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Generalized Fermat Equation

Let (p, q, r) ∈ Z 3
≥2. The equation

xp + yq = z r

is a Generalized Fermat Equation of signature (p, q, r).

A solution (x , y , z) ∈ Z 3 is called

non-trivial if xyz 6= 0,

primitive if gcd(x , y , z) = 1.
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Conjecture (Darmon & Granville, Tijdeman, Zagier, Beal)

Suppose
1

p
+

1

q
+

1

r
< 1.

The only non-trivial primitive solutions to xp + yq = z r are

1 + 23 = 32, 25 + 72 = 34,
73 + 132 = 29, 27 + 173 = 712,
35 + 114 = 1222, 177 + 762713 = 210639282,
14143 + 22134592 = 657, 92623 + 153122832 = 1137,
438 + 962223 = 300429072, 338 + 15490342 = 156133.

Poonen–Schaefer–Stoll: (2, 3, 7).
Bruin: (2, 3, 8), (2, 8, 3), (2, 3, 9), (2, 4, 5), (2, 5, 4).
Many others . . .
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Infinite Families of Exponents:

Wiles: (p, p, p).

Darmon and Merel: (p, p, 2), (p, p, 3).

Many other infinite families by many people . . .

The study of infinite families uses Frey curves, modularity and
level-lowering over Q (or Q-curves).

Let us look at xp + yp = z` for p and ` primes ≥ 5.
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Solve xp + y p = z `

Näıve idea

To solve xp + yp = z` factor over Q (ζ), where ζ is a p-th root of unity.

(x + y)(x + ζy) . . . (x + ζp−1y) = z`.

x + ζ jy = αjξ
`
j , αj ∈ finite set.

∃εj ∈ Q (ζ) such that ε0 (x + y) + ε1 (x + ζy) + ε2 (x + ζ2y) = 0.

γ0ξ
`
0 + γ1ξ

`
1 + γ2ξ

`
2 = 0 (γ0, γ1, γ2) ∈ finite set.

It looks like x` + y ` + z` = 0 solved by Wiles.

Problems

Problem 1: trivial solutions (±1, 0,±1), (0,±1,±1) become non-trivial.
Problem 2: modularity theorems over non-totally real fields.



Diophantine equations and semistable elliptic curves over totally real fields

x2` + y2m = zp

1 Generalized Fermat Equation

2 x2` + y 2m = zp

3 The proof



Diophantine equations and semistable elliptic curves over totally real fields

x2` + y2m = zp

Theorem (A.-Siksek)

Let p = 3, 5, 7, 11 or 13. Let `, m ≥ 5 be primes, and if p = 13 suppose
moreover that `, m 6= 7. Then the only primitive solutions to

x2` + y 2m = zp,

are the trivial ones (x , y , z) = (±1, 0, 1) and (0,±1, 1).

Remark: this is a bi-infinite family of equations.
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Let `, m, p ≥ 5 be primes, ` 6= p, m 6= p.

x2` + y 2m = zp, gcd(x , y , z) = 1.

Modulo 8 we get 2 - z so WLOG 2 | x . Only expected solution (0,±1, 1).{
x` + ymi = (a + bi)p

x` − ymi = (a− bi)p
a, b ∈ Z gcd(a, b) = 1.

x` =
1

2
((a + bi)p + (a− bi)p) = a ·

p−1∏
j=1

(
(a + bi) + (a− bi)ζ j

)
= a ·

(p−1)/2∏
j=1

(
(θj + 2)a2 + (θj − 2)b2

)
θj = ζ j + ζ−j ∈ Q (ζ + ζ−1).
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Let K := Q (ζ + ζ−1) then

x` = a ·
(p−1)/2∏

j=1

(
(θj + 2)a2 + (θj − 2)b2

)︸ ︷︷ ︸
fj (a,b)

θj = ζ j + ζ−j ∈ K .

p - x =⇒ a = α`, fj(a, b) · OK = b `j ,

p | x =⇒ a = p`−1α`, fj(a, b) · OK = p b `j , p = (θj − 2) | p.

(θ2 − 2)f1(a, b)︸ ︷︷ ︸
u

+ (2− θ1)f2(a, b)︸ ︷︷ ︸
v

+ 4(θ1 − θ2)a2︸ ︷︷ ︸
w

= 0 .
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Frey curve

(∗) E : Y 2 = X (X − u)(X + v), ∆ = 16u2v 2w 2.

Problems

Problem 1: trivial solutions (0,±1, 1) become non-trivial.
Trivial solution x = 0 =⇒ a = 0, so w = 0 =⇒ ∆ = 0.

Problem 2: modularity theorems over non-totally real fields.
K := Q (ζ + ζ−1)
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Lemma

Suppose p - x. Let E be the Frey curve (∗). The curve E is semistable ,
with multiplicative reduction at all primes above 2 and good
reduction at p . It has minimal discriminant and conductor

DE/K = 24`n−4α4`b 2`
j b 2`

k , NE/K = 2 · Rad(αb jb k).

Lemma

Suppose p | x. Let E be the Frey curve (∗). The curve E is semistable ,
with multiplicative reduction at p and at all primes above 2. It has
minimal discriminant and conductor

DE/K = 24`n−4p 2δα4`b 2`
j b 2`

k , NE/K = 2p · Rad(αb jb k).
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Galois representations and Elliptic curves

Let ` be a prime, and E elliptic curve over totally real field K . The
mod ` Galois Representation attached to E is given by

ρE ,` : GK → Aut(E [`]) ∼= GL2(F`) GK = Gal(K/K ).

The `-adic Galois Representation attached to E is given by

ρE ,` : GK → Aut(T`(E )) ∼= GL2(Z `),

where T`(E ) = lim←−E [`n] is the `-adic Tate module.

