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Abstract

These are the lecture notes for a mini-course on spectral sequences held at
Max-Planck-Institute for Mathematics Bonn in April 2014. The covered topics
are: their construction, examples, extra structure, and higher spectral sequences.

1 Introduction

Spectral sequences are computational devices in homological algebra. They appear
essentially everywhere where homology appears: In algebra, topology, and geometry.

They have a reputation of being difficult, and the reason for this is two-fold: First
the indices may look unmotivated and too technical at the first glance, and second,
computations with spectral sequences are in general not at all straight-forward or even
possible.

There are essentially two situations in which spectral sequences arise:

1. From a filtered chain complex: A Z-filtration of a chain complex (C, d) is a
sequence of subcomplexes Fp such that Fq ⊆ Fp for all q ≤ p.

2. From a filtered space X and a generalized (co)homology theory h: A Z-filtration
of a topological space X is a family (Xp)p∈Z of open subspaces such that Xq ⊆ Fp
whenever q ≤ p.

More generally, in 1.) the chain complexes may live over any abelian category,
and in 2.) the category of spaces can be replaced by the category of spectra; then all
important cases of spectral sequences known to the author are covered. But let us keep
the presentation as elementary as possible.

The most common scenario for an application is the following: Suppose we want
to compute the homology H(C) of a chain complex C, or the generalized homology
h(C) of a space X. Then we filter C respectively X in a useful way, and the associated
spectral sequences give in some sense a recipe to compute H(C) and h(X) from their
“first pages”, which consists of the terms H(Fp/Fp−1) and h(Xp, Xp−1), respectively.

Benjamin Matschke, matschke@mpim-bonn.mpg.de

1



Remark 1.1 (Exact couples). Seemingly more general spectral sequences come from
Massey’s exact couples, which we will not discuss in these notes, since the author does
not know of any spectral sequence in practice that does not arise from one of the two
situations above.

There are many standard text books that cover spectral sequences, for example
McCleary [11], Spanier [12], Hatcher [8], Weibel [14], Cartan–Eilenberg [3], Gelfand–
Manin [6], Bott–Tu [2], Switzer [13], and many more. A reader interested in the early
history of spectral sequences should take a look at McCleary [10].

2 Construction

Notation. Let Zn := {(p1, . . . , pn) ∈ Zn | p1 ≤ . . . ≤ pn}. We put a partial order on
Zn as follows: Put (p1, . . . , pn) ≤ (p′1, . . . , p

′
n) if and only if pi ≤ p′i for all 1 ≤ i ≤ n.

Moreover, whenever X and Y are subgroups of the same abelian group, we write
X/Y for (X + Y )/Y ∼= X/(X ∩ Y ).

2.1 Spectral sequence of a filtered chain complex

In these notes we want to forget about the grading of chain complexes, since this will
not be of any importance. An ungraded chain complex (C, d) consists simply of an
abelian group C together with an endomorphism d : C → C such that d ◦ d = 0. The
homology of C is defined as H(C) := ker(d)/im(d).

Every ordinary chain complex

. . .
di+1−→ Ci

di−→ Ci−1
di−1−→ . . . , di ◦ di+1 = 0,

can be made into an ungraded chain complex by simply forgetting about the grading:
Simply put C :=

⊕
iCi and d :=

⊕
i di, i.e. d((ci)i∈Z) = (di−1(ci−1))i∈Z. From now on,

all chain complexes will be ungraded.
A subcomplex (C ′, d′) of (C, d) is a subgroup C ′ ⊆ C such that d(C ′) ⊆ C ′, with

the inherited differential d′ = d|C′ .
A Z-filtration of C is a family of subcomplexes (Fp)p∈Z of C such that Fq ⊆ Fp

whenever q ≤ p. The data (C, d, (Fp)Z) is called a filtered (ungraded) chain complex.
Suppose that (C, d, (Fp)Z) is a filtered chain complex. Let us augment the filtration

with F−∞ := 0 and F∞ := C. For any integers z ≤ p ≥ q ≤ b define an abelian group

S[z, q, p, b] :=
Fp ∩ d−1(Fz)
d(Fb) + Fq

.

Here, p is the filtration degree, q the quotient degree, b the boundary degree, and z the
cycle degree. So far these are just a bunch of abelian groups. Some of them have a
simpler form, for example

S[p, q, p, q] ∼= Fp/Fq, for q ≤ p, (1)
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and
S[q, q, p, p] ∼= H(Fp/Fq), for q ≤ p, (2)

and in particular
S[−∞,−∞,∞,∞] ∼= H(C),

which is usually the goal of computation. So let’s write

S[∞] := S[−∞,−∞,∞,∞].

The collection of groups

S[p, p− 1, p, p− 1] ∼= Fp/Fp−1, p ∈ Z, (3)

is called the zero page, and the collection of groups

S[p− 1, p− 1, p, p] ∼= H(Fp/Fp−1), p ∈ Z, (4)

is called the first page, both of which are usually more easy to understand than H(C).
An equivalent description of S[z, q, p, b] for (z, q, p, b) ∈ Z4 is the following. For any

(z, q, p) ∈ Z3 there is a short exact sequence of chain complexes,

0→ Fq/Fz → Fp/Fz → Fp/Fq → 0,

where the maps are induced by inclusion. In the associated long exact sequence (actually
an exact triangle),

H(Fq/Fz) // H(Fp/Fz) // H(Fp/Fq)

dzqp

hh

let dzqp : H(Fp/Fq)→ H(Fq/Fz) denote the connecting homomorphism. Then

S[z, q, p, b] ∼=
ker
(
dzqp : H(Fp/Fq)→ H(Fq/Fz)

)
im
(
dbpq : H(Fb/Fp)→ H(Fp/Fq)

) , for (z, q, p, b) ∈ Z4. (5)

Now, there exist two kind of relations between such groups: Differentials and ex-
tensions. Let’s start with the simpler one.

2.2 Extensions

For any (z1, q1, p1, b1) ≤ (z2, q2, p2, b2) ∈ Z4, there is a map induced by inclusion of chain
complexes,

` : S[z1, q1, p1, b1]→ S[z2, q2, p2, b2]. (6)

For notational simplicity we don’t put indices on `.
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`

`

z p1 p2 p3 b

Figure 1: Schematic figure for (7). Here and below we draw S[z, q, p, b] as two strips
from z to p and from q to b, and we draw the overlap gray.

Lemma 2.1. Let z ≤ p1 ≤ p2 ≤ p3 ≤ b. Then there is a short exact sequence

0→ S[z, p1, p2, b]
`−→ S[z, p1, p3, b]

`−→ S[z, p2, p3, b]→ 0. (7)

See Figure 1. We leave this as an easy exercise. This yields many relations between
these groups. In practice, the following special case is used almost exclusively:

Lemma 2.2. Set Gp := S[−∞,−∞, p,∞], for p ∈ Z. They form a filtraton of S[∞],

. . . ⊆ Gp−1 ⊆ Gp ⊆ Gp+1 ⊆ . . . ⊆ S[∞].

Moreover the filtration quotients Gp/Gq have a very simple form

Gp/Gq
∼= S[−∞, q, p,∞]. (8)

`

`

pq

Figure 2: Schematic figure for (8), drawn as a short exact sequence.

Proof. Apply (7) with z = p1 = −∞, b =∞, p3 = p, and p2 = q.

Thus one can “more or less” compute S[∞] from the groups S[−∞, q, p,∞] by
iteratively computing Gp. At each step one computes Gp as an extension of S[−∞, p−
1, p,∞] by Gp−1 (which was obtained in the previous step). There are several serious
difficulties though: Without further knowledge, this extension problem is not uniquely
solvable. Moreover, the filtration (Gp)Z may not be exhaustive (i.e.

