p-adic heights and rational points on curves

Jennifer Balakrishnan

Boston University

Journées Algophantiennes Bordelaises 2017 June 8, 2017

Theorem (Faltings, 1983)

Let X *be a smooth projective curve over* \mathbf{Q} *of genus* $g \ge 2$ *. The set* $X(\mathbf{Q})$ *is finite.*

Theorem (Faltings, 1983)

Let X *be a smooth projective curve over* \mathbf{Q} *of genus* $g \ge 2$ *. The set* $X(\mathbf{Q})$ *is finite.*

Theorem (Faltings, 1983)

Let X *be a smooth projective curve over* \mathbf{Q} *of genus* $g \ge 2$ *. The set* $X(\mathbf{Q})$ *is finite.*

One strategy for computing *X*(**Q**):

► Given a curve *X* of genus $g \ge 2$, embed it inside its *Jacobian J*. Mordell-Weil tells us that $J(\mathbf{Q}) = \mathbf{Z}^r \oplus T$.

Theorem (Faltings, 1983)

Let X *be a smooth projective curve over* \mathbf{Q} *of genus* $g \ge 2$ *. The set* $X(\mathbf{Q})$ *is finite.*

One strategy for computing *X*(**Q**):

- ► Given a curve *X* of genus $g \ge 2$, embed it inside its *Jacobian J*. Mordell-Weil tells us that $J(\mathbf{Q}) = \mathbf{Z}^r \oplus T$.
- ► If the rank *r* is *less than g*, can use the Chabauty-Coleman method to compute *X*(**Q**).

The method gives us a regular 1-form whose *p*-adic (Coleman) integral vanishes on rational points.

- The method gives us a regular 1-form whose *p*-adic (Coleman) integral vanishes on rational points.
- ► Coleman also used this to give the bound (for good *p* > 2*g*)

 $\#X(\mathbf{Q}) \leqslant \#X(\mathbf{F}_p) + 2g - 2.$

- The method gives us a regular 1-form whose *p*-adic (Coleman) integral vanishes on rational points.
- ► Coleman also used this to give the bound (for good *p* > 2*g*)

 $\#X(\mathbf{Q}) \leqslant \#X(\mathbf{F}_p) + 2g - 2.$

• This bound can be sharp in practice.

- The method gives us a regular 1-form whose *p*-adic (Coleman) integral vanishes on rational points.
- ► Coleman also used this to give the bound (for good *p* > 2*g*)

$$\#X(\mathbf{Q}) \leqslant \#X(\mathbf{F}_p) + 2g - 2.$$

- This bound can be sharp in practice.
- Even when the bound is not sharp, we can often combine Chabauty–Coleman data at multiple primes (Mordell–Weil sieve) to extract X(Q).

- The method gives us a regular 1-form whose *p*-adic (Coleman) integral vanishes on rational points.
- ► Coleman also used this to give the bound (for good *p* > 2*g*)

$$\#X(\mathbf{Q}) \leqslant \#X(\mathbf{F}_p) + 2g - 2.$$

- This bound can be sharp in practice.
- Even when the bound is not sharp, we can often combine Chabauty–Coleman data at multiple primes (Mordell–Weil sieve) to extract X(Q).

- The method gives us a regular 1-form whose *p*-adic (Coleman) integral vanishes on rational points.
- ► Coleman also used this to give the bound (for good *p* > 2*g*)

$$\#X(\mathbf{Q}) \leqslant \#X(\mathbf{F}_p) + 2g - 2.$$

- This bound can be sharp in practice.
- Even when the bound is not sharp, we can often combine Chabauty–Coleman data at multiple primes (Mordell–Weil sieve) to extract X(Q).

Main question: Can we say anything in *higher* rank?

Consider *X* with affine equation

$$y^2 = x(x-1)(x-2)(x-5)(x-6).$$

We have* $\operatorname{rk} J(\mathbf{Q}) = 1$, and the *Chabauty-Coleman bound* gives

 $|X(\mathbf{Q})| \leq 10.$

Consider *X* with affine equation

$$y^2 = x(x-1)(x-2)(x-5)(x-6).$$

We have* $\operatorname{rk} J(\mathbf{Q}) = 1$, and the *Chabauty-Coleman bound* gives

 $|X(\mathbf{Q})| \leq 10.$

We find the points

 $(0,0),(1,0),(2,0),(5,0),(6,0),\infty$

Consider *X* with affine equation

$$y^2 = x(x-1)(x-2)(x-5)(x-6).$$

We have* $\operatorname{rk} J(\mathbf{Q}) = 1$, and the *Chabauty-Coleman bound* gives

 $|X(\mathbf{Q})| \leq 10.$

We find the points

$$(0,0), (1,0), (2,0), (5,0), (6,0), \infty$$

and

$$(3,\pm 6), (10,\pm 120)$$

in $X(\mathbf{Q})$.

Consider *X* with affine equation

$$y^2 = x(x-1)(x-2)(x-5)(x-6).$$

We have* $\operatorname{rk} J(\mathbf{Q}) = 1$, and the *Chabauty-Coleman bound* gives

 $|X(\mathbf{Q})| \leq 10.$

We find the points

```
(0,0),(1,0),(2,0),(5,0),(6,0),\infty
```

and

$$(3,\pm 6), (10,\pm 120)$$

in $X(\mathbf{Q})$.

We've found 10 points!

Consider *X* with affine equation

$$y^2 = x(x-1)(x-2)(x-5)(x-6).$$

We have* $\operatorname{rk} J(\mathbf{Q}) = 1$, and the *Chabauty-Coleman bound* gives

 $|X(\mathbf{Q})| \leq 10.$

We find the points

```
(0,0),(1,0),(2,0),(5,0),(6,0),\infty
```

and

$$(3,\pm 6), (10,\pm 120)$$

in $X(\mathbf{Q})$.

We've found 10 points!

Hence we have provably determined

 $X(\mathbf{Q}) = \{(0,0), (1,0), (2,0), (5,0), (6,0), (3,\pm 6), (10,\pm 120), \infty\}.$

*Descent calculation first done by Gordon and Grant, 1993

Consider *X* with affine equation

 $y^{2} = 82342800x^{6} - 470135160x^{5} + 52485681x^{4} + 2396040466x^{3} + 567207969x^{2} - 985905640x + 247747600.$

Consider *X* with affine equation

$y^2 = 82342800x^6 - 470135160x^5 + 52485681x^4 + 2396040466x^3 + 567207969x^2 - 985905640x + 247747600.$

It has at least **642** rational points*, with *x*-coordinates:

