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Abstract

The Square Peg Problem asks whether every continuous simple closed curve in the
plane contains the four vertices of a square. In this paper we prove it for an open class of
curves, which is not given by a smoothness condition, and thus we do not need to assume
the curve to be injective.

Furthermore we show that every smooth planar curve whose angular convexity is at
most 60◦ inscribes a rectangle with aspect ratio

√
3.

Finally we disprove a conjecture of Cantarella on the parity of inscribed squares for
immersed curves in the plane. We derive the correct parity, also for inscribed rectangles.

1 Introduction

The Square Peg Problem was first posed by O. Toeplitz in 1911:

Conjecture 1.1 (Square Peg Problem, Toeplitz [Toe11]). Every continuous embedding γ :
S1 → R

2 contains four points that are the vertices of a square.

In its full generality Toeplitz’ problem is still open. So far it has been solved affirmatively
for curves that are “smooth enough”, by various authors for varying smoothness conditions
[?]. All of these proofs are based on the fact that smooth curves inscribe generically an odd
number of squares. In a previous paper [Mat09] we proved the following so far strongest
version. Its proof easily extends to curves in arbitrary metric spaces, so we state it in this
more general form.

Theorem 1.2. Let γ : S1 → X be an embedded circle in a metric space (X, d). Assume that
there is an 0 < ε < 2π such that γ contains no (or generically an even number of) special
trapezoids of size ε. Then γ inscribes a square. That is, there exist four pairwise distinct
points P1, . . . , P4 ∈ γ such that

d(P1, P2) = d(P2, P3) = d(P3, P4) = d(P4, P1) and d(P1, P3) = d(P2, P4).

Here a special trapezoid on a curve γ is a 4-tuple of pairwise distinct points x1, . . . , x4 ∈
S1 lying counter-clockwise on S1 such that the points Pi := γ(xi) satisfy

d(P1, P2) = d(P2, P3) = d(P3, P4) > d(P4, P1) and d(P1, P3) = d(P2, P4).
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The size of this special trapezoid is defined as the length of the counter-clockwise arc in S1

from x1 to x4.

This paper splits into three parts.

1.) The first result is the first known open set of curves in the compact-open topology
(equivalently, in ((R2)S

1
, ||.||∞)) for which the Square Peg Problem holds. It does neither

require the curve to be smooth nor injective; see Section 2 for the rather simple proof and
variations of the statement.

Theorem 1.3. Let A denote the annulus {x ∈ R2 | 1 ≤ ||x|| ≤ 1 +
√

2}. Suppose that
γ : S1 → A is a continuous closed curve in A that represents the generator of π1(A) = Z.
Then γ inscribes a square of side length at least

√
2.

Figure 1 shows an example. This Theorem does not contain all previous known classes of
curves for which the Square Peg Problem is proved. It is the first partial result on the Square
Peg Problem that bounds the size of an inscribed square from below.

Figure 1: Example for Theorem 1.3.

2.) The second result is a first non-trivial case for the “Rectangular Peg Problem”.

Conjecture 1.4 (Rectangular Peg Problem). Every C∞ embedding γ : S1 → R
2 contains

four points that are the vertices of a rectangle with a prescribed aspect ratio r > 0.

We state this conjecture for smooth curves only, since already this seems to be a hard
problem. It is equivalent to stating this conjecture for piecewise linear curves. So far it is only
known to hold in the case r = 1, that is, for inscribed squares. The proof in Griffiths’ paper
[Gri91] contains unfortunately an error in the calculation of intersection numbers, see [Mat08]
for details. The difficulty comes from the fact that, counted with orientations, every smooth
curve contains generically zero rectangles of a prescribed aspect ratio. E.g. an ellipse contains
two rectangles with opposite orientations. This makes a standard topological approach, called
configuration space-test map method, fail as we will show in Section 3.1. Further geometric
arguments are needed to attack the problem.

In Section 3 we prove the following first non-square special case of the Rectangular Peg
Problem.

Theorem 1.5. Let γ : S1 → R
2 be a C∞ curve whose angular convexity is at most 60◦. Then

γ inscribes a rectangle with aspect ratio
√

3.
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Here we call a smooth plane curve γ to have angular convexity at most α, if the signed
curvature of γ restricted to any arc is at most α; see Figure 2. The proof uses a hidden
symmetry that appears for r =

√
3, which is a geometric piece of information.

Figure 2: Example for Theorem 1.5.

