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Rational points on higher genus curves

Theorem (Faltings, 1983)
Let X be a smooth projective curve over Q of genus g > 2. The set

X(Q) is finite.
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Rational points on higher genus curves

Theorem (Faltings, 1983)

Let X be a smooth projective curve over Q of genus g > 2. The set
X(Q) is finite.

One strategy for computing X(Q):

» Given a curve X of genus g > 2, embed it inside its Jacobian
J. Mordell-Weil tells us that [(Q) =Z" & T.
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Rational points on higher genus curves

Theorem (Faltings, 1983)

Let X be a smooth projective curve over Q of genus g > 2. The set
X(Q) is finite.

One strategy for computing X(Q):

» Given a curve X of genus g > 2, embed it inside its Jacobian
J. Mordell-Weil tells us that [(Q) =Z" & T.

» If the rank r is less than g, can use the Chabauty-Coleman
method to compute X(Q).
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Chabauty-Coleman method

» The method gives us a regular 1-form whose p-adic
(Coleman) integral vanishes on rational points.
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Chabauty-Coleman method

» The method gives us a regular 1-form whose p-adic
(Coleman) integral vanishes on rational points.

» Coleman also used this to give the bound (for good p > 29)

#X(Q) < #X(F,) +2g —2.
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Chabauty-Coleman method

» The method gives us a regular 1-form whose p-adic
(Coleman) integral vanishes on rational points.

» Coleman also used this to give the bound (for good p > 29)
#X(Q) < #X(Fp) +2¢—2.

» This bound can be sharp in practice.

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves



Chabauty-Coleman method
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The method gives us a regular 1-form whose p-adic
(Coleman) integral vanishes on rational points.

Coleman also used this to give the bound (for good p > 2g)
#X(Q) < #X(Fp) +2¢—2.

This bound can be sharp in practice.

Even when the bound is not sharp, we can often combine
Chabauty—Coleman data at multiple primes (Mordell-Weil
sieve) to extract X(Q).
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Chabauty-Coleman method

» The method gives us a regular 1-form whose p-adic
(Coleman) integral vanishes on rational points.

» Coleman also used this to give the bound (for good p > 29)
#X(Q) < #X(Fp) +2¢ — 2.

» This bound can be sharp in practice.

» Even when the bound is not sharp, we can often combine
Chabauty—Coleman data at multiple primes (Mordell-Weil
sieve) to extract X(Q).

Main question: Can we say anything in higher rank?
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Example 1: Can we compute X(Q)?

Consider X with affine equation
y? = x(x —1)(x —2)(x —5)(x — 6).
We have* rk J(Q) = 1, and the Chabauty-Coleman bound gives
1X(QJl < 10.
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Example 1: Can we compute X(Q)?

Consider X with affine equation
y? = x(x —1)(x —2)(x —5)(x — 6).
We have* rk J(Q) = 1, and the Chabauty-Coleman bound gives
1X(QJl < 10.
We find the points
(0,0),(1,0),(2,0),(5,0),(6,0), 00
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Example 1: Can we compute X(Q)?

Consider X with affine equation
y? = x(x —1)(x —2)(x —5)(x — 6).
We have* rk J(Q) = 1, and the Chabauty-Coleman bound gives
1X(QJl < 10.
We find the points
(0,0),(1,0),(2,0),(5,0),(6,0), 00

and
(3,46), (10, £120)

in X(Q).
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Example 1: Can we compute X(Q)?

Consider X with affine equation
y? = x(x —1)(x —2)(x —5)(x — 6).
We have* rk J(Q) = 1, and the Chabauty-Coleman bound gives

1X(Q)l < 10.
We find the points
(0,0),(1,0),(2,0),(5,0), (6,0), 00
and
(3,£6), (10, £120)
in X(Q).

We’ve found 10 points!

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves



Example 1: Can we compute X(Q)?

Consider X with affine equation
y? = x(x —1)(x —2)(x —5)(x — 6).
We have* rk J(Q) = 1, and the Chabauty-Coleman bound gives

1X(Q)l < 10.
We find the points
(0,0),(1,0),(2,0),(5,0), (6,0), 00
and
(3,£6), (10, £120)
in X(Q).

We’ve found 10 points!

Hence we have provably determined

X(Q) =1{(0,0),(1,0),(2,0),(5,0),(6,0), (3,£6), (10, £120), co}.

*Descent calculation first done by Gordon and Grant, 1993
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Example 2: Can we compute X(Q)?

Consider X with affine equation

y? = 82342800x° — 470135160x° + 52485681x* + 2396040466x°+
567207969x% — 985905640x + 247747600.
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Example 2: Can we compute X(Q)?