⋃
pGp = S[∞]) and
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it may not be bounded below (i.e. Gp = 0 for some p). We will address these problems
in Section 2.5 below.

But suppose we can solve these problems, how do we compute S[−∞, p− 1, p,∞]?
Well, for this we need differentials.

2.3 Differentials

Suppose that two quadruples (z1, q1, p1, b1) and (z2, q2, p2, b2) in Z4
1 satisfy

z2 = p1 and q2 = b1. (9)

Compare with the first two rows of (10).

Fz1 ⊆ Fq1 ⊆ Fp1 ⊆ Fb1
|| ||
Fz2 ⊆ Fq2 ⊆ Fp2 ⊆ Fb2

|| ||
Fz3 ⊆ Fq3 ⊆ Fp3 ⊆ Fb3

(10)

Then d induces a well-defined differential

d2 : S[z2, q2, p2, b2] −→ S[z1, q1, p1, b1]. (11)

Then it is an easy exercise (do it!) to check that

ker(d2) = S[q1, q2, p2, b2]

and
coker(d2) = S[z1, q1, p1, p2].

Putting both together we get:

Lemma 2.3. Suppose that we have a sequence of such differentials,

S[z3, q3, p3, b3]
d3−→ S[z2, q2, p2, b2]

d2−→ S[z1, q1, p1, b1], (12)

such that (9) and the corresponding inclusions for d3 are fulfilled, namely z3 = p2 and
q3 = b2, see (10). Then we can compute the homology at the middle term and get

ker(d2)

im(d3)
= S[q1, q2, p2, p3]. (13)

1Actually we don’t need (zi, qi, pi, bi) ∈ Z4. For the differentials it is enough to assume zi ≤ pi ≥
qi ≤ bi, however this makes notation more complicated and less didicatic, and this generality will be
used only at the zero page.
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d3

d2

S[z1, q1, p1, b1]

S[z2, q2, p2, b2]

S[z3, q3, p3, b3]

z1 q1 p1 b1

z3 q3 p3 b3z2

p2 b2

q2

Figure 3: Schematic figure for (12) and (10).

coker(d2)

ker(d2)/im(d3)

ker(d3)

Figure 4: Same as Figure 3 but with S[z1, q1, p1, b1] replaced by coker d2, S[z2, q2, p2, b2]
by the homology ker(d2)/im(d3), and S[z3, q3, p3, b3] by ker(d3).

Example 2.4. Consider S[p, q, p, q] ∼= Fp/Fq from (1). Then d induces a differen-
tial from this group to itself, and taking homology yields S[q, q, p, p] ∼= H(Fp/Fq)
from (2). The differential of course agrees under the isomorphism (1) with the one
induced on Fp/Fq.

In particular for q = p − 1, this means that taking homology at the zero page (3)
yields the first page (4).

For p = ∞ and q = −∞ this means that taking homology of C yields H(C), a
tautology.

Now let’s generalize this example. For r ∈ Z≥0 ∪ {∞} and p ∈ Z, define

Er
p := S[p− r, p− 1, p, p− 1 + r]. (14)

Then d induced differentials

. . .
dr−→ Er

p+r
dr−→ Er

p
dr−→ Er

p−r
dr−→ . . . , (15)

which are usually denoted as dr, and taking homology at Er
p yields Er+1

p . In symbols,

Er+1
∗ = H(Er

∗ , dr). (16)

In particular, E0
p = Fp/Fp−1 constitute the zero page, and E1

p = H(Fp/Fp=1) the
first page.
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Er
p

Er
p+r

d

r

p− 1p− r − 1

p p− 1 + rp− r

Figure 5: Schematic figure for d : Er
p+1 → Er

p .

E∞p

E0
p E1

p E2
p E3

p E4
p

Figure 6: Schematic figure for Er
p for r = 0, 1, 2, 3, 4,∞.

A word of warning: Er+1
p is clearly a subquotient of Er

p , i.e. a quotient of a subgroup.
Taking infinitely often homology with respect to the respective differentials yields a
abelian group, say Ẽ∞p , which is of course a subquotient of Er

p for every r ∈ Z≥0.

However in general, E∞p is only a subquotient of Ẽ∞p . They need not coindice. A
simple example is a constant filtration, where we choose two proper subcomplexes
0 ⊂ F ⊂ F ′ ⊂ C and put Fp = F for p ∈ Z< 0 and Fp = F ′ for p ∈ Z≥0: Here

Ẽ∞0 = H(F ′/F ), whereas E∞0 = F ′∩d−1(0)
d(C)+F

.

The simplest sufficient criterion for equality of Ẽ∞p and E∞p is that the filtration is
bounded , i.e. when there exists integers p1 and p2 such that Fp1 = 0 and Fp2 = C, since
then Er

p = E∞p for all r ≥ p2 − p1. A more general criterion is discussed in Section 2.5.

Remark 2.5. Let us remark that some authors (not all) write E∞p for what we wrote

Ẽ∞p , this may cause some confusion. But in practise, for most spectral sequences both
coincide.

2.4 Standard recipe

Lemmas 2.3 and 2.1 together yield the ordinary spectral sequence of the filtered chain
complex (C, d, (Fp)Z): It relates the zero page E0

∗ and the first page E1
∗ to the usual goal

of computation H(C) as above: First compute Er
∗ for all r ∈ Z≥0, by iterating (16). If

(Fp) is bounded, Er
p stabilizes at E∞p . Finally, H(C) has a filtration (which is natural

with respect to (Fp)) whose filtration quotients are E∞p .

Grading. Most often, C is a graded chain complex, i.e. a graded abelian group and
d is a graded homomorphism of degree +1 or −1. Then the S[z, q, p, b] are graded
abelian groups as well, all maps induced by inclusion 6 are graded of degree 0, and all
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differentials (11) are graded of the same degree as d. In particular, Er
p , r ∈ Z≥0 ∪{∞},

is a graded group as well. If d is of degree −1, i.e. C is a homology chain complex,
then the standard notation is

Er
pq (17)

for the (p+ q)’th graded piece of Er
p . Note that this q has a different meaning than the

q above! The q in (17) is called the complementary degree, and p+ q is called the total
degree. In particular, the differentials (15) on Er

∗ , r ∈ Z≥0, decompose as differentials

. . .
dr−→ Er

p+r,q−r+1
dr−→ Er

p,q
dr−→ Er

p−r,q+r−1
dr−→ . . . (18)

Similarly, the filtration of H(C) from Lemma 2.1 decomposes as filtrations of the graded
pieces Hn(C), n ∈ Z, and the associated filtration quotients for Hn(C) are E∞pq with
p + q = n. Given r ≥ 0, the collection of all Er

pq is called the r’th page Er, and it is
usually displayed in a 2-dimensional coordinate system with Er

pq at coordinates (p, q),
as in Figure 7.

p

q

dr

Figure 7: The coordinate system for Er, with one of the differentials drawn for r = 4.

If d is of degree +1, i.e. C is a cohomology chain complex, then people usually
prefer decreasing filtrations of C, i.e.

C ⊇ . . . ⊇ F p−1 ⊇ F p ⊇ F p+1 ⊇ . . . ⊇ 0,

which can be turned into the previous situation of inscreasing filtrations via Fp := F−p,
where the bar means that we negate the grading of F−p. Then as above we get abelian
groups Er

pq, but the standard notation now is

Epq
r := Er

−p,−q, (19)

and the differentials go in the opposite direction,

. . .
dr−→ Ep−r,q+r−1

r
dr−→ Ep,q

r
dr−→ Ep+r,q−r+1

r
dr−→ . . .