3.) In Section 4 we deal with immersed planar curves and the parity of their inscribed
squares. Cantarella [?] conjectured that this parity is an isotopy invariant and he stated a pre-
cise formula based on examples. We disprove Cantarella’s conjecture and state in Theorem 4.1
how the parity can be computed from the angles at the intersection points. Theorem 4.2 gives
a similar formula for the parity of inscribed rectangles of a fixed aspect ratio.

2 Squares on curves

In this section we prove Theorem 1.3 from the introduction together with the following two
versions, whose proofs are very similar. See Figures 2.1 and 2.2 for examples.

Theorem 2.1. Let S denote the area {x ∈ R2 | 1 ≤ ||x||∞ ≤ 3} = {x ∈ R2 | 1 ≤ |x1,2| ≤ 3}.
Suppose that γ : S1 → S is a continuous closed curve in S that represents the generator of
π1(S) = Z. Then γ inscribes a square of side length at least

√
2.

Figure 3: Example for Theorem 2.1.

Theorem 2.2. Let ∆ be an equilateral triangle in R2 whose center point is the origin. Let
T be the closure of ((1 +

√
3) ·∆)\∆. Suppose that γ : S1 → T is a continuous closed curve

in T that represents the generator of π1(T ) = Z. Then γ inscribes a square of side length at
least 2

√
3− 3.

It seems to be desireable to extend this method for much more general shapes in order to
possibly prove the Square Peg Problem for all curves.

The proofs of Theorems 1.3, 2.1, and 2.2 follow from the following lemma.

Lemma 2.3. Let A be a subset of R2. Let SA be the set of 4-tuples (P1, . . . , P4) ∈ A4

that form the vertices of a possibly degenerate square in counter-clockwise order. Let C be
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Figure 4: Example for Theorem 2.2.

a connected component of an ε-neighborhood of SA that does not contain degenerate squares,
that is, points of the form (P, P, P, P ). Let γ̃ : S1 → A be a generic curve that contains an
odd number of squares in C. Then every continuous curve γ : S1 → A that is homotopic to γ̃
in A contains a square in C as well.

Here, by a generic curve γ̃ we mean a curve such that the corresponding test-map that
measures squares in C hits the test-space smoothly and transversally.

The proof of Lemma 2.3 is a simple bordism argument.

Proof of Theorem 1.3. We may assume that γ is actually a curve in the interior of A. The
other cases follow by a limit argument, for which we use that on each approximating curve
we can find a square of size at least

√
2. Some subsequence of this sequence of squares will

then converge to a non-degenerate square of the given curve.

By compactness γ is a curve in A′ := Uε(A) for some ε > 0. Now we can apply Lemma 2.3,
where we choose γ̃ to being an ellipse in A′.

The proofs of Theorems 2.1, and 2.2 are analogous.

3 Rectangles on curves

The Rectangular Peg Problem is a very challenging and from the author’s point of view
the most beautiful open problem in this area of inscribing and circumscribing problems. In
Section 3.1 we show that the standard topological approach, the configuration space/test map
scheme, fails to prove the Rectangular Peg Problem 1.4 since the test map in question exists.

Then we prove Theorem 1.5 under some technical assumptions concerning transversali-
ty; see Section 3.2. We show in Section 3.3 that these assumptions can be made. These
technicalities seem not to be obvious in advance for two reasons: The natural group action on
one solution manifold (namely P ) is in general not free; and transversality has to be achieved
for several maps simultaneously since we need to relate solution manifolds of different maps
in the proof.

3.1 The test-map exists

In this section we show that a standard topological approach, called configuration space-test
map method, does not work to prove the Rectangular Peg Problem 1.5.

Assume we are given a smooth simple closed planar curve γ : S1 ↪→ R
2. Let P4 ⊂ (S1)4

be the set of four pairwise distinct points on the circle that lie counter-clockwise on it. Then
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P4
∼= S1 × (σ3)◦, where (σ3)◦ denotes the interiour of the 3-simplex. We construct from γ a

natural test map,
t : P4 −→ R

2 ×R×R,
(x1, x2, x3, x4) 7−→ (v, l, a),

where v is the difference between the midpoints of the diagonals in the quadrilateral (γ(x1), . . . , γ(x4)),
l is the difference of the length of these diagonals, and a is the aspect ratio.