Consider X with affine equation

y? = 82342800x° — 470135160x° + 52485681x* + 2396040466x°+
567207969x% — 985905640x + 247747600.

It has at least 642 rational points*, with x-coordinates:

0,-1,1/3,4,-4,-3/5,-5/3,5, 6,2/7, 7/4,1/8,-9/5, 7/10, 5/11, 11/5, -5/12, 11/12, 5/12, 13/10, 14/9, -15/2, -3/16, 16/15, 11/18, -19/12, 19/5, -19/11,
-18/19, 20/3, -20/21, 24/7, -7/24, -17/28, 15/32, 5/32, 33/8, -23/33, -35/12, -35/18, 12/35, -37/14, 38/11, 40/17, -17/40, 34/41, 5/41, 41/16, 43/9, -47/4,
-47/54, -9/55, -55/4, 21/55, -11/57, -59/15, 59/9, 61/27, -61/37, 62/21, 63/2, 65/18, -1/67, -60/67, 71/44, 71/3, -73/41, 3/74, -58/81, -41/81, 29/83, 19/83,
36/83, 11/84, 65/84, -86/45, -84/89, 5/89, -91/27, 92/21, 99/37, 100/19, -40/101, -32/101, -104/45, -13/105, 50/111, -113/57, 115/98, -115/44, 116/15,
123/34, 124/63, 125/36, 131/5, -64/133, 135/133, 35/136, -139/88, -145/7, 101/147, 149/12, -149/80, 75/157, -161/102, 97/171, 173/132, -65/173,
-189/83, 190/63, 196/103, -195/196, -193/198, 201/28, 210/101, 227/81, 131/240, -259/3, 265/24, 193/267, 19/270, -279/281, 283/33, -229/298,
-310/309, 174/335, 31/337, 400/129, -198/401, 384/401, 409/20, -422/199, -424/33, 434/43, -415/446, 106/453, 465/316, -25/489, 490/157, 500/317,
-501/317, -404/513, -491/516, 137/581, 597/139, -612/359, 617/335, -620/383, -232/623, 653/129, 663/4, 583/695, 707/353, -772/447, 835/597,
-680/843, 853/48, 860/697, 515/869, -733/921, -1049/33, -263/1059, -1060/439, 1075/21, -1111/30, 329/1123, -193/1231, 1336/1033, 321/1340,
1077/1348, -1355/389, 1400/11, -1432/359, -1505/909, 1541/180, -1340/1639, -1651/731, -1705/1761, -1757/1788, -1456/1893, -235/1983, -1990/2103,
-2125/84, -2343/635, -2355/779, 2631/1393, -2639/2631, 396/2657, 2691/1301, 2707/948, -164/2777, -2831/508, 2988/43, 3124/395, -3137/3145,
-3374/303, 3505/1148, 3589/907, 3131/3655, 3679/384, 535/3698, 3725/1583, 3940/939, 1442/3981, 865/4023, 2601/4124, -2778/4135, 1096/4153,
4365/557, -4552/2061, -197/4620, 4857/1871, 1337/5116, 5245/2133, 1007/5534, 1616/5553, 5965/2646, 6085/1563, 6101/1858, -5266/6303,
-4565/6429, 6535/1377, -6613/6636, 6354/6697, -6908/2715, -3335/7211, 7363/3644, -4271/7399, -2872/8193, 2483/8301, -8671/3096, -6975/8941,
9107/6924, -9343/1951, -9589/3212, 10400/373, -8829/10420, 10511/2205, 1129/10836, 675/11932, 8045/12057, 12945/4627, -13680/8543, 14336/243,
-100/14949, -15175/8919, 1745/15367, 16610/16683, 17287/16983, 2129/18279, -19138/1865, 19710/4649, -18799/20047, -20148/1141, -20873/9580,
21949/6896, 21985/6999, 235/25197, 16070/26739, 22991/28031, -33555/19603, -37091/14317, -2470/39207, 40645/6896, 46055/19518,
-46925/11181, -9455/47584, 55904/8007, 39946/56827, -44323/57516, 15920/59083, 62569/39635, 73132/13509, 82315/67051, -82975/34943,
95393/22735, 14355/98437, 15121/102391, 130190/93793, -141665/55186, 39628/153245, 30145/169333, -140047/169734, 61203/171017,
148451/182305, 86648/195399, -199301/54169, 11795/225434, -84639/266663, 283567/143436, -291415/171792, -314333/195860, 289902/322289,
405523/327188, -342731/523857, 24960/630287, -665281/83977, -688283/82436, 199504/771597, 233305/795263, -799843/183558, -867313/1008993,
1142044/157607, 1399240/322953, -1418023/463891, 1584712/90191, 726821/2137953, 2224780/807321, -2849969/629081, -3198658/3291555,
675911/3302518, -5666740/2779443, 1526015/5872096, 13402625/4101272, 12027943/13799424, -71658936/86391295, 148596731/35675865,
58018579/158830656, 208346440/37486601, -1455780835/761431834, -3898675687/2462651894