2.5 Standard convergence and comparison theorems

We saw that there might be some serious problems to connect E1 to S[∞]. First, E∞p
might be a proper subquotient of Ẽ∞p ; compare with Section 2.3. Second, S[∞] might
not be uniquely determinded by E∞p , p ∈ Z, compare with Section 2.2.
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Definition 2.6. Let (Fp)Z be a filtration of a chain complex C. It is called

1. bounded below if Fp = 0 for some p,

2. bounded if Fp = 0 for some p and Fp′ = C for some p′,

3. Hausdorff if
⋂
p Fp = 0,

4. exhaustive if
⋃
p Fp = C, and

5. complete if C = lim←−pC/Fp.

Definition 2.7. A spectral sequence is said to converge (to S[∞]) if

1. E∞p = Ẽ∞p for all p,

2. S[∞] =
⋃
pGp and 0 =

⋂
pGp, and

3. S[∞] = lim←−p S[∞]/Gp,

where as above, Gp := S[−∞,−∞, p,∞]. If only (1) holds then the spectral sequence
weakly converges to S[∞], and if (1) and (2) hold it approaches/abuts S[∞].

Theorem 2.8 (Convergence). If (Fp)Z is a filtration of C, which is bounded below and
exhaustive. Then the associated spectral sequence converges to S[∞].

Theorem 2.9 (Comparison). Let C and C ′ be chain complexes, both with a complete
and exhaustive filtration. Let f : C → C ′ be a filtration preserving map. It induces a
morphism between the associated spectral sequences. If for some r ≥ r0, f∗ : Er

p(C) →
Er
p(C

′) is an isomorphism for all p, then f∗ : H(C) → H(C ′) is an isomorphism as
well.

These are the standard theorems; there are more refined versions, see e.g. Board-
man [1].

Remark 2.10. The standard definition of a homology spectral sequence (as given for
example in Weibel) consists only of the data Er

p for r0 ≤ r < ∞ together with the
differentials dr (18) such that Er+1 = H(Er, d). Personally I prefer to include all
S[z, q, p, b] (in particular also E∞ and S[∞]) into the data of a spectral sequence and
call S[∞] the limit of the spectral sequence, though this is just a name and does not
mean any convergence (I beg for forgiveness if this causes confusion).
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2.6 Spectral sequence of a filtered space

Now let X be a filtered space with (increasing) filtration (Xp)p∈Z and let h be a general-
ized homology theory, i.e. a functor from pairs of spaces to abelian groups that satisfies
all Eilenberg–Steenrod axioms except for possibly the dimension axiom.

For any (z, q, p) ∈ Z3 there is a long exact sequence for the triple (Xp, Xq, Xz),

h(Xq, Xz) // h(Xp, Xz) // h(Xp, Xq),

dzqp

hh

and we call the connecting homomorphism dzqp. Then we use the analog of (5) to define

S[z, q, p, b] :=
ker
(
dzqp : h(Xp, Xq)→ h(Xq, Xz)

)
im
(
dbpq : h(Xb, Xp)→ h(Xp, Xq)

) , for (z, q, p, b) ∈ Z4. (20)

Note that here there is no reasonable zero page, but this causes no problem, we simply
start at

S[q, q, p, p] ∼= h(Xp, Xq), q ≤ p,

in particular the first page given by all

S[p− 1, p− 1, p, p] ∼= h(Xp, Xp−1), p ∈ Z.

As for filtered chain complexes we get natural maps induced by inclusion (6) and dif-
ferentials (11), though the well-definedness and naturality of the differentials is a bit
more technical here. Moreover, Lemmas 2.1 and 2.3 hold in the same wording for 20.
Define Er

p via the same formula (14). Then we get the same recipe as in Section 2.4 to
relate the corresponding first page E1

p = h(Xp, Xp−1) to S[∞] = h(X).

Cohomology version. Consider the same filtered space X as above, but now con-
sider a generalized cohomology theory h. To simplify indices, make (Xp)Z into a decreas-
ing filtration via Xp := X−p. Similarly to above, for (z, q, p) ∈ Z3 let dpqz denote the
connecting homomorphism in the long exact sequence in h of the triple (Xz, Xq, Xp).
Define

S[z, q, p, b] :=
ker
(
dpqz : h(Xq, Xp)→ h(Xz, Xq)

)
im
(
dbpq : h(Xp, Xb)→ h(Xq, Xp)

) , for (z, q, p, b) ∈ Z4.

Then similarly as above, S[q, q, p, p] = h(Xq, Xp), q ≤ p, and thus Ep
1 = h(Xp−1, Xp)

and S[∞] = h(X).
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3 Examples of spectral sequences

3.1 Leray–Serre and Atiyah–Hirzebruch spectral sequences

Let
F

i−→ E
π−→ B

be a Serre fibration, whose base space B is a connected CW-complex (actually it would
be enough to assume that B has the homotopy type of a CW-complex). Let h be a
generalized homology theory. The Leray–Serre spectral sequence is a spectral sequence
with

S[∞] = h(E).

It is constructed from the following filtration of the total space E. Let B(p) denote the
p-skeleton of B. Define Ep := π−1(B(p)). This is a filtration of closed subspaces of E,
which creates no problem. If you want you can take instead the preimages of small
neighborhoods of the skeleta B(p) that deformation retract to B(p). Then one can check
that in the associated spectral sequence,

E1
p = h(Ep, Ep−1) ∼= Cp(B;h(F ))

is the p-th graded piece of the cellular chain complex of B with local coefficients in h(F ).
(We will not give any proofs here, but instead refer to the standard text books mentioned
in the introduction.) The local coefficient system comes from the canonical action of
π1(B) on h(F ). Moreover, the second page is given by

E2
p = Hp(B;h(F )),

the p’th cellular homolgoy of B with local coefficients in h(F ). If h is Z-graded then
E2
p,q = Hp(B;hq(F )).

Analogously, if h is a generalized cohomology theory then there is an associated
cohomology spectral sequence with

Ep
2 = Hp(B;h(F )),

and if h is Z-graded then Epq
2 = Hp(B;hq(F )).

Let us remark that when h is complex K-theory, then Ep
r is naturally Z/2-graded

(similarly with any other periodic generalized (co)homology theory). If you prefer Z-
gradings, of course Ep

r can also be regarded as being Z-graded with periodic rows:
Epq
r = Ep,q+2

r .

Switzer [13] calls these two spectral sequences the Leray–Serre spectral sequences.
Originally this was called the Leray–Serre spectral sequence only when h is (co)homology
with coefficients in some abelian group or ring. For an arbitrary generalized (co)homology
theory h and when F = pt and E = B, this was originally called the Atiyah–Hirzebruch
spectral sequence. The unification seems to be due to Dold [4].
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3.2 Spectral sequence of a double complex

A (homology) double complex D is a chain complex of chain complexes, i.e. a Z2-graded
family of abelian groups (or objects in an arbitrary fixed abelian category) (Dij)i,j∈Z
together with boundary homomorphisms d1 : Dij → Di−1,j and d2 : Dij → Di,j−1 such
that d1 ◦ d2 = d2 ◦ d1. (Some other authors instead require d1 ◦ d2 + d2 ◦ d1 = 0; these
two equations can be turned into each other, for example by negating d2 at every (ij)
for which i is odd.)

The total complex of D is the chain complex (Tot(D), d) where

Tot(D) :=
⊕
i,j

Cij

and
d(cij) := d1(cij) + (−1)id2(cij), cij ∈ Cij.