0, -1, 1/3, 4, -4, -3/5, -5/3, 5, 6, 2/7, 7/4, 1/8, -9/5, 7/10, 5/11, 11/5, -5/12, 11/12, 5/12, 13/10, 14/9, -15/2, -3/16, 16/15, 11/18, -19/12, 19/5, -19/11, -18/19, 20/3, -20/21, 24/7, -7/24, -17/28, 15/32, 5/32, 33/8, -23/33, -35/12, -35/18, 12/35, -37/14, 38/11, 40/17, -17/40, 34/41, 5/41, 41/16, 43/9, -47/4, -47/54, -9/55, -55/4, 21/55, -11/57, -59/15, 59/9, 61/27, -61/37, 62/21, 63/2, 65/18, -1/67, -60/67, 71/44, 71/3, -73/41, 3/74, -58/81, -41/81, 29/83, 19/83, 36/83.11/84.65/84.-86/45.-84/89.5/89.-91/27.92/21.99/37.100/19.-40/101.-32/101.-104/45.-13/105.50/111.-113/57.115/98.-115/44.116/15. 123/34, 124/63, 125/36, 131/5, -64/133, 135/133, 35/136, -139/88, -145/7, 101/147, 149/12, -149/80, 75/157, -161/102, 97/171, 173/132, -65/173, -189/83, 190/63, 196/103, -195/196, -193/198, 201/28, 210/101, 227/81, 131/240, -259/3, 265/24, 193/267, 19/270, -279/281, 283/33, -229/298, -310/309, 174/335, 31/337, 400/129, -198/401, 384/401, 409/20, -422/199, -424/33, 434/43, -415/446, 106/453, 465/316, -25/489, 490/157, 500/317, -501/317, -404/513, -491/516, 137/581, 597/139, -612/359, 617/335, -620/383, -232/623, 653/129, 663/4, 583/695, 707/353, -772/447, 835/597, -680/843, 853/48, 860/697, 515/869, -733/921, -1049/33, -263/1059, -1060/439, 1075/21, -1111/30, 329/1123, -193/1231, 1336/1033, 321/1340, 1077/1348, -1355/389, 1400/11, -1432/359, -1505/909, 1541/180, -1340/1639, -1651/731, -1705/1761, -1757/1788, -1456/1893, -235/1983, -1990/2103, -2125/84, -2343/635, -2355/779, 2631/1393, -2639/2631, 396/2657, 2691/1301, 2707/948, -164/2777, -2831/508, 2988/43, 3124/395, -3137/3145, -3374/303, 3505/1148, 3589/907, 3131/3655, 3679/384, 535/3698, 3725/1583, 3940/939, 1442/3981, 865/4023, 2601/4124, -2778/4135, 1096/4153, 4365/557, -4552/2061, -197/4620, 4857/1871, 1337/5116, 5245/2133, 1007/5534, 1616/5553, 5965/2646, 6085/1563, 6101/1858, -5266/6303, -4565/6429, 6535/1377, -6613/6636, 6354/6697, -6908/2715, -3335/7211, 7363/3644, -4271/7399, -2872/8193, 2483/8301, -8671/3096, -6975/8941, 9107/6924, -9343/1951, -9589/3212, 10400/373, -8829/10420, 10511/2205, 1129/10836, 675/11932, 8045/12057, 12945/4627, -13680/8543, 14336/243, -100/14949, -15175/8919, 1745/15367, 16610/16683, 17287/16983, 2129/18279, -19138/1865, 19710/4649, -18799/20047, -20148/1141, -20873/9580, 21949/6896, 21985/6999, 235/25197, 16070/26739, 22991/28031, -33555/19603, -37091/14317, -2470/39207, 40645/6896, 46055/19518, -46925/11181, -9455/47584, 55904/8007, 39946/56827, -44323/57516, 15920/59083, 62569/39635, 73132/13509, 82315/67051, -82975/34943, 95393/22735, 14355/98437, 15121/102391, 130190/93793, -141665/55186, 39628/153245, 30145/169333, -140047/169734, 61203/171017, 148451/182305, 86648/195399, -199301/54169, 11795/225434, -84639/266663, 283567/143436, -291415/171792, -314333/195860, 289902/322289, 405523/327188, -342731/523857, 24960/630287, -665281/83977, -688283/82436, 199504/771597, 233305/795263, -799843/183558, -867313/1008993, 1142044/157607, 1399240/322953, -1418023/463891, 1584712/90191, 726821/2137953, 2224780/807321, -2849969/629081, -3198658/3291555, 675911/3302518, -5666740/2779443, 1526015/5872096, 13402625/4101272, 12027943/13799424, -71658936/86391295, 148596731/35675865, 58018579/158830656, 208346440/37486601, -1455780835/761431834, -3898675687/2462651894

Is this list complete?

*Computed by Stoll in 2008.

Reframing Chabauty–Coleman

For a curve X/\mathbf{Q} with rank $J(\mathbf{Q}) < g$, we can find a finite set

$$X(\mathbf{Q}_p)_1 := \left\{ z \in X(\mathbf{Q}_p) : \int_b^z \omega = 0 \right\} \supset X(\mathbf{Q})$$

for some $\omega \in H^0(X_{\mathbf{Q}_p}, \Omega^1)$, by pulling back an ω_J that comes from *J*.

Reframing Chabauty–Coleman

For a curve X/\mathbf{Q} with rank $J(\mathbf{Q}) < g$, we can find a finite set

$$X(\mathbf{Q}_p)_1 := \left\{ z \in X(\mathbf{Q}_p) : \int_b^z \omega = 0 \right\} \supset X(\mathbf{Q})$$

for some $\omega \in H^0(X_{\mathbf{Q}_p}, \Omega^1)$, by pulling back an ω_J that comes from *J*.

Indeed, the Jacobian is a natural geometric source of these p-adic integrals for r < g.

Reframing Chabauty–Coleman

For a curve X/\mathbf{Q} with rank $J(\mathbf{Q}) < g$, we can find a finite set

$$X(\mathbf{Q}_p)_1 := \left\{ z \in X(\mathbf{Q}_p) : \int_b^z \omega = 0 \right\} \supset X(\mathbf{Q})$$

for some $\omega \in H^0(X_{\mathbf{Q}_p}, \Omega^1)$, by pulling back an ω_J that comes from *J*.

Indeed, the Jacobian is a natural geometric source of these p-adic integrals for r < g.

Are there other geometric objects which can give us further *p*-adic integrals for $r \ge g$?

Nonabelian Chabauty: Explicit Faltings for $r \ge g$?

Kim (2005): there are further *iterated p*-adic integrals arising from *Selmer varieties*, cutting out sets of *p*-adic points

$$X(\mathbf{Q}_p)_1 \supset X(\mathbf{Q}_p)_2 \supset \cdots \supset X(\mathbf{Q}_p)_n \supset \cdots \supset X(\mathbf{Q})$$

where $X(\mathbf{Q}_p)_1$ is the Chabauty–Coleman set and $X(\mathbf{Q}_p)_n$ is a (finite?) set of *p*-adic points that can be computed in terms of *n*-fold iterated Coleman integrals.

Conjecture (Kim)

For sufficiently large n,

$$X(\mathbf{Q}_p)_n = X(\mathbf{Q}).$$

Challenge: Explicitly compute $X(\mathbf{Q}_p)_2, X(\mathbf{Q}_p)_3, \dots$ for curves X/\mathbf{Q} with $r \ge g$.

Computing nonabelian Chabauty sets

Kim's theory tells us that the first nonabelian Chabauty set, $X(\mathbf{Q}_p)_2$, should be given in terms of double Coleman integrals

$$\int_P^Q \omega_i \omega_j := \int_P^Q \omega_i(R) \int_P^R \omega_j.$$

• These integrals satisfy nice formal properties like $\int_P^Q \omega_i \omega_j + \int_P^Q \omega_j \omega_i = \left(\int_P^Q \omega_i\right) \left(\int_P^Q \omega_j\right).$

Computing nonabelian Chabauty sets

Kim's theory tells us that the first nonabelian Chabauty set, $X(\mathbf{Q}_p)_2$, should be given in terms of double Coleman integrals

$$\int_P^Q \omega_i \omega_j := \int_P^Q \omega_i(R) \int_P^R \omega_j.$$

- ► These integrals satisfy nice formal properties like $\int_P^Q \omega_i \omega_j + \int_P^Q \omega_j \omega_i = \left(\int_P^Q \omega_i\right) \left(\int_P^Q \omega_j\right).$
- These integrals are very closely related to natural *quadratic* forms on *J*(**Q**).

