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Abstract

We present a parametrized version of Volovikov’s powerful Borsuk–Ulam–Bourgin–
Yang type theorem, based on a new Fadell-Husseini type ideal-valued index of G-bundles
which makes computations easy.

As an application we provide a parametrized version of the following waist of the
sphere theorem due to Gromov, Memarian, and Karasev–Volovikov: Any map f from an
n-sphere to a k-manifold (n ≥ k) has a preimage f−1(z) whose epsilon-neighborhoods are
at least as large as the epsilon-neighborhoods of the equator Sn−k (if n = k we further
need that f has even degree).

1 Introduction

Volovikiv’s theorem. Volovikov presented in [Vol92, Theorem 1] a strong Bourgin–Yang
type theorem on point coincidences that also generalizes the Borsuk–Ulam theorem. The
notation, in particular the index indFHG (X) of a G-space, will be explained in section 3.

Theorem 1.1 (Volovikov). Let q = pk be a prime power, G = Zkp the corresponding ele-

mentary Abelian group, and let X be a free G-space of index indFHG (X) ⊆ H∗≥m(pk−1)+N (G)
with N ≥ 1. Let M be a compact m-manifold that is orientable if p > 2. Suppose the
f∗ : H∗(M)→ H∗(X) is zero for i ≥ 1.
Then the set

S := {x ∈ X | |f(G · x)| = 1}

is non-empty and has index indFHG S ⊆ H∗≥N (G).

For k = 1, this theorem was already obtained in Volovikov [Vol80] and [Vol83]. Karasev
and Volovikov [KV11] generalized theorem 1.1 further to non-orientable manifolds and to
arbitrary groups Zkp ⊆ G ⊆ Sylp(Sq).

The main methodological tool for this paper is a parametrized version of Volovikov’s
theorem, which we state in Section 4.

Many other parametrized versions of the Borsuk–Ulam theorem are known. We refer to Ja-
worowski [Jaw81a], [Jaw81b] and [Jaw04], Dold [Dol88], Nakaoka [Nak84] and [Nak89], Fadell–
Husseini [FH87a], [FH88] and [FH89], Živaljević–Vrećica [ŽV90], Izydorek–Jaworowski [IJ92],
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Izydorek–Rybicki [IR92], Mramor-Kosta [MK95], Volovikov [Vol96], Koikara–Mukerjee [KM96],
Živaljević [Živ99], de Mattos–dos Santos [dMdS07], Crabb–Jaworowski [CJ09], Schick–Simon–
Spiecż–Toruńczyk [SSST11], Blagojević–M.–Ziegler [BMZ11] and [Mat11], and Singh [Sin11].

Main application. Gromov proved in [Gro03] the following version of the Borsuk–Ulam
theorem.

Theorem 1.2 (Gromov’s waist of the sphere theorem). Let f : Sn → Rk be a continuous
map where n ≥ k ≥ 0.
Then there exists a point z ∈ Rk such that for any ε > 0,

voln

(
Uε
(
f−1(z)

))
≥ voln

(
Uε
(
Sn−k

))
.

Here, voln denotes the standard measure on Sn, Uε(X) denotes the ε-neighborhood of a set
X ⊆ Sn with respect to the standard metric on Sn, and Sn−k is the (n − k)-dimensional
equator of Sn.

Memarian [Mem09] gave a more detailed proof of Gromov’s theorem. Karasev and
Volovikov [KV11] generalized it to maps f : Sn → M of even degree from the n-sphere
to arbitrary k-manifolds M , see figure 1.

z

Sn

Mk

f

f−1(z)

Figure 1: Example of the Gromov–Memarian–Karasev–Volovikov theorem for n = 2 and
M = S1. In this example, f−1(z) is not a large preimage.

The main application of this paper is a parametrized version of this Gromov–Memarian–
Karasev–Volovikov theorem.

Theorem 1.3 (Parametrized Gromov–Memarian–Karasev–Volovikov waist of the sphere the-
orem). Let f : B × Sn → E be a bundle map over B, where Sn ↪→ B × Sn → B is the trivial

Sn bundle over B and M ↪→ E
p−→ B is a fiber bundle over B whose fiber is a k-manifold M .

If n = k then we further assume that the fiber maps fb : Sn → M have even degree at every
base point b ∈ B.
Then there exist a subset Z ⊆ E such that for all z ∈ Z and ε > 0,

voln

(
Uε
(
f−1(z)

))
≥ voln

(
Uε
(
Sn−k

))
, (1)

and such that Z is the set of limit points of a sequence of subsets Zi ⊆ E with

(pE |Z)∗ : H∗(B;F2)→ H∗(Zi;F2)

being injective. Here, voln is the standard measure on the fiber Sn over pE(z), Uε(.) denotes
the ε-neighborhood in that fiber, and H∗ denotes Čech cohomology.
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Remark 1.4. It may happen the set Z∗ of all points z ∈ E that satisfy the volume bound (1)
for all ε > 0 has the property that H∗(B;F2) → H∗(Z∗;F2) is not injective. For example
this happens when M = Sn, the rank n + 1 vector bundle associated to p has non-trivial
Stiefel–Whitney classes, and f is wrapping enough to make Z∗ = E.