We let Z2 = Z/2Z = {0̄, 1̄} act on P4 by 1̄ · (x1, x2, x3, x4) = (x3, x4, x1, x2). The map
t is then Z2-equivariant with respect to the corresponding group action on R4. Since γ is
smooth, there is an ε > 0, such that t maps no point of B := U[ε](∂(P4)) ∩ P4 to zero, where
Uε denotes the closed ε-neighborhood and ∂P the topological boundary of P ⊂ (S1)4. The
map t|B : B → R

4\{0} is uniquely given up to Z2-homotopy. R := t−1(0, 0, r) is the set
of rectangles of aspect ratio r whose vertices lie conter-clockwise on γ. R is generically a
zero-dimensional Z2-manifold. Using the pre-image orientation for R, Z2 acts orientation
preserving on R. Therefore R determines an element [R] in the oriented zero-dimensional
bordism group Ω0(P4/Z2) ∼= Z, which is the primary obstruction for extending t|U : U →
R

4\{0} to a map P4 → R
4\{0}. If γ is an ellipse then R consists of two orbits, since an

ellipse inscribes exactly two rectangles. Computation shows that their orientation is opposite.
Therefore [R] = 0 and the obstruction class vanishes. Since this is the only obstruction, we
can find a map t′ : P4 → R

4\{0} such that t′|B = t|B. That is there is no purely topological
argument that can show the existence of a rectangle of aspect ratio r on γ, at least as long
as we are not using more geometric information.

The smooth Square Peg Problem can be solved using this configuration space-test map
scheme, since squares are more symmetric. Here the group of symmetry is Z4 and on an
ellipse we find only one Z4 orbit of squares. In the case r =

√
3 there is a “hidden” symmetry

that we will use in the next section to prove Theorem 1.5.

3.2 Inscribed Rectangles with aspect ratio
√
3

Now we prove Theorem 1.5 but leave all technical details concerning transversality to the
subsequent Section 3.3. Suppose we are given a smooth curve γ : S1 ↪→ R

2.
We define a map

f :(S1)4 −→G R
2 × S1

(x1, x2, y1, y2) 7−→ (v, α),

where v is again the difference between the midpoints of the diagonals in the quadrilateral
(γ(x1), γ(y1), γ(x2), γ(y2)) and α is the mod-180◦ angle between these diagonals (we measure
angles always in counter-clockwise sense). If one diagonal is degenerate to a point we take
the tangent of γ at this point to define α.

The map f is G := Z2 × Z2 = {0̄x, 1̄x} × {0̄y, 1̄y}-invariant, where G acts on (S1)4 by
1̄x · (x1, x2, y1, y2) = (x2, x1, y1, y2) and 1̄y · (x1, x2, y1, y2) = (x1, x2, y2, y1).

Let P := f−1(0, 60◦) be the set of parallelograms on γ having a 60◦-angle modulo 180◦

between their diagonals. We call them 60◦-parallelograms. We may assume that P is a union
of connected 1-dimensional submanifolds Ki of (S1)4,

P = K1 ∪ . . . ∪Kn, Ki
∼= S1,
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where the union is disjoint execpt that points (x1, x2, y1, y2) ∈ P of the form x1 = x2 or
y1 = y2 occur exactly twice (for all technicalities, see Section 3.3). This is because P might
contain parallelograms where one diagonal is degenerate to a point. These are exactly the
points of P on that G does not act freely. However G acts freely on the disjoint union
K1 ] . . .]Kn. We denote (S1)4/G = M2 where M := (S1)2/Z2 is the Möbius strip. The first
factor M parametrises x1 and x2 without their order and the second M parametrises y1 and
y2. Let L1 ] . . . ] Lm ⊂ M2 be the quotient manifold (

⋃
Ki)/G, which has corners at the

points where it touches ∂M2. Then L represents an element in the 1-dimensional unoriented
bordism group N1(M

2) ∼= N1((S
1)2) ∼= (Z2)

2, since all embedded circles γ are isotopic in the
plane and G-homotopies of f change K1 ] . . . ]Kn by a G-bordism.

If γ is the unit circle then we see that P is the disjoint union of four circles that all get
identified by G. Their quotient L is one circle that represents (1̄, 1̄) ∈ N1(M

2) ∼= (Z2)
2, where

1̄ ∈ Z2 is the generator.
P does not contain parallelograms that have an edge that is degenerate to a point. Hence

the x1 and x2-coordinates will always differ from the y1 and y2-coordinates at any point
(x1, x2, y1, y2) ∈ P . Therefore the circles Li can only represent the elements (0̄, 0̄) and (1̄, 1̄)
of N1(M

2) ∼= (Z2)
2.