Computing nonabelian Chabauty sets

Kim's theory tells us that the first nonabelian Chabauty set, $X(\mathbf{Q}_p)_2$, should be given in terms of double Coleman integrals

$$\int_P^Q \omega_i \omega_j := \int_P^Q \omega_i(R) \int_P^R \omega_j.$$

- ► These integrals satisfy nice formal properties like $\int_P^Q \omega_i \omega_j + \int_P^Q \omega_j \omega_i = \left(\int_P^Q \omega_i\right) \left(\int_P^Q \omega_j\right).$
- These integrals are very closely related to natural *quadratic* forms on J(Q).
- ► Do we know any quadratic forms on *J*(**Q**)?

Quadratic Chabauty: computing $X(\mathbf{Q}_p)_2$

Strategy: use *p*-adic heights to write down explicit *p*-adic double integrals vanishing on rational or integral points on curves:

► Genus g hyperelliptic X/Q with Mordell-Weil rank rk(J(Q)) = g: integral points

Quadratic Chabauty: computing $X(\mathbf{Q}_p)_2$

Strategy: use *p*-adic heights to write down explicit *p*-adic double integrals vanishing on rational or integral points on curves:

- ▶ Genus g hyperelliptic X/Q with Mordell-Weil rank rk(J(Q)) = g: integral points
- Certain g = 2 curves X/Q with extra structure (bielliptic, real multiplication): rational points

Let *E* be an elliptic curve over \mathbf{Q} , *p* a good, ordinary prime for *E*, and $P \in E(\mathbf{Q})$ non-torsion point

• that reduces to $\mathcal{O} \in E(\mathbf{F}_p)$

Let *E* be an elliptic curve over \mathbf{Q} , *p* a good, ordinary prime for *E*, and $P \in E(\mathbf{Q})$ non-torsion point

- that reduces to $\mathcal{O} \in E(\mathbf{F}_p)$
- and to a nonsingular point in $E(\mathbf{F}_{\ell})$ at bad primes ℓ .

Let *E* be an elliptic curve over \mathbf{Q} , *p* a good, ordinary prime for *E*, and $P \in E(\mathbf{Q})$ non-torsion point

- that reduces to $\mathcal{O} \in E(\mathbf{F}_p)$
- and to a nonsingular point in $E(\mathbf{F}_{\ell})$ at bad primes ℓ .

Let *E* be an elliptic curve over \mathbf{Q} , *p* a good, ordinary prime for *E*, and $P \in E(\mathbf{Q})$ non-torsion point

- that reduces to $\mathcal{O} \in E(\mathbf{F}_p)$
- and to a nonsingular point in $E(\mathbf{F}_{\ell})$ at bad primes ℓ .

Mazur-Stein-Tate ('06) gives us a fast way to compute the *p*-adic height *h* of such *P*:

$$h(P) = \frac{1}{p} \log_p \left(\frac{\sigma_p(P)}{D(P)} \right).$$

$\sigma_p(P), d(P)$

Two ingredients:

• Denominator function D(P): if $P = \left(\frac{a}{d^2}, \frac{b}{d^3}\right)$, then D(P) = d.

$\sigma_p(P), d(P)$

Two ingredients:

- Denominator function D(P): if $P = \left(\frac{a}{d^2}, \frac{b}{d^3}\right)$, then D(P) = d.
- ► *p*-adic σ function σ_p : the unique odd function $\sigma_p(t) = t + \cdots \in t \mathbb{Z}_p[[t]]$ satisfying

$$x(t) + c = -\frac{d}{\omega} \left(\frac{1}{\sigma_p} \frac{d\sigma_p}{\omega} \right)$$

(with ω the invariant differential $\frac{dx}{2y+a_1x+a_3}$ and $c \in \mathbb{Z}_p$, which can be computed by Kedlaya's algorithm).

We use $h(nP) = n^2 h(P)$ to extend the height to the full Mordell-Weil group.

Question: How can we interpret the *p*-adic sigma function and denominator – what do they tell us?

p-adic heights on Jacobians of curves

• Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.

p-adic heights on Jacobians of curves

- Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.
- Let $\iota : X \hookrightarrow J$, sending $P \mapsto [P O]$.

- Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.
- Let $\iota : X \hookrightarrow J$, sending $P \mapsto [P O]$.
- For simplicity, assume *p* is a prime of ordinary reduction for *J*.

- Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.
- Let $\iota : X \hookrightarrow J$, sending $P \mapsto [P O]$.
- For simplicity, assume *p* is a prime of ordinary reduction for *J*.

- Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.
- Let $\iota : X \hookrightarrow J$, sending $P \mapsto [P O]$.
- For simplicity, assume *p* is a prime of ordinary reduction for *J*.

The *p*-adic height

 $h: J(\mathbf{Q}) \to \mathbf{Q}_p$

is a quadratic form

- Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.
- Let $\iota : X \hookrightarrow J$, sending $P \mapsto [P O]$.
- For simplicity, assume *p* is a prime of ordinary reduction for *J*.

The *p*-adic height

$$h: J(\mathbf{Q}) \to \mathbf{Q}_p$$

- is a quadratic form
- decomposes as a finite sum of local heights $h = \sum_{v} h_{v}$ over primes v

- Assume $X(\mathbf{Q}) \neq \emptyset$ and fix a basepoint $O \in X(\mathbf{Q})$.
- Let $\iota : X \hookrightarrow J$, sending $P \mapsto [P O]$.
- For simplicity, assume *p* is a prime of ordinary reduction for *J*.

The *p*-adic height

$$h: J(\mathbf{Q}) \to \mathbf{Q}_p$$

- is a quadratic form
- decomposes as a finite sum of local heights $h = \sum_{v} h_{v}$ over primes v
- work of Bernardi, Néron, Perrin-Riou, Schneider, Mazur-Tate, Coleman-Gross, Nekovář, Besser

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

h_v(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

Construction of h_v depends on whether v = p or $v \neq p$.

• $v \neq p$: intersection theory

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

Construction of h_v depends on whether v = p or $v \neq p$.

- $v \neq p$: intersection theory
- ▶ *v* = *p*: normalized differentials, Coleman integration

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

Construction of h_v depends on whether v = p or $v \neq p$.

- $v \neq p$: intersection theory
- ▶ *v* = *p*: normalized differentials, Coleman integration

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

Construction of h_v depends on whether v = p or $v \neq p$.

- $v \neq p$: intersection theory
- v = p: normalized differentials, Coleman integration

Note: The local pairings h_v can be extended (non-uniquely) such that $h(D) := h(D,D) = \sum_v h_v(D,D)$ for all $D \in \text{Div}^0(X)$.

The Coleman-Gross *p*-adic height pairing is a (symmetric) bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbf{Q}_p,$$

with $h = \sum_{v} h_{v}$, where

- *h_v*(*D*, *E*) is defined for *D*, *E* ∈ Div⁰(*X*_{Q_v}) with disjoint support.
- ► We have h(D, div(g)) = 0 for g ∈ Q(X)[×], so h is well-defined on J × J.

Construction of h_v depends on whether v = p or $v \neq p$.

- $v \neq p$: intersection theory
- v = p: normalized differentials, Coleman integration

Note: The local pairings h_v can be extended (non-uniquely) such that $h(D) := h(D,D) = \sum_v h_v(D,D)$ for all $D \in \text{Div}^0(X)$.

We fix a choice of extension and write $h_v(D) := h_v(D, D)$.

Fix a decomposition

$$H^1_{\mathrm{dR}}(X_{\mathbf{Q}_p}) = H^0(X_{\mathbf{Q}_p}, \Omega^1_{X_{\mathbf{Q}_p}}) \oplus W, \tag{1}$$

where *W* is a complementary subspace.

