
ON THE SQUARE PEG PROBLEM AND SOME RELATIVES

BENJAMIN MATSCHKE

Abstract. The Square Peg Problem asks whether every continuous simple
closed planar curve contains the four vertices of a square. This paper proves
this for the largest so far known class of curves.

Furthermore we solve an analogous Triangular Peg Problem affirmatively,
state topological intuition why the Rectangular Peg Problem should hold true,
and give a fruitful existence lemma of edge-regular polygons on curves. Finally,
we show that the problem of finding a regular octahedron on embedded spheres
in �3 has a “topological counter-example”, that is, a certain test map with
boundary condition exists.

1. Introduction

The Square Peg Problem was first posed by O. Toeplitz in 1911:

Conjecture 1.1 (Square Peg Problem, Toeplitz [Toe11]). Every continuous em-
bedding γ : S1 → �

2 contains four points that are the vertices of a square.

The name Square Peg Problem might be a bit misleading: We do not require
the square to lie inside the curve, otherwise there are easy counter-examples:

Toeplitz’ problem has been solved affirmatively for various restricted classes of
curves such as convex curves and curves that are “smooth enough”, by various
authors; the strongest version so far was due to W. Stromquist [Str89, Thm. 3]
who established the Square Peg Problem for “locally monotone” curves. All known
proofs are based on the fact that “generically” the number of squares on a curve
is odd, which can be measured in various topological ways. See [Pak08], [VrŽi08],
[CDM10], and [Mat08] for surveys. For general embedded plane curves, the problem
is still open.
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We start our discussion in Section 2 with a description of a convenient parameter
space for the polygons on a given curve. We then present a proof idea due to
Shnirel’man [Shn44] (in a modern version, in terms of a bordism argument), which
establishes the Square Peg Problem for the class of smooth curves.

Then we prove it for a new class of curves, which includes W. Stromquist’s
locally monotone curves. The first drawing above is an example that lies in this
new class, but not in Stromquist’s. See Definition 2.2 and Corollary 2.5 for an
interesting special case. The proof generalises to curves in metric spaces under a
suitable definition of a square; see Remark 2.6.3).

In Section 3 we ask the analogous question for equilateral triangles instead of
squares and get a positive answer, even in a larger generality. Similarly we look
for edge-regular polygons on curves, that is, polygons whose edges are all of the
same length. In Section 4 we prove the existence of an interesting family of ε-close
edge-regular polygons on smooth curves and deduce some immediate corollaries.
Section 5 deals with the existence of rectangles with a given aspect ratio on smooth
curves. I have no proof for this, but we will see some intuition why those rectangles
should exist.

The last section, Section 6, treats higher-dimensional analogs. We ask for d-
dimensional regular crosspolytopes on smoothly embedded (d − 1)-spheres in �d.
The Square Peg Problem for smooth curves is the case d = 2. The problem is open
for all d ≥ 3, but we use Koschorke’s obstruction theory [Kos81] to derive that for
d = 3, a natural topological approach for a proof fails: The strong test map in
question exists.

This paper is an extended extract of [Mat08, Chap. III]. Some of the new results
have been announced in [Mat09].

2. Squares on Curves

2.1. Notations and the parameter space of polygons on curves. For any
space X , we denote by

ΔXn := {(x, . . . , x) ∈ Xn}
the thin diagonal of Xn. For an element x of the unit circle S1 ∼= �/� and t ∈ � we
define x+ t ∈ S1 as the counter-clockwise rotation of x by the angle 2πt around 0.
Let σn = {(t0, . . . , tn) ∈ �n+1

≥0 | ∑
ti = 1} be the standard n-simplex.

The natural parameter space of polygons is

Pn := S1 × σn−1.

It parametrises polygons on S1 or on some given curve S1 → �
∞ by their vertices

in the following way

ϕ : Pn → (S1)n : (x; t0, . . . , tn−1) �→ (x, x+ t0, x+ t0 + t1, . . . , x+
n−2∑
i=0

ti).

The so parametrised polygons are the ones that are lying counter-clockwise on S1.
The map ϕ is not injective, as all (x; 0, . . . , 0, 1, 0, . . . , 0) are mapped to the same
point (x, . . . , x); but it is injective on Pn\(S1×vert(σn−1)), and on this set ϕ bijects
to (S1)n\Δ(S1)n . Let P ◦

n = S1 × (σn−1)◦ denote the interior of Pn. The map ϕ
identifies P ◦

n with the set of n-tuples of pairwise distinct points in counter-clockwise
order on S1. We define the boundary as ∂P ◦

n := Pn\P ◦
n .
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We let �n := �/n� =: 〈ε〉 act on Pn by

ε · (x; t0, . . . , tn−1) = (x+ t0; t1, . . . , tn−1, t0).

This corresponds to a cyclic relabeling of the vertices of the parametrised polygon.