Is this list complete?
*Computed by Stoll in 2008.
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Reframing Chabauty—Coleman

For a curve X/Q with rank J(Q) < g, we can find a finite set

X(Qy) == {z € X(Qp): J w = 0} > X(Q)

b

for some w € HO(XQP, Q'), by pulling back an wy that comes
from J.
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Reframing Chabauty—Coleman

For a curve X/Q with rank J(Q) < g, we can find a finite set

b

X(Qy) == {z € X(Qp): J w = 0} > X(Q)

for some w € HO(XQP, Q'), by pulling back an wy that comes
from J.

Indeed, the Jacobian is a natural geometric source of these
p-adic integrals for r < g.
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Reframing Chabauty—Coleman

For a curve X/Q with rank J(Q) < g, we can find a finite set

X(Qy) == {z € X(Qp): J w = 0} > X(Q)

b

for some w € HO(XQP, Q'), by pulling back an wy that comes
from J.

Indeed, the Jacobian is a natural geometric source of these
p-adic integrals for r < g.

Are there other geometric objects which can give us further
p-adic integrals for r > g?
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Nonabelian Chabauty: Explicit Faltings for r > g?

Kim (2005): there are further iterated p-adic integrals arising
from Selmer varieties, cutting out sets of p-adic points

X(Qp)l ) X(Qp)Z DD X(Qp)n DD X(Q)

where X(Q,); is the Chabauty—Coleman set and X(Q,), is a
(finite?) set of p-adic points that can be computed in terms of
n-fold iterated Coleman integrals.

Conjecture (Kim)
For sufficiently large n,

X(Qp)n = X(Q).

Challenge: Explicitly compute X(Q,)2, X(Qy)3, ... for curves
X/Qwithr > g.
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Computing nonabelian Chabauty sets

Kim’s theory tells us that the first nonabelian Chabauty set,
X(Qp)2, should be given in terms of double Coleman integrals

Jj w;w;j = JQ w;(R) JR w;.

P P

» These integrals satisfy nice formal properties like
L? w;w; + L? wjw; = (L? wi) (L? w]-) )
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Computing nonabelian Chabauty sets

Kim’s theory tells us that the first nonabelian Chabauty set,
X(Qp)2, should be given in terms of double Coleman integrals

Jj w;w;j = JQ w;(R) JR w;.

P P

» These integrals satisfy nice formal properties like
Q
L? w;w; + L? wjw; = (L? wi) (fp w]-) .
» These integrals are very closely related to natural quadratic
forms on J(Q).
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Computing nonabelian Chabauty sets

Kim’s theory tells us that the first nonabelian Chabauty set,
X(Qp)2, should be given in terms of double Coleman integrals

Jj w;w;j = JQ w;(R) JR w;.

P P

» These integrals satisfy nice formal properties like
Q
L? w;w; + L? wjw; = (L? wi) (fp w]-) .
» These integrals are very closely related to natural quadratic
forms on J(Q).

» Do we know any quadratic forms on J(Q)?
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Quadratic Chabauty: computing X(Q, ),

Strategy: use p-adic heights to write down explicit p-adic double
integrals vanishing on rational or integral points on curves:

» Genus g hyperelliptic X/Q with Mordell-Weil rank
rk(J(Q)) = g: integral points
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Quadratic Chabauty: computing X(Q,)>

Strategy: use p-adic heights to write down explicit p-adic double
integrals vanishing on rational or integral points on curves:

» Genus g hyperelliptic X/Q with Mordell-Weil rank
rk(J(Q)) = g: integral points

» Certain ¢ = 2 curves X/Q with extra structure (bielliptic,
real multiplication): rational points

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves



p-adic heights on elliptic curves

Let E be an elliptic curve over Q, p a good, ordinary prime for
E, and P € E(Q) non-torsion point

> that reduces to O € E(F,)
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p-adic heights on elliptic curves

Let E be an elliptic curve over Q, p a good, ordinary prime for
E, and P € E(Q) non-torsion point

> that reduces to O € E(F,)

» and to a nonsingular point in E(F;) at bad primes {.
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p-adic heights on elliptic curves

Let E be an elliptic curve over Q, p a good, ordinary prime for
E, and P € E(Q) non-torsion point

> that reduces to O € E(F,)

» and to a nonsingular point in E(F;) at bad primes {.
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p-adic heights on elliptic curves

Let E be an elliptic curve over Q, p a good, ordinary prime for
E, and P € E(Q) non-torsion point

> that reduces to O € E(F,)
» and to a nonsingular point in E(F;) at bad primes {.

