## DIOPHANTINE EQUATIONS AND SEMISTABLE ELLIPTIC CURVES OVER TOTALLY REAL FIELDS

Samuele Anni (IWR - Universität Heidelberg) joint with Samir Siksek (University of Warwick)

Journées Algophantiennes Bordelaises 2017, Université de Bordeaux, June 2017



UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

### GENERALIZED FERMAT EQUATION

### $x^{2\ell} + y^{2m} = z^p$

### **3** The proof

#### GENERALIZED FERMAT EQUATION

Let  $(p, q, r) \in \mathbb{Z}^{3}_{\geq 2}$ . The equation

$$x^p + y^q = z^r$$

### is a Generalized Fermat Equation of signature (p, q, r).

A solution 
$$(x, y, z) \in \mathbb{Z}^3$$
 is called

- non-trivial if  $xyz \neq 0$ ,
- primitive if gcd(x, y, z) = 1.

### CONJECTURE (DARMON & GRANVILLE, TIJDEMAN, ZAGIER, BEAL)

Suppose

$$\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1.$$

The only non-trivial primitive solutions to  $x^p + y^q = z^r$  are

 $\begin{array}{ll} 1+2^3=3^2, & 2^5+7^2=3^4, \\ 7^3+13^2=2^9, & 2^7+17^3=71^2, \\ 3^5+11^4=122^2, & 17^7+76271^3=21063928^2, \\ 1414^3+2213459^2=65^7, & 9262^3+15312283^2=113^7, \\ 43^8+96222^3=30042907^2, & 33^8+1549034^2=15613^3. \end{array}$ 

Poonen–Schaefer–Stoll: (2, 3, 7). Bruin: (2, 3, 8), (2, 8, 3), (2, 3, 9), (2, 4, 5), (2, 5, 4). Many others . . .

### Infinite Families of Exponents:

- Wiles: (*p*, *p*, *p*).
- Darmon and Merel: (*p*, *p*, 2), (*p*, *p*, 3).
- Many other infinite families by many people ....

The study of infinite families uses Frey curves, modularity and level-lowering over  $\mathbb{Q}$  (or  $\mathbb{Q}$ -curves).

Let us look at  $x^p + y^p = z^{\ell}$  for p and  $\ell$  primes  $\geq 5$ .

Solve 
$$x^p + y^p = z^\ell$$

### Naïve idea

To solve  $x^p + y^p = z^\ell$  factor over  $\mathbb{Q}(\zeta)$ , where  $\zeta$  is a *p*-th root of unity.  $(x + y)(x + \zeta y) \dots (x + \zeta^{p-1}y) = z^\ell$ .  $x + \zeta^j y = \alpha_j \xi_j^\ell$ ,  $\alpha_j \in \text{finite set.}$   $\exists \epsilon_j \in \mathbb{Q}(\zeta)$  such that  $\epsilon_0 (x + y) + \epsilon_1 (x + \zeta y) + \epsilon_2 (x + \zeta^2 y) = 0$ .  $\gamma_0 \xi_0^\ell + \gamma_1 \xi_1^\ell + \gamma_2 \xi_2^\ell = 0$   $(\gamma_0, \gamma_1, \gamma_2) \in \text{finite set.}$ It looks like  $x^\ell + y^\ell + z^\ell = 0$  solved by Wiles.

#### Problems

**Problem 1:** trivial solutions  $(\pm 1, 0, \pm 1), (0, \pm 1, \pm 1)$  become non-trivial. **Problem 2:** modularity theorems over non-totally real fields.

### **O** GENERALIZED FERMAT EQUATION

$$2 x^{2\ell} + y^{2m} = z^p$$



#### THEOREM (A.-SIKSEK)

 $\Box_x^{2\ell} + v^{2m} = z^p$ 

Let p = 3, 5, 7, 11 or 13. Let  $\ell$ ,  $m \ge 5$  be primes, and if p = 13 suppose moreover that  $\ell$ ,  $m \ne 7$ . Then the only primitive solutions to

$$x^{2\ell} + y^{2m} = z^p,$$

are the trivial ones  $(x, y, z) = (\pm 1, 0, 1)$  and  $(0, \pm 1, 1)$ .