2.1.1. A substitution. The following coordinate transformationmakes the �n-action
on Pn look nicer. We substitute (x; t0, . . . , tn−1) ∈ Pn by (x∗; t0, . . . , tn−1), where

x∗ := x+
∑n−1

k=1
n−k
n · tk−1 ∈ S1. In terms of the new coordinates,

ε · (x∗; t0, . . . , tn−1) = (x∗ +
1

n
; t1, . . . , tn−1, t0).

2.1.2. Further notations. When we talk about an arc on S1 from a point x to y, we
always mean the arc that goes counter-clockwise. For x, y ∈ S1, we denote by y−x
the length of the arc from x to y, normalised with the factor 1

2π . For an n-tuple
(x1, . . . , xn) ∈ ϕ(Pn) ⊂ Sn we write

[x1, . . . , xn] := (x1;x2 − x1, x3 − x2, . . . , xn − xn−1, 1−
n∑

k=2

(xk − xk−1)) ∈ Pn.

The function [. . .] : ϕ(Pn) → (S1)n is right-inverse to ϕ, but not continuous.
Smooth means C∞ for us. An ε-close square is a quadrilateral whose ratios

between the edges and diagonals are up to an ε-error the ones of a square. The
precise definition will not matter. We will use “ε-closeness” with other polygons
analogously.

2.2. Shnirel’man’s proof for the smooth Square Peg Problem. We start
with L. G. Shnirel’man’s proof [Shn44], since it is in my point of view the most
beautiful one. The following presentation uses transversality and a bordism argu-
ment; in Shnirel’man’s days, these notions had not been formalised and baptised
yet, but his argument works like this.

Proof. Suppose that γ is smooth. P ◦
4 parametrises quadrilaterals on γ. Let f :

P4 → �
6 be the function that measures the four edges and the two diagonals of

the quadrilaterals,

(1)

f : P4 −→ �
4 ×�2

[x1, x2, x3, x4] �−→ (||γ(x1)− γ(x2)||, ||γ(x2)− γ(x3)||, ||γ(x3)− γ(x4)||,
||γ(x4)− γ(x1)||, ||γ(x1)− γ(x3)||, ||γ(x2)− γ(x4)||)

We can compose f with the quotient map �
6 → �

6/Δ
�4×Δ

�2
∼= �

4 and get

f : P4 → �
4. The test-map f ′ measures squares, since Q := (f ′)−1

(0)\Δ(S1)4 =

(f ′)−1
(0) ∩ P ◦

4 is the set of all squares that lie counter-clockwise on γ. f ′ is �4-

equivariant with respect to the natural �4-actions. We can deform f̃ relative to
a small neighborhood of ∂P ◦

4 equivariantly by a small ε-homotopy to make 0 a
regular value of f ′. So Q becomes a zero-dimensional �4-manifold (note that Q
lies in P ◦

4 , which is free) of ε-close squares. If we deform the curve smoothly to
another curve (e.g. the ellipse), which can also happen in �4 to construct such
a homotopy easily, then Q changes by a �4-bordism. This bordism stays away
from the boundary of P ◦

4 , if the homotopy is chosen smoothly, since then no curve
inscribes ε-close squares which have arbitrarily small edges (the angles get too close
to π). Hence Q represents a unique class [Q] in the zero-dimensional unoriented
bordism group N0(P

◦
4 /�4)

∼= H0(P ◦
4 /�4 ;�2) ∼= �2. If γ is an ellipse then 0 is a

regular value of f ′ and Q consists of one point. Hence [Q] is the generator of �2,



4 BENJAMIN MATSCHKE

so Q is non-empty for any smooth curve γ. Taking a convergent subsequence of
ε-close squares finishes the proof. �

If γ is only continuous one might try to approximate it with smooth curves
and then take a convergent subsequence of the squares that we get on them. The
problem is to guarantee that this subsequence does not converge to a square that
degenerates to a point. Natural candidates for which this works are continuous
curves with bounded total curvature without cusps, see Cantarella, Denne & Mc-
Cleary [CDM10]. So far, nobody managed to do this for all continuous curves.

Shnirel’man’s proof can be refined to get a slightly stronger result.

Corollary 2.1 (of the proof). We may assume that γ goes counter-clockwise
around its interior. Then one can find and order four vertices of a square on γ,
such that they lie counter-clockwise on γ and also label the square counter-clockwise.

Proof. This can be achieved by restricting Q in the above proof to the set of squares
[x1, x2, x3, x4] ∈ P4 that are labeled by (γ(x1), . . . , γ(x4)) in counter-clockwise or-
der. Along a path in the bordism this cannot change (here we take a bordism that is
induced by a deformation of the curve in the plane). If γ is an ellipse then it is clear
that the restricted Q is equal to Q, so it represents the generator in N0(P

◦
4 /�4). �

2.3. New cases of the Square Peg Problem. First of all we will establish the
main theorem of this section, which gives a larger class of curves for which in-
scribed squares exist. Then we deduce two handy corollaries that are more directly
applicable.