Mazur-Stein-Tate ('06) gives us a fast way to compute the p-adic
height & of such P:

1 op(P)
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op(P),d(P)

Two ingredients:

» Denominator function D(P): if P = (%

b
B

) then D(P) = d.
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op(P),d(P)

Two ingredients:

» Denominator function D(P): if P = ( 7 d3) then D(P) =d.

» p-adic o function oy: the unique odd function
op(t) =t+--- € tZ,[[t]] satisfying

x(t) +c= 2 <1d(yp>

w \0p W

(with w the invariant differential m andc € Z,,
which can be computed by Kedlaya’s algorithm).

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves
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The height pairing

We use h(nP) = n?h(P) to extend the height to the full
Mordell-Weil group.

Question: How can we interpret the p-adic sigma function and
denominator — what do they tell us?

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves



p-adic heights on Jacobians of curves

» Assume X(Q) # () and fix a basepoint O € X(Q).
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p-adic heights on Jacobians of curves

» Assume X(Q) # () and fix a basepoint O € X(Q).
» Lett: X — ], sending P — [P — Ol.
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p-adic heights on Jacobians of curves

» Assume X(Q) # () and fix a basepoint O € X(Q).
» Lett: X — ], sending P — [P — Ol.

» For simplicity, assume p is a prime of ordinary reduction
for J.
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p-adic heights on Jacobians of curves

» Assume X(Q) # () and fix a basepoint O € X(Q).
» Lett: X — ], sending P — [P — Ol.

» For simplicity, assume p is a prime of ordinary reduction
for J.

The p-adic height
h:](Q) = Qy

> is a quadratic form
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p-adic heights on Jacobians of curves

» Assume X(Q) # () and fix a basepoint O € X(Q).
» Lett: X — ], sending P — [P — Ol.
» For simplicity, assume p is a prime of ordinary reduction
for J.
The p-adic height
h:](Q) = Qy

> is a quadratic form

» decomposes as a finite sum of local heights h = }__ h, over
primes v
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p-adic heights on Jacobians of curves

» Assume X(Q) # () and fix a basepoint O € X(Q).
» Lett: X — ], sending P — [P — Ol.
» For simplicity, assume p is a prime of ordinary reduction
for J.
The p-adic height
h:](Q) = Qy

> is a quadratic form

» decomposes as a finite sum of local heights h = }__ h, over
primes v

» work of Bernardi, Néron, Perrin-Riou, Schneider,
Mazur-Tate, Coleman-Gross, Nekovéaf, Besser
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Local height pairings
The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing
h: Div?(X) x Div(X) — Q,,
withh =) _ h,, where

» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
support.
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Local height pairings
The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing
h: Div?(X) x Div(X) — Q,,

withh =) _ h,, where
» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
support.
» We have h(D,div(g)) =0for g € Q(X)*,sohis
well-defined on | x J.
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Local height pairings
The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing
h: Div?(X) x Div(X) — Q,,

withh =) _ h,, where
» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
support.
» We have h(D,div(g)) =0for g € Q(X)*,sohis
well-defined on | x J.

Construction of h, depends on whether v = p or v # p.
» v # p: intersection theory
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Local height pairings
The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing
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withh =) _ h,, where
» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
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» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
support.
» We have h(D,div(g)) =0for g € Q(X)*,sohis
well-defined on | x J.

Construction of h, depends on whether v = p or v # p.
» v # p: intersection theory
» v = p: normalized differentials, Coleman integration

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves 13



Local height pairings
The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing
h: Div?(X) x Div(X) — Q,,

withh =) _ h,, where
» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
support.
» We have h(D,div(g)) =0for g € Q(X)*,sohis
well-defined on | x J.

Construction of h, depends on whether v = p or v # p.
» v # p: intersection theory
» v = p: normalized differentials, Coleman integration

Note: The local pairings h, can be extended (non—uruquely)
such that h(D) := h(D,D) = )  hy(D,D) forall D € Div?(X).
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Local height pairings
The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing
h: Div?(X) x Div(X) — Q,,

withh =) _ h,, where
» hy,(D, E) is defined for D,E € DiVO(XQv) with disjoint
support.
» We have h(D, div(g)) =0for g € Q(X)*,sohis
well-defined on | x J.

Construction of h, depends on whether v = p or v # p.
» v # p: intersection theory
» v = p: normalized differentials, Coleman integration

Note: The local pairings h, can be extended (non—uruquely)
such that h(D) := h(D,D) = )  hy(D,D) forall D € Div?(X).

