamma_a + \gamma_b$, where $\gamma_a \in H^*(G; \mathcal{A}) = H^*(G)$ and $\gamma_b \in H^*(G; \mathcal{B})$.

The composition

induced by the projection on the left and by an inclusion on the right is the identity. Both maps are also individually isomorphisms on the $H^{m(q-1)}(G; \mathcal{A})$ -part since the Nakaoka lemma is natural in M. Since the second map sends $\gamma_{M,G}$ to $e(W_q)^m$ we deduce that $\gamma_a = e(W_q)^m$ and the first map sends $e(W_q)^m$ to γ_a . Thus $E_2^{0,m(q-1)}(F^q)$ sends γ_a to e_Y . $F: E_Y \to E_M$ restricts over some base point $b \in B$ to $F_b: Y^q \to M^q$, which by assumption induces zero in positive cohomology. Therefore $E_2^{0,m(q-1)}(F^q)$ will send γ_b to zero, by naturality of Nakaoka's lemma.

From the claim follows that $E_2^{0,m(q-1)}(F^q \circ i)$ sends $\gamma_{M,G}$ to e_X . Since $(F^q \circ i)^*(\gamma_{E_M,G}) = \gamma_{E_X}$ and $\gamma_{M,G}$ is the restriction of $\gamma_{E_M,G}$ to the first column of the right spectral sequence, e_X must be the restriction of γ_{E_X} on the left spectral sequence. In other words, e_X is the leading term of γ_{E_X} in the left spectral sequence.

Now suppose we are given a homogeneous element $\alpha \in \operatorname{ind}_{B,G}^{FH}(S)$, that is, α maps to zero in $H^*_G(S)$. By claim 5.2 if follows that

$$(p_X)^*(\alpha) \cup \gamma_{E_X} = 0.$$

Thus on the E_{∞} -page we have that

$$E^{0,m(q-1)}_{\infty}(p_X)\left(\operatorname{lt}(\alpha)\cup e(W_q)^m\right)=0.$$

This proves the general index bound for S.

For the last part of the theorem, assume that $\operatorname{ind}_{B,G}^{\infty}(E_X) \subseteq H^{* \geq m(p^k-1)+1}(G) \otimes H^*(B)$. Then the index bound yields that $\operatorname{ind}_{B,G}^{FH}(S)$ cannot contain elements in $H^0(G) \otimes H^*(B)$ except for 0. Therefore lemma 3.4 implies that $H^*(B) = H^0(G) \otimes H^*(B) \to H^*_G(S)$ is injective. The commutative diagram of natural maps

implies that $H^*(B) \to H^*(Z)$ is injective as well. This finishes the proof of theorem 4.1. \Box

6 Sketch of proof of the parametrized waist of sphere theorem

In the case n = k, the parametrized waist of the sphere theorem 1.3 follows easily from a parametrized Borsuk–Ulam theorem for manifolds: Theorem 4.1 implies for the given bundle map $B \times S^n \to E$ and the antipodal \mathbb{Z}_2 -action on the fibers of $B \times S^n$ that the set Z of all elements $z \in E_M$ whose preimage $f^{-1}(z)$ contains a pair of antipodal points has the property that $H^*(B; \mathbb{F}_2) \to H^*(Z; \mathbb{F}_2)$ is injective.

Thus we may assume n > k. Gromov's proof of 1.2 splits into a topological and an analytic part. The topological part is the following mass partition theorem.

Let $\operatorname{Conv}(S^n)$ denote the set of all closed convex subsets of $C \subset S^n$ with $C \neq S^n$. Let $\operatorname{Conv}^*(S^n)$ be its subset of sets with positive volume. The Hausdorff metic makes $\operatorname{Conv}(S^n)$ into a metric space. A map $c : \operatorname{Conv}^*(S^n) \to S^n$ is called a *center map*. A *partition of* S^n *into q convex sets* is a family of subsets $C_1, \ldots, C_q \in \operatorname{Conv}(S^n)$ with pairwise disjoint interior such that $S^n = \bigcup_i C_i$.