The paper is organized as follows: We briefly discuss what we mean by parametrized
theorems in section 2 (this section is rather philosophical and the reader may skip it without
danger). In section 3 we define the index theories for G-bundles that are used in this paper and
we discuss their basic properties. The parametrized Borsuk–Ulam–Bourgin–Yang–Volovikov–
Karasev theorem is stated in section 4 and it is proved in section 5. Finally, we prove the
parametrized waist of the sphere theorem 1.3 in section 6.

2 Parametrized discrete geometry

Many more theorems in discete geometry apart from Gromov’s waist theorem have a para-
metrized version. A large class of such theorems are those that can be proved via what we
would call the preimage method : For these theorems, the solution set can be described as a
preimage f−1(Z) for some usually equivariant map X → Y ⊃ Z, such that an invariant such
as the equivariant bordism class of f−1(Z) does not vanish, which implies that the solution
set is nonempty. This is a specialization of the Configuration Space/Test Map scheme, see
Živaljević [Živ96], [Živ98].

Some theorems from discrete geometry turn out to admit “stronger” parametrizations
than others. Let’s make this precise. Consider a theorem T that asserts for every valid input
datum d ∈ D the existence of a solution s in the space of candidates of solutions X. Here, D
and T are assumed to be topological spaces. There may be several natural choices for D and
especially for X.

Let us assume right away that X is a fiber bundle over D, p : X → D, and that the
solution set S(d) for d ∈ D lies in the fiber over d. If X does not naturally have such a
structure, then simply replace it with the trivial bundle pr2 : X ×D → D. Thus S : D → 2X

is a set-valued section of p. In discrete geometry it is often upper hemicontinuous, i.e. its
graph is closed.

The strongest form of a parametrization for theorem T would be a section s : D → X such
that s(d) ∈ S(d) for all d ∈ D. This appears often when T admits a constructive existence
proof. Let’s call this a solution selection map.

Convex solution sets. Slightly weaker parametrizations occur when there is set-valued
function S′ : D → 2X with S′(d) ⊆ S(d) such that S′(d) is convex, where here we require
p : X → D to be a vector bundle.

The easiest example is probably Helly’s theorem [Hel23] (see also Matoušek [Mat02]).

Theorem 2.1 (Helly). Any given family of convex sets Ci, i ∈ I in Rd have a point in common
if any d+ 1 of them do.

For an input datum d = (Ci)i∈I (topologized by the Hausdorff topology with respect to
some finite metric on Rd, and the product topology) the solution set S(d) =

⋂
iCi is already

convex. However there is no solution selection map, a counter-example is depicted in figure 2.
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Figure 2: Example showing that there is no solution selection map for Helly’s theorem.

A parametrized Helly theorem on vector bundles was proved and used by Dol’nikov [Dol87]
and [Dol92] to establish the center transversal theorem, which is a generalization and inter-
polation between Banach’s ham sandwich theorem and Rado’s center point theorem.

Theorem 2.2 (Rado). Let µ be a probability measure on the Borel-σ-algebra of Rd. Then
there exists a point c ∈ Rd, called the center point of µ, such that any halfspace H that contains
C satisfies µ(H) ≥ 1/(d+ 1).

Since the solutions set of all centerpoints of a given measure µ is convex, we get again
immediately a parametrized version. This was first observed by Živaljević–Vrećica [ŽV90]
who used it to prove the center transversal theorem, independently from Dol’nikov.

Weak parametrizations. Most often the there is not even a convex set valued solution
selection function. Still there might be more quantitative assertions about the solution set
S := ∪d∈DS(d), such as the injectivity of the map induced in some continuous cohomology
H∗(D)→ H∗(S), or the surjectivity of the map induced in some homology H∗(S)→ H∗(D).

A basic example is of course the Borsuk–Ulam theorem [Bor33].

Theorem 2.3 (Borsuk–Ulam). Any map f : Sd → Rd sends some pair of antipodal points
x,−x ∈ Sd to the same point f(x) = f(−x).

The solution set represents the generator of H0(RP d;F2) = F2, meaning that the generic
number of solutions is odd. Jaworowski’s parametrized version [Jaw81a] concerns bundle
maps from an Sd-bundle to a rank d vector bundle ϕ over the same base space B. He proved
that if all Stiefel–Whitney classes up to ωi of ϕ are trivial, then Hd−i(B;F2)→ Hd−i(S;F2) is
injective, H∗ being any continuous cohomology and d being the cohomology dimension of B.
For many more versions see the above references in the paragraph below remark 1.4.

Another example is Tverberg’s theorem [Tve66], [Tve81].

Theorem 2.4 (Tverberg). Let N := (r−1)(d+1). Any N+1 points in Rd can be partitioned
into r parts whose convex hulls have a point in common.