**Remark**: this is a **bi-infinite** family of equations.

Let 
$$\ell$$
,  $m$ ,  $p \geq 5$  be primes,  $\ell \neq p$ ,  $m \neq p$ .

$$x^{2\ell} + y^{2m} = z^p$$
,  $gcd(x, y, z) = 1$ .

Modulo 8 we get  $2 \nmid z$  so WLOG  $2 \mid x$ . Only expected solution  $(0, \pm 1, 1)$ .

$$\begin{cases} x^{\ell} + y^m i = (a + bi)^p \\ x^{\ell} - y^m i = (a - bi)^p \end{cases} \qquad a, b \in \mathbb{Z} \quad \gcd(a, b) = 1.$$

$$x^{\ell} = \frac{1}{2} \left( (a + bi)^{p} + (a - bi)^{p} \right) = a \cdot \prod_{j=1}^{p-1} \left( (a + bi) + (a - bi)\zeta^{j} \right)$$

$$= \mathbf{a} \cdot \prod_{j=1}^{(p-1)/2} \left( (\theta_j + 2) \mathbf{a}^2 + (\theta_j - 2) \mathbf{b}^2 \right) \qquad \theta_j = \zeta^j + \zeta^{-j} \in \mathbb{Q} \left( \zeta + \zeta^{-1} \right).$$

Let 
$$K := \mathbb{Q}(\zeta + \zeta^{-1})$$
 then

$$x^{\ell} = a \cdot \prod_{j=1}^{(p-1)/2} \underbrace{\left((\theta_j+2)a^2 + (\theta_j-2)b^2\right)}_{f_j(a,b)} \qquad \theta_j = \zeta^j + \zeta^{-j} \in \mathcal{K}.$$

$$p \nmid x \implies a = \alpha^{\ell}, \qquad f_j(a, b) \cdot \mathcal{O}_{\mathcal{K}} = \mathfrak{b}_j^{\ell}, \\ p \mid x \implies a = p^{\ell-1} \alpha^{\ell}, \qquad f_j(a, b) \cdot \mathcal{O}_{\mathcal{K}} = \mathfrak{p} \mathfrak{b}_j^{\ell}, \qquad \mathfrak{p} = (\theta_j - 2) \mid p.$$

$$\underbrace{(\theta_2-2)f_1(a,b)}_{u}+\underbrace{(2-\theta_1)f_2(a,b)}_{v}+\underbrace{4(\theta_1-\theta_2)a^2}_{w}=0.$$

### Frey curve

(\*) 
$$E: Y^2 = X(X - u)(X + v), \quad \Delta = 16u^2v^2w^2.$$

#### PROBLEMS

**Problem 1:** trivial solutions  $(0, \pm 1, 1)$  become non-trivial. Trivial solution  $x = 0 \implies a = 0$ , so  $w = 0 \implies \Delta = 0$ .

**Problem 2:** modularity theorems over non-totally real fields.  $K := \mathbb{Q}(\zeta + \zeta^{-1})$ 

### Lemma

 $\sum_{x^{2\ell}} + v^{2m} = z^p$ 

Suppose  $p \nmid x$ . Let *E* be the Frey curve (\*). The curve *E* is semistable, with **multiplicative reduction** at all primes above **2** and **good** reduction at  $\mathfrak{p}$ . It has minimal discriminant and conductor

$$\mathcal{D}_{E/K} = 2^{4\ell n - 4} \alpha^{4\ell} \mathfrak{b}_j^{2\ell} \mathfrak{b}_k^{2\ell}, \qquad \mathcal{N}_{E/K} = 2 \cdot \operatorname{Rad}(\alpha \mathfrak{b}_j \mathfrak{b}_k)$$

### Lemma

Suppose  $p \mid x$ . Let *E* be the Frey curve (\*). The curve *E* is semistable, with **multiplicative reduction at** p and at all primes above **2**. It has minimal discriminant and conductor

$$\mathcal{D}_{E/K} = 2^{4\ell n - 4} \mathfrak{p}^{2\delta} \alpha^{4\ell} \mathfrak{b}_j^{2\ell} \mathfrak{b}_k^{2\ell}, \qquad \mathcal{N}_{E/K} = 2\mathfrak{p} \cdot \operatorname{Rad}(\alpha \mathfrak{b}_j \mathfrak{b}_k).$$