Let γ : S1 → �
2 be a simple closed curve (that is, injective and continuous).

We need some preparation. Let f : P4 → �
6 be the corresponding test map that

measure the four edges and two diagonals, which was defined in equation (1) in
Section 2.2. For y1, y4 ∈ S1, y1 �= y4, let

P4(y1, y4) := {[y1, x2, x3, y4] ∈ P ◦
4 }

the set of all quadrilaterals counter-clockwise on S1 where the first and last vertex
are given. For a path y : S1 → (S1)2\Δ(S1)2 , y(t) = (y1(t), y2(t)), we define

P4(y) :=
⋃
t∈S1

P4(y(t)) = {[y1(t), x2, x3, y4(t)] ∈ P ◦
4 | t ∈ S1}.

Definition 2.2. We call a quadrilateral on γ given by [x1, x2, x3, x4] special if

f([x1, x2, x3, x4]) = (a, a, a, b, e, e) with a ≥ b, for some reals a, b, e.

The size of a special quadrilateral [x1, x2, x3, x4] is the normalised arc length x4−x1.

Let S denote the set of all special quadrilaterals in P4. The following figure
shows a special quadrilateral of small size on γ.

γ(x3) γ(x2)

γ(x1)γ(x4)
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Theorem 2.3. Suppose there is a path y : S1 → (S1)2\Δ(S1)2
∼= P ◦

2 , y(t) =

(y1(t), y4(t)), that represents a generator in π1((S
1)2\Δ(S1)2) ∼= π1(S

1) ∼= �. If γ
does not inscribe a square then the mod-2 intersection number of P4(y) and S is 1.

The mod-2 intersection number will be described in the proof. The proof is based
on equivariant obstruction theory, which was first used in connection to the Square
Peg Problem by Vrećica and Živaljević [VrŽi08]. The second part of our proof will
be very close to what they did. One can of course use different topological methods,
but their way is quite straight-forward and beautiful. Another point of view will
be sketched in the remarks 2.6.

Proof. P4(y) can be parametrised by g : S1 × σ2 → P4(y), where S1 parametrises
y and σ2 the three arc lengths between the points y1(t), x2, x3 and y4(t). The map
g is injective if and only if y is.

The mod-2 intersection number in the theorem is defined as the mod-2 intersec-
tion number of f(g(S1 × σ2)) and V := {(a, a, a, b, e, e) ∈ �6 | a ≥ b} in �6. This
is only well-defined if f(g(S1 × ∂σ2)) ∩ V = ∅ and im(f ◦ g)∩ ∂V = ∅. The former
is trivially fulfilled, the latter if and only if no quadrilateral on γ given by P4(y) is
a square (this is interesting if one deformes y; compare with Remark 2.6.1.). The
map f ◦g could now be deformed by a homotopy rel S1×∂σ2, such that at no time
it intersects the boundary of V , and such that it becomes transversal to V . The
intersection number then counts the pre-images of V under f ◦ g modulo 2.

Suppose that γ does not inscribe a square, but the described mod-2 intersection
number is zero. We want to derive a contradiction.

For some ε ∈ (0, 1
2 ) (later we might choose ε = 1

3 ), let T = T ε ⊂ σ3 be a
polytope obtained from a tetrahedron by cutting an open vertex figure of size ε
from the vertices (we delete all points (t0, . . . , t3) ∈ σ3 that have an entry > 1− ε).
The four vertices of σ3 are given by the standard basis vectors e0, . . . , e3 of �3.
The four corresponding triangular facets of T are denoted by T0, . . . , T3, and their
opposite hexagonal facets by H0, . . . , H3.

S1 × T3 ⊂ P4 parametrises the 4-tuples (x1, . . . , x4) ∈ (S1)4 with x4 − x1 = ε.
Here is a sketch of T in one dimension smaller where we draw S1 × T ⊂ P4 as a

cylinder whose the bottom and top face are identified:

S1 × TiS1 × T :

S1 ×Hj

We will construct for some small δ > 0 an �4-equivariant map

h : S1 × T ε −→�4 S1 × T δ

that satisfies the following conditions:

(1) h maps S1 ×Hi to S1 ×Hi, 0 ≤ i ≤ 3,
(2) h is prescribed on S1 × T ε

3 ⊂ P4 as

h(t; t0, t1, t2, t3 = 1− ε) := (y1(t);λtt0, λtt1, λtt2, y1(t)− y4(t)),
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where λt > 0 is chosen uniquely such that the last four entries sum up to
one, that is, we want h(t; , , , 1− ε) ∈ P4(y1(t), y2(t)).

The second condition prescribes h on all S1 × Ti, i = 0, . . . , 3, since h is �4-
equivariant.