Tot(D) is Z-graded, the n’th graded piece being
⊕

i+j=nCij.
In many siutations one wants to compute H∗(Tot(D)). There are two canonical

Z-filrations of Tot(D), leading to two spectral sequences.

Horizontal filtration. Let F
(1)
p :=

⊕
i,j:i≤pCij ⊆ Tot(D). Then one easily checks

that in the associated spectral sequence,

E0
pq = Cpq, E1

pq = Hq(Cp,∗, d2), E2
pq = Hp(Hq(C∗,∗, d2), d1),

and of course S[∞] = H∗(Tot(D)).

Vertical filtration. Let F
(2)
p :=

⊕
i,j:j≤pCij ⊆ Tot(D). Then one checks that in the

associated spectral sequence,

E0
pq = Cqp, E1

pq = Hq(C∗,p, d1), E2
pq = Hp(Hq(C∗,∗, d1), d2),

and again S[∞] = H∗(Tot(D)).

In practice, one often plays these two spectral sequences out against each other. in
particular if often happens that for one of these two filtrations, E2

pq is concentrated in
one row or in one column, such that the second page already agrees with H∗(Tot(D)).
An example for this is the Grothendieck spectral sequence from the next section.

Cohomology version. If D is a cohomology double complex, i.e. di is of bidegree
(+1, 0) and d2 is of digree (0,+1), then one gets two analogous spectral sequences:
Simply negate both coordinates to reduce to the homological setup, and negate the co-
ordinates back using the convention (19). Then the two cohomology spectral sequences
satisfy

Epq
0 = Cpq, Epq

1 = Hq(Cp,∗, d2), Epq
2 = Hp(Hq(C∗,∗, d2), d1),
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respectively

Epq
0 = Cqp, Epq

1 = Hq(C∗,p, d1), Epq
2 = Hp(Hq(C∗,∗, d1), d2).

Both satisfy S[∞] = H∗(Tot(D)).

3.3 Grothendieck spectral sequence

Let A0, A1, and A2 be abelian categories such that A0 and A1 have enough projec-
tives. Then Grothendieck’s spectral sequence [7] computes the left derived functors of
a composition of two right-exact functors

A0
F1−→ A1

F2−→ A2 (21)

from the left derived functors of F1 and F2, assuming that F1 sends projective objects
to F2-acyclic objects. More precisely, for any object A ∈ A0, the second page is given
by

E2
pq = LpF2 ◦ LqF1(A)

and it converges to
Lp+q(F2 ◦ F1)(A).

CE-resolutions. The construction of Grothendieck’s spectral sequence is based on
the Cartan–Eilenberg resolution (or CE-resolutions for short) for chain complexes, see
Cartan–Eilenberg [3]. The original construction of CE-resolutions is somewhat technical
(it uses the horse shoe lemma, see Cartan–Eilenberg [3] or Weibel [14]), and a more
conceptual construction (using relative homological algebra, see Eilenberg–Moore [5])
needs machinery that we don’t want to assume here. But the intuition is as follows.

Call a chain complex P∗ CE-projective, if it is a locally finite sum of complexes of
the form

. . .→ 0→ 0→ P → 0→ 0→ . . .

or of the form
. . .→ 0→ 0→ P

idP−→ P → 0→ 0→ . . .

where P is a projective object. Furthermore, call a map of chain complexes f : C∗ → D∗
CE-surjective, if fi : Ci → Di and fi|Zi(C∗) : Zi(C∗) → Zi(D∗) are surjective for all i,
where Zi(C∗) := ker(d : Ci → Ci−1). Using this, one can construct CE-resolutions as
usual: In order to resolve a chain complex C∗, take a CE-surjective map g : P∗ → C∗
with P∗ being CE-projective (it exists!), and iterate with the kernel of g. For our
purposes the fundamental property is that for any CE-resolution P∗∗ → C∗, taking
homology with respect to the horizontal differential (imagine C∗ as a chain complex on
the x-axis) yields projective resolutions Hk(P∗∗)→ Hk(C∗) of the Hk(C∗).
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Construction of Grothendieck’s spectral sequence. Suppose we are in the above
setup, and consider A ∈ A0. Let P∗ → A be a projective resolution of A, and consider
P∗ as a chain complex lying on the non-negative x-axis. Apply F1 to P∗ and take a
Cartan–Eilenberg resolution Q∗∗ → F1(P∗), which we consider as a double complex in
the first quadrant of Z2, the resolution degree corresponding to the y-coordinate. Define
D∗∗ := F2(Q∗∗). There are two spectral sequences associated to the double complex
D∗∗. The one coming from the vertical filtration has

E1
pq = Hq(D∗,p, d1) = F2(Hq(Q∗,p, d1))

by the special form of CE-projective chain complexes. Now Hq(Q∗,p, d1) is a projective
resolution of Hq(F1(P∗)). Thus

E2
pq = LpF2(Hq(F1(P∗))) = LpF2 ◦ LqF1(A).

We call this the Grothendieck spectral sequence.
In order to determine what it converges to, consider the spectral sequence coming

from the horizontal filtration. It has

E1
pq = Hq(Dp,∗, d2) = Hq(F2(Qp,∗), d2).

Now we assumed that F1 sends projective objects from A0 to F2-acyclic ones. This
implies that E1

pq = 0 for all q ≥ 1 and

E1
p0 = H0(F2(Qp,∗), d2) = F2(F1(Pp)).

Thus also E2 is concentrated in the row q = 0 with

E2
p0 = Lp(F2 ◦ F1)(A),

which therefore coincides with Hp(Tot(D∗∗)), the sum of which is also S[∞] for Gro-
thendieck’s spectral sequence.

The construction itself was quite short, but more work is needed to show that it is
well-defined from the second page on, and that the spectral sequence is natural with
respect to morphisms in A0.

Cohomology version. Analogously there is a cohomological version of Grothendieck’s
spectral sequence in the situation of three abelian categories A0, A1, A2 such that A0

and A1 have enough injectives. If then we have a sequence of left-exact functors (21)
such that F1 sends injective objects of A0 to F2-acyclic objects of A1, then for any
A ∈ A0 there is a cohomological Grothendieck spectral sequence with

Epq
2 = RpF2 ◦RqF1(A)

and S[−∞,−∞,∞,∞] = R∗(F2 ◦ F1)(A).
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3.4 Bockstein spectral sequence

Let C∗(X) denote the cellular chain complex of a CW-complex X of finite type (i.e.
only finitely many cells in each dimension). The following will also work immediately
for any other free chain complex of finite rank in each degree.

Fix a prime `, and consider Z[1/`] = {a`n | a ∈ Z, n ∈ Z≥0} ⊂ Q. Consider the
chain complex C = C∗(X)⊗ Z[1/`]. We filter it via

0 ⊆ . . . ⊆ Fp ⊆ Fp+1 ⊆ . . . ⊆ C (22)

with Fp := C∗(X)⊗`−pZ = C∗(X; `−pZ). The associated spectral sequence is called the
Bockstein spectral sequence. If [`] denotes the multiplication-by-` map then [`] : Fp →
Fp−1 is clearly an isomorphism for any p ∈ Z. Thus the Bockstein spectral sequence
has periodic columns, i.e. Er

p
∼= Er

p+1, more precisely,

Er
pq
∼= Er

p+1,q−1, for all r, p, q. (23)

This periodicity is quite special and does not happen very often. In particular, all Fp
are isomorphic to F0 = C∗(X).