We fix a choice of extension and write k(D) := h,(D, D).
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More on £, local height at p

» Fix a decomposition
Hig(Xq,) = H'( XQP,Q}(QP) W,

where W is a complementary subspace.
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More on hy, local height at p

» Fix a decomposition
Hig(Xq,) = H'( XQP,Q}(QP) W,

where W is a complementary subspace.
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» Res(wp) =D,
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More on hy, local height at p

» Fix a decomposition
Hig(Xq,) = H'( XQP,Q}(QP) W,

where W is a complementary subspace.
» wp: differential of the third kind on Xq, such that

» Res(wp) =D,
» wp is normalized with respect to (1).
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More on hy, local height at p

>

Jennifer Balakrishnan,

Fix a decomposition
Hir(Xo,) = H(Xq,, Ok, ) & W, M

where W is a complementary subspace.

wp: differential of the third kind on Xq, such that
» Res(wp) =D,
» wp is normalized with respect to (1).

If D and E have disjoint support, /1,(D, E) is the Coleman
integral

hp(D,E) = JE wp.
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Quadratic Chabauty

Given a global p-adic height pairing h, we want to study it on
integral points:

Ju - h + D h
quadratic form, rewrite as a _adic a nz;gc function vEp
p y ~——

p-adic analytic function

. . via double Coleman integral
using Coleman integrals

takes on finite
number of values
on integral points
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Local height at p

The local height h, is given in terms of Coleman integration
(Coleman-Gross); for a hyperelliptic curve X, we can show:

Theorem (B.-Besser-Miiller)
If P € X(Qp), then hy(P — oo) is equal to a double Coleman integral

§—1 p
(P00 = Y | w,

i=0 *®

where {®y, ..., Mg 1} forms a dual basis to the g regular 1-forms
{wo, ..., we_1} with respect to the cup product pairing on Hyp (Xq,)-
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Local heights away from p

If g # p then h, is defined in terms of arithmetic intersection
theory on a regular model of X over Spec(Z).
There is an explicitly computable finite set T C Q, such that

—> hy(P—o0) €T

qFp

for integral points P € X(Q).
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Strategy of Quadratic Chabauty

Consider the Q,-valued functionals f; = [, w; for0 <i<g—1
on J(Q).

Idea whenr = g:

» Suppose the f; are linearly independent functionals on J(Q).
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Strategy of Quadratic Chabauty

Consider the Q,-valued functionals f; = [, w; for0 <i<g—1
on J(Q).

Idea whenr = g:
» Suppose the f; are linearly independent functionals on J(Q).

> Then {fifj}i<j<g—1 is a natural basis of the space of
Q-valued quadratic forms on J(Q).
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Strategy of Quadratic Chabauty

Consider the Q,-valued functionals f; = [, w; for0 <i<g—1
on J(Q).

Idea whenr = g:
» Suppose the f; are linearly independent functionals on J(Q).

> Then {fifj}i<j<g—1 is a natural basis of the space of
Q-valued quadratic forms on J(Q).

» The p-adic height h is also a quadratic form, so there must
exist o;j € Qp such that

h= ) wiff

ij<g—1
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Strategy of Quadratic Chabauty

Consider the Q,-valued functionals f; = [, w; for0 <i<g—1
on J(Q).

Idea whenr = g:

>

>

>

Jennifer Balakrishna

Suppose the f; are linearly independent functionals on J(Q).

Then {fifj}i<j<¢—1 is a natural basis of the space of
Q-valued quadratic forms on J(Q).

The p-adic height / is also a quadratic form, so there must
exist o;j € Qp such that

h= ) wiff
i<j<g—1

Linear algebra gives us the global p-adic height in terms of
products of Coleman integrals.
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Quadratic Chabauty

We use these double and single Coleman integrals to rewrite the
global p-adic height pairing / and to study it on integral points:

N S
quadratic form, rewrite as a _adic anz;gc function vEp
p y ——

p-adic analytic function

: . via double Coleman integral
using Coleman integrals

takes on finite
number of values
on integral points
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Quadratic Chabauty

We use these double and single Coleman integrals to rewrite the
global p-adic height pairing / and to study it on integral points:

hp - h - — h'y
NP ~— Z
p-adic analytic function quadratic form, rewrite as a vFp
. . p-adic analytic function vV
via double Coleman integral using Coleman integrals takes on finite

number of values
on integral points
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Quadratic Chabauty

Theorem (B.-Besser-Miiller)

If r = ¢ > 1 and the f; are independent, then there is an explicitly
computable finite set T C Q, and explicitly computable constants
o € Qp such that

§—1 p
o)=Y | i Y fif(p)

i=0 7% 0<i<j<g—1

takes values in T on integral points.