Now we construct h. If y = (y1, y4) is given by (idS1 , idS1+ε), then we can choose
δ = ε and h = idS1×T ε . Otherwise there is a homotopy Ys : S1 → (S1)2\Δ(S1)2 ,
s ∈ [0, 1], from y to the previous one. For each time s ∈ [0, 1] we can now ask
how to find an hs as above for Ys. If we only require condition (2) then this is a
homotopy extension problem. Since (S1 × T ε, S1 × (T0 ∪ . . . ∪ T3)) is a pair of free
�4-CW-complexes, we can solve this. The standard proof for this gives a solution
that automatically satisfies condition (1) at each time, so especially for y. Therefore
h exists.

Hence we get a test map

t := pr ◦ f ◦ h : S1 × T
f◦h−→�4 �

6\(Δ�4 ×Δ�2)
pr−→	 �4

�
4\{0}

which is avoiding 0 ∈ �4, since we assumed that γ inscribes no square.
The range �4\{0} of t is a product of the standard �4-representation W4 :=

�
4/Δ

�4 and U := �
2/Δ

�2 (ε · u = −u, u ∈ U), with 0 deleted. The corresponding
components of t are tW and tU . The images f0, . . . , f3 ∈ W4 of the four standard
basis vectors e0, . . . , e3 of �4 span a tetrahedron which defines a fan with apex in
0 and with four facets, which we label by F0, . . . , F3, such that −fi ∈ Fi. V ⊂ �

6

projects under pr in �4 = W4 × U to V ′ := �≤0 · (−f3)× {0}.
We have enough information to disprove the existence of t using an obstruction

argument. Assume that only the restriction of t to ∂(S1 × T ) = S1 × ∂T is given,
we look whether we can extend it.

We are allowed to deform t by an arbitrary �4-homotopy. First of all we make t
transversal to V ′ on S1 × T3 relative to its boundary (and extend this deformation
�4-equivariantly). Let t

−1(V ′) ∩ (S1 × T3) = {p1, . . . , p2k}.
From now on we write S1 × T ⊂ Pn in the coordinates that were introduces in

Section 2.1.1. We see that it has a simple �4-CW-complex structure with only one
four-dimensional �4-cell orbit:

One three-cell e shall be ∗×T , ∗ ∈ S1. We may assume that t(∂(e)∩T3)∩V ′ = ∅
and analogously for the other Ti, since there are only finitely many points ∗ ∈ S1

which are forbidden in this way (namely the S1-coordinates of the pi and their
�4-translates).

Note that tW (S1×Hi) ⊂ Fi\{0}. This is because on such points the ti-coordinate
is zero, hence the corresponding edge of the parametrised quadrilateral is zero and
thus minimal among all edges. Therefore we can �4-deform tU on a sufficiently small
neighborhood of S1×(H0∪. . .∪H3) such that tU becomes zero on S1×(H0∪. . .∪H3)
and such that during no time of this deformation change the new intersections of
t(S1 × T3) and V ′.
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By the degree of a map Sn−1 → �
n\{0} we mean the degree of the normalised

map to Sn−1, or the scaling factor of the induced map on homology Hn−1( ).
Since t(∂(e) ∩ T3) ∩ V = ∅, we can also deform t on a small neighborhood of

∂(e)∩ T3 such that tW |∂(e)∩T3
lies in F0 ∪ F1 ∪ F2 and such that tU |∂(e)∩T3

is zero,

without changing the intersections of t(S1×T3) and V . Suppose we have extended
t on e such that tU is positive on the interior of e. Then tU is negative on the
interior of ε · e (�4 = 〈ε〉). Let E be the 4-cell of S1 × T that has e and ε · e as
boundary faces. The degree of tW on ∂e is one.

Recall t−1(V )∩ (S1 ×T3) = {p1, . . . , p2k}. If 2k = 0, then one could also deform
t on ∂E ∩ ∂(S1 × T ) as we did with t on ∂e. In this case, t|∂E is homotopic to
the suspension of tW |∂e, hence it was of degree 1. However for every pi ∈ ∂E the
degree changes by one. This also happens at the other facets ∂E ∩ (S1 × Ti) of ∂E
with the �4-translates of {p1, . . . , p2k}. In total there are 2k such points, hence the
degree of t|∂E is odd. If t|e was chosen differently, the degree of t|E would change
twice ± the same number, once for e and once for ε · e. Hence one cannot extend t
to E, contradiction. �

Corollary 2.4. Suppose there is a path y : S1 → (S1)2\Δ(S1)2 = P ◦
2 , y(t) =

(y1(t), y4(t)), that represents a generator in π1((S
1)2\Δ(S1)2) ∼= π1(S

1) ∼= �. If
P4(y) ∩ S = ∅, then γ circumscribes a square.

Proof. The mod-2 intersection number of Theorem 2.3 is here trivially zero. �

Corollary 2.5. Suppose there is an ε ∈ (0, 1), such that γ inscribes no (or gener-
ically an even number of) special quadrilateral of size ε. Then γ circumscribes a
square.