### Lemma

 $\sum_{x^{2\ell}} + v^{2m} = z^p$ 

Suppose  $p \nmid x$ . Let *E* be the Frey curve (\*). The curve *E* is semistable, with **multiplicative reduction** at all primes above **2** and **good** reduction at  $\mathfrak{p}$ . It has minimal discriminant and conductor

$$\mathcal{D}_{E/K} = 2^{4\ell n - 4} \alpha^{4\ell} \mathfrak{b}_j^{2\ell} \mathfrak{b}_k^{2\ell}, \qquad \mathcal{N}_{E/K} = 2 \cdot \operatorname{Rad}(\alpha \mathfrak{b}_j \mathfrak{b}_k)$$

### Lemma

Suppose  $p \mid x$ . Let *E* be the Frey curve (\*). The curve *E* is semistable, with **multiplicative reduction at** p and at all primes above **2**. It has minimal discriminant and conductor

$$\mathcal{D}_{E/K} = 2^{4\ell n - 4} \mathfrak{p}^{2\delta} \alpha^{4\ell} \mathfrak{b}_j^{2\ell} \mathfrak{b}_k^{2\ell}, \qquad \mathcal{N}_{E/K} = 2\mathfrak{p} \cdot \operatorname{Rad}(\alpha \mathfrak{b}_j \mathfrak{b}_k)$$

### **1** GENERALIZED FERMAT EQUATION

### $2 x^{2\ell} + y^{2m} = z^p$

### **③** The proof

- Residual irreducibility
- Modularity

### GALOIS REPRESENTATIONS AND ELLIPTIC CURVES

Let  $\ell$  be a prime, and E elliptic curve over totally real field K. The **mod**  $\ell$  **Galois Representation** attached to E is given by

$$\overline{\rho}_{E,\ell} : G_{\mathcal{K}} o \operatorname{Aut}(E[\ell]) \cong \operatorname{GL}_2(\mathbb{F}_\ell) \qquad G_{\mathcal{K}} = \operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K}).$$

The  $\ell$ -adic Galois Representation attached to E is given by

$$\rho_{E,\ell} : G_{\mathcal{K}} \to \operatorname{Aut}(T_{\ell}(E)) \cong \operatorname{GL}_2(\mathbb{Z}_{\ell}),$$

where  $T_{\ell}(E) = \lim_{l \to \infty} E[\ell^n]$  is the  $\ell$ -adic Tate module.

#### DEFINITION

*E* is **modular** if there exists a cuspidal Hilbert modular eigenform  $\mathfrak{f}$  such that  $\rho_{E,\ell} \sim \rho_{\mathfrak{f},\ell}$ .

Proof of Fermat's Last Theorem uses three big theorems:

- Mazur: irreducibility of mod ℓ representations of elliptic curves over Q for ℓ > 163 (i.e. absence of ℓ-isogenies).
- Wiles (and others): modularity of elliptic curves over Q.
- Ribet: level lowering for mod l representations—this requires irreducibility and modularity.

Over totally real fields we have

- Merel's uniform boundedness theorem for torsion. No corresponding result for isogenies.
- Partial modularity results, no clean statements.
- Level lowering for mod l representations works exactly as for Q: theorems of Fujiwara, Jarvis and Rajaei. Requires irreducibility and modularity.

### REDUCIBLE REPRESENTATIONS

Let *E* be a Frey curve as in (\*).

#### Lemma

Suppose  $\overline{\rho}_{E,\ell}$  is reducible. Then either E/K has non-trivial  $\ell$ -torsion, or is  $\ell$ -isogenous to an an elliptic curve over K that has non-trivial  $\ell$ -torsion.

#### Lemma

For p = 5, 7, 11, 13, and  $\ell \ge 5$ , with  $\ell \ne p$ , the mod  $\ell$  representation  $\overline{\rho}_{E,\ell}$  is irreducible.