We could replace Rd by some rank d vector bundle ϕ over a base space D, and replace
the given point set by N + 1 sections in ϕ. The union S of the solution sets of Tverberg’s
theorem for every fiber of ϕ will be over generic points d ∈ D only a finite point set. But
one can show that if r = pk is prime power then ϕ induces an injection on Čech-cohomology
H∗(D;Fp) → H∗(S;Fp), see Živaljević [Živ99], Vrećica [Vre03], Karasev [Kar07], and Blago-
jević–M.–Ziegler [BMZ11]. These parametrized versions are then used to prove cases of the
so-called transversal versions of Tverberg’s theorem, the Tverberg–Vrećica conjecture [TV93].
More transversal versions of standard theorems in discrete geometry can be found in Kara-
sev [Kar07], [Kar09b], and Montejano–Karasev [MK11]
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3 Topological notations

Let us fix some notation that will be used throughout the paper.
All spaces are paracompact, all maps are continuous. By a bundle we simply mean a map

X → B, where X is called total space and B base space. A G-bundle is a G-map X −→G B
from a G-space X to a trivial G-space B. Base spaces will always be trivial G-spaces in this
paper. In particular, G acts fiberwise on X. When we write F ↪→ E → B we mean a fiber
bundle. Fiber bundles will always be locally trivial. A (Serre) G-fibration is a G-bundle with
the G-equivariant lifting property for G-CW-complexes (usually G-fibrations are also defined
for base spaces with non-trivial G-action, but not in this paper).

Let q = pk be a prime power. In this paper we consider only symmetry groups G with
Zkp ⊆ G ⊆ Sylp(Sq). Here, Sq is the symmetric group on q elements, Zp = Z/(pZ), and
Sylp(Sq) = Zp o . . . o Zp is some p-Sylow subgroup of Sq. Cohomology groups H∗(X) always

denote Čech cohomology with Fp-coefficients, which are constant coefficients except when we
are talking about equivariant cohomology. In that case, the coefficients Fp are twisted by the
sign of the permutation (remember that G ⊆ Sq).

For a G-space X, we write XG := EG ×G X, which is the total space of the fibration
X ↪→ XG → B called Borel construction. The G-equivariant cohomology (equivariant bundle
cohomology, or Borel cohomology) of X is H∗G(X) := H∗(XG). In particular for a trivial
G-space B we have H∗G(B) = H∗(BG) = H∗(G)⊗H∗(B).

Let Wq := {x ∈ Rq |
∑
xi = 0} denote the standard representation of Sq. The G-

equivariant Euler class of a G-bundle F ↪→ E → B is the ordinary Euler class of the bundle
F ↪→ EG → BG. The Euler class e(V ) of a G-representation V is the equivariant Euler class
of the bundle V ↪→ V → pt, that is, the ordinary Euler class of V ↪→ VG → BG.

For a vector bundle F ↪→ E → B we denote the associated sphere and disk bundles by
S(F ) ↪→ S(E)→ B and D(F ) ↪→ D(E)→ B.

3.1 Index theories

In many situations one wants to disprove the existence of G-equivariant maps X −→G Y \Z,
or more generally that for some G-map f : X → Y ⊃ Z the preimage f−1(Z) is ‘large’ in
some specific sense.

In our situation we are interested in G-bundle maps f : X → Y ⊃ Z over some trivial
base space B. In this paper we will connect two different index theories, the first of which
was defined and studied by Fadell and Husseini [FH87b], [FH88].

Definition 3.1. Let f : X → B be a G-bundle. The Fadell–Husseini index of f is defined
as

indFHB,G(X) := ker(H∗G(B)
f∗−→ H∗G(X)) ⊆ H∗(G)⊗H∗(B).

When B is a point, we also write

indFHG (X) := indFHpt,G(X) ⊆ H∗(G).

Lemma 3.2 (Properties of indFHB,G). Let f : X −→G B and g : Y −→G B be G-maps with B
a trivial G-space as above. Then:
a) If there is a G-bundle map h : X −→G Y , that is f = g ◦ h, then

indFHB,G(X) ⊇ indFHB,G(Y ).
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b) If X is n-connected then
indFHG (X) ⊆ H∗≥n+2(G).

c) If F ↪→ X → B is a G-fibration and F is n-connected, then

indFHB,G(X) ⊆ H∗≥n+2(BG×B).

d) If f : F ×B → B is the projection to the second coordinate, then

indFHB,G(F ×B) = indG(F )⊗H∗(B).

e) If G = Zkp then for any G-space X, indFHG (X) = ∅ if and only if X has a fixed point.

f) If indFHB,G(X) ∩H0(G)⊗H∗(B) = 0, then f∗ : H∗(B)→ H∗(X) is injective.

Proof. a) follows immediately from the definition and b) is the special case of c) for F = X

and B = pt. c) follows from chasing the Leray–Serre spectral sequence of F ↪→ XG
fG−→

BG: Note that the index defining map H∗G(B)
f∗−→ H∗G(X) coincides with the bottom edge

homomorphism. Hence the elements of the index indFHB,G(X) are exactly the elements in the
bottom row of the spectral sequence that lie in the image of some differential. Since F is
n-connected, the only non-zero differentials hit the bottom row in filtration degree n + 2 or
higher.
d) follows from Künnet’s theorem. For e), see tom Dieck [tD87, Prop. 3.14, p. 196]. f) follows
immediately from the definition.

3.2 A spectral sequence based index

Let f : X → B be a G-bundle. If f is not a G-fibration then we replace X by X ′ :=
{(x, γ) | x ∈ X, γ : I → B, γ(0) = f(x)} and f by the map f ′ : X ′ → B that sends (x, γ)
to γ(1). This replacement makes f into a G-fibration, it is functorial, and if f is a already a
G-fibration then f and f ′ are G-fiber homotopy equivalent. This gives several ways to define
spectral-sequence based indices of f . For example, Blagojević–Blagojević–McCleary [BBM11]
defined the spectral sequence witness of a pair of G-spaces X and X ′ which gives a criterion
for the non-existence of G-maps X → X ′.

