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sENERALIZED FERMAT EQUATION

Let (p, q, r) € Z322. The equation
xP 4 y9=2z"
is a Generalized Fermat Equation of signature (p, g, r).

A solution (x,y,z) € Z* is called
@ non-trivial if xyz # 0,
o primitive if gcd(x,y,z) = 1.
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CONJECTURE (DARMON & GRANVILLE, TIJDEMAN, ZAGIER, BEAL)

Suppose
1 1 1
=fF=F=<I
p q r
The only non-trivial primitive solutions to xP + y9 = z" are
1428 =3 26 4+77 =34
7?4132 =29, 21 +17° =712,
35 +11% = 1222, 177 + 762713 = 21063928,

14143 4+ 22134592 = 657, 92623 + 153122832 = 1137,
438 4 062223 = 300429072, 338 ++ 15490342 = 156133.

Poonen—Schaefer-Stoll: (2,3,7).
Bruin: (2,3,8), (2,8,3), (2.3,9), (2.4,5), (2,5,4).
Many others ...
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Infinite Families of Exponents:

o Wiles: (p,p,p).
e Darmon and Merel: (p, p,2), (p, p,3).

o Many other infinite families by many people ...

The study of infinite families uses Frey curves, modularity and
level-lowering over Q (or Q-curves).

Let us look at xP 4 yP = z¢ for p and £ primes > 5.
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SOLVE xP + yP = Z*

NAIVE IDEA

To solve xP + yP = z* factor over Q(¢), where ( is a p-th root of unity.

(x+Y)(x+Cy)... (x+¢Py) = 2"

x+y = o, a;j € finite set.
E|€j € Q(C) such that ¢ (X+y) + €1 (X—|— Cy) 4 @ (X + C2}/) —0.

Y086 +1&L + 726 =0 (70,71, 72) € finite set.
It looks like x¢ 4 y* 4+ z* = 0 solved by Wiles.

PROBLEMS

Problem 1: trivial solutions (1,0, £1), (0,41, +1) become non-trivial.
Problem 2: modularity theorems over non-totally real fields.
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-7 + y’lm

e X2L/_|_y2m = 7P
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THEOREM (A.-SIKSEK)

Let p=3,5,7,11 or13. Let ¢, m > 5 be primes, and if p = 13 suppose
moreover that ¢, m # 7. Then the only primitive solutions to

X2Z 4 y2m _ Zp’

are the trivial ones (x,y,z) = (£1,0,1) and (0,£1,1).

Remark: this is a bi-infinite family of equations.
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Let £, m, p > 5 be primes, £ # p, m # p.
Xy = ZP, ged(x,y,z) = 1.

Modulo 8 we get 2tz so WLOG 2 | x. Only expected solution (0,£1,1).

Vi m; _ \p
{X +ymi=(a+bi) a,beZ gecd(a,b)=1.

xt —ymi = (a— bi)P

xt = %((a+bi)”+(a— bi)P) =a- [ [ ((a+ bi)+ (a— bi)¢)
j=1
(p—1)/2

=a- [[ (G+22+0;-2)p°) 6=+ eQ(C+¢).

=1
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Let K :=Q (¢ + ¢ 1) then

(p-1)/2
X'=a- I ((0;+2@+(0,-2)p") 6;=+(7eK.
= f(a.b)
ptx = a=at, f}(a,b)~OK:bf,

T

-

~
<h

plx = a=p"taf,  fi(a,b)-Ok=pbj, p=(6—2)|p

(02 — 2)fi(a, b) + (2 — 01)f(a, b) +4(0; — 62)a*> = 0.

u v w
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Frey curve

(%) E: Y2=X(X—-u)(X+V), A = 1607w,

PROBLEMS

)

: 5 -
Trivial solution x =0 — a=0,sow=0 — A =0.

K:=Q(+¢™)
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LEMMA

Suppose pt x. Let E be the Frey curve (x). The curve E is ,

with multiplicative reduction at all primes above 2 and good
reduction at p. /t has minimal discriminant and conductor

DE/K = 24&174044[[3?65%}, NE/K =2 Rad(abjb k)-

LEMMA

Suppose p | x. Let E be the Frey curve (x). The curve E is ,

with multiplicative reduction at p and at all primes above 2. It has
minimal discriminant and conductor

— 24["74

DE/K pzéa‘walbi@, NE/K = 2p -Rad(ahjb k)-
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@ THE PROOF
@ Residual irreducibility
@ Modularity
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(FALOIS REPRESENTATIONS AND ELLIPTIC CURVES

Let ¢ be a prime, and E elliptic curve over totally real field K. The
mod ¢ Galois Representation attached to E is given by

Pes ¢ Gk — Aut(E[(]) = GLy(IFy) Gk = Gal(K/K).
The /-adic Galois Representation attached to E is given by
pE ¢ Gk — Aut(T.(E)) = GLo(Z ),
where T((E) = lim E[¢"] is the ¢-adic Tate module.

DEFINITION

E is modular if there exists a cuspidal Hilbert modular eigenform § such
that PE.¢ ~ Pf0-
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Proof of Fermat's Last Theorem uses
three big theorems:

@ Mazur: irreducibility of mod /¢
representations of elliptic curves
over Q for £ > 163 (i.e. absence
of (-isogenies).

@ Wiles (and others): modularity of
elliptic curves over Q.

© Ribet: level lowering for mod /¢
representations—this requires
irreducibility and modularity.