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves
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The case of rank 1 elliptic curves

In the case of g = r = 1, quadratic Chabauty says that there is
an explicitly computable finite set T C Q, and explicitly
computable constant « € Q, such that

p(P) = E WMo — o (Jj w0>2

takes values in T on integral points.
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Example 1: rank 1 elliptic curve, integral points

We consider the elliptic curve “37al”, given by y? +y = x> — x.

We use quadratic Chabauty to compute X(Z;),, up to

hyperelliptic involution:

X(F7) recovered x(z) in residue disk | z € X(Q)
(1,0) 14+3-746-72+4-7°+0(7°) ??
14 O(7°) (1,0)
(0,0) 3-74+724+3-7P4+74+4.-7°4+0(7° 2?
O(7°) (0,0)
(2,2) 2437472457245 7 +4.75+ O(7%) ??
240(7%) | (2,2)
(6,0) 6+0(7% (6,14)
6+6-7+6-72+6-7+6-7+6-7°+0(7° (—1,0)
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Integral points in rank 1

This does not seem unusual; in most computed examples, it
appears that X(Z,); is not enough to precisely cut out integral
points on rank 1 elliptic curves.
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Integral points in rank 1

This does not seem unusual; in most computed examples, it
appears that X(Z,); is not enough to precisely cut out integral
points on rank 1 elliptic curves.

What about X(Z, )3, which is given in terms of triple integrals?
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Integral points in rank 1

This does not seem unusual; in most computed examples, it
appears that X(Z,); is not enough to precisely cut out integral
points on rank 1 elliptic curves.

What about X(Z, )3, which is given in terms of triple integrals?

To say something about this, we revisit the work of
Goncharov-Levin.
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Goncharov-Levin

Let E be an elliptic curve over Q.
» Let L(E, s) denote its L-function
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Goncharov-Levin

Let E be an elliptic curve over Q.
» Let L(E, s) denote its L-function

» Let £, g(z) denote the elliptic dilogarithm.
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» Let L(E, s) denote its L-function
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Goncharov-Levin

Let E be an elliptic curve over Q.
» Let L(E, s) denote its L-function
» Let £, g(z) denote the elliptic dilogarithm.

In proving a conjecture of Zagier, Goncharov and Levin showed

Theorem (Goncharov-Levin "98)

Let E be an elliptic curve over Q. Then there exists a Q-rational
divisor P (satisfying certain technical conditions) such that

L(E,2) ~Q* 7T - LZ,E(P).
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Goncharov-Levin
Example

Let E be the elliptic curve given by y?> = x> — 16x + 16 (with
minimal model ”"37al”).
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Goncharov-Levin

Example

Let E be the elliptic curve given by y?> = x> — 16x + 16 (with
minimal model ”"37al”).

» The Mordell-Weil group is generated by P = (0,4).
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Goncharov-Levin

Example

Let E be the elliptic curve given by y?> = x> — 16x + 16 (with
minimal model ”"37al”).

» The Mordell-Weil group is generated by P = (0,4).
> Consider the divisor Py = (kP) — k(P) — E=k((2P) —2(P)).
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Example
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Goncharov-Levin

Example

Let E be the elliptic curve given by y?> = x> — 16x + 16 (with
minimal model ”"37al”).

» The Mordell-Weil group is generated by P = (0,4).
> Consider the divisor Py = (kP) — k(P) — E=k((2P) —2(P)).
Goncharov and Levin do numerical calculations to show that

8- Lz,q(Pg,) — _8.0000 8 - Lz,q(PG)

m m — _90.0000 oo

Jennifer Balakrishnan, Boston University p-adic heights and rational points on curves



Goncharov-Levin

Example

Let E be the elliptic curve given by y?> = x> — 16x + 16 (with
minimal model ”"37al”).

» The Mordell-Weil group is generated by P = (0,4).
> Consider the divisor Py = (kP) — k(P) — E=k((2P) —2(P)).
Goncharov and Levin do numerical calculations to show that

SW'LZq(PC’)) SW'LZq(PG)
——— = —-8.0000..., ———— = -90.0000...

37 -L(E,2) 37 -L(E,2)
In particular, it seems that

Lz,q(PB) 4

LZ,q(pG) 45'
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p-adic Goncharov-Levin (B.-Dogra)
We are studying triple Coleman integrals and a p-adic
analogue of Goncharov-Levin:
Example

As before, let E be the elliptic curve given by y? = x> — 16x + 16
(minimal model “37al”) and consider the divisor
Py = (kP) — k(P) — £ ((2P) —2(P)).
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p-adic Goncharov-Levin (B.-Dogra)

We are studying triple Coleman integrals and a p-adic
analogue of Goncharov-Levin:

Example

As before, let E be the elliptic curve given by y? = x> — 16x + 16
(minimal model “37al”) and consider the divisor

Py = (kP) — k(P) — £ ((2P) —2(P)).