Theorem 6.1 (A mass partition theorem). Let $g: S^n \to M^k$ be map from the n-sphere to a k-manifold, n > k, let $c: \operatorname{Conv}^*(S) \to S^n$ be a center map. Then for any $q = 2^{\ell}$ there exists a partition of S^n into q convex sets C_1, \ldots, C_q with

$$g(c(C_1)) = \ldots = g(c(C_q))$$

and

$$\operatorname{vol}(C_1) = \ldots = \operatorname{vol}(C_q).$$

Moreover the set C_i can be required to lie in the ε -neighborhood of some k-dimensional equator $E_i \subset S^n$ in case $q \ge q_0(\varepsilon)$.

The analytic part of the proof is based on involved isoperimetric inequalities that make theorem 6.1 with $\varepsilon \to 0$ imply theorem 1.2, see Gromov [Gro03], Memarian [Mem09].

Every point $x \in S^n$ determines its polar hyperplane, which bisects S^n into two convex pieces. Two more points on the sphere, one for each of the two pieces, will yield a convex partition of S^n into four pieces. Iterating this, we obtain a map

$$p: X := (S^n)^{q-1} \to \operatorname{Conv}(S^n)^q.$$

Let T be the complete binary tree of height $\ell - 1$. The interior nodes of T naturally correspond to the q-1 sphere factors of X, and the q leaves correspond to the convex sets in the partition. Let them be labelled by N_1, \ldots, N_{q-1} , where N_1 shall denote the root. Let the leaves of T be labelled by L_1, \ldots, L_q . Thus the symmetry group of T, the 2-Sylow subgroup $G := \mathbb{Z}_2 \wr \ldots \wr \mathbb{Z}_2$ of the symmetric group S_q , acts on $(S^n)^{q-1}$ (with antipodal action on an S^n -factor whenever its children are exchanged, such that the partition p(x) for $x \in X$ stays the same up to permutation of the indices) and on $\operatorname{Conv}(S^n)^q$ (as it acts on the leaves). This makes p into a G-equivariant map.

We would like to define a test-map

$$t: (S^n)^{q-1} \longrightarrow_{S_n} (M \times \mathbb{R})^q$$

whose k'th coordinate at $x = (x_1, \ldots, x_{q-1})$ is given by

$$(f(c(p_k(x))), \operatorname{vol}(p_k(x))),$$
(2)

such that the preimage of $\Delta := \Delta_{(M \times \mathbb{R})^q}$ corresponds to the partitions of S^n into q convex sets of equal volume and equal g-images of their center points. However c is not continuous at some of the convex sets with zero volume. Thus we replace c in (2) by a slightly deformed map c': First, let γ_C be the shortest geodesic on S^n between $\gamma_C(0) = \pm x_1$ and $\gamma_C(1/2q) = c(C)$, where the sign in front of the vector x_1 (in the sphere corresponding to the root of T) depends on whether the leaf of T corresponding to the convex set C is on the left or on the right side of the root. If $\operatorname{vol}(C) = 0$ then γ_C might not be defined except for its end point $\gamma_C(0)$. We then define

$$c'(C) := \begin{cases} c(C) & \text{if } \operatorname{vol}(C) \ge 1/2q, \\ \gamma_C(\operatorname{vol}(C)) & \text{if } \operatorname{vol}(C) \le 1/2q. \end{cases}$$

The so defined $t: x \mapsto (f(c'(p_k(x))), \operatorname{vol}(p_k(x)))_k$ is indeed continuous and $t^{-1}(\Delta)$ is the set of convex equipartitions of S^n such that g maps all centers of the convex parts to the same point in M.

The test-map t factors as

$$X \xrightarrow{i} Y^q \xrightarrow{(f \times \mathrm{id})^q} (M \times \mathbb{R})^q,$$

where $Y := S^n \times \mathbb{R}$.

Lemma 6.2 (An index bound for $(S^n)^{q-1}$). For $G = \mathbb{Z}_2 \wr \ldots \wr \mathbb{Z}_2 \subseteq S_q$ and \mathbb{F}_2 -coefficients,

$$e(W_q)^n \not\in \operatorname{ind}_G^{FH}((S^n)^{q-1})$$

Proof. Consider the map $m: (S^n)^{q-1} \to W_q^{\oplus n}$ given by

$$x \mapsto \left(\sum_{N_i \in P_k} \pm \operatorname{pr}_{S^n \to \mathbb{R}^n}(x_i)\right)_{k=1\dots q}$$

where $\operatorname{pr}_{S^n \to \mathbb{R}^n} : S^n \to \mathbb{R}^n$ is the standard projection to the first *n* coordinates; for every leaf L_k , P_k is the set of interior nodes in *T* that lie on the shortest path from the root N_1 to L_k , $\ell(i)$ is the height of node *i* in the tree (i.e. the distance to N_1), and the sign at $N_i \in P_k$ depends on whether the path P_k continues at the right or the left subtree at node N_i .