Now we come to the “hidden symmetry”, that is, the geometric piece of information that
is the key in this proof. Let W := {(α, β, γ) ∈ (S1)3 | α+ β + γ = 0◦ mod 180◦}. We define
a map

F :(S1)6 −→ (R2)3 ×W
(x1, x2, y1, y2, z1, z2) 7−→ (mx,my,mz, αx, αy, αz),

where mx is the mid-point of the segment (γ(x1), γ(x2)), αx is the mod-180◦-angle to some
fixed axis in R2, and analogously for the the other coordinates. F is equivariant with respect
to the natural actions of the wreath product K := (Z2)

3 o Z3. Let

S̃ := F−1(∆(R2)3 × {(60◦, 60◦, 60◦)}).

We may assume that S̃ is a 0-dimensional free K-manifold. We define S := S̃/K to be the
set of stars. Every star s ∈ S contains three 60◦-parallelograms on γ, namely Pxy, Pyz and
Pzx. Modulo G they lie in some components Li, Lj and Lk (they are not necessarily pairwise
distinct). We say that this star s relates Li, Lj and Lk. Saying this is unique up to cylic
permutation of Li, Lj and Lk. So we can draw a directed graph D whose nodes are the
components of L, and we draw for each star a directed triangle Li → Lj → Lk → Li.

Assume that γ does not contain a rectangle of aspect ratio
√

3. These are exactly the
rectangles whose diagonals cross in a 60◦-angle. Then all 60◦-parallelograms on γ are skinny
or fat in the sense that the x-diagonal is longer or shorter than the y-diagonal. By continuity
this does not change along the components of L. Hence we can call the Li’s fat or skinny.

Recall that [Li] ∈ N1(M
2) is (0̄, 0̄) or (1̄, 1̄). Correspondingly, we say that the winding

number w(Li) of Li is 0̄ (even) or 1̄ (odd), respectively.
Let x, y : M2 → M be the projections to the first and to the second factor, respectively.

An arc Li → Lj in the graph D corresponds to an intersection of y(Li) and x(Lj). The
number of such intersections is

](y(Li) ∩ x(Lj)) = w(Li) · w(Lj) mod 2. (1)

We will derive a contradiction by double counting the number of stars ]S.
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By (1), components of L with even winding number will have no influence on what follows.
Let s be the number of skinny components of L with odd winding number, and let f be the
number of fat components of L with odd winding number.

We know that [L] =
∑

i[Li] = (1̄, 1̄), thus

s+ f = 1 mod 2.

Note that no star relates three skinny or three fat 60◦-parallelograms with each other. Hence
every star gives exactly one arc from a skinny to a fat component of L. Modulo 2 and using
(1), there are congruent s · f = 0 mod 2 of these arcs. Therefore,

]S = 0 mod 2.

On the other hand, every star relates three components, two of which are skinny or two of
which are fat. So every star gives exactly one arc between two skinny components or between
two fat components. Using (1), the number of arcs between skinny components modulo two
is

s2 = s mod 2,

and the number of arcs between fat components modulo two is

f2 = f mod 2.

Together this gives,
]S = s+ f = 1 mod 2.

This is a contradiction, which finishes the proof of Theorem 1.5.

3.3 Technical Details

In the previous section we assumed that the set of inscribed 60◦-parallelograms P is a 1-
dimensional manifold in the 4-manifold M2. Also the set of stars should be finite. At the
same time, when two parallelograms p1 and p2 have a common diagonal y(p1) = x(p2) they
form a star. Thus there should be another parallelogram p3 such that x(p1) = y(p3) and
y(p2) = x(p3). These triple intersection points come from the geometry, but they are in
some sense not generic. That is, we need to be careful on how to make the test-maps f and
F simultaneously transversal in oder to keep the geometric propery of a star and without
violating the equivariance. We solve this issue by perturbing the following two maps.

Let
m : (S1)2 → R

2

be the map that sends (x1, x2) ∈ (S1)2 to the mid-point γ(x1)+γ(x2)
2 . Let

α : (S1)2 → S1

be the map that sends (x1, x2) ∈ (S1)2 to the mod-180◦ angle of the line through γ(x1) and
γ(x2) and some fixed line in the plane. The maps f and F can written in terms of m and α,

f(x1, x2, y1, y2) = (m(y1, y2)−m(x1, x2), α(y1, y2)− α(x1, x2))
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and similarly F .
Let ϕi : S1 → [0, 1], i = 1 . . . k, be a partition of unity of S1 subordinate to a covering

of S1 with small ε-balls. We will perturb the maps m and α with two sets of parameters