The index we will be interested in in this paper is the Leray-Serre spectral sequence of
the map X ′G → B given by [e, (x, γ)] 7→ f(γ(1)). Here we need that B is a trivial G-space.
There is a natural map from X ′G → B to BG → B, where BG = BG × B, which induces a
morphism of associated spectral sequences.

Note that the spectral sequence of BG → B collapes at E∗,∗2 = H∗(B)⊗H∗(G). Also, any
map bundle map X → Y over B gives rise to a commutative triangle of maps between the
associated spectral sequences.

In this paper it will be enough to consider the E∞-page.

Definition 3.3. Let f : X → B be a G-bundle. We define the E∞-index of X → B as

ind∞G,B(X) := ker
(
E∗,∗∞ (BG → B)→ E∗,∗∞ (X ′G → B)

)
⊆ H∗(G)⊗H∗(B).

By the multiplicativity of the Leray–Serre spectral sequence ind∞G,B(X) is a bi-homogeneous
ideal in H∗(G)⊗H∗(B).
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Lemma 3.4 (Properties of ind∞B,G). Let X → B be a G-bundle.
a) Let X → Y be a map of G-bundles over B. Then

ind∞B,G(X) ⊇ ind∞B,G(Y ).

b) If F ×B → B is the projection to the second coordinate then

ind∞B,G(F ×B) = indFHpt,G(F )⊗H∗(B) = indFHB,G(F ×B).

c) If ind∞B,G(X) ⊆ H∗≥1(G) ⊗ H∗(B), then f∗ : H∗(B) → H∗(X) is injective. If moreover
B is a compact manifold, then the map in singular homology f∗ : H∗(Uε(X)) → H∗(B) is
surjective for any ε > 0.

Proof. a) is a trivial chase in the diagram of the index defining spectral sequences. b) is
trivial. c) follows from the definition and the edge-homomorphism.

Comparing indFH and ind∞. Although both indices indFH and ind∞ are similarly defined,
there are substantial differences: First of all, ind∞ is a Z2-graded ideal of H∗(G) ⊗ H∗(B),
whereas indFH is only a Z-graded ideal (with respect to the total grading).

Definition 3.5. We define the leading term lt(α) of a homogeneous element α ∈ H∗(G)⊗
H∗(B) as the first non-zero αi, where α = α0 + α1 + . . . with αi ∈ H∗(G) ⊗ H i(B). This
extends degree-wise (with respect to the total degree) to a maps of sets lt : H∗(G)⊗H∗(B)→
H∗(G)⊗H∗(B).

Lemma 3.6. Any G-bundle X → B satisfies lt
(
indFHB,G(X)

)
⊆ ind∞B,G(X).

However, the non-leading bihomogeneous parts of α ∈ indFHB,G(X) may not be in ind∞B,G(X).

Also bihomogeneous elements β ∈ ind∞B,G(X) may not lie in indFHB,G(X), because β ∈ ind∞B,G(X)
means that its image is zero in some filtration quotient of H∗G(X).

Example 3.7. As an example, let p : X → B be the associated circle bundle of the tangent
bundle of RP 2. Suppose thatG = Z2 acts antipodally on each fiber ofX. Then, H∗(G) = F2[t]
and H∗(B) = F2[u]/(u3). The associated fibration of Borel constructions, XZ2 → BG × B,
is a circle bundle with (mod 2) Euler class e = u2 + t2. This is the generator for indFHB,G(X).
We have lt(e) = t2 ∈ ind∞B,G(X), and in fact t2 is the generator of ind∞B,G(X). Hence in this

example, the other bihomogeneous part u2 of e ∈ indFHB,G(X) does not lie in ind∞B,G(X), and

the bihomogeneous element t2 ∈ ind∞B,G(X) does not lie in indFHB,G(X).

3.2.1 More general versions

The following versions and generalizations of ind∞ may be useful for different problems, but
we won’t need them in this paper.

We can define to any G-bundle f : X → B the spectral sequence valued index
indSSG,B(X) as the Leray–Serre spectral sequence of X ′G → B together with the morphism of
spectral sequences from the spectral sequence of BG → B. In abstract terms this index is a
functor from the category of G-bundles over B to the category whose objects are morphisms
from one spectral sequence to the spectral sequence of BG → B.
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Two other useful indices can be defined in a similar way using the fibrations X ↪→ XG →
BG and F ↪→ X ′G → BG, where F is the homotopy fiber of X → B. If B is a point then
both of them coincide. The latter contains all information of the Fadell–Husseini index, since
indG,B(X) is the set of all elements in the 0-row of the spectral sequence of X ′G → BG that
are in the image of some differential.

In some sense these three spectral sequence valued indices can be unified using a “higher
spectral sequence” that will be constructed in [Mat12]. The corresponding sequence of two
fibrations is XG → BG → B.

4 Parametrized Volovikov theorem

The main methodological tool in this paper is the following parametrized Volovikov theorem.
It relates the∞-index of the configuration space X to the Fadell–Husseini index of the solution
set S.

Theorem 4.1 (Parametrized Volovikov theorem). Let

• q = pk,

• G be a subgroup of Sq such that Zkp ⊆ G ⊆ Sylp(Sq),

• B be a path-connected trivial G-space,

• pX : EX → B be a G-bundle,

• Y be a paracompact space and let G act on Y q by permuting the coordinates,

• Y ↪→ EY → B be a fiber bundle,

• M be a connected (paracompact) smooth m-manifold,

• M ↪→ EM → B be a fiber bundle.