Proof. Use Theorem 2.3 with y1 := idS1 and y4 := idS1 + ε. �

Remarks 2.6. 1.) An alternative view point is to look at S as a 1-dimensional
manifold, after one made f transversal to V by a small ε-homotopy, at first on
P4(y) and then on P4. Here a technical trick is to choose ε not as a constant but
as a function on P ◦

4 that becomes arbitrarily small at the boundary, such that all
technicalities work out. What Theorem 2.3 measures is the following.

P4(y) can be seen as a “membrane”, which separates P4 into two components if
y is injective. If γ circumscribes no square then there is an odd number of paths
in S that pass through P4(y) and approach the boundary at S1 × e3, e3 being the
one vertex of σ3. These paths might look very chaotic close to the boundary. On
the other side of the membrane P4(y), this odd number of paths cannot all end in
each other. One of them has to end somewhere else. It might end suddenly in P ◦

4 ,
which means that it found a square, or it might end somewhere else at ∂P ◦

4 . My
hope was that the latter is not possible, but it is:
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The drawn path of special quadrilaterals starts in the middle of the spiral at
S1×e3 with a quadrilateral that is degenerate to a point, and it stops when x1 and
x4 moved together again, x4 − x1 = 1.

2.) The corollaries are sometimes good for proving the existence of a square, if
the curve is piecewise C1 but has cusps (points in which the tangent vector changes
the direction). This however works not in a large generality as the previous example
shows.

3.) The whole Section 2.3 deals with the curve intrinsically, since the only
datum of γ we used is the distances between points on γ. If we define a square
in a metric space (X, d) to be a 4-tuple (x0, . . . , x3) ∈ X4 such that d(x0, x1) =
d(x1, x2) = d(x2, x3) = d(x3, x0) and d(x0, x2) = d(x1, x3), then the whole section
also works for curves γ : S1 → X . More generally, X does not need to fulfill
the triangle inequality. In other words, we do not need an embedded curve but a
distance defining function d : S1 × S1 → � that is continuous, positive definite,
and symmetric.

3. Equilateral Triangles on Curves

For our first result, suppose we are given a symmetric distance function d on
the circle. This might occur if we embed S1 into a metric space and pull back the
metric.

Theorem 3.1 (“Triangular Peg Problem”). Let d : S1×S1 −→ � be a continuous
function satisfying d(x, y) = d(y, x). Then there are three points x, y, z ∈ S1, not
all of them equal, forming an equilateral triangle, that is d(x, y) = d(y, z) = d(z, x).

Proof. We use the configuration-space test-map scheme. Suppose there is a curve
admitting no such triangle. This induces us an S3-equivariant map

(S1)3\Δ(S1)3
S3−→ �

3\Δ�3 � S1.

The configuration space (S1)3\Δ(S1)3 deformation retracts equivariantly to the fol-
lowing figure.

It is a nice exercise in equivariant obstruction theory to show that such a map
cannot exist. For more details see [Mat08, Chap. III.3] �
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If the distance function comes from a planar continuous embedding γ : S1 → �
2

then M. J. Nielsen [Nie92] has proven much more. Then there are even infinitely
many triangles inscribed in the γ which are similar to a given triangle T , and if
one fixes a vertex of smallest angle in T then the set of the corresponding vertices
on γ is dense in γ. In the next section we show even a bit more if γ is smooth. For
example the latter holds true for any angle and the set of corresponding vertices is
all of γ.

4. Polygons on Curves

This section is very similar to independently obtained results of V. V. Makeev
[Mak05] and J. Cantarella, E. Denne and J. McCleary [CDM10].

So far we asked about triangles and quadrilaterals that we can find up to simi-
larity on curves. There are several possibilities to generalise this problem to other
polygons, and the most natural one seems to consider fixed edge ratios. Suppose
we are given an non-degenerate planar n-gon. If we take the quotient of the first
n− 1 edges by the last one, we get n− 1 edge ratios ρ1, . . . , ρn−1 ∈ �>0. They are
characterised by the property that any number of ρ1, . . . , ρn−1, 1 is smaller than
the sum of the others.

Let γ : S1 → �
∞ be a given smooth curve. We could also let γ map into any

Riemannian manifold, which would not make a difference by Nash’s embedding
theorem. We proceed as in Shnirel’man’s proof of Section 2.2. n-gons that are
lying counter-clockwise on γ are parametrised by Pn. One can measure their edges
by a test map Pn → �

n, make this by an ε-homotopy relative to ∂Pn transversal
to the vector subspace spanned by the edge length vector of the given polygon, and
find the solution set S of all n-gons in P ◦

n with the given edge ratios as a pre-image,
which then defines a unique element [S] ∈ Ω1(Pn) in the one-dimensional oriented
bordism group of Pn. The projection onto the first factor induces a homotopy
equivalence Pn � S1, hence [S] ∈ �. For γ a circle we deduce that [S] = ±1.
Hence S �= 0. This can be interpreted in terms of winding numbers (by the winding
number of a component I mean its bordism class in Ω1(Pn) ∼= �, where fixing this
isomorphism fixes orientation issues).