Let wg = g—; and w; = %. We seem to have

J‘pswowlwl_%f&wl . 4

Jp, wowrwy — 3 [p ar 45
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p-adic Goncharov-Levin (B.-Dogra)

We are studying triple Coleman integrals and a p-adic
analogue of Goncharov-Levin:

Example

As before, let E be the elliptic curve given by y? = x> — 16x + 16
(minimal model “37al”) and consider the divisor

Py = (kP) — k(P) — £ ((2P) —2(P)).

Let wg = g—; and w; = %. We seem to have

J‘pswowlwl_%f&wl . 4

Jp, wowrwy — 3 [p ar 45

We also seem to have

fp3 WoWwow1q 4

IP6 WoWwoW1 45'
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Example 2: integral points on rank 1 elliptic
curves, Kim’s conjecture (B.-Dogra)

We can use these triple Coleman integrals to construct a
function F3 vanishing on integral points:

X(Zy)3 :={z : F3(z) = 0} N X(Z,)2,

where
X(Zy)2 ={z: Da(z) — cxlogz(z) =0}

Instead of directly computing X(Z,)3, we take z € X(Z,), and
compute the value of F3(z).
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Example 2: integral points on rank 1 elliptic
curves, Kim’s conjecture (B.-Dogra)

For example, for X : y? +y = x> — x (“37a1”), in X(Z7),, we
recovered a point

z = (143-746-724+4.73+0(7°), 6:7+3-7>42.734+2.74+5.75+0(7°))

(not an integral point). We find
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Example 2: integral points on rank 1 elliptic
curves, Kim’s conjecture (B.-Dogra)

For example, for X : y2 +y= x3 —x (“37a1”), in X(Zy7),, we
recovered a point

z = (143-746-724+4.73+0(7°), 6:7+3-7>42.734+2.74+5.75+0(7°))

(not an integral point). We find

F3(z2)=6-72+3-7*+4.7°+ O(7°) # 0.
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Example 2: integral points on rank 1 elliptic
curves, Kim’s conjecture (B.-Dogra)

For example, for X : y2 +y= x3 —x (“37a1”), in X(Zy7),, we
recovered a point

z = (143-746-724+4.73+0(7°), 6:7+3-7>42.734+2.74+5.75+0(7°))
(not an integral point). We find
F3(z2)=6-72+3-7*+4.7°+ O(7°) # 0.

In the same residue disk, we recovered z = (1,0). We find
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Example 2: integral points on rank 1 elliptic
curves, Kim’s conjecture (B.-Dogra)

For example, for X : y2 +y= x3 —x (“37a1”), in X(Zy7),, we
recovered a point

z = (143-746-724+4.73+0(7°), 6:7+3-7>42.734+2.74+5.75+0(7°))

(not an integral point). We find

F3(z2)=6-72+3-7*+4.7°+ O(7°) # 0.

In the same residue disk, we recovered z = (1,0). We find

F3(z) = O(7™).
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Example 2: integral points, rank 1 elliptic curves

Continuing in this way, we complete the table

X(Fy) recovered x(z) z € X(Q) F3(z)

(1,0) 143-7+6-72+4-72 4 0(7°) 22 6-73+3.-7+4.75 4+ 0(7°)
14+ 0(71) (1,0) o(71)

(0,0) 3.-74+7243-B+74+4.7° 4 0(79) 7 3-734+4.744+3.75 4+ 0(7°)
o(71) (0,0) o(71)

2,2) 243.74724+5.-734+5.744+4.75+0(7%) 7 5.73 46744575+ 0(7%)
2+ 0(7') (2,2) o7
(6,0) 6+ 0(7'1) (6,14) o(71)
6+6-74+6-724+6-7+6-744+6-79 +0(7°) (—1,0) o(711)

Indeed, it seems that X(Z7)3 precisely cut out integral points on
this rank 1 elliptic curve!
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Rational points for bielliptic genus 2 curves
Let K be Q or a quadratic imaginary number field, X/K be
given by
¥ =x0faxt b+ c

and let
Ey:y*=x+ax® +bx+c Ey:y? =2 + b +acx + %,
with maps
fii: X — £ L X — E;
(xy) = (x%y) (x,y) = (cx 2 cyx3).