Fix a decomposition

$$H^1_{\mathrm{dR}}(X_{\mathbf{Q}_p}) = H^0(X_{\mathbf{Q}_p}, \Omega^1_{X_{\mathbf{Q}_p}}) \oplus W, \tag{1}$$

where W is a complementary subspace.

• ω_D : differential of the third kind on $X_{\mathbf{Q}_p}$ such that

Fix a decomposition

$$H^1_{\mathrm{dR}}(X_{\mathbf{Q}_p}) = H^0(X_{\mathbf{Q}_p}, \Omega^1_{X_{\mathbf{Q}_p}}) \oplus W, \tag{1}$$

where *W* is a complementary subspace.

• ω_D : differential of the third kind on $X_{\mathbf{Q}_v}$ such that

•
$$\operatorname{Res}(\omega_D) = D$$
,

Fix a decomposition

$$H^1_{\mathrm{dR}}(X_{\mathbf{Q}_p}) = H^0(X_{\mathbf{Q}_p}, \Omega^1_{X_{\mathbf{Q}_p}}) \oplus W, \tag{1}$$

where W is a complementary subspace.

- ω_D : differential of the third kind on $X_{\mathbf{Q}_p}$ such that
 - $\operatorname{Res}(\omega_D) = D$,
 - ω_D is normalized with respect to (1).

Fix a decomposition

$$H^1_{\mathrm{dR}}(X_{\mathbf{Q}_p}) = H^0(X_{\mathbf{Q}_p}, \Omega^1_{X_{\mathbf{Q}_p}}) \oplus W, \tag{1}$$

where W is a complementary subspace.

- ω_D : differential of the third kind on $X_{\mathbf{Q}_p}$ such that
 - $\operatorname{Res}(\omega_D) = D$,
 - ω_D is normalized with respect to (1).
- ► If *D* and *E* have disjoint support, *h*_p(*D*, *E*) is the Coleman integral

$$h_p(D,E) = \int_E \omega_D.$$

Quadratic Chabauty

Given a global *p*-adic height pairing *h*, we want to study it on integral points:

Local height at *p*

The local height h_p is given in terms of Coleman integration (Coleman-Gross); for a hyperelliptic curve *X*, we can show:

Theorem (B.-Besser-Müller)

If $P \in X(\mathbf{Q}_p)$ *, then* $h_p(P - \infty)$ *is equal to a double Coleman integral*

$$h_p(P-\infty) = \sum_{i=0}^{g-1} \int_{\infty}^{P} \omega_i \bar{\omega}_i,$$

where $\{\bar{\omega}_0, \ldots, \bar{\omega}_{g-1}\}$ forms a dual basis to the g regular 1-forms $\{\omega_0, \ldots, \omega_{g-1}\}$ with respect to the cup product pairing on $H^1_{dR}(X_{\mathbf{Q}_p})$.

Local heights away from *p*

If $q \neq p$ then h_q is defined in terms of arithmetic intersection theory on a regular model of *X* over Spec(**Z**). There is an explicitly computable finite set $T \subset \mathbf{Q}_p$ such that

$$-\sum_{q\neq p}h_q(P-\infty)\in T$$

for integral points $P \in X(\mathbf{Q})$.

Consider the \mathbf{Q}_p -valued functionals $f_i = \int_O \omega_i$ for $0 \le i \le g-1$ on $J(\mathbf{Q})$.

Idea when r = g:

► Suppose the *f*_{*i*} are linearly independent functionals on *J*(**Q**).

Consider the \mathbf{Q}_p -valued functionals $f_i = \int_O \omega_i$ for $0 \le i \le g-1$ on $J(\mathbf{Q})$.

Idea when r = g:

- ► Suppose the *f*_{*i*} are linearly independent functionals on *J*(**Q**).
- ► Then {*f_if_j*}_{i≤j≤g-1} is a natural basis of the space of Q_p-valued quadratic forms on J(Q).

Consider the \mathbf{Q}_p -valued functionals $f_i = \int_O \omega_i$ for $0 \le i \le g-1$ on $J(\mathbf{Q})$.

Idea when r = g:

- ► Suppose the *f*_{*i*} are linearly independent functionals on *J*(**Q**).
- ► Then {*f_if_j*}_{i≤j≤g−1} is a natural basis of the space of Q_p-valued quadratic forms on J(Q).
- ► The *p*-adic height *h* is also a quadratic form, so there must exist α_{ij} ∈ Q_p such that

$$h = \sum_{i \leqslant j \leqslant g-1} \alpha_{ij} f_{i} f_{j}$$

Consider the \mathbf{Q}_p -valued functionals $f_i = \int_O \omega_i$ for $0 \le i \le g-1$ on $J(\mathbf{Q})$.

Idea when r = g:

- ► Suppose the *f*_{*i*} are linearly independent functionals on *J*(**Q**).
- ► Then {*f_if_j*}_{i≤j≤g−1} is a natural basis of the space of Q_p-valued quadratic forms on J(Q).
- ► The *p*-adic height *h* is also a quadratic form, so there must exist α_{ij} ∈ Q_p such that

$$h = \sum_{i \leqslant j \leqslant g-1} \alpha_{ij} f_i f_j$$

 Linear algebra gives us the global *p*-adic height in terms of products of Coleman integrals.

Quadratic Chabauty

We use these double and single Coleman integrals to rewrite the global *p*-adic height pairing *h* and to study it on integral points:

We use these double and single Coleman integrals to rewrite the global *p*-adic height pairing *h* and to study it on integral points:

Quadratic Chabauty

Theorem (B.-Besser-Müller)

If $r = g \ge 1$ and the f_i are independent, then there is an explicitly computable finite set $T \subset \mathbf{Q}_p$ and explicitly computable constants $\alpha_{ij} \in \mathbf{Q}_p$ such that

$$\rho(P) := \sum_{i=0}^{g-1} \int_{\infty}^{P} \omega_i \bar{\omega}_i - \sum_{0 \le i \le j \le g-1} \alpha_{ij} f_i f_j(P)$$

takes values in T on integral points.

The case of rank 1 elliptic curves

In the case of g = r = 1, quadratic Chabauty says that there is an explicitly computable finite set $T \subset \mathbf{Q}_p$ and explicitly computable constant $\alpha \in \mathbf{Q}_p$ such that

$$\rho(P) = \int_{O}^{P} \omega_0 \bar{\omega}_0 - \alpha \left(\int_{O}^{P} \omega_0 \right)^2$$

takes values in *T* on integral points.

Example 1: rank 1 elliptic curve, integral points

We consider the elliptic curve "37a1", given by $y^2 + y = x^3 - x$. We use quadratic Chabauty to compute $X(\mathbf{Z}_p)_2$, up to hyperelliptic involution:

$X(\mathbf{F}_7)$	recovered $x(z)$ in residue disk	$z \in X(\mathbf{Q})$
(1,0)	$1 + 3 \cdot 7 + 6 \cdot 7^2 + 4 \cdot 7^3 + O(7^6)$??
	$1 + O(7^6)$	(1,0)
(0,0)	$3 \cdot 7 + 7^2 + 3 \cdot 7^3 + 7^4 + 4 \cdot 7^5 + O(7^6)$??
	$O(7^{6})$	(0,0)
(2,2)	$2 + 3 \cdot 7 + 7^2 + 5 \cdot 7^3 + 5 \cdot 7^4 + 4 \cdot 7^5 + O(7^6)$??
	$2 + O(7^6)$	(2,2)
(6,0)	$6 + O(7^6)$	(6,14)
	$6 + 6 \cdot 7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + 6 \cdot 7^5 + O(7^6)$	(-1,0)

Integral points in rank 1

This does not seem unusual; in most computed examples, it appears that $X(\mathbf{Z}_p)_2$ is not enough to precisely cut out integral points on rank 1 elliptic curves.