Lemma 4.1. S is a disjoint union of circles that wind around Pn � S1 and the
winding numbers add with orientation up to ±1. �

If all edges ratios are one, so all edges are equal, then the test map is �n-
equivariant. Pn is free, hence the ε-homotopy can also be equivariant, so S is a
�n-manifold. The generator of �n preserves the orientation of Pn if and only if it
preserves the orientation of �n. The test-space Δ�n is the fixed point set of �n,
so �n acts on it orientation preserving. Hence �n acts on S orientation preserving,
which we use in the following lemma.

Lemma 4.2. Let γ : S1 −→ �
∞ be a smoothly embedded curve and let n be a prime

power ≥ 3. Then there is a closed one-parameter family S1 −→ Pn of polygons such
that
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(1) each of the polygons are ε-close edge-regular, that is, the edge ratios lie in
[1− ε, 1 + ε], and

(2) this one-parameter family (that is, its image) is �n-invariant.

Proof. �n acts by permutation on the set of components of S. The lemma just
claims that there is a fixed point. If there was no fixed point, all orbits had a
cardinality divisible by p, where n = pk. All components in one orbit have the
same winding number, since �n acts on S orientation preserving and the induced
action of �n on Ω1(Pn) is trivial. Thus the sum of all winding numbers would be
divisible by p, but it is ±1, contradiction. �

Lemma 4.2 has some simple applications.

Another proof of the smooth Square Peg Problem. For a given curve γ, choose a �4-
invariant one-parameter family S1 → Pn of ε-close rhombi. Then go along this
family from one of these rhombi to its translate by the generator of �4. What
happens is that the short diagonal becomes the long diagonal, hence in the middle
there was a square. Letting ε go to zero and taking a convergent subsequence of
the ε-close squares finishes the proof. �

Corollary 4.3 (A Conjecture of Hadwiger, [Mak05, Thm. 4], [VrŽi08, Thm. 11]).
Each knot, that is, a smoothly embedded circle in �3, contains four points spanning
a planar rhombus.

Proof. As the proof before, but we look at the angle between the triangles of a
triangulation of the rhombus instead of looking at a diagonal. Somewhere in the
middle it has to be the straight angle (The angle has to be prevented from becoming
zero, which can be done by a compactness argument). �

Corollary 4.4 (Blagojević–M., [Mat08, Thm. III.6.1]). Let d1 and d2 be two
symmetric distance functions on S1, where d1 is given by a smooth embedding
of S1 into a Riemannian manifold. Then there are three pairwise distinct points
on S1 forming an equilateral triangle with respect to d1 and an isosceles triangle
with respect to d2. �

Lemma 4.2 has the following generalisation to non-prime powers n, which will
be useful in the next section.
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Lemma 4.5. Let γ : S1 −→ �
∞ be a smoothly embedded curve and let pr be

a prime power dividing n ≥ 3. We think of �pr as the subgroup of �n with pr

elements. Let P be a polygon whose edge lenths are �pr -invariant. Then there is a
closed one-parameter family S1 −→ Pn of polygons such that

(1) each of the polygons have up to a factor and an ε-error the same edge lengths
as P , and

(2) this one-parameter family is �pr -invariant. �

5. Rectangles on Curves

H. B. Griffiths [Gri91] proved that every smooth planar embedded circle circum-
scribes a rectangle with arbitrary aspect ratio. However there are unfortunately
some errors in his computation concerning orientations (see [Mat08, Chap. III.7]
for details), which seem to invalidate the proof. Hence the problem is open:

Conjecture 5.1 (“Rectangular Peg Problem”). For all reals r > 0, every smooth
embedding γ : S1 → �

2 contains four points spanning a rectangle of aspect ratio r.

Since there is not as much symmetry in the Rectangular Peg Problem as in the
Square Peg Problem, the symmetry group being �2 instead of �4, the number of
rectangles of a fixed aspect ratio on curves will be generically even. Hence purely
topological arguments will not work. But they give some intuition, here are two
approaches. Assuming that Conjecture 5.1 admitted a counter-example (γ, r), both
lemmas derive conclusions that seem to be unintuitive, but more geometric ideas
are needed to yield a contradiction.

Lemma 5.2. Suppose there was a counter-example (γ, r). Then for all ε > 0,
there is a �2-invariant one-parameter family S1 → P4 of ε-close parallelograms
with aspect ratio in [r− ε, r+ ε] and with an odd winding number, such that during
the whole one-parameter family one of the diagonals stays larger than the other one.