Sketch of the proof: use  $h_{K}^{+} = 1$  for all these p, class field theory and

- Classification of *l*-torsion over fields of degree 2 (Kamienny), degree 3 (Parent), degrees 4, 5, 6 (Derickx, Kamienny, Stein, and Stoll).
- "A criterion to rule out torsion groups for elliptic curves over number fields", Bruin and Najman.
- Computations of K-points on modular curves.

### Modularity

### Three kinds of modularity theorems:

- Kisin, Gee, Breuil, ...: if ℓ = 3, 5 or 7 and p
  <sub>E.ℓ</sub>(G<sub>K</sub>) is 'big' then E is modular.
- Thorne:

if  $\ell = 5$ , and  $\sqrt{5} \notin K$  and  $\mathbb{P}\overline{\rho}_{E,\ell}(G_K)$  is dihedral then E is modular.

• Skinner & Wiles:

if  $\overline{\rho}_{E,\ell}(G_{\kappa})$  is reducible (and other conditions) then E is modular.

Fix  $\ell = 5$  and suppose  $\sqrt{5} \notin K$ . Remaining case  $\overline{\rho}_{E,\ell}(G_K)$  reducible.

### Skinner & Wiles

- K totally real field,
- E/K semistable elliptic curve,
- 5 unramified in K,
- $\overline{\rho}_{E,5}$  is reducible:

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i \ : \ G_K \to \mathbb{F}_5^{\times}.$$

### THEOREM (SKINNER & WILES)

Suppose  $K(\psi_1/\psi_2)$  is an abelian extension of  $\mathbb{Q}$ . Then E is modular.

**Plan:** Start with K abelian over  $\mathbb{Q}$ . Find sufficient conditions so that  $K(\psi_1/\psi_2) \subseteq K(\zeta_5)$ . Then (assuming these conditions) E is modular.

### **REDUCIBLE REPRESENTATIONS**

- K real abelian field.
- E/K semistable elliptic curve,
- q unramified in K,
- $\overline{\rho}_{E,q}$  is reducible:

$$\overline{\rho}_{E,5} \sim \begin{pmatrix} \psi_1 & * \\ 0 & \psi_2 \end{pmatrix}, \qquad \psi_i \ : \ G_K \to \mathbb{F}_5^{\times}.$$

Fact:  $\psi_1 \psi_2 = \chi$  where  $\chi$  :  $G_K \to \mathbb{F}_5^{\times}$  satisfies  $\zeta_5^{\sigma} = \zeta_5^{\chi(\sigma)}$ .

$$\frac{\psi_1}{\psi_2} = \frac{\chi}{\psi_2^2} = \frac{\psi_1^2}{\chi}$$

 $K(\psi_1/\psi_2) \subseteq K(\zeta_5)K(\psi_2^2), \qquad K(\psi_1/\psi_2) \subseteq K(\zeta_5)K(\psi_1^2).$ 

If  $K(\psi_1^2) = K$  or  $K(\psi_2^2) = K$ , then E is modular.

### Modularity

### THEOREM (A.-SIKSEK)

Let K be a real abelian number field. Write  $S_5 = \{q \mid 5\}$ . Suppose

- (A) 5 is unramified in K;
- (B) the class number of K is odd;
- (C) for each non-empty proper subset S of  $S_5$ , there is some totally positive unit u of  $\mathcal{O}_K$  such that

$$\prod_{\mathfrak{q}\in S} \operatorname{Norm}_{\mathbb{F}_{\mathfrak{q}}/\mathbb{F}_{5}}(u \bmod \mathfrak{q}) \neq \overline{1}.$$

Then every semistable elliptic curve E over K is modular.

This theorem buids over results of Thorne and Skinner & Wiles.

### Proof.

- By Kisin, ... and Thorne, can suppose that  $\overline{\rho}_{E,5}$  is reducible.
- By (c),  $\psi_1$  or  $\psi_2$  is unramified at all finite places.
- So  $\psi_1^2$  or  $\psi_2^2$  is unramified at all places.
- By (b),  $K(\psi_1^2) = K$  or  $K(\psi_2^2) = K$ .