Integral points in rank 1

This does not seem unusual; in most computed examples, it appears that $X(\mathbf{Z}_p)_2$ is not enough to precisely cut out integral points on rank 1 elliptic curves.

What about $X(\mathbf{Z}_p)_3$, which is given in terms of triple integrals?

Integral points in rank 1

This does not seem unusual; in most computed examples, it appears that $X(\mathbf{Z}_p)_2$ is not enough to precisely cut out integral points on rank 1 elliptic curves.

What about $X(\mathbf{Z}_p)_3$, which is given in terms of triple integrals?

To say something about this, we revisit the work of Goncharov-Levin.

Goncharov-Levin

Let *E* be an elliptic curve over **Q**.

► Let *L*(*E*, *s*) denote its *L*-function

Goncharov-Levin

Let *E* be an elliptic curve over **Q**.

- ► Let *L*(*E*, *s*) denote its *L*-function
- Let $\mathcal{L}_{2,E}(z)$ denote the elliptic dilogarithm.

Goncharov-Levin

Let *E* be an elliptic curve over **Q**.

- ► Let *L*(*E*, *s*) denote its *L*-function
- Let $\mathcal{L}_{2,E}(z)$ denote the elliptic dilogarithm.

Let *E* be an elliptic curve over **Q**.

- ► Let *L*(*E*, *s*) denote its *L*-function
- Let $\mathcal{L}_{2,E}(z)$ denote the elliptic dilogarithm.

In proving a conjecture of Zagier, Goncharov and Levin showed Theorem (Goncharov-Levin '98)

Let E be an elliptic curve over \mathbf{Q} . Then there exists a \mathbf{Q} -rational divisor P (satisfying certain technical conditions) such that

$$L(E,2)\sim_{\mathbf{Q}^*}\pi\cdot\mathcal{L}_{2,E}(P).$$

Example

Let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (with minimal model "37a1").

Example

Let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (with minimal model "37a1").

• The Mordell-Weil group is generated by P = (0, 4).

Example

Let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (with minimal model "37a1").

- The Mordell-Weil group is generated by P = (0, 4).
- Consider the divisor $P_k = (kP) k(P) \frac{k^3 k}{6}((2P) 2(P))$.

Example

Let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (with minimal model "37a1").

- The Mordell-Weil group is generated by P = (0, 4).
- Consider the divisor $P_k = (kP) k(P) \frac{k^3 k}{6}((2P) 2(P))$.

Example

Let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (with minimal model "37a1").

- The Mordell-Weil group is generated by P = (0, 4).
- Consider the divisor $P_k = (kP) k(P) \frac{k^3 k}{6}((2P) 2(P))$.

Goncharov and Levin do numerical calculations to show that

$$\frac{8\pi \cdot \mathcal{L}_{2,q}(P_3)}{37 \cdot L(E,2)} = -8.0000 \dots, \qquad \frac{8\pi \cdot \mathcal{L}_{2,q}(P_6)}{37 \cdot L(E,2)} = -90.0000 \dots$$

Example

Let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (with minimal model "37a1").

- The Mordell-Weil group is generated by P = (0, 4).
- Consider the divisor $P_k = (kP) k(P) \frac{k^3 k}{6}((2P) 2(P))$.

Goncharov and Levin do numerical calculations to show that

$$\frac{8\pi \cdot \mathcal{L}_{2,q}(P_3)}{37 \cdot L(E,2)} = -8.0000 \dots, \qquad \frac{8\pi \cdot \mathcal{L}_{2,q}(P_6)}{37 \cdot L(E,2)} = -90.0000 \dots$$

In particular, it seems that

$$\frac{\mathcal{L}_{2,q}(P_3)}{\mathcal{L}_{2,q}(P_6)} = \frac{4}{45}.$$

We are studying *triple* Coleman integrals and a *p*-adic analogue of Goncharov-Levin:

Example

As before, let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (minimal model "37a1") and consider the divisor $P_k = (kP) - k(P) - \frac{k^3 - k}{6}((2P) - 2(P)).$

We are studying *triple* Coleman integrals and a *p*-adic analogue of Goncharov-Levin:

Example

As before, let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (minimal model "37a1") and consider the divisor $P_k = (kP) - k(P) - \frac{k^3 - k}{6}((2P) - 2(P)).$

We are studying *triple* Coleman integrals and a *p*-adic analogue of Goncharov-Levin:

Example

As before, let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (minimal model "37a1") and consider the divisor $P_k = (kP) - k(P) - \frac{k^3 - k}{6}((2P) - 2(P)).$ Let $\omega_0 = \frac{dx}{2y}$ and $\omega_1 = \frac{xdx}{2y}$. We seem to have

$$\frac{\int_{P_3} \omega_0 \omega_1 \omega_1 - \frac{1}{2} \int_{P_3} \omega_1}{\int_{P_6} \omega_0 \omega_1 \omega_1 - \frac{1}{2} \int_{P_6} \omega_1} = \frac{4}{45}.$$

We are studying *triple* Coleman integrals and a *p*-adic analogue of Goncharov-Levin:

Example

As before, let *E* be the elliptic curve given by $y^2 = x^3 - 16x + 16$ (minimal model "37a1") and consider the divisor $P_k = (kP) - k(P) - \frac{k^3 - k}{6}((2P) - 2(P)).$ Let $\omega_0 = \frac{dx}{2y}$ and $\omega_1 = \frac{xdx}{2y}$. We seem to have

$$\frac{\int_{P_3} \omega_0 \omega_1 \omega_1 - \frac{1}{2} \int_{P_3} \omega_1}{\int_{P_6} \omega_0 \omega_1 \omega_1 - \frac{1}{2} \int_{P_6} \omega_1} = \frac{4}{45}.$$

We also seem to have

$$\frac{\int_{P_3} \omega_0 \omega_0 \omega_1}{\int_{P_6} \omega_0 \omega_0 \omega_1} = \frac{4}{45}.$$

We can use these triple Coleman integrals to construct a function F_3 vanishing on integral points:

$$X(\mathbf{Z}_p)_3 := \{ z : F_3(z) = 0 \} \cap X(\mathbf{Z}_p)_2,$$

where

$$X(\mathbf{Z}_p)_2 = \{ z : D_2(z) - \alpha \log^2(z) = 0 \}.$$

Instead of directly computing $X(\mathbf{Z}_p)_3$, we take $z \in X(\mathbf{Z}_p)_2$ and compute the value of $F_3(z)$.