Definition

E is modular if there exists a cuspidal Hilbert modular eigenform f such
that ρE ,` ∼ ρf,`.
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Proof of Fermat’s Last Theorem uses
three big theorems:

1 Mazur: irreducibility of mod `
representations of elliptic curves
over Q for ` > 163 (i.e. absence
of `-isogenies).

2 Wiles (and others): modularity of
elliptic curves over Q .

3 Ribet: level lowering for mod `
representations—this requires
irreducibility and modularity.

Over totally real fields we have

1 Merel’s uniform boundedness
theorem for torsion. No
corresponding result for isogenies.

2 Partial modularity results, no clean
statements.

3 Level lowering for mod `
representations works exactly as
for Q : theorems of Fujiwara,
Jarvis and Rajaei. Requires
irreducibility and modularity.
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Reducible representations

Let E be a Frey curve as in (∗).

Lemma

Suppose ρE ,` is reducible. Then either E/K has non-trivial `-torsion, or
is `-isogenous to an an elliptic curve over K that has non-trivial `-torsion.

Lemma

For p = 5, 7, 11, 13, and ` ≥ 5, with ` 6= p, the mod ` representation
ρE ,` is irreducible.

Sketch of the proof: use h+
K = 1 for all these p, class field theory and

Classification of `-torsion over fields of degree 2 (Kamienny), degree
3 (Parent), degrees 4, 5, 6 (Derickx, Kamienny, Stein, and Stoll).

“A criterion to rule out torsion groups for elliptic curves over
number fields”, Bruin and Najman.

Computations of K -points on modular curves.
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Modularity

Three kinds of modularity theorems:

Kisin, Gee, Breuil, . . . :
if ` = 3, 5 or 7 and ρE ,`(GK ) is ‘big’ then E is modular.

Thorne:
if ` = 5, and

√
5 /∈ K and PρE ,`(GK ) is dihedral then E is modular.

Skinner & Wiles:
if ρE ,`(GK ) is reducible (and other conditions) then E is modular.

Fix ` = 5 and suppose
√

5 /∈ K . Remaining case ρE ,`(GK ) reducible.
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Skinner & Wiles

K totally real field,

E/K semistable elliptic curve,

5 unramified in K ,

ρE ,5 is reducible:

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Theorem (Skinner & Wiles)

Suppose K (ψ1/ψ2) is an abelian extension of Q . Then E is modular.

Plan: Start with K abelian over Q . Find sufficient conditions so that
K (ψ1/ψ2) ⊆ K (ζ5). Then (assuming these conditions) E is modular.
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Reducible Representations

K real abelian field.

E/K semistable elliptic curve,

q unramified in K ,

ρE ,q is reducible:

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2

1

χ
.

K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

If K (ψ2
1) = K or K (ψ2

2) = K , then E is modular.
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The proof

Modularity

Theorem (A.-Siksek)

Let K be a real abelian number field. Write S5 = {q | 5}. Suppose

(a) 5 is unramified in K ;

(b) the class number of K is odd;

(c) for each non-empty proper subset S of S5, there is some totally
positive unit u of OK such that∏

q∈S

NormFq/F5
(u mod q) 6= 1 .

Then every semistable elliptic curve E over K is modular.

This theorem buids over results of Thorne and Skinner & Wiles.
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Proof.

By Kisin, . . . and Thorne, can suppose that ρE ,5 is reducible.

By (c), ψ1 or ψ2 is unramified at all finite places.

So ψ2
1 or ψ2

2 is unramified at all places.

By (b), K (ψ2
1) = K or K (ψ2

2) = K .

Proposition

Let K be a real abelian field of conductor n < 100. Let E be a semistable
elliptic curve over K . Then E is modular.

This proposition relies on the previous theorem and on a formulation of
Thorne’s theorem for ` = 7 for semistable elliptic curves.
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Corollary

For p = 5, 7, 11, 13, the Frey curve E is modular.

Proof.

For p = 7, 11, 13 apply the previous theorem. For p = 5 we have
K = Q (

√
5). Modularity of elliptic curves over quadratic fields was

proved by Freitas, Le Hung & Siksek.
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Let E/K be the Frey curve (∗), then ρE ,` is modular and irreducible.
Then ρE ,` ∼ ρf,λ for some Hilbert cuspidal eigenform f over K of parallel
weight 2 that is new at level N`, where

N` =

{
2OK if p - x

2p if p | x .

Here λ | ` is a prime of Q f, the field generated over Q by the eigenvalues
of f.

For p = 3 the modular forms to consider are classical newform of weight
2 and level 6: there is no such newform and so we conclude.
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p Case Field K Frey curve E Level N Eigenforms f [Q f : Q ]

5
5 - x K E 2K – –
5 | x K E 2p – –

7
7 - x K E 2K – –
7 | x K E 2p f1 1

11
11 - x K E 2K f2 2
11 | x K E 2p f3, f4 5

13
13 - x K E 2K

f5, f6 1
f7 2
f8 3

13 | x K ′ E ′ 2B
f9, f10 1
f11, f12 3

Table : Frey curve and Hilbert eigenform information. Here p is the unique
prime of K above p, K ′ is the unique subfield K ′ of degree (p − 1)/4 and B is
the unique prime of K ′ above p. The curve E ′ is a quadratic twist of E over K ′.
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In almost each case we deduce a contradiction using the q-expansions of
the Hilbert modular forms in the table and the study of the Frey curve
described before.

The only case left is the case p = 13 and ` = 7: we strongly suspect that
reducibility of ρf11,λ (where λ is the unique prime above 7 of Q f11

) but
we are unable to prove it.
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Université de Bordeaux, June 2017

Thanks!


	Generalized Fermat Equation
	x2+y2m=zp
	The proof
	Residual irreducibility
	Modularity