Let i : EX −→G E
⊕q
Y be a G-bundle map over B,

EX
i //

pX
  

E⊕qY

p⊕q
Y~~

B .

Let F be a fiber bundle map,

EY
F //

pY
  

EM

pM
}}

B .

Assume that over some (and hence any) base point b ∈ B, the map Fb := F |p−1
Y (b) = F |Y

induces the zero map in positive cohomology H∗≥1(M,Fp)→ H∗≥1(Y,Fp).
Then the “solution set”

S := {x ∈ EX | i(x) = (y1, . . . , yq) satisfies F (y1) = . . . = F (yq)}
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has the following index bound: If α ∈ indFHB,G(S) is a homogeneous element then

lt(α)e(Wq)
m ∈ ind∞B,G(EX).

In particular if ind∞B,G(EX) ∩
(
e(Wq)

n ⊗H∗(B)
)

= ∅ then

H∗(B,Fp)
(pM |Z)∗−−−→ H∗(Z,Fp)

is injective, where

Z := F q(i(S)) ∼= {z ∈ EM | z = F (y1) = . . . = F (yq)

for some x ∈ EX , (y1, . . . , yq) = i(x)}.

Remark 4.2. In applications of theorem 4.1, EX is usually the configuration space (the
space of solution candidates), which is parametrized over B, and M is also naturally given
by our description of the solution set as a preimage. But what about Y ↪→ EY → B? The
assumption of the theorem that F⊕q ◦ i has to factor over EY is important for rather technical
reasons. Two cases for the choice of EY usually appear:

1. i : EX −→G E
⊕q
Y is an inclusion of G-spaces.

2. If G = Zkp and EX → B is a fiber bundle, then one can simply choose EY := EX and

let i : EX → E⊕qY be defined as x 7→ (g−1x)g∈G.

Remark 4.3. The set Z ⊆ EM is in general much more complicated than the image of a
section of pM : EM → B (pM may not even admit a section).

Remark 4.4 (Desirable extensions). It would be useful to have a version of theorem 4.1
that relates EX and S using the same index theory, such that one can apply the theorem
iteratively.

If the “parametrized Nakaoka lemma” H∗G(E⊕qM ) ∼= H∗(G;H∗(E⊕qM ) is true (and if this
isomorphism is natural in pM ) then we would have the following relation: There exists e′ ∈
H
m(q−1)
G (B) with lt(e′) = e(Wq)

m ⊗ 1 and e′ · indFHB,G(S) ⊆ indFHB,G(EX).

5 Proof of the parametrized Volovikov theorem

In large parts we follow the proof of Volovikov [Vol92] (see §5 and in particular the proof of
lemma 3) and Karasev–Volovikov [KV11].

We denote the q-fold Withney sum of EM by M q ↪→ E⊕qM → B. Let ∆Mq denote the thin
diagonal {(m, . . . ,m) ∈ M q} of M q. Similarly, let ∆Mq ↪→ ∆E⊕q

M
→ B be the thin diagonal

subbundle of E⊕qM .

G ⊆ Sq acts on M q and E⊕qM by permuting coordinates. Their fixed-point sets are ∆Mq ∼=
M and ∆E⊕q

M

∼= EM , respectively.

Some closed tubular neighborhood N
(
∆E⊕q

M

)
⊂ E⊕qM can be regarded as a disc bundle

Dm(q−1) ↪→ N
(
∆E⊕q

M

)
→ ∆E⊕q

M

∼= Em of some G-vector bundle W⊕mq ↪→ W
ϕ−→ ∆E⊕q

M
, the

normal bundle of ∆E⊕q
M

in E⊕qM .

9



Let τ be the rank m vector bundle over ∆E⊕q
M

whose fiber at a point e ∈ ∆E⊕q
M

is the

tangent space TeMb, where Mb
∼= M is the fiber of ∆E⊕q

M
→ B that contains e. Then

ϕ ⊕ τ = τ⊕q, and ϕ is stably equivalent to τ⊕(q−1). For p > 2, q − 1 is even. Hence ϕ is
Fp-orientable. Furthermore all non-zero elements of G have an odd order if p > 2, thus the
G-action preserves the Fp-orientation on ϕ.

Therefore W has a G-equivariant mod-p Thom class τEM ,G ∈ H
m(q−1)
G (D(W ), S(W )),

which is the ordinary mod-p Thom class of the bundle Wm
q ↪→ WG →

(
∆E⊕q

M

)
G

, where(
∆E⊕q

M

)
G

= ∆E⊕q
M
×BG.

By excision we regard τEM ,G as an element in H
m(q−1)
G

(
E⊕qM , E⊕qM \∆E⊕q

M

)
. By the Thom

isomorphism this group is isomorphic to H0
G

(
∆E⊕q

M

)
= Fp.