We have that the sum of all $q \mathbb{R}^n$ -coordinates of this test-map is zero, since the sum for P_k cancels with the sum for the reflected P_k . Furthermore, m is G-equivariant, and $m^{-1}(0) = \{(0, \ldots, 0, \pm 1)\}^{q-1}$ is the set of (q-1)-tuples x such that every x_i is the north or the south pole of S^n . These are regular points of m, and modulo G this is exactly one preimage.

Remark 6.3 (Odd prime powers). There is an analogous lemma for odd prime powers $q = p^{\ell}$ if n is odd: Here, $G = \mathbb{Z}_p \wr \ldots \wr \mathbb{Z}_p \subseteq S_q$, \mathbb{Z}_p acts on $S^n = S^1 \ast \ldots \ast S^1$ diagonally, and we use \mathbb{F}_p -coefficients. The proof is the same.

Remark 6.4 (An index bound for configuration spaces). Let $F_q(\mathbb{R}^{n+1})$ denotes the configuration space of q pairwise distinct points of \mathbb{R}^{n+1} . Hung [Hun90, §1] (see also Karasev– Volovikov [KV11, 5.2]) constructed an embedding $(S^n)^{q-1} \hookrightarrow_G F_q(\mathbb{R}^{n+1})$ as follows: The first element $x_1 \in S^n$ determines a pair of antipodal points on \mathbb{R}^{n+1} . The next two elements $x_2, x_3 \in S^n$ are used to split these two antipodal points into four points on \mathbb{R}^{n+1} . And so on. Using this embedding, lemma 6.2 provides a simple proof for

$$e(W_q)^n \notin \operatorname{ind}_G^{FH}(F_q(\mathbb{R}^{n+1})).$$
(3)

For an application of this index bound on convex partitions see Blagojević–Ziegler [BZ12]. More general index calculations for configuration spaces can be found in Karasev [Kar09a] and Blagojević–Lück–Ziegler [BLZ12].

Since we need only the non-vanishing of $e(W_q)^k$, we may restrict the configuration space $(S^n)^{q-1}$ to some *G*-invariant subspace $(S^k)^{q-1}$. Here, *G*-invariance means that we can choose the *k*-dimensional equators $S^k \subseteq S^n$ independently as long as they agree on each height (with respect to *T*). Choosing these equators well-distributed enough will assure the ε -neighborhood condition in theorem 6.1.

Using Volovikov's theorem 1.1 finishes the proof of theorem 6.1.

Remark 6.5. Karasev and Volovikov [KV11] observed that when we remove the condition that the C_i have to be ε -close to some k-dimensional equators of S^n , then the mass partition theorem 6.1 holds also for odd prime powers: For this they used weighted Voronoi decompositions.

A parametrized version of theorem 6.1 follows analogously using theorem 4.1. This in turn implies the parametrized waist of the sphere theorem 1.3 using the same analytic part as in Gromov [Gro03]. \Box

Acknowledgements. I want to thank Vera Vértesi, Mark Goresky, and Roman Karasev for very useful discussions.