Proof. We would like to use Lemma 4.5 with n = 4, pr = 2, and P a rectangle
with aspect ratio r. However the solution set S of quadrilaterals on γ that have the
desired edge ratios is too large. There exist skew quadrilaterals on γ having the
same edge ratios as P , which we do not want in our solution set S since they are
not parallelograms. To solve this problem, we can simply ignore them and argue
that all arguments still go through. This turns out to be quite technical, but there
is an easier proof:

We define another test map,

g : P4 −→ �
2 ×�

that maps [x1, x2, x3, x4] to
(
(γ(x1) + γ(x3))− (γ(x2) + γ(x4)),

(||γ(x1)− γ(x2)||+ ||γ(x3)− γ(x4)||)− r · (||γ(x2)− γ(x3)||+ ||γ(x4)− γ(x1)||)
)
.
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The pre-image (g|P◦
4
)−1(0) is exactly the set of parallelograms on γ of aspect

ratio r. Using a bordism argument, the proof works now exactly as the one of
Lemma 4.5. �

Remark 5.3. In Lemma 5.2, instead of looking at the set of parallelograms with
aspect ratio r, we might look as well on the set of parallelograms whose diagonals
intersect in an angle α, where α is the intersection angle of the diagonals in a
rectangle of aspect ratio r. This gives an analogous lemma, which might be easier
to deal with geometrically.

Now we come to the second lemma, which gives similarly an intuition why the
Rectangular Peg Problem should hold true.

Lemma 5.4. Suppose there was a counter-example (γ, r). Then for all ε > 0, there
is a �4-invariant one-parameter family S1 → P4 of ε-close rectangles.

Proof. Let f : P ◦
4 −→�4 �

4 × �
2 be the restricted map (1) from Section 2.2,

measuring the edges and diagonals.
First of all we make f �4-equivariantly transversal to Δ�4 × Δ�2 by a small

δ-homotopy, and let Q := f−1(Δ�4 × Δ�2) be the set of all squares (up to an
δ-error, where δ is a function that decreases sufficiently fast near the boundary
of P ◦

4 ). Then we make f �4-equivariantly transversal to the �4-invariant subspace
V := {(a, b, a, b, e, e) ∈ �4 ×�2} by a small δ-homotopy which leaves Q fixed, and
let R := f−1(V ) be the set of all rectangles on γ (up to an δ-error). If δ was chosen
small enough, R consists only of ε-close rectangles.

Let RQ be the set of all components of R that contain a square. We may assume
that all these components are circles, otherwise a component would come arbitrary
close to the boundary of P4, so there would be an ε-close rectangle on it with aspect
ratio r. If we could do this for all ε, then a limit argument would give us a proper
rectangle of aspect ratio r. So if need be, we choose a smaller ε for which this does
not happen.

R is a one-dimensional �4-manifold, so �4 acts on RQ as well. We decompose
RQ = R1 �R2 �R4, where R1 is the set of components with isotropy group 〈0〉, R2

with isotropy group �2 = 〈ε2〉 ⊂ �4 and R4 with �4. Now we only need to count
the number of squares on each Ri.

• �Q = 4 mod 8, since modulo �4 it is odd (see Section 2.2).
• Every component C ∈ �Q contains an even number of squares, since while
passing a square the rectangle changes from fat to skinny or vice versa (this
follows from the bijectivity of the differential df at points in Q).

• 4 divides �R1, and every component in R1 contains two squares. So the number
of squares on components of R1 is divisible by 8.

• 2 divides �R2, and if a component in R2 contains a square S, then it contains
also ε2 · S. When it goes through a square and changes from fat to skinny, then
so it does at ε2 · S. Hence it has to go through 4k squares, k ≥ 1. Thus the
number of squares on components of R2 is divisible by 8.

• If a component C of R4 goes through a square S and changes from fat to skinny,
then it also goes through ε ·S and changes from skinny to fat. That is, in between
it had to go through an even number of squares, all of which of course belong to a
different �4-orbit. Hence the number of square-orbits on C is odd, �(Q∩C) = 4
mod 8.
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Putting this modulo 8 together, we get �R4 = 1 mod 2, which is even a bit
stronger than what is stated in the lemma. �

6. Crosspolytopes on Spheres

H. Guggenheimer [Gug65] proved that any smoothly embedded sphere Sd−1 →
�

d contains the vertices of a regular d-dimensional crosspolytope. However there
is unfortunately an error in his main lemma (see [Mat08, Chap. III.9] for details),
which seems to invalidate the proof. Hence the problem is open:

Conjecture 6.1 (“Crosspolytopal Peg Problem”). Every smooth embedding γ :
Sd−1 → �

d contains the vertices of a regular d-dimensional crosspolytope.

Recently, R. N. Karasev [Kar09] has shown this conjecture to hold true for
boundaries of non-angular (e.g. smooth) convex bodies, if d is an odd prime power.