Consider the diagram of restrictions

τEM .G ∈ Hm(q−1)
G

(
E⊕qM , E⊕qM \∆E⊕q

M

) ∼= //

��

H
m(q−1)
G

(
D(W ), S(W )

)
��

γEM ,G ∈ Hm(q−1)
G

(
E⊕qM

)
//

��

H
m(q−1)
G

(
∆E⊕q

M

)
��

γM,G ∈ Hm(q−1)
G (M q) //

++

H
m(q−1)
G (∆Mq)

��

e(W⊕mq ) ∈ Hm(q−1)
G (ptq)

Let γEM ,G denote image of τEM ,G in H
m(q−1)
G

(
E⊕qM

)
. By commutativity of the top square,

γEM ,G maps to the Euler class e(ϕ) ∈ Hm(q−1)
G

(
∆E⊕q

M

)
of ϕ. Thus, when further restricting

to H
m(q−1)
G (ptq), ptq being some point in ∆E⊕q

M
, γEM ,G maps to e(Wq)

m.

Remark 5.1. In case B is a manifold, τEM ,G can be constructed as the Poincaré dual of
ErG×G∆E⊕q

M
in ErG×GE⊕qM , where ErG is an r-connected free G-manifold and r ≥ m(q−1),

using the canonical isomorphism

Hm(q−1)(ErG×G (E⊕qM , E⊕qM \∆E⊕q
M

)) ∼=−→ H
m(q−1)
G

(
E⊕qM , E⊕qM \∆E⊕q

M

)
.

See Volovikov [Vol92] and Karasev–Volovikov [KV11] for details in the case when B = pt.

Let γEX
:= (F q ◦ i)∗(γEM ,G) ∈ Hm(q−1)

G (EX).

Claim 5.2. The restiction of γEX
to EX\S is zero in H

m(q−1)
G (EX\S).

Proof. From the long exact sequence of the pair
(
E⊕qM , E⊕qM \∆E⊕q

M

)
we see that γEM ,G restricts

to zero in H
m(q−1)
G

(
E⊕qM \∆E⊕q

M

)
. Since F q ◦i sends the pair (EX , S) to

(
E⊕qM ,∆E⊕q

M

)
, the claim

follows.
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E∗,∗
∗ (i)

EG×G E
⊕q
Y → B

EG×G B → B

E∗,∗
∗ (p⊕q

Y )

EG×G E
⊕q
M → B

E∗,∗
∗ (F q)

E∗,∗
∗ (pX) E∗,∗

∗ (p⊕q
M )

EG×G EX → B

H∗(B) H∗(B)

H∗(B)

eX eY

H∗
G(pt)

H∗
G(X)

H∗(B)

γM,G

H∗
G(Y q) H∗

G(Mq)

e(Wq)m-1

γEM ,GγEX

Figure 3: Seconds pages of the spectral sequences of (EX)G, (E⊕qY )G, (E⊕qM )G, and BG over B.

The constructions of τEM ,G and γEM ,G are natural with respect to taking subgroups of G
and restrictions of B. When restricting EM to a fiber Mb

∼= M over some base point b ∈ B,

γEM ,G restricts to an element γM,G ∈ Hm(q−1)
G (M q).

Now consider the diagram of spectral sequences in figure 3. Here, X is the homotopy fiber
of pX : EX → B, and eX ∈ H∗G(X) and eY ∈ H∗G(Y ⊕q) are the natural images of e(Wq)

m−1.

Claim 5.3. E
0,m(q−1)
2 (F q) sends γM,G to eY .

Proof. By Nakaoka’s lemma [Nak61], we have an isomorphism

H∗G(M q) = Tot(H∗(G;H∗(M)⊗q)),

which is natural in G and M , where Tot denotes the total complex of a bigraded complex.
As an Fp[G]-algebra, H∗(M)⊗q decomposes as A + B, where A = H0(M)⊗q = Fp and B is
generated by all homogeneous elements in H∗(M)⊗q of positive total degree. Hence γM,G

decomposes as γM,G = γa + γb, where γa ∈ H∗(G;A) = H∗(G) and γb ∈ H∗(G;B).
The composition

H
m(q−1)
G (ptq) // H

m(q−1)
G (M q) // H

m(q−1)
G (ptq)

e(Wq)
m ∈ Hm(q−1)(G;A) γa ∈ Hm(q−1)(G;A)

?�

OO

Hm(q−1)(G;A)

induced by the projection on the left and by an inclusion on the right is the identity. Both
maps are also individually isomorphisms on the Hm(q−1)(G;A)-part since the Nakaoka lemma
is natural in M . Since the second map sends γM,G to e(Wq)

m we deduce that γa = e(Wq)
m

and the first map sends e(Wq)
m to γa. Thus E

0,m(q−1)
2 (F q) sends γa to eY .

11



F : EY → EM restricts over some base point b ∈ B to Fb : Y q → M q, which by

assumption induces zero in positive cohomology. Therefore E
0,m(q−1)
2 (F q) will send γb to

zero, by naturality of Nakaoka’s lemma.

From the claim follows that E
0,m(q−1)
2 (F q ◦ i) sends γM,G to eX . Since (F q ◦ i)∗(γEM ,G) =

γEX
and γM,G is the restriction of γEM ,G to the first column of the right spectral sequence,

eX must be the restriction of γEX
on the left spectral sequence. In other words, eX is the

leading term of γEX
in the left spectral sequence.

Now suppose we are given a homogeneous element α ∈ indFHB,G(S), that is, α maps to zero
in H∗G(S). By claim 5.2 if follows that

(pX)∗(α) ∪ γEX
= 0.