Sm := ([−ε,+ε]2)(
k+1
2 ) and Sα := [−ε,+ε](

k+1
2 ) as follows:

m′ :Sm × (S1)2 −→ R
2

(sm, x1, x2) 7−→ m(x1, x2) +
∑
i≤j

(ϕi(x1)ϕj(x2) + ϕi(x2)ϕj(x1)) · (sm)i,j ,

and
α′ :Sα × (S1)2 −→ S1

(sα, x1, x2) 7−→ α(x1, x2) +
∑
i≤j

(ϕi(x1)ϕj(x2) + ϕi(x2)ϕj(x1)) · (sα)i,j ,

This defined analogous functions f ′ : Sm × Sα × (S1)4 −→G R
2 × S1 and F ′ : Sm × Sα ×

(S1)6 −→K (R2)3 ×W . Because of the additional parameter space f ′ and F ′ are transversal
to the respecitive test-spaces {(0, 60◦)} and ∆(R2)3 × {60◦, 60◦, 60◦}. By the transversality
theorem [?, p. 68], for almost all choices s := (sm, sα) (up to a zero set), the perturbations
f ′s := f ′(s, ) and F ′s := F ′(s, ) are transversal to the test-spaces as well. Similarly one can
show that for almost all s, y(Ki) intersects x(Kj) transversally for all i, j.

4 Squares on immersed curves

Toeplitz’ conjecture is about studying inscribed squares on simple closed curves in the plane.
There are plenty ways to generalize this problem. One possible way is to omit the requirement
that γ has to be injective. Then there are several kinds of degenerate squares, which we have
to deal with in that case. To keep things simple, we will only consider transversal intersections,
and we will not count degenerate squares.

In this section we will prove a simple mod-2 formula for the number of squares that are
inscribed in an immersed circle (or union of circles).

Let γ be a “generic” immersion of a finite union of circles in the plane.
There is a chequerboard coloring of the complement of γ, see Figure 5. That is, we color

each component of R2\γ black or white such that adjacent components get different colors.
We may assume that the unbounded component is white. Let b(γ) be the number of black
components. We call a self-intersection of γ a crossing. We say that a crossing is fat if the
black angles at this crossing are larger than 90◦. The fat crossings in Figure 5 are marked by
a black dot. Let f(γ) be the number of fat crossings.

Figure 5: Chequerboard coloring associated to γ. Dots mark the fat crossings.
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Theorem 4.1. Suppose that γ is a generic immersion of finitely many circles in the plane.
Then the number of non-degenerate squares inscribed in γ is congruent to b(γ) + f(γ) modulo
2.

Proof. By genericity of the curve, no inscribed square will have a vertex at a crossing. We
smoothen the crossings of γ such that all white components become one big component. The
number of inscribed squares increases by f(γ) under this operation, see Figure 6. The new
curve consists of b(γ) separated simple closed curves. We can deform them by an ambient
isotopy such that they become b(γ) small ellipses and such that there is no inscribed square
that touches more than one component. Therefore the resulting union of ellipes inscribes
exactly b(γ) squares. Using a bordism argument, the parity of the number of inscribes squares
did not change during the isotopy. Since every ellipse inscribes exactly one square, this finishes
the proof.

vs.

Figure 6: When we smoothen a crossing then a new square appears if and only if we opened
the smaller angle.

Rectangles on immersed curves

The analog theorem for rectangles of prescribes aspect ratio 0 < r < 1 that are inscribed in
immersed circles is slightly different. Let γ be again a generic immersion of a finite union of
circles in the plane, and consider again the chequerboard coloring from above. Let 0 < α(r) <
π/2 be the angle at the intersection of the two diagonals of a rectangle with aspect ratio r.
We call a self-intersection of γ α-orthogonal, if the angle at this crossing lies in the open
interval (α, π − α). Let o(γ, r) denote the number of α(r)-orthogonal crossings.

Theorem 4.2. Let 0 < r < 1. Suppose that γ is a generic immersion of finitely many circles
in the plane. Then the number of non-degenerate rectangles with aspect ratio r inscribed in γ
is congruent to b(γ) + o(γ, r) modulo 2.

Proof. The proof is very similar to the one of Theorem 4.1. Again, in a small neighborhood
of a generic crossing we have no inscribed rectangle with aspect ratio r. When we smoothen
the crossing, 0, 1, or 2 new rectangles will appear, depending on whether the angle β that we
smoothen satisfies β < α, α < β < π − α, or π − α < β; compare with Figure 7.

The rest is analogous to the previous proof.

α

Figure 7: Smoothening a crossing changes the number of inscribed rectangles modulo 2 if and
only if the crossing is α-orthogonal.
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