Over totally real fields we have

o

(2]

(8]

Merel's uniform boundedness
theorem for torsion. No
corresponding result for isogenies.

Partial modularity results, no clean
statements.

Level lowering for mod ¢
representations works exactly as
for Q: theorems of Fujiwara,
Jarvis and Rajaei. Requires
irreducibility and modularity.
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REDUCIBLE REPRESENTATIONS

Let E be a Frey curve as in (x).

LEMMA

Suppose pg , is reducible. Then either E/K has non-trivial {-torsion, or
is £-isogenous to an an elliptic curve over K that has non-trivial {-torsion.

LEMMA
Forp=5,7, 11, 13, and ¢ > 5, with ¢ # p, the mod ¢ representation
PE ¢ is irreducible.

Sketch of the proof: use ht = 1 for all these p, class field theory and

o Classification of ¢-torsion over fields of degree 2 (Kamienny), degree
3 (Parent), degrees 4, 5, 6 (Derickx, Kamienny, Stein, and Stoll).

@ "A criterion to rule out torsion groups for elliptic curves over
number fields”, Bruin and Najman.

o Computations of K-points on modular curves.



S AND SEMISTABLE ELLIPTIC CURVES OVER TOTALLY REAL FIELDS

MODULARITY

Three kinds of modularity theorems:
o Kisin, Gee, Breuil, ...:
if £=3,50r7and pg ,(Gk) is ‘big’ then E is modular.

o Thorne:
if =5, and v5 ¢ K and Ppe ((Gk) is dihedral then E is modular.

o Skinner & Wiles:
if pe.¢(Gk) is reducible (and other conditions) then E is modular.

Fix £ =5 and suppose v/5 ¢ K. Remaining case pg ,(Gx) reducible.
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SKINNER & WILES

o K totally real field,
e E/K semistable elliptic curve,
e 5 unramified in K,

® g5 is reducible:

_ *
pE,S ~ (%1 ¢2> R w,' : GK — F?

THEOREM (SKINNER & WILES)

Suppose K(11/12) is an abelian extension of Q. Then E is modular.

Plan: Start with K abelian over Q. Find sufficient conditions so that
K(11/12) C K(¢s). Then (assuming these conditions) E is modular.
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REDUCIBLE REPRESENTATIONS

o K real abelian field.
e E/K semistable elliptic curve,
@ g unramified in K,

® DE 4 is reducible:
_ *
PES5 ™ (%1 w2> ) wi D Gk — F?

Fact: ¢y =x where y : Gk — FY satisfies (¢ = ¢X(7).

R

vy 3 x
K(¥1/12) € K(G)K(Y5),  K(i1/h2) € K(¢s)K(43).

If K(v?) = K or K(13) = K, then E is modular.
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MODULARITY

THEOREM (A.-SIKSEK)

Let K be a real abelian number field. Write Ss = {q | 5}. Suppose
(A) 5 is unramified in K;
(B) the class number of K is odd;

(C) for each non-empty proper subset S of Ss, there is some totally
positive unit u of Ok such that

H Normg, /r;(u mod q) # 1.
qes

Then every semistable elliptic curve E over K is modular.

This theorem buids over results of Thorne and Skinner & Wiles.
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PROOF.

@ By Kisin, ...and Thorne, can suppose that pg 5 is reducible.
@ By (c), 11 or 1, is unramified at all finite places.

o So 92 or 92 is unramified at all places.

® By (b), K(v7) = K or K(43) = K.

|D

PROPOSITION

Let K be a real abelian field of conductor n < 100. Let E be a semistable
elliptic curve over K. Then E is modular.

This proposition relies on the previous theorem and on a formulation of
Thorne's theorem for £ = 7 for semistable elliptic curves.
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COROLLARY

For p=5, 7, 11, 13, the Frey curve E is modular.

PROOF.

For p =7, 11, 13 apply the previous theorem. For p =5 we have
K = Q(+/5). Modularity of elliptic curves over quadratic fields was
proved by Freitas, Le Hung & Siksek. O
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Let E/K be the Frey curve (x), then pg , is modular and irreducible.
Then pg , ~ p;  for some Hilbert cuspidal eigenform § over K of parallel
weight 2 that is new at level Ay, where

N = 20k ?fpfx
2p if p|x.

Here A | £ is a prime of Q;, the field generated over Q by the eigenvalues
of §.

For p = 3 the modular forms to consider are classical newform of weight
2 and level 6: there is no such newform and so we conclude.
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| p | Case | Field K [ Frey curve £ | Level N | Eigenforms f | [Q;: Q] |

5 5J[X K E 2K -
5Tx | K E % - -
7 71’X K E 2K - -
TIx | K E 2p f 1
x| K E 2K b 2
(x| K E 20 T Ta 5
fs. fe 1
13tx| K E 2 b 2
13 o 3
/ / fo. f10 1
13| x K E 28 Fir, 1o 3

TABLE : Frey curve and Hilbert eigenform information. Here p is the unique
prime of K above p, K’ is the unique subfield K’ of degree (p — 1)/4 and B is
the unique prime of K’ above p. The curve E’ is a quadratic twist of E over K’.
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In almost each case we deduce a contradiction using the g-expansions of
the Hilbert modular forms in the table and the study of the Frey curve
described before.

The only case left is the case p = 13 and £ = 7: we strongly suspect that
reducibility of p;, \ (where A is the unique prime above 7 of Q5 ) but
we are unable to prove it.
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