Thus on the E∞-page we have that

E0,m(q−1)
∞ (pX)

(
lt(α) ∪ e(Wq)

m
)

= 0.

This proves the general index bound for S.
For the last part of the theorem, assume that ind∞B,G(EX) ⊆ H∗≥m(pk−1)+1(G)⊗H∗(B).

Then the index bound yields that indFHB,G(S) cannot contain elements in H0(G)⊗H∗(B) except
for 0. Therefore lemma 3.4 implies that H∗(B) = H0(G)⊗H∗(B)→ H∗G(S) is injective. The
commutative diagram of natural maps

H∗G(S) H∗G(Z) = H∗(G)⊗H∗(Z)oo H∗(Z)oo

H∗(B)

ii OO 55

implies that H∗(B)→ H∗(Z) is injective as well. This finishes the proof of theorem 4.1.

6 Sketch of proof of the parametrized waist of sphere theorem

In the case n = k, the parametrized waist of the sphere theorem 1.3 follows easily from a
parametrized Borsuk–Ulam theorem for manifolds: Theorem 4.1 implies for the given bundle
map B × Sn → E and the antipodal Z2-action on the fibers of B × Sn that the set Z of all
elements z ∈ EM whose preimage f−1(z) contains a pair of antipodal points has the property
that H∗(B;F2)→ H∗(Z;F2) is injective.

Thus we may assume n > k. Gromov’s proof of 1.2 splits into a topological and an analytic
part. The topological part is the following mass partition theorem.

Let Conv(Sn) denote the set of all closed convex subsets of C ⊂ Sn with C 6= Sn. Let
Conv∗(Sn) be its subset of sets with positive volume. The Hausdorff metic makes Conv(Sn)
into a metric space. A map c : Conv∗(Sn) → Sn is called a center map. A partition of Sn

into q convex sets is a family of subsets C1, . . . , Cq ∈ Conv(Sn) with pairwise disjoint interior
such that Sn =

⋃
iCi.
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Theorem 6.1 (A mass partition theorem). Let g : Sn →Mk be map from the n-sphere to a
k-manifold, n > k, let c : Conv∗(S)→ Sn be a center map. Then for any q = 2` there exists
a partition of Sn into q convex sets C1, . . . , Cq with

g(c(C1)) = . . . = g(c(Cq))

and
vol(C1) = . . . = vol(Cq).

Moreover the set Ci can be required to lie in the ε-neighborhood of some k-dimensional equator
Ei ⊂ Sn in case q ≥ q0(ε).

The analytic part of the proof is based on involved isoperimetric inequalities that make
theorem 6.1 with ε→ 0 imply theorem 1.2, see Gromov [Gro03], Memarian [Mem09].

Every point x ∈ Sn determines its polar hyperplane, which bisects Sn into two convex
pieces. Two more points on the sphere, one for each of the two pieces, will yield a convex
partition of Sn into four pieces. Iterating this, we obtain a map

p : X := (Sn)q−1 → Conv(Sn)q.

Let T be the complete binary tree of height `−1. The interior nodes of T naturally correspond
to the q−1 sphere factors of X, and the q leaves correspond to the convex sets in the partition.
Let them be labelled by N1, . . . , Nq−1, where N1 shall denote the root. Let the leaves of T be
labelled by L1, . . . , Lq. Thus the symmetry group of T , the 2-Sylow subgroup G := Z2 o . . . oZ2

of the symmetric group Sq, acts on (Sn)q−1 (with antipodal action on an Sn-factor whenever
its children are exchanged, such that the partition p(x) for x ∈ X stays the same up to
permutation of the indices) and on Conv(Sn)q (as it acts on the leaves). This makes p into a
G-equivariant map.

We would like to define a test-map

t : (Sn)q−1 −→Sn (M × R)q

whose k’th coordinate at x = (x1, . . . , xq−1) is given by

(f(c(pk(x))), vol(pk(x))), (2)

such that the preimage of ∆ := ∆(M×R)q corresponds to the partitions of Sn into q convex sets
of equal volume and equal g-images of their center points. However c is not continuous at some
of the convex sets with zero volume. Thus we replace c in (2) by a slightly deformed map c′:
First, let γC be the shortest geodesic on Sn between γC(0) = ±x1 and γC(1/2q) = c(C), where
the sign in front of the vector x1 (in the sphere corresponding to the root of T ) depends on
whether the leaf of T corresponding to the convex set C is on the left or on the right side of
the root. If vol(C) = 0 then γC might not be defined except for its end point γC(0). We then
define

c′(C) :=

{
c(C) if vol(C) ≥ 1/2q,

γC(vol(C)) if vol(C) ≤ 1/2q.

The so defined t : x 7→
(
f(c′(pk(x))), vol(pk(x))

)
k

is indeed continuous and t−1(∆) is the set
of convex equipartitions of Sn such that g maps all centers of the convex parts to the same
point in M .
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The test-map t factors as

X
i−→ Y q (f×id)q−−−→ (M × R)q,

where Y := Sn × R.

Lemma 6.2 (An index bound for (Sn)q−1). For G = Z2 o . . . o Z2 ⊆ Sq and F2-coefficients,

e(Wq)
n 6∈ indFHG ((Sn)q−1).