The topological counter-example. The conjecture in general is probably very difficult
and a solution would involve deeper geometric reasoning, since there is the following
“topological counter-example” for d = 3. Suppose we are given a smooth embedding
Γ : S2 → �

3. Let G ∼= (�2)
3
�S3 be the symmetry group of the regular octahedron

andGor ⊂ G be the subgroup of orientation preserving symmetries. G acts on (S2)6

by permuting the coordinates in the same way as it permutes the vertices of the
regular octahedron. Let G act on �12 by permuting the coordinates in the same
way as it permutes the edges of the regular octahedron. The subrepresentation

(Δ�12)⊥ ⊂ �
12 is denoted by Y . Let Δfat

(S2)6 be the space of all 6-tuples in (S2)6

that contain at least two equal elements, that is, the fat diagonal. Let B be a small

ε-neighborhood of Δfat
(S2)6 , where ε depends only on an isotopy of Γ to some nice

embedding, that we will describe later. Then the complement X := (S2)6\B is a
free compact G-manifold with boundary and

X �G {(x1, . . . , x6) ∈ (S2)6 | xi are pairwise distinct} = (S2)6\Δfat
(S2)6 .

Then Γ gives us a test map
t : X −→G Y,

which measures the edges of the parametrised octahedra modulo � = (1, . . . , 1).
Since ε was chosen small, t|∂X is mapping uniquely up G-homotopy to Y \{0},
if we change Γ by an isotopy. The solution set S of regular octahedra on Γ is
S := t−1(0). The subset Sor ⊂ S of positively oriented octahedra is a part of the
pre-image t−1(0), and t induces an isomorphism of Gor-vector bundles over Sor,

TSor ⊕ (iSor )
∗(X × Y ) ∼= (iSor)

∗(TX),

where iSor denotes the inclusion Sor ↪→ X . Thus Sor gives us together with this
normal data an element [Sor] in the equivariant normal bordism group (see U.
Koschorke [Kos81, Chap. 2])

ΩGor
1 (X,X × Y − TX) = Ω1(X/Gor , X ×Gor Y − T (X/Gor)),
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which is well-defined, since isotopies of Γ change S only by a normal bordism that
stays away from the ∂X of ε was chosen small enough, and components of octahe-
dra of different orientation are always separated from each other. In Koschorke’s
notation, [Sor] is the obstruction

ω̃1(�∼, X ×Gor Y, (id∂X , t|∂X)/Gor),

where �∼ is the trivial line bundle.

Theorem 6.2. The above defined [Sor] is zero. Hence

[S] ∈ ΩG
1 (X,X × Y − TX)

is zero as well.
In particular, the test map t can be deformed G-equivariantly relative to ∂X to

a map t′, such that 0 �∈ t′(X).

The map t′ is what I call a topological counter-example.

Sketch of Proof. To construct a nice representative for [Sor] we take the standard
2-sphere and scale it down linearly along the z-axis of �3. This is our Γ and we let
t and S be the corresponding test map and solution set, respectively. S is a disjoint
union of 16 = 1

3 · �G circles. One octahedron on the scaled sphere looks as follows
(one looks along the z-axis):

If we rotate it around the z-axis then we get up to symmetry all octahedra on Γ.
The G-bundles X × Y and TX are G-orientable, therefore the relevant part of
Koschorke’s exact sequence [Kos81, Thm. 9.3] becomes

H2(X/Gor ;�) → �2 → Ω1(X/Gor ,X ×Gor Y − T (X/Gor))

→ H1(X/Gor ;�) → 0.

It is not difficult to see that the image of [Sor] in H1(X/Gor ;�) = H1(Gor;�) is
zero. This is because the 120 degree rotation of a regular octahedron around the line
connecting the midpoints of two opposite triangles is an element of the commutator
of Gor. It requires much more visualisation to see that [Sor] is in fact the image
of the generator of �2. The hard part is to show that �2 unfortunately lies in the
image of H2(X/Gor ;�), which I could manage to do only with a very long program.
It finds that H2(X/Gor ;�)

∼= �4× (�2)
3, where one can choose the generators such

that the first three map to zero and the last one to the generator of �2.
The Gor-null-bordism of Sor can be extended to a G-null-bordism of S. By

Theorem 3.1 of U. Koschorke [Kos81], we can extend the section as stated. �



ON THE SQUARE PEG PROBLEM AND SOME RELATIVES 15

Remarks to the algorithm. An economical S6-CW-complex structure on (S2)6 is
based on an S6-cell decomposition of �2 of V. A. Vassiliev [Vas94], which has few

high dimensional cells. Δfat
(S2)6 is a subcomplex, so one can compute H2(X/Gor)

∼=
H10((S2)6/Gor , (Δ

fat
(S2)6)/Gor). The Smith normal form is used to compute this cel-

lular cohomology and the LLL-algorithm to choose nice generators. The image in �2

is determined by computing second Stiefel-Whitney classes, which I implemented
as obstruction classes.
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