References

- [BBM11] Pavle V. M. Blagojević, Aleksandra Dimitrijević Blagojević, and John McCleary. Spectral sequences in combinatorial geometry: Cheeses, inscribed sets, and Borsuk-Ulam type theorems. *Topology Appl.*, 158(15):1920–1936, 2011.
- [BLZ12] Pavle V. M. Blagojević, Wolfgang Lück, and Günter M. Ziegler. Equivariant topology of configuration spaces. arxiv:1207.2852, 2012.
- [BMZ11] Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler. Optimal bounds for a colorful Tverberg–Vrećica type problem. Adv. Math., 226:5198–5215, 2011.
- [Bor33] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fund. Math., 20:177– 190, 1933.
- [BZ12] Pavle V. M. Blagojević and Günter M. Ziegler. Convex equipartitions via equivariant obstruction theory. arxiv:1202.5504, 2012.
- [CJ09] Michael C. Crabb and Jan W. Jaworowski. Theorems of Kakutani and Dyson revisited. J. Fixed Point Theory Appl., 5(2):227–236, 2009.
- [dMdS07] Denise de Mattos and Edivaldo L. dos Santos. A parametrized Borsuk-Ulam theorem for a product of spheres with free \mathbb{Z}_p -action and free S^1 -action. Algebr. Geom. Topol., 7:1791– 1804, 2007.
- [Dol87] Vladimir L. Dol'nikov. Common transversals for families of sets in \mathbb{R}^n and connections between theorems of Helly and Borsuk. (in Russian) Dokl. Akad. Nauk USSR, 297(4):777– 780, 1987.
- [Dol88] Albrecht Dold. Parametrized Borsuk–Ulam theorems. Comment. Math. Helvetici, 63:275–285, 1988.
- [Dol92] Vladimir L. Dol'nikov. A generalization of the ham sandwich theorem. *Mat. Zametki*, 52(2):27–37, 155, 1992. Translation in Math. Notes 52 (1993), no. 1-2, 771–779.
- [FH87a] Edward Fadell and Sufian Y. Husseini. Index theory for G-bundle pairs with applications to Borsuk-Ulam type theorems for G-sphere bundles. In Nonlinear analysis, pages 307–336. World Sci. Publishing, 1987.
- [FH87b] Edward Fadell and Sufian Y. Husseini. Relative cohomological index theories. Adv. Math., 64:1–31, 1987.
- [FH88] Edward Fadell and Sufian Y. Husseini. An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergodic Theory and Dynamical Systems, 8*:73–85, 1988.

- [FH89] Edward Fadell and Sufian Y. Husseini. Index theory for noncompact group actions with applications to Borsuk-Ulam theorems. In *Topological fixed point theory and applications* (*Tianjin, 1988*), Lecture Notes in Math. 1411, pages 52–68. Springer, 1989.
- [Gro03] Mikhail L. Gromov. Isoperimetry of waists and concentrations of maps. *GAFA*, 13:178–215, 2003.
- [Hel23] Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht Deutsch. Math. Vereining., 32:175–176, 1923.
- [Hun90] Nguyên H. V. Hung. The mod 2 equivariant cohomology algebras of configuration spaces. Pacific J. Math., 143(2):251–286, 1990.
- [IJ92] Marek Izydorek and Jan W. Jaworowski. Parametrized Borsuk-Ulam theorems for multivalued maps. Proc. Amer. Math. Soc., 116(1):273–278, 1992.
- [IR92] Marek Izydorek and Sławomir Rybicki. On parametrized Borsuk-Ulam theorem for free Z_p action. In Algebraic topology (San Feliu de Guíxols, 1990), Lecture Notes in Math. 1509, pages 227–234. Springer, 1992.
- [Jaw81a] Jan W. Jaworowski. A continuous version of the Borsuk-Ulam theorem. Proc. Amer. Math. Soc., 82(1):112–114, 1981.
- [Jaw81b] Jan W. Jaworowski. Fibre-preserving maps of sphere-bundles into vector space bundles. In Fixed point theory (Sherbrooke, Que., 1980), Lecture Notes in Math. 886, pages 154–162. Springer, 1981.
- [Jaw04] Jan W. Jaworowski. Bundles with periodic maps and mod p Chern polynomial. Proc. Amer. Math. Soc., 132(4):1223–1228, 2004.
- [Kar07] Roman N. Karasev. Tverberg's transversal conjecture and analogues of nonembeddability theorems for transversals. *Discrete Comput. Geom.*, 38:513–525, 2007.
- [Kar09a] Roman N. Karasev. The genus and the category of configuration spaces. *Topology Appl.*, 156(14):2406–2415, 2009.
- [Kar09b] Roman N. Karasev. Theorems of Borsuk-Ulam type for planes, and flat transversals of families of convex compact sets. Rossiiskaya Akademiya Nauk. Matematicheskii Sbornik, 200(10):39–58, 2009. Translation in Sb. Math. 200 (2009), no. 9-10, 1453–1471.
- [KM96] Basil Shaju Koikara and Himadri Kumar Mukerjee. A Borsuk-Ulam theorem for maps of fibre bundles with manifolds as fibres. *Arch. Math. (Basel)*, 66(6):499–501, 1996.
- [KV11] Roman N. Karasev and Aleksei Yu. Volovikov. Waist of the sphere for maps to manifolds. arXiv:1102.0647, 2011.
- [Mat02] Jiří Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Math. Springer, 2002.
- [Mat11] Benjamin Matschke. *Equivariant topology methods in discrete geometry*. PhD thesis, Freie Universität Berlin, 2011.
- [Mat12] Benjamin Matschke. Successive spectral sequences. In preparation, 2012.
- [Mem09] Yashar Memarian. On Gromov's waist of the sphere theorem. arxiv:0911.3972, 2009.
- [MK95] Neža Mramor-Kosta. A parametrized Borsuk-Ulam theorem for Banach bundles. Glasnik Matematički. Serija III, 30(50)(1):111–127, 1995.
- [MK11] Luis Montejano and Roman N. Karasev. Topological transversals to a family of convex sets. Discrete Comput. Geom., 46(2):283–300, 2011.