Proof. Consider the map m : (Sn)q−1 →W⊕nq given by

x 7→
( ∑
Ni∈Pk

±prSn→Rn(xi)
)
k=1...q

,

where prSn→Rn : Sn → Rn is the standard projection to the first n coordinates; for every
leaf Lk, Pk is the set of interior nodes in T that lie on the shortest path from the root N1 to
Lk, `(i) is the height of node i in the tree (i.e. the distance to N1), and the sign at Ni ∈ Pk
depends on whether the path Pk continues at the right or the left subtree at node Ni.

We have that the sum of all q Rn-coordinates of this test-map is zero, since the sum
for Pk cancels with the sum for the reflected Pk. Furthermore, m is G-equivariant, and
m−1(0) = {(0, . . . , 0,±1)}q−1 is the set of (q − 1)-tuples x such that every xi is the north
or the south pole of Sn. These are regular points of m, and modulo G this is exactly one
preimage.

Remark 6.3 (Odd prime powers). There is an analogous lemma for odd prime powers q = p`

if n is odd: Here, G = Zp o . . . o Zp ⊆ Sq, Zp acts on Sn = S1 ∗ . . . ∗ S1 diagonally, and we use
Fp-coefficients. The proof is the same.

Remark 6.4 (An index bound for configuration spaces). Let Fq(Rn+1) denotes the config-
uration space of q pairwise distinct points of Rn+1. Hung [Hun90, §1] (see also Karasev–
Volovikov [KV11, 5.2]) constructed an embedding (Sn)q−1 ↪→G Fq(Rn+1) as follows: The first
element x1 ∈ Sn determines a pair of antipodal points on Rn+1. The next two elements
x2, x3 ∈ Sn are used to split these two antipodal points into four points on Rn+1. And so on.
Using this embedding, lemma 6.2 provides a simple proof for

e(Wq)
n 6∈ indFHG (Fq(Rn+1)). (3)

For an application of this index bound on convex partitions see Blagojević–Ziegler [BZ12].
More general index calculations for configuration spaces can be found in Karasev [Kar09a]
and Blagojević–Lück–Ziegler [BLZ12].

Since we need only the non-vanishing of e(Wq)
k, we may restrict the configuration space

(Sn)q−1 to some G-invariant subspace (Sk)q−1. Here, G-invariance means that we can choose
the k-dimensional equators Sk ⊆ Sn independently as long as they agree on each height (with
respect to T ). Choosing these equators well-distributed enough will assure the ε-neighborhood
condition in theorem 6.1.

Using Volovikov’s theorem 1.1 finishes the proof of theorem 6.1.
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Remark 6.5. Karasev and Volovikov [KV11] observed that when we remove the condition
that the Ci have to be ε-close to some k-dimensional equators of Sn, then the mass par-
tition theorem 6.1 holds also for odd prime powers: For this they used weighted Voronoi
decompositions.

A parametrized version of theorem 6.1 follows analogously using theorem 4.1. This in turn
implies the parametrized waist of the sphere theorem 1.3 using the same analytic part as in
Gromov [Gro03].

Acknowledgements. I want to thank Vera Vértesi, Mark Goresky, and Roman Karasev
for very useful discussions.
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[BZ12] Pavle V. M. Blagojević and Günter M. Ziegler. Convex equipartitions via equivariant ob-
struction theory. arxiv:1202.5504, 2012.

[CJ09] Michael C. Crabb and Jan W. Jaworowski. Theorems of Kakutani and Dyson revisited. J.
Fixed Point Theory Appl., 5(2):227–236, 2009.

[dMdS07] Denise de Mattos and Edivaldo L. dos Santos. A parametrized Borsuk-Ulam theorem for
a product of spheres with free Zp-action and free S1-action. Algebr. Geom. Topol., 7:1791–
1804, 2007.

[Dol87] Vladimir L. Dol’nikov. Common transversals for families of sets in Rn and connections
between theorems of Helly and Borsuk. (in Russian) Dokl. Akad. Nauk USSR, 297(4):777–
780, 1987.

[Dol88] Albrecht Dold. Parametrized Borsuk–Ulam theorems. Comment. Math. Helvetici, 63:275–
285, 1988.

[Dol92] Vladimir L. Dol’nikov. A generalization of the ham sandwich theorem. Mat. Zametki,
52(2):27–37, 155, 1992. Translation in Math. Notes 52 (1993), no. 1-2, 771–779.

[FH87a] Edward Fadell and Sufian Y. Husseini. Index theory for G-bundle pairs with applications
to Borsuk-Ulam type theorems for G-sphere bundles. In Nonlinear analysis, pages 307–336.
World Sci. Publishing, 1987.

[FH87b] Edward Fadell and Sufian Y. Husseini. Relative cohomological index theories. Adv. Math.,
64:1–31, 1987.

[FH88] Edward Fadell and Sufian Y. Husseini. An ideal-valued cohomological index theory with
applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergodic Theory and Dynamical
Systems, 8*:73–85, 1988.

15

http://arxiv.org/abs/1207.2852
http://arxiv.org/abs/1202.5504


[FH89] Edward Fadell and Sufian Y. Husseini. Index theory for noncompact group actions with
applications to Borsuk-Ulam theorems. In Topological fixed point theory and applications
(Tianjin, 1988), Lecture Notes in Math. 1411, pages 52–68. Springer, 1989.

[Gro03] Mikhail L. Gromov. Isoperimetry of waists and concentrations of maps. GAFA, 13:178–215,
2003.
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