### PROPOSITION

Let K be a real abelian field of conductor n < 100. Let E be a semistable elliptic curve over K. Then E is modular.

This proposition relies on the previous theorem and on a formulation of Thorne's theorem for  $\ell = 7$  for semistable elliptic curves.

#### - The proof

#### COROLLARY

For p = 5, 7, 11, 13, the Frey curve E is modular.

#### Proof.

For p = 7, 11, 13 apply the previous theorem. For p = 5 we have  $K = \mathbb{Q}(\sqrt{5})$ . Modularity of elliptic curves over quadratic fields was proved by Freitas, Le Hung & Siksek.

Let E/K be the Frey curve (\*), then  $\overline{\rho}_{E,\ell}$  is modular and irreducible. Then  $\overline{\rho}_{E,\ell} \sim \overline{\rho}_{\mathfrak{f},\lambda}$  for some Hilbert cuspidal eigenform  $\mathfrak{f}$  over K of parallel weight 2 that is new at level  $\mathcal{N}_{\ell}$ , where

$$\mathcal{N}_{\ell} = \begin{cases} 2\mathcal{O}_{\mathcal{K}} & \text{if } p \nmid x \\ 2\mathfrak{p} & \text{if } p \mid x \, . \end{cases}$$

Here  $\lambda \mid \ell$  is a prime of  $\mathbb{Q}_{\mathfrak{f}}$ , the field generated over  $\mathbb{Q}$  by the eigenvalues of  $\mathfrak{f}$ .

For p = 3 the modular forms to consider are classical newform of weight 2 and level 6: there is no such newform and so we conclude.

| р  | Case          | Field ${\cal K}$ | Frey curve ${\cal E}$ | Level ${\cal N}$ | Eigenforms f                      | $[\mathbb{Q}_{\mathfrak{f}}:\mathbb{Q}]$ |
|----|---------------|------------------|-----------------------|------------------|-----------------------------------|------------------------------------------|
| 5  | 5 <i>∤x</i>   | K                | E                     | 2 <sub>K</sub>   | -                                 | _                                        |
|    | 5   <i>x</i>  | K                | E                     | 2p               | —                                 | -                                        |
| 7  | 7 <i>∤ x</i>  | K                | E                     | 2 <sub>K</sub>   | _                                 | _                                        |
|    | 7   x         | K                | E                     | 2p               | f1                                | 1                                        |
| 11 | $11 \nmid x$  | K                | E                     | 2 <sub>K</sub>   | f2                                | 2                                        |
|    | 11   x        | K                | E                     | 2p               | f3, f4                            | 5                                        |
| 13 | 13 ∤ <i>x</i> | К                | E                     | 2 <sub>K</sub>   | f5, f6                            | 1                                        |
|    |               |                  |                       |                  | f7                                | 2                                        |
|    |               |                  |                       |                  | f8                                | 3                                        |
|    | 13   x        | K'               | E'                    | 2 <b>B</b>       | f9, f10                           | 1                                        |
|    |               |                  |                       |                  | f <sub>11</sub> , f <sub>12</sub> | 3                                        |

TABLE : Frey curve and Hilbert eigenform information. Here  $\mathfrak{p}$  is the unique prime of K above p, K' is the unique subfield K' of degree (p-1)/4 and  $\mathfrak{B}$  is the unique prime of K' above p. The curve E' is a quadratic twist of E over K'.

In almost each case we deduce a contradiction using the q-expansions of the Hilbert modular forms in the table and the study of the Frey curve described before.

The only case left is the case p = 13 and  $\ell = 7$ : we strongly suspect that reducibility of  $\overline{p}_{\mathfrak{f}_{11},\lambda}$  (where  $\lambda$  is the unique prime above 7 of  $\mathbb{Q}_{\mathfrak{f}_{11}}$ ) but we are unable to prove it.

## DIOPHANTINE EQUATIONS AND SEMISTABLE ELLIPTIC CURVES OVER TOTALLY REAL FIELDS

Samuele Anni (IWR - Universität Heidelberg) joint with Samir Siksek (University of Warwick)

Journées Algophantiennes Bordelaises 2017, Université de Bordeaux, June 2017

# Thanks!



UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386