Since C∗(X) is free, there is a short exact sequence,

0→ Fp−1 ↪→ Fp → C∗(X;F`)→ 0, (24)

where we identified (`−pZ)/(`−p+1Z) with F` = Z/`Z. From this we can read off

E0
0,q = Cq(X;F`), E1

0,q = Hq(X;F`), for q ∈ Z.

The short exact sequence of chain complexes (24) induces an exact triangle in ho-
mology,

H∗(X)
[`]∗
// H∗(X) mod // H∗(X;F`).

∂

ff
(25)

The composition β := mod ◦ ∂ : H∗(X;F`) → H∗(X;F`), which is of degree −1,
is called Bockstein homomorphism, and one can show that the differential d1 on E1

coincides with the composition of β : E1
0,q → E1

0,q−1 with the isomorphism E1
0,q−1

∼= E1
−1,q

from (23). That’s what the spectral sequence is named after.
The original construction of the Bockstein spectral sequence by Browder (and per-

haps Moore) came from regarding (25) as a particular Z-graded exact couple (which
we did not explain here), which yields a “spectral sequence” with just one column per
page, and also no extension process was considered, since E∞0,∗ was already considered
as the limit. In the above construction,

S[∞] = H∗(X;Z[1/`]) = H∗(X)⊗ Z[1/`]. (26)
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Let Z∗(X) = ker(d : C∗(X) → C∗(X)) and B∗(X) = im(d : C∗(X) → C∗(X))
denote the cycles and boundaries of C∗(X). Then by definition E∞ is given by

E∞0,∗ =
F0 ∩ d−1(0)

d(C) + F−1
=

Z∗(X)

B∗(X)[1/`] + `C∗(X)
= (H∗(X)/torsion)⊗ F`.

The last equality uses that C∗(X) is of finite type. It is also special here that the E∞-
page has a simple description. This is one reason why in this spectral sequence E∞ is
more interesting than than S[−∞,−∞,∞,∞]. Another one is that E∞ sees no torsion
of H∗(X), whereas (26) artificially sees the non-`-torsion, since Z/qk ⊗ Z[1/`] = Z/qk

for primes q 6= `.

Remark 3.1. The filtratoin (22) is not complete, i.e. C does not equal the inverse

limit Ĉ := lim←−C/Fp (unless X = ∅). Thus from this point of view it makes sense to

replace C by Ĉ = C∗(X)⊗Q`, and Fp by

F̂p = lim←−
q

Fp/Fq = C∗(X)⊗ {a ∈ Q` | ν`(a) ≥ −p},

where Q` are the `-adic numbers and ν` is the `-adic valuation, i.e. ν(`nx) := n
whenever x ∈ Z∗` . Both spectral sequences have naturally isomorphic Er-pages for all
0 ≤ r ≤ ∞.

4 Extra structure

4.1 Naturality

Let (C, d, (Fp)Z) and (C ′, d′, (F ′p)Z) be two filtered chain complexes. A chain map
f : (C, d)→ (C ′, d′) is called filtration preserving if f(Fp) ⊆ F ′p for all p.

Any such f induces canonical homomorphisms

f∗ : S[z, q, p, b]→ S ′[z, q, p, b], (z, q, p, b) ∈ Z4.

Moreover they all maps induced by inclusion ` (6) and with all differentials (11).
The same holds for filtration preserving maps between spaces X → X ′ and their

associated spectral sequences.
This should not be underestimated.

Example 4.1 (Edge-homomorphisms in Leray–Serre spectral sequence). Consider the
Leray–Serre spectral sequence of the fibration

F ↪→ E
π−→ B, (27)

over a connected CW-complex B and for a generalized homology theory h.
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There is a canonical map of fibrations from

F ↪→ F → pt (28)

to (27), and another one from (27) to

pt ↪→ B → B. (29)

For clarity, here they are in one diagram:

F //� _

��

F //� _

��

pt� _

��

F //

��

E //

��

B

��

pt // B // B

Both of them induce maps between the associated Leray–Serre spectral sequences.
This is very useful, since the spectral sequence for (28) is very easy to understand:
Its E2

p-term it is Hp(pt;h(F )), which is h(F ) for p = 0, and zero otherwise. I.e. this
spectral sequence collapses at E2. Diagram chasing now yields that the canonical map
h(F )→ h(E) factors as

h(F )
∼=−→ E2

0 � E∞0 ↪→ h(E).

This composition is one of the two so-called edge-homomorphisms in the Leray–Serre
spectral sequence.

Similarly, the spectral sequence for (29) has E2-page Hp(B;h(pt)). In case h is
homology with coefficients in some group G, then this simplifies to Hp(B;G) and the
spectral sequence collapses again. Diagram chasing yields, that the canonical map
Hp(E;G)→ Hp(B;G) factors as

Hp(E;G) � E∞p,0 ↪→ E2
p,0

∼=−→ Hp(B,G).

This is the other edge-homomorphism.
There are analogous edge-homomorphisms and for generalized cohomology theo-

ries h in the associated cohomology spectral sequence Epq
r , namely h(E)→ h(F ) factors

as
h(E) � E0

∞ ↪→ E0
2

∼=−→ h(F ),

and if furthermore h = H∗( ;G) then Hp(B;G)→ Hp(E;G) factors as

Hp(B;G)
∼=−→ Ep,0

2 � Ep,0
∞ ↪→ Hp(E;G).

The generalizations to non-connected B are left to the reader.
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4.2 Multiplicative structure

Often cohomological spectral sequences Ep
r have a multiplicative structure, which means

the following. All Ep
r for r ≥ r0 and S[∞] are modules over some ring R, and there are

R-bilinear maps
·r : Ep1

r × Ep2
r → Ep1+p2

r

for all r ≥ r0 (usually r0 is 0, 1, or 2), which are graded if Ep
r is. They are required to

satisfy a Leibnitz rule (usually the sign also depends on the grading of Ep
r ),

dr(x ·r y) = dr(x) ·r y ± x ·r dr(y), x ∈ Ep1
r , y ∈ Ep1

r ,

and a compatibility condition: For any r > r′ ≥ r0, ·r is induced from ·r′ . In other
words, if x′ ∈ Ep1

r′ is a lift of x ∈ Ep1
r and y′ ∈ Ep2

r′ a lift of y ∈ Ep2
r , then x′ ·r′ y′ ∈ Ep1+p2

r′

is required to be a lift of x ·r y ∈ Ep1+p2
r .

Moreover, one requires a product on S[∞], i.e. an R-bilinear map

· : S[∞]× S[∞]→ S[∞]

which induces the product d∞ on E∗∞.
Usually, if a spectral sequence has a useful multiplicative structure then ·r0 and ·

have a meaningful description.

Example 4.2 (Multiplicative structure for Leray–Serre spectral sequence). Suppose
that h is a multiplicative generalized cohomology theory. Then the Leray–Serre spectral
sequence for F ↪→ E → B has a multiplicative structure from r0 = 2 on. Moreover,
at E2, the product conincides (perhaps up to signs, depending on the convention) with
the cup product on H∗(B;h(F )), and at S[∞] it coincides with the product on h(E).

4.3 Examples

An excellent selection of exercises can be found in Hatcher [8]. They show how much
can be squeezed out of a spectral sequence from various kinds of partial information.

5 Higher spectral sequences

Consider a chain complex (C, d) that is filtered in n different compatible2 ways over the
integers, or alternatively, a space X that is filtered in n different ways over the integers
together with a generalized homology theory h∗. Then there is an associated “higher
spectral sequence” with S[∞] being H∗(C) respectively h∗(X).