For example, for $X : y^2 + y = x^3 - x$ ("37a1"), in $X(\mathbb{Z}_7)_2$, we recovered a point

 $z = (1 + 3 \cdot 7 + 6 \cdot 7^2 + 4 \cdot 7^3 + O(7^6), 6 \cdot 7 + 3 \cdot 7^2 + 2 \cdot 7^3 + 2 \cdot 7^4 + 5 \cdot 7^5 + O(7^6))$

(not an integral point). We find

For example, for $X : y^2 + y = x^3 - x$ ("37a1"), in $X(\mathbb{Z}_7)_2$, we recovered a point

 $z = (1 + 3 \cdot 7 + 6 \cdot 7^2 + 4 \cdot 7^3 + O(7^6), 6 \cdot 7 + 3 \cdot 7^2 + 2 \cdot 7^3 + 2 \cdot 7^4 + 5 \cdot 7^5 + O(7^6))$

(not an integral point). We find

$$F_3(z) = 6 \cdot 7^3 + 3 \cdot 7^4 + 4 \cdot 7^5 + O(7^6) \neq 0.$$

For example, for $X : y^2 + y = x^3 - x$ ("37a1"), in $X(\mathbb{Z}_7)_2$, we recovered a point

 $z = (1 + 3 \cdot 7 + 6 \cdot 7^2 + 4 \cdot 7^3 + O(7^6), 6 \cdot 7 + 3 \cdot 7^2 + 2 \cdot 7^3 + 2 \cdot 7^4 + 5 \cdot 7^5 + O(7^6))$

(not an integral point). We find

$$F_3(z) = 6 \cdot 7^3 + 3 \cdot 7^4 + 4 \cdot 7^5 + O(7^6) \neq 0.$$

In the same residue disk, we recovered z = (1, 0). We find

For example, for $X : y^2 + y = x^3 - x$ ("37a1"), in $X(\mathbb{Z}_7)_2$, we recovered a point

 $z = (1+3\cdot7+6\cdot7^2+4\cdot7^3+O(7^6), 6\cdot7+3\cdot7^2+2\cdot7^3+2\cdot7^4+5\cdot7^5+O(7^6))$

(not an integral point). We find

$$F_3(z) = 6 \cdot 7^3 + 3 \cdot 7^4 + 4 \cdot 7^5 + O(7^6) \neq 0.$$

In the same residue disk, we recovered z = (1, 0). We find

$$F_3(z) = O(7^{11}).$$

Example 2: integral points, rank 1 elliptic curves

Continuing in this way, we complete the table

$X(\mathbf{F}_7)$	recovered $x(z)$	$z \in X(\mathbf{Q})$	$F_3(z)$
(1,0)	$1 + 3 \cdot 7 + 6 \cdot 7^2 + 4 \cdot 7^3 + O(7^6)$??	$6 \cdot 7^3 + 3 \cdot 7^4 + 4 \cdot 7^5 + O(7^6)$
	$1 + O(7^{11})$	(1,0)	O(7 ¹¹)
(0,0)	$3 \cdot 7 + 7^2 + 3 \cdot 7^3 + 7^4 + 4 \cdot 7^5 + O(7^6)$??	$3 \cdot 7^3 + 4 \cdot 7^4 + 3 \cdot 7^5 + O(7^6)$
	O(7 ¹¹)	(0,0)	O(7 ¹¹)
(2,2)	$2 + 3 \cdot 7 + 7^2 + 5 \cdot 7^3 + 5 \cdot 7^4 + 4 \cdot 7^5 + O(7^6)$??	$5 \cdot 7^3 + 6 \cdot 7^4 + 5 \cdot 7^5 + O(7^6)$
	$2 + O(7^{11})$	(2,2)	O(7 ¹¹)
(6,0)	$6 + O(7^{11})$	(6,14)	O(7 ¹¹)
	$6 + 6 \cdot 7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + 6 \cdot 7^5 + O(7^6)$	(-1, 0)	O(7 ¹¹)

Indeed, it seems that $X(\mathbf{Z}_7)_3$ precisely cut out integral points on this rank 1 elliptic curve!

Rational points for bielliptic genus 2 curves

Let *K* be **Q** or a quadratic imaginary number field, X/K be given by

$$y^2 = x^6 + ax^4 + bx^2 + c$$

and let

$$E_1: y^2 = x^3 + ax^2 + bx + c$$
 $E_2: y^2 = x^3 + bx^2 + acx + c^2,$

with maps

Theorem (B.-Dogra)

Let X/K be as above and suppose E_1 and E_2 each have rank 1. We can carry out quadratic Chabauty to compute a finite set of p-adic points containing X(K).

Details (*all* the *p*-adic heights)

Theorem (B.–Dogra '16)

Then X/K be a genus 2 bielliptic curve as before. Then X(K) is contained in the finite set of z in $X(K_p)$ satisfying

$$\begin{split} \rho(z) &= 2h_{E_2,\mathfrak{p}}(f_2(z)) - h_{E_1,\mathfrak{p}}(f_1(z) + (0,\sqrt{c})) - h_{E_1,\mathfrak{p}}(f_1(z) + (0,-\sqrt{c})) \\ &- 2\alpha_2 \log_{E_2}(f_2(z))^2 + 2\alpha_1 (\log_{E_1}(f_1(z))^2 + \log_{E_1}((0,\sqrt{c}))^2) \\ &\in \Omega, \end{split}$$

where Ω is the finite set of values

$$\left\{\sum_{v \nmid p} \left(h_{E_1,v}(f_1(z) + (0,\sqrt{c})) + h_{E_1,v}(f_1(z) + (0,-\sqrt{c})) - 2h_{E_2,v}(f_2(z))\right)\right\}$$

for
$$(z_v)$$
 in $\prod_{v \nmid p} X(K_v)$, and where $\alpha_i = \frac{h_{E_i}(P_i)}{[K:\mathbf{Q}] \log_{E_i}(P_i)^2}$.

Jennifer Balakrishnan, Boston University

Example 3: Computing $X_0(37)(\mathbf{Q}(i))$

[joint work with Dogra and Müller] Consider

$$X_0(37): y^2 = -x^6 - 9x^4 - 11x^2 + 37.$$

We have $rk(J_0(37)(\mathbf{Q}(i))) = 2$.

Change models and use

$$X: y^2 = x^6 - 9x^4 + 11x^2 + 37,$$

which is isomorphic to $X_0(37)$ over $K = \mathbf{Q}(i)$; we have $\operatorname{rk}(J(\mathbf{Q})) = \operatorname{rk}(J(\mathbf{Q}(i))) = 2$. Define

 $E_1: y^2 = x^3 - 16x + 16$ $E_2: y^2 = x^3 - x^2 - 373x + 2813$

and maps from *X*

Jennife

$$f_1: \begin{array}{cccc} X & \longrightarrow & E_1 & f_2: & X & \longrightarrow & E_2 \\ (x,y) & \mapsto & (x^2-3,y) & (x,y) & \mapsto & (37x^{-2}+4,37yx^{-3}). \end{array}$$
Take P_1 and P_2 to be points of infinite order in $E_1(\mathbf{Q})$ and $E_2(\mathbf{Q})$.
Take Points of the points of

$X_0(37)(\mathbf{Q}(i))$, continued

We compute

$$\begin{split} \rho(z) &= 2h_{E_2,\mathfrak{p}}(f_2(z)) - h_{E_1,\mathfrak{p}}(f_1(z) + (-3,\sqrt{37})) \\ &\quad -h_{E_1,\mathfrak{p}}(f_1(z) + (-3,-\sqrt{37})) \\ &\quad -2\alpha_2 h_{E_2}(f_2(z)) + 2\alpha_1(h_{E_1}(f_1(z)) + \log_{E_1}((-3,\sqrt{37}))^2) \end{split}$$

and find that points $z \in X(\mathbf{Q}(i))$ satisfy

$$\rho(z) = \frac{4}{3}\log_p(37).$$

Taking p = 41, 73, 101, we use ρ to produce points in $X(\mathbf{Q}_{41}), X(\mathbf{Q}_{73}), X(\mathbf{Q}_{101})$.