- [Nak61] Minoru Nakaoka. Homology of the infinite symmetric group. Ann. Math., 73:229–257, 1961.
- [Nak84] Minoru Nakaoka. Equivariant point theorem for fibre-preserving maps. Osaka J. Math., 21:809–815, 1984.
- [Nak89] Minoru Nakaoka. Parametrized Borsuk-Ulam theorems and characteristic polynomials, pages 155–170. Topological fixed point theory and applications, Lecture Notes in Math. 1411. Springer, 1989.
- [Sin11] Mahender Singh. Parametrized Borsuk-Ulam problem for projective space bundles. Fundamenta Mathematicae, 211(2):135–147, 2011.
- [SSST11] Thomas Schick, Robert Samuel Simon, Stanislaw Spiecż, and Henryk Toruńczyk. A parameterized version of the Borsuk–Ulam. arxiv:0709.1774, 2011. To appear in Bull. London Math. Soc.
- [tD87] Tammo tom Dieck. Transformation Groups, volume 9 of Studies in Math. de Gruyter, 1987.
- [TV93] Helge Tverberg and Siniša Vrećica. On generalizations of Radon's theorem and the ham sandwich theorem. Europ. J. Combinatorics, 14:259–264, 1993.
- [Tve66] Helge Tverberg. A generalization of Radon's theorem. J. Lond. Math. Soc., 41:123–128, 1966.
- [Tve81] Helge Tverberg. A generalization of Radon's theorem II. Bull. Austral. Math. Soc., 24:321– 325, 1981.
- [Vol80] Aleksei Yu. Volovikov. On the Bourgin–Yang theorem. Russian Math Surveys, 35(3):196– 200, 1980.
- [Vol83] Aleksei Yu. Volovikov. Mappings of free \mathbb{Z}_p -spaces into manifolds. Math. USSR Izv., 20(1):35–54, 1983.
- [Vol92] Aleksei Yu. Volovikov. A theorem of Bourgin-Yang type for \mathbb{Z}_p^n -action. *Matematicheskii Sbornik*, 183(7):115–144, 1992. Translation in Russian Acad. Sci. Sb. Math. 76 (1993), no. 2, 361–387.
- [Vol96] Aleksei Yu. Volovikov. On fiberwise G-mappings. Uspekhi Mat. Nauk, 51(3(309)):189–190, 1996. Translation in Russian Math. Surveys 51 (1996), no. 3, 575–577.
- [Vre03] Siniša Vrećica. Tverberg's conjecture. Discrete Comput. Geometry, 29:505–510, 2003. arxiv:0207011.
- [Živ96] Rade T. Živaljević. User's guide to equivariant methods in combinatorics. *Publ. Inst. Math. Belgrade*, 59(73):114–130, 1996.
- [Živ98] Rade T. Živaljević. User's guide to equivariant methods in combinatorics II. Publ. Inst. Math. Belgrade, 64(78):107–132, 1998.
- [Živ99] Rade T. Živaljević. The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles. *Israel J. Math.*, 111:53–76, 1999.
- [ŽV90] Rade T. Živaljević and Siniša Vrećica. An extension of the ham sandwich theorem. Bull. Lond. Math. Soc., 22:183–186, 1990.

Benjamin Matschke

Forschungsinstitut für Mathematik, ETH Zürich

benjamin matschke @math.ethz.ch