They allow more flexibility than ordinary spectral sequences. For example, starting
from the first page, there are always not only one but n differentials to choose from
(until we reach the first extension step, see below).

2Compatibility means that the associated exact couple system (31) is excisive. This occurs for
example if C is of the form

⊕
P∈Zn CP with the n canonical Z-filtrations.

18



More precisely, we construct for any admissible word ω ∈ L∗a (see Definition 5.11)
over the alphabet

L := {1, . . . , n, 1∞, . . . , n∞, x}.

a so-called ω-page, which is a collection of abelian groups S(P ;ω). Here P ranges over
a quotient Zn/Vω ∼= Zn−k, where k is the number of letters x in ω. In the alphabet L,
a letter j ∈ [n] stands for taking homology with respect to the j’th differential, j∞

denotes the same but infinitely often, and x stands for a group extension process.
In ordinary spectral sequences we have n = 1, and for ω = 1r−1 the ω-page consists

of the columns in Er
∗∗, which are indexed over P ∈ Z. The letter 1 stands the relation

between some Er
∗∗ and Er+1

∗∗ , 1∞ stands for the relation between some Er
∗∗ and E∞∗∗ , and

x for the relation between E∞∗∗ and S[∞], e.g. S[∞] = H(C) if the spectral sequence
comes from a Z-filtered chain complex C.

In Section 2.3, we define certain vectors rjω, δ
j
ω ∈ Zn, where riω will be the direction

of the i’th differential at the ω-page, and δiω is the change of direction for the i’th
differential that occurs when taking homology with respect to it. In ordinary spectral
sequences, for ω = 1r−1 we have r1ω = r, and δ1ω = 1.

Theorem 5.1 (Main theorem). Let ω ∈ L∗a and j ∈ [n] such that ω ∗ j is admissible.
Then the following holds.

a) There are natural differentials

. . . −→ S(P + rjω;ω) −→ S(P ;ω) −→ S(P − rjω;ω)→ . . . . (30)

Taking homology at S(P ;ω) yields S(P ;ω ∗ j).

b) S(P ;ω ∗ j∞) is a natural subquotient of S(P ;ω ∗ jk) for all k ≥ 0.

c) There exists a natural Z-filtration (Fi)i∈Z of S(P ;ω ∗ j∞x),

0 ⊆ . . . ⊆ Fi ⊆ Fi+1 ⊆ . . . ⊆ S(P ;ω ∗ j∞x),

such that S(P + i · δjω;ω ∗ j∞) ∼= Fi/Fi−1, for all i ∈ Z.

In the rest of this section we explain this theorem, and how it is useful.

5.1 Preliminaries and natural isomorphisms

Let n ≥ 1 and [n] := {1, . . . , n}. Let e1, . . . , en be the standard basis vectors in Zn,
and 1 := (1, . . . , 1)t ∈ Zn. Zn is a poset via (x1, . . . , xn) ≤ (x′1, . . . , x

′
n) if and only if

xi ≤ x′i for all i.
Throughout this section, let I := D(Zn) denote the lattice of downsets of Zn. I has

minimum −∞ := ∅ and maximum ∞ := Zn. We write Ik := {(p1, . . . , pk) ∈ Ik | p1 ≥
. . . ≥ pk}, which is again a poset via (p1, . . . , pk) ≤ (p′1, . . . , p

′
k) if and only if pi ≤ p′i for

all i.
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As above, for us a chain complex is an abelian group C together with an endo-
morphism d : C → C with d ◦ d = 0, and its homology is H(C, d) := ker(d)/im(d);
the grading is not of importance for us. An I-filtration of C is a family of subchain
complexes (Fp)p∈I such that Fq ⊆ Fp whenever q ≤ p.

Similarly, if X is a topological space then an I-filtration of X is a family of open
subspaces (Xp)p∈I such that Xq ⊆ Xp whenever q ≤ p.

Whenever we have an I-filtered chain complex (C, d), or an I-filtered space X to-
gether with a generalized homology theory h∗, we can associate a so-called exact couple
system via

Kp
q := H(Fp/Fq) (31)

or
Kp
q := h∗(Xp, Xq), (32)

respectively, which is defined as follows.

Definition 5.2 (Exact couple system). And exact couple system over I is a collection

of abelian groups (Kp
q )(p,q)∈I2 together with homomorphisms `p,qp′,q′ : Kp

q → Kp′

q′ for any
(p, q) ≤ (p′, q′) and homomorphisms kp,q : Kp

q → Kq
−∞ for any (p, q) ∈ I2, such that the

following properties are satisfied:

1. `p
′,q′

p′′,q′′ ◦ `
p,q
p′,q′ = `p,qp′′,q′′ .

2. The triangles

Kq
−∞

`q,−∞p,−∞
// Kp
−∞

`p,−∞p,q||

Kp
q

kpq

bb

are exact.

3. The diagrams

Kp
q

`pq
p′q′
��

kpq
// Kq
−∞

`q,−∞
q′,−∞
��

Kp′

q′ kp′q′
// Kq′

−∞

commute.

Let K be an exact couple system over I. There is a natural differential dpqz : Kp
q →

Kq
z for any (p, q, z) ∈ I3 defined by dpqz := `q,−∞q,z ◦kpq. With this we define an associated

spectral system over I via

S[z, q, p, b] :=
ker(dpqz : Kp

q → Kq
z )

im(dbpq : Kb
p → Kp

q )
, (b, p, q, z) ∈ I4. (33)
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At a first glance this is just a collection of abelian groups, one for each element in I4,
however there are many connections between them:

First note that the usual goal of computation, K∞−∞, appears as

S[∞] := S[−∞,−∞,∞,∞].

Sometimes I call it the limit of this spectral system, which this is just a name; it
does not imply any convergence or comparison property. Moreover, terms of the form
S[q, q, p, p] = Kp

q are usually easy to describe when q covers p, that is, when |q \ p| = 1.
The following facts are proved in [9]. For any (b, p, q, z) ≤ (b′, p′, q′, z′) in I4, `

pq
p′q′

induces maps
S[z, q, p, b]→ S[z′, q′, p′, b′],

which we call maps induced by inclusion. When there is no confusion, we abbreviate
all of them as `.

Lemma 5.3 (Extensions). For any z ≤ p1 ≤ p2 ≤ p3 ≤ b in I, we have a short exact
sequence of maps induced by inclusion,

0→ S[z, p1, p2, b]→ S[z, p2, p3, b]→ S[z, p2, p3, b]→ 0. (34)

Lemma 5.4 (Differentials). For any (b, p, q, z), (b′, p′, q′, z′) ∈ I4 with z ≤ p′ and q ≤ b′

there are natural differentials

d : S[z, q, p, b]→ S[z′, q′, p′, b′], (35)

which commute with `, that is, ` ◦ d = d ◦ `.

Lemma 5.5 (Kernels and cokernels). For any (b, p, q, z), (b′, p′, q′, z′) ∈ I4 with z = p′

and q = b′ we have

ker (d : S[z, q, p, b]→ S[z′, q′, p′, b′]) = S[q′, q, p, b]

and
coker (d : S[z, q, p, b]→ S[z′, q′, p′, b′]) = S[z′, q′, p′, p]

Lemma 5.6 (∞-page as filtration quotients). K∞−∞ can be I-filtered by

Gp := im(` : Kp
−∞ → K∞−∞) ∼= S[−∞,−∞, p,∞], p ∈ I.

Furthermore the S-terms on the ∞-page are filtration quotients

S[−∞, q, p,∞] ∼= Gp/Gq.