Recovered points in $X(\mathbf{Q}_{41})$

X(F ₄₁)	recovered $x(z)$ in residue disk	$z \in X(K)$
(1,9)	$1 + 16 \cdot 41 + 23 \cdot 41^2 + 5 \cdot 41^3 + 23 \cdot 41^4 + O(41^5)$	2 C II(II)
(1,))	$1 + 6 \cdot 41 + 23 \cdot 41^2 + 30 \cdot 41^3 + 14 \cdot 41^4 + O(41^5)$	
(0.1)		(0,1)
(2,1)	$2 + O(41^5)$	(2,1)
	$2 + 19 \cdot 41 + 36 \cdot 41^2 + 15 \cdot 41^3 + 26 \cdot 41^4 + O(41^5)$	
(4,18)		
(5,12)	$5 + 25 \cdot 41 + 26 \cdot 41^2 + 26 \cdot 41^3 + 31 \cdot 41^4 + O(41^5)$	
	$5 + 14 \cdot 41 + 12 \cdot 41^3 + 33 \cdot 41^4 + O(41^5)$	
(6,1)	$6 + 18 \cdot 41^2 + 31 \cdot 41^3 + 6 \cdot 41^4 + O(41^5)$	
	$6 + 30 \cdot 41 + 35 \cdot 41^2 + 11 \cdot 41^3 + O(41^5)$	
(7,15)		
$\frac{(9,4)}{(9,4)}$	$9 + 9 \cdot 41 + 34 \cdot 41^2 + 22 \cdot 41^3 + 24 \cdot 41^4 + O(41^5)$	(<i>i</i> , 4)
	$9 + 39 \cdot 41 + 14 \cdot 41^2 + 6 \cdot 41^3 + 17 \cdot 41^4 + O(41^5)$	(,,,,,,
(12,5)	<i>y</i> + <i>y</i> + <i>y</i> + <i>n</i> + <i>n</i> + <i>y</i> + <i>n</i> + <i>y</i> (<i>n</i>)	
$\frac{(12, 3)}{(13, 19)}$	$13 + 10 \cdot 41 + 2 \cdot 41^2 + 15 \cdot 41^3 + 29 \cdot 41^4 + O(41^5)$	
(13,17)	$13 + 10 \cdot 41 + 2 \cdot 41^{2} + 13 \cdot 41^{2} + 25 \cdot 41^{2} + 0(41^{2})$ $13 + 7 \cdot 41 + 8 \cdot 41^{2} + 32 \cdot 41^{3} + 14 \cdot 41^{4} + 0(41^{5})$	
(16,1)	$13 + 7 \cdot 41 + 8 \cdot 41 + 52 \cdot 41 + 14 \cdot 41 + O(41)$ $16 + 13 \cdot 41 + 6 \cdot 41^3 + 18 \cdot 41^4 + O(41^5)$	
(10,1)	$16 + 13 \cdot 41 + 6 \cdot 41^{\circ} + 18 \cdot 41^{\circ} + O(41^{\circ})$ $16 + 12 \cdot 41 + 8 \cdot 41^{2} + 9 \cdot 41^{3} + 32 \cdot 41^{4} + O(41^{5})$	
(17.00)		
(17,20)	$17 + 24 \cdot 41 + 37 \cdot 41^2 + 16 \cdot 41^3 + 28 \cdot 41^4 + O(41^5)$	
	$17 + 19 \cdot 41 + 20 \cdot 41^2 + 7 \cdot 41^3 + 7 \cdot 41^4 + O(41^5)$	
(18,20)	$18 + 3 \cdot 41 + 7 \cdot 41^2 + 9 \cdot 41^3 + 38 \cdot 41^4 + O(41^5)$	
	$18 + 41 + 34 \cdot 41^2 + 3 \cdot 41^3 + 32 \cdot 41^4 + O(41^5)$	
(19,3)		
(20,6)	$20 + 7 \cdot 41 + 40 \cdot 41^2 + 22 \cdot 41^3 + 7 \cdot 41^4 + O(41^5)$	
	$20 + 23 \cdot 41 + 26 \cdot 41^2 + 17 \cdot 41^3 + 22 \cdot 41^4 + O(41^5)$	
$\overline{\infty^+}$	∞^+	∞^+
(0,18)	$32 \cdot 41 + 13 \cdot 41^2 + 16 \cdot 41^3 + 8 \cdot 41^4 + O(41^5)$	
	$9 \cdot 41 + 27 \cdot 41^2 + 24 \cdot 41^3 + 32 \cdot 41^4 + O(41^5)$	

Recovered points in $X(\mathbf{Q}_{73})$

recovered $x(z)$ in residue disk	$z \in X(K)$ (or $X(\mathbf{Q}(\sqrt{3})))$
$2 + 61 \cdot 73 + 50 \cdot 73^2 + 71 \cdot 73^3 + 56 \cdot 73^4 + O(73^5)$	
$2 + O(73^5)$	(2,1)
$7 + 29 \cdot 73 + 67 \cdot 73^2 + 69 \cdot 73^3 + 17 \cdot 73^4 + O(73^5)$	
$10 + 39 \cdot 73 + 40 \cdot 73^2 + 17 \cdot 73^3 + 59 \cdot 73^4 + O(73^5)$	
	(5.)
	(√3,4)
$23 + 70 \cdot 73 + 53 \cdot 73^2 + 21 \cdot 73^3 + 50 \cdot 73^4 + O(73^3)$	
$27 + (2 + 72 + 28 + 72^2 + 5(-72^3 + 58 + 72^4 + (272^5))$	(; 4)
	(<i>i</i> ,4)
$27 + 34 \cdot 73 + 42 \cdot 73 + 19 \cdot 73 + 34 \cdot 73 + 0(73)$	
$36 + 70 \cdot 73 + 19 \cdot 73^2 + 11 \cdot 73^3 + 54 \cdot 73^4 + O(73^5)$	
50+52+75+25+75+25+75+20+75+0(75)	∞^+
$12 \cdot 73 + 9 \cdot 73^2 + 21 \cdot 73^3 + 56 \cdot 73^4 + O(73^5)$	
	$\begin{array}{c} 2+61\cdot73+50\cdot73^2+71\cdot73^3+56\cdot73^4+O(73^5)\\ 2+O(73^5)\\ 5+63\cdot73+4\cdot73^2+42\cdot73^3+25\cdot73^4+O(73^5)\\ 5+39\cdot73+65\cdot73^2+33\cdot73^3+60\cdot73^4+O(73^5)\\ 7+62\cdot73+31\cdot73^2+33\cdot73^3+44\cdot73^4+O(73^5)\\ 7+29\cdot73+67\cdot73^2+69\cdot73^3+17\cdot73^4+O(73^5)\\ 10+53\cdot73+35\cdot73^2+21\cdot73^3+67\cdot73^4+O(73^5)\\ 10+39\cdot73+40\cdot73^2+17\cdot73^3+59\cdot73^4+O(73^5)\\ 21+52\cdot73+67\cdot73^2+20\cdot73^3+27\cdot73^4+O(73^5)\\ 23+18\cdot73+59\cdot73^2+23\cdot73^3+2\cdot73^4+O(73^5)\\ 23+18\cdot73+59\cdot73^2+21\cdot73^3+50\cdot73^4+O(73^5)\\ 27+62\cdot73+67\cdot73^2+20\cdot73^3+50\cdot73^4+O(73^5)\\ 23+18\cdot73+59\cdot73^2+21\cdot73^3+50\cdot73^4+O(73^5)\\ 27+62\cdot73+28\cdot73^2+20\cdot73^3+56\cdot73^4+O(73^5)\\ 27+62\cdot73+28\cdot73^2+56\cdot73^3+58\cdot73^4+O(73^5)\\ 29+70\cdot73+21\cdot73^2+56\cdot73^3+5\cdot73^4+O(73^5)\\ 29+70\cdot73+21\cdot73^2+19\cdot73^3+54\cdot73^4+O(73^5)\\ 29+34\cdot73+42\cdot73^2+19\cdot73^3+54\cdot73^4+O(73^5)\\ 36+70\cdot73+19\cdot73^2+11\cdot73^3+54\cdot73^4+O(73^5)\\ 36+70\cdot73+23\cdot73^2+51\cdot73^3+16\cdot73^4+O(73^5)\\ \end{array}$