Lemma 5.7 (∞-page as quotient kernels). K∞−∞ has quotients

Qp :=
K∞−∞

ker(` : K∞−∞ → K∞p )
∼= S[−∞, p,∞,∞], p ∈ I.

Furthermore the S-terms on the ∞-page are quotient kernels

S[−∞, q, p,∞] ∼= ker(Qq → Qp).
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Definition 5.8 (Excision). An exact couple system K over I is called excisive if for
all a, b ∈ I,

Ka
a∩b

`−→ Ka∪b
b

is an isomorphism.

The exact couple system (32) is automatically excisive by the excision axiom of h∗.
Note however that (31) is in general not excisive, though in many applications it is, for
example when C =

⊕
P∈Zn Cp (as abelian group) and (Fp)I is the canonical I-filtration

given by Fp =
⊕

P∈pCp.
Let us think of J := Zn as an undirected graph, whose vertices are the elements of

J , and x, y ∈ J are adjacent if they are related, i.e. x ≥ y or x ≤ y (coordinate-wise).
For (b, p, q, z) ∈ I4, let Z(z, q, p, b) ⊆ J denote the union of all connected components
of p \ z that intersect p \ q, and let B(z, q, p, b) ⊆ I denote the union of all connected
components of b \ q that intersect p \ q.

Lemma 5.9 (Natural isomorphisms). In an excisive exact couple system K over I =
D(J), S[z, q, p, b] is uniquely determined up to natural isomorphism by Z := Z(z, q, p, b)
and B := B(z, q, p, b).

We also write SZB for S[z, q, p, b], which is only defined up to natural isomorphisms.
A word of warning: This B-Z-description of S[z, q, p, b] looks quite appealing. However
it may be combinatorially non-trivial to check whether some given B and Z come from
some (b, p, q, z), and if so there might be several good choices. Moreover, it can be quite
challenging to see whether there is a differential from SZ1

B1
to SZ2

B2
and what the resulting

kernels and cokernels are in this case.

5.2 The construction

Throughout this section let us fix an excisive exact couple system K over I = D(Zn).
Define an alphabet L,

L := {1, . . . , n, 1∞, . . . , n∞, x}.

Remark 5.10 (Some intuition). Here, a letter j ∈ [n] stands for taking homology with
respect to the j’th differential, j∞ denotes the same but infinitely often, and x stands
for a group extension process. In ordinary spectral sequences, n = 1, and the letter
1 stands the connection between some Er

∗∗ and Er+1
∗∗ , 1∞ stands for the connection

between some Er
∗∗ and E∞∗∗ , and x for the connection between E∞∗∗ and the “limit” of

the spectral sequence, e.g. H(C) if the spectral sequence comes from a Z-filtration of
a chain complex C.

Let L∗ denote the monoid of words of finite length with letters in L. Denote the
empty word by ε, the concatenation of two words ω and ω′ by ω ∗ ω′, ωn := ω ∗ . . . ∗ ω
(n times), and the length of ω by |ω|. L∗a becomes a poset via τ ≤ ω if and only if τ is
a prefix of ω, that is, a subword that starts from the beginning (τ = ε and τ = ω are
allowed).

22



Definition 5.11 (Admissible words). Call a finite word ω ∈ L∗ admissible if the
following holds:

1. if j∞ appears, the subsequent subword of ω contains neither j nor j∞,

2. the only letter allowed directly after j∞ is x,

3. any x occurring in ω comes directly after some j∞.

If furthermore ω contains subwords j∞x for all j ∈ [n] then ω is called final .

An exemplary final word for n = 3 is 123122∞x133313∞x111∞x and any prefix of
a final word is admissible. Let L∗a denote the set of all admissible words in L∗. Define
X(ω) ⊆ [n] as the set of j ∈ [n] such that j∞x is a subword of ω, and Y (ω) := [n] \X(ω).
X(ω) is so to speak the set of indices along which the extension process has been already
made, and Y (ω) is the set of indices along which we still have differentials.

For ω ∈ L∗a, i, j ∈ [n], we inductively define riω, δ
i
ω ∈ Zn and Bω, Zω ⊂ Zn as follows.

Put riε := ei, r
i
ω∗j∞ := riω, riω∗x := riω, and

riω∗j :=

{
riω if i 6= j,

riω + δiω if i = j,

where δiε := ei, δ
i
ω∗j∞ := δiω, δiω∗x := δiω, and

δiω∗j :=

{
δiω if i ∈ X(ω) ∪ {j},
δiω − δjω if i ∈ Y (ω) \ {j}.

For ω ∈ [n]∗, δiω = 1−
∑

k∈[n] \ i r
k
ω.

Remark 5.12 (Some intuition 2). riω will be the negated direction of the i’th differential
at the ω-page, and δiω is the negated change of direction for the i’th differential that
occurs when taking homology with respect to it. In ordinary spectral sequences, n = 1,
and for ω = 1r−1 the ω-page consists of the columns in Er

∗∗, with r1ω = r, and δ1ω = 1.

Further put Bε := {0},

Bω∗j := Bω + {0, δjω}, (36)

Bω∗j∞ := Bω + Z≥0 · δjω, (37)

Bω∗j∞x := Bω + Z · δjω. (38)

Here plus denotes a Minkowski sum. Thus for ω ∈ [n]∗, Bω can be regarded as a
discrete zonotope, that is, an affine image of the vertices of an |ω|-dimensional cube.
See Figures 8. Define Zω := −Bω, and for P ∈ Zn,

S(P ;ω) := SP+Zω
P+Bω

. (39)
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Below we show that this is indeed a well-defined S-term (only up to natural isomorphism
of course) by constructing (b, p, q, z) ∈ I4 such that Spzbq represents S(P ;ω).

Define lattices Vω ⊆ Zn for ω ∈ L∗a inductively as follows. Put Vε := {0}, Vω∗j := Vω,
Vω∗j∞ := Vω, and

Vω∗j∞x := Vω + Z · δjω.
Alternatively, Vω = Bω ∩ Zω. For P, P ′ ∈ Zn with P − P ′ ∈ Vω, S(P ;ω) = S(P ′;ω).
Thus we may also think of S(P ;ω) as being parametrized over P ∈ Zn/Vω.

Definition 5.13 (ω-page). Let ω ∈ L∗a. We call the collection of all S(P ;ω), P ∈
Zn/Vω, the ω-page.

For ω = ε this was called the first page in [9], for ω = 123 . . . n the second page, and
for ω = 1q1 . . . nqn a generalized second page, or the Q-page, where Q = (q1, . . . , qn) ∈
Zn≥0.

12221221121212111122112111121111

111 112 121 122

11 12

1

Figure 8: All Bω with |ω| ≤ 4, ω1 = 1, and n = 2. For each Bω, the origin is marked
with a solid square, and the two points riω − ei/2 are marked with a black dot.

Remark 5.14 (Relation between jj∞ and j∞). Suppose w ∈ L∗a contains j∞, and let
w′ be the same word except that j∞ is replaced by jkj∞ for some k ≥ 1. Then in
general, riω 6= riω′ and δiω 6= δiω′ , but they always agree modulo Vω = Vω′ . Also Bω = Bω′

and hence S(P ;ω) = S(P ;ω′). Moreover one can check that the differentials in the
main theorem 5.1 below are the same for ω and ω′. Thus in order to speak about the
ω-page it is enough to know the image of ω in the quotient semigroup L∗/(jj∞ ∼ j∞).

Now all definitions for Theorem 5.1 are given. But how is it useful: (a) gives a
connection between the first page and arbitrary ω-pages for ω ∈ [n]∗.