Recovered points in $X(\mathbf{Q}_{101})$

$X(\mathbf{F}_{101})$	recovered $x(z)$ in residue disk	$z \in X(K)$
(2,1)	$2 + O(101^7)$	(2,1)
	$2 + 38 \cdot 101 + 11 \cdot 101^2 + 99 \cdot 101^3 + 26 \cdot 101^4 + O(101^5)$	
(8, 36)	$8 + 90 \cdot 101 + 39 \cdot 101^2 + 80 \cdot 101^3 + 70 \cdot 101^4 + O(101^5)$	
(0,00)	$8 + 40 \cdot 101 + 84 \cdot 101^2 + 74 \cdot 101^3 + 15 \cdot 101^4 + O(101^5)$	
(10,4)	$10 + 5 \cdot 101 + 29 \cdot 101^2 + 66 \cdot 101^3 + 10 \cdot 101^4 + O(101^5)$	(<i>i</i> , 4)
(10,4)	$10 + 3 \cdot 101 + 23 \cdot 101 + 60 \cdot 101 + 10 \cdot 101 + O(101)$ $10 + 49 \cdot 101 + 80 \cdot 101^2 + 74 \cdot 101^3 + 8 \cdot 101^4 + O(101^5)$	(1,4)
(10.7)		
(12,7)	$12 + 12 \cdot 101 + 95 \cdot 101^2 + 55 \cdot 101^3 + 48 \cdot 101^4 + O(101^5)$	
	$12 + 36 \cdot 101 + 62 \cdot 101^2 + 97 \cdot 101^3 + 27 \cdot 101^4 + O(101^5)$	
(14,21)	$14 + 62 \cdot 101 + 62 \cdot 101^2 + 41 \cdot 101^3 + 51 \cdot 101^4 + O(101^5)$	
	$14 + 80 \cdot 101 + 72 \cdot 101^2 + 32 \cdot 101^3 + 75 \cdot 101^4 + O(101^5)$	
(15,11)		
(17, 18)	$17 + 65 \cdot 101 + 37 \cdot 101^2 + 80 \cdot 101^3 + 45 \cdot 101^4 + O(101^5)$	
(, , , , ,	$17 + 50 \cdot 101 + 61 \cdot 101^2 + 89 \cdot 101^3 + 61 \cdot 101^4 + O(101^5)$	
(18,45)		
$\frac{(10, 10)}{(20, 47)}$		
$\frac{(20, 47)}{(22, 3)}$	$22 + 59 \cdot 101 + 78 \cdot 101^2 + 43 \cdot 101^3 + 53 \cdot 101^4 + O(101^5)$	
(22,3)		
(21.10)	$22 + 96 \cdot 101 + 29 \cdot 101^2 + 43 \cdot 101^3 + 86 \cdot 101^4 + O(101^5)$	
(24, 19)		
(27,39)		
(28,37)	$28 + 30 \cdot 101 + 83 \cdot 101^2 + 5 \cdot 101^3 + 23 \cdot 101^4 + O(101^5)$	
	$28 + 37 \cdot 101 + 24 \cdot 101^2 + 78 \cdot 101^3 + 35 \cdot 101^4 + O(101^5)$	

Recovered points in $X(\mathbf{Q}_{101})$, continued

17(77)		- 37(76)
$X(\mathbf{F}_{101})$	recovered $x(z)$ in residue disk	$z \in X(K)$
(30, 46)		
$\frac{(31,23)}{(31,23)}$	$31 + 23 \cdot 101 + 11 \cdot 101^2 + 67 \cdot 101^3 + 39 \cdot 101^4 + O(101^5)$	
(51,25)		
	$31 + 29 \cdot 101 + 68 \cdot 101^2 + 29 \cdot 101^3 + 24 \cdot 101^4 + O(101^5)$	
(34, 45)	$34 + 91 \cdot 101 + 46 \cdot 101^2 + 28 \cdot 101^3 + 34 \cdot 101^4 + O(101^5)$	
(01/10)		
	$34 + 51 \cdot 101 + 73 \cdot 101^2 + 34 \cdot 101^3 + 14 \cdot 101^4 + O(101^5)$	
(37,22)		
(38,28)		
<u> </u>	20 - 50 101 - 00 1012 - 10 1013 - 01 1014 - 0(1015)	
(39,46)	$39 + 76 \cdot 101 + 86 \cdot 101^2 + 18 \cdot 101^3 + 64 \cdot 101^4 + O(101^5)$	
	$39 + 31 \cdot 101 + 43 \cdot 101^2 + 10 \cdot 101^3 + 48 \cdot 101^4 + O(101^5)$	
(46,6)		
(47,32)		
(48,27)	$48 + 43 \cdot 101 + 100 \cdot 101^2 + 47 \cdot 101^3 + 19 \cdot 101^4 + O(101^5)$	
(, , , , ,	$48 + 21 \cdot 101 + 38 \cdot 101^2 + 80 \cdot 101^3 + 95 \cdot 101^4 + O(101^5)$	
7.7.7.7.2		
(50,5)	$50 + 59 \cdot 101 + 19 \cdot 101^2 + 64 \cdot 101^3 + 36 \cdot 101^4 + O(101^5)$	
	$50 + 74 \cdot 101 + 69 \cdot 101^2 + 80 \cdot 101^3 + 21 \cdot 101^4 + O(101^5)$	
$\overline{\infty^+}$	∞ ⁺	∞^+
	αu ·	- w
(0,21)		

Putting it together and computing $X_0(37)(\mathbf{Q}(i))$

Carry out the Mordell-Weil sieve on the sets of points found in $X(\mathbf{Q}_{41}), X(\mathbf{Q}_{73})$, and $X(\mathbf{Q}_{101})$; conclude that

 $X(\mathbf{Q}(i)) = \{(\pm 2:\pm 1:1), (\pm i:\pm 4:1), (1:\pm 1:0)\},\$

or in other words,

 $X_0(37)(\mathbf{Q}(i)) = \{(\pm 2i:\pm 1:1), (\pm 1:\pm 4:1), (i:\pm 1:0)\}.$

Putting it together and computing $X_0(37)(\mathbf{Q}(i))$

Carry out the Mordell-Weil sieve on the sets of points found in $X(\mathbf{Q}_{41}), X(\mathbf{Q}_{73})$, and $X(\mathbf{Q}_{101})$; conclude that

 $X(\mathbf{Q}(i)) = \{(\pm 2:\pm 1:1), (\pm i:\pm 4:1), (1:\pm 1:0)\},\$

or in other words,

 $X_0(37)(\mathbf{Q}(i)) = \{(\pm 2i:\pm 1:1), (\pm 1:\pm 4:1), (i:\pm 1:0)\}.$

Note: the computation of points in $X(\mathbf{Q}_{73})$ recovered the points $(\pm \sqrt{-3}, \pm 4) \in X_0(37)(\mathbf{Q}(\sqrt{-3}))$ as well!

Francesca Bianchi has recently given an algorithm to compute *p*-adic heights for *families* of elliptic curves; she can use this to show that there are infinitely many elliptic curves over **Q** of rank 2 with nonzero *p*-adic regulator.

Francesca Bianchi has recently given an algorithm to compute *p*-adic heights for *families* of elliptic curves; she can use this to show that there are infinitely many elliptic curves over **Q** of rank 2 with nonzero *p*-adic regulator.

Up next: Steffen Müller will discuss the latest in computing *p*-adic heights (and rational points!) for curves whose Jacobians admit real multiplication.