Then we can proceed with (b) and take homology infinitely often in one direction.
Note that as with usual spectral sequences, S(P ;ω ∗ j∞) may indeed be a proper
subquotient of the limit of the S(P ;ω ∗ jk), compare with Section 2.5.

Then proceed with (c), which connects to S(P ;ω ∗ j∞x). Again as with usual
spectral sequences, the filtration (Fi) may be neither Hausdorff nor exhaustive, and
even if they are, S(P ;ω ∗ j∞x) may not be complete with respect to (Fi). As usual
these two problems in (b) and (c) can be serious, but they are the standard ones in
spectral sequences.

Arriving at S(P ;ω ∗ j∞x) we can start again at (a) until ω is final.
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Remark 5.15 (Multiplicative structure). As usual, under certain assumptions on K
there will be a multiplicative structure. The simplest instance is when K comes via (31)
from an I-filtered differential algebra C, whose filtration (Fp)I satisfies Fp · Fq ⊆ Fp+q,
where p+q denotes the Minkowski sum. Then for any ω ∈ L∗a there is a natural product
S(P ;ω) ⊗ S(Q;ω) → S(P + Q;ω), which satisfies a Leibniz rule with respect to the
differentials (a). Furthermore they are compatible with respect to (b) and (c) in the
usual way, and for final ω it coincides with the product on H(C). For details and a
more general criterion see [9, 4.4].

5.3 The 2-dimensional case

The probably most frequent case (apart from the classical one, n = 1) is n = 2. A few
more things can be said about this case:

Every final ω ∈ L∗a is of the form

ω = τ ∗ j∞1 xjk2 j
∞
2 x, (40)

for some τ ∈ [2]∗, {j1, j2} = [2], and k ≥ 0. Any such ω gives a recipe to connect the
first page to S[∞]. This recipe is therefore already determined by τ and j1.

Note that for all prefixes τ ≤ ω′ ≤ ω, Mτ = Mω′ = Mω. Let’s define

Nω := (ej2)
t ·Mω,

which is the “normal vector” along which the downsets b, p, q, z grow respectively shrink
during jk2 j

∞
2 x. Clearly Nω ≥ 0 and it is primitive (i.e. its entries are coprime), and

N = (ei)
t can happen only if i = j2. Also, Nω is invariant under the relation jj∞ ∼ j∞,

compare with Remark 5.14.

Observation 5.16. Modulo jj∞ ∼ j∞, ω is uniquely determined by Nω and j1. Con-
versely, for any primitive N t ∈ Z2

≥0 and j1 ∈ [2] with N t 6= ej1 there is a final ω ∈ L∗a
of the form (40) such that N = Nω.

Thus the connection determined by ω can be equivalently described by Nω and j1.

Proof. In fact there is a simple algorithm that determines all possible τ from N (re-
spectively Nω) and j2 = 3 − j1. If j2 = 1, choose (N ′)t ∈ Z2

≥0 such that M :=
(
N
N ′

)
∈

SL(2,Z)∩Z2×2
≥0 . If j2 = 2, choose (N ′)t ∈ Z2

≥0 such that M :=
(
N ′
N

)
∈ SL(2,Z)∩Z2×2

≥0 .
In any case, N ′ is well-defined up to adding an integral multiple of N . If N ′0 is the
smallest choice, then all others are of the form N ′k := N ′0 + kN , k ∈ Z≥0. Now one
can repetitively take one of the two rows of M and subtract it from the other one such
that all entries stay non-negative until one arrives at idZ2 , and there is a unique way
to do that. Let qi ∈ [2] denote the index of the column from which the other column
was subtracted during the i’th round. And say there were ` rounds. Then M = Mω

for ω = τj∞1 xj∞2 x and τ := q` ∗ . . . ∗ q1. The choice of N ′ correspond to how often j1
appears at the end of τ , namely k times if N ′ = N ′k.
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The algorithm has similarities to the extended Euclidean algorithm applied to the
first column of M .

Example 5.17. Consider an excisive exact couple system K over I(Z2). Suppose we
want to determine both ω for which Nω = (3, 5). For j1 = 1, the algorithm runs as
follows: (

2 3
3 5

) 2−→
(
2 3
1 2

) 1−→
(
1 1
1 2

) 2−→
(
1 1
0 1

) 1−→
(
1 0
0 1

)
,

Thus ω = 12121∞x2∞x does it. Similarly, for j1 = 2 one gets ω = 12112∞x1∞x. See
Figure 9.

12121∞ 12112∞ 12121∞x2k and 12112∞x1k 12121∞x2∞ and 12112∞x1∞

1

1

1

2

2

2

3

3

4

4

4

5

5

Figure 9: B12121∞ , B12112∞ , and B12121∞x2k = B12112∞x1k for 0 ≤ k ≤ 5 and for k =∞.
In the third figure, the squares with number i belong to B12121∞x2k if and only if i ≤ k.
The solid squares depict Vσ.

Fun fact 5.18. The golden ratio can be arbitrarily well approximated by the slope

of Nω using τ = (12)k, since for this τ , Mτ =
(
1 1
1 2

)k
=
( f2k−1 f2k

f2k f2k+1

)
, where fk are

the Fibonacci numbers. However irrational slopes are not particularly useful, since
one cannot connect the obtained page naturally to S[∞] (at least without further
assumptions on K and without going backwards).

5.4 Example: Higher Leray–Serre spectral sequence

Consider a vertical tower of Serre fibrations,

F0
� � // E0

��...
...

��

Fn−1
� � // En−1

��

En

such that all Ei have the homotopy type of a CW-complex. Extend this tower trivially
with Fn := En and En+1 = pt. Fix a generalized homology theory h. Then there is a
naturally associated higher spectral sequence over I = D(Zn) with “second page”

S(P ; 123...n) = Hpn(Fn;Hpn−1(Fn−1; . . . Hp1(F1;h(F0)))))
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and
S[∞] = h(E).

5.5 Example: Higher Grothendieck spectral sequence

Consider a sequence of n right-exact functors

A0
F1−→ A1

F2−→ . . .
Fn−→ An

between abelian categories such that A0, . . . ,An−1 have enough projetives.
For any A ∈ A0, there is a naturally associated higher spectral sequence over D(Zn)

with “second page”

S(P ; 123...n) = (LpnFn) ◦ . . . ◦ (Lp1F1)(A).

If moreover for all 1 ≤ i ≤ n− 1, Fi sends projective objects of Ai−1 to (Fn ◦ . . .◦Fi+1)-
acyclic objects, then

S[∞] = L∗(Fn ◦ . . . ◦ F1)(A).
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119–221, 1957.

[8] A. Hatcher. Spectral sequences in algebraic topology. http://www.math.cornell.edu/
∼hatcher/SSAT/SSATpage.html, 2004.

[9] B. Matschke. Successive spectral sequences. arxiv:1308.3187, 2013.
[10] J. McCleary. A history of spectral sequences: origins to 1953. In History of topology,

pages 631–663. North-Holland, 1999.
[11] J. McCleary. A User’s Guide to Spectral Sequences, volume 58 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, second edition, 2001.
[12] E. H. Spanier. Algebraic topology. Springer-Verlag, 1966. xvi+528 pp. Corrected reprint

1981.

27

http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html
http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html
http://arxiv.org/abs/1308.3187


[13] R. M. Switzer. Algebraic Topology – Homotopy and Homology. Springer-Verlag, 1975.
xii+526 pp. Die Grundlehren der mathematischen Wissenschaften, Band 212.

[14] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1994. xiv+450 pp.

28


	Introduction
	Construction
	Examples of spectral sequences
	Extra structure
	Higher spectral sequences