Theorem (B.-Dogra)

Let X/K be as above and suppose E1 and E; each have rank 1. We can
carry out quadratic Chabauty to compute a finite set of p-adic points
containing X(K).
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Details (all the p-adic heights)

Theorem (B.-Dogra "16)
Then X /K be a genus 2 bielliptic curve as before. Then X (K) is

contained in the finite set of z in X(K,) satisfying
p(z) = 2hg, p(f2(2)) — b, p(fi(2) + (0, V) — h p(fi(2) + (0, —/C))
— 20 logy, (f2(2))? + 201 (logg, (1(2)) + logg, ((0, v/¢))?)
€,

where Q) is the finite set of values

{Z (hE,o(fi (2) + (0, V) + heyo(fi(2) + (0, — V) — 2h, 5(fa(2))) } ,

vfp

. he; (P;)
for (zy) in Hv)(p X(Kyp), and where o; = KO loge, (%"
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Example 3: Computing X,(37)(Q(i))
[joint work with Dogra and Miiller]

Consider
Xo(37) 1 y* = —x® —9x* — 1122 4 37.

We have rk(Jy(37)(Q(i))) = 2.
Change models and use
Xy =x0—ox* + 112 + 37,

which is isomorphic to X(37) over K = Q(i); we have
tk(J(Q)) = rk(J(Q(7))) = 2.

Define
Ei:y>=x>—16x+16 Ey:y* = x® —x* —373x + 2813

and maps from X

f1 : X — E1 fz : X — Ez
(xy) = (¥*—3,y) (x,y) +  (37x72+4,37yx73).

Take Pq and P; to be points of infinite order in E1 (Q) and E>(Q).
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Xo(37)(Q(1)), continued

We compute

p(z) = 2hg, p(f2(2) _hE1 o(fi(2) + (=3, V37))
— hg, o(fi(z) + (=3, —V/37))
— 20(7]152 (fz )+ 20 hEl (fl (z)) + IOgEl ((

and find that points z € X(Q(i)) satisfy

p(z) = glogp(37).

Taking p = 41,73,101, we use p to produce points in
X(Q41), X(Q73), X(Q101)-
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Recovered points in X(Q41)

X(Fyq) recovered x(z) in residue disk z € X(K)
(1,9) 14+16-41+23-412 +5-415 + 23 - 415 1 0(41%)
1+6-41+23-412 430 - 413 + 14 - 41* + O(41%)
2,1 2+ 0(41%) (2,1)
2419-41+36-412 4+15-41% +26 - 41% + O(415)
(4,18)
(5,12) 542541 +26-412 426 - 413 + 31 - 41* + 0(415)
54+ 14-41+12-413 433 - 414 4 0(419)
(6,1) 6+18-412 4+ 31413 4+ 6- 41* + 0(41°)
6+30-41+35-412 411413 + O(41°)
(7,15)
9,4) 94941434412 +22-413 424 - 41% + O(415) (i,4)
94+39-41+14-412 46 -41% +17-41* + O(415)
(12,5)
(13,19) 1341041 +2-412 415413 +29 - 41* + O(41°)
134741 +8-412 32413 + 14 - 41% 4 O(41°)
(16,1) 16413 - 41 + 6 - 413 + 18 - 41 + 0(41°)
16 +12-41 +8-412 +9 - 413 +-32 - 41% - 0(41%)
(17,20) | 17 +24-41+37-412 + 16 - 413 4+ 28 - 41* + O(419)
17 +19 - 41 +20 - 412 + 7. 413 + 7. 41 + O(41%)
(18,20) 18 +3-41+7-412 +9-413 4 38 - 41* 4 O(41°)
18441434 - 412 +3-413 +32-41* + 0(41°)
(19,3)
(20,6) 204741440412 +22-41%3 + 7414 + O(41%)
20 +23-41 426412 417 - 413 +22- 414 + O(415)
OO+ OO+ OO+
(0,18) 32.41413-412 + 16 - 413 + 8- 414 + O(41%)
941427412 424 - 413 432 - 41* 4 O(419)
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Recovered points in X(Qy3)

X(Fz3) recovered x(z) in residue disk z € X(K) (or X(Q(V/3)))
2,1) 2+461-73450-732+71-733 +56-731 + O(73°)
24 0(73%) (2,1)
(5,26) 54637344732 442.73% +25.73% + O(73%)
543973465732 433733 + 60 - 73% + O(73%)
(7,16) 7+62-73+31-732 +33.73% 4 44.73% 4 0(73°)
7429-73+67-73% +69-73% +17-73* + 0(73%)
(9,34)
(10,30) | 10+53-73+35-73% 4 21.73% +67-73* + O(73%)
10439 - 73 + 40 - 732 + 17 - 733 + 59 - 73* 4+ 0(73°)
(18,17)
(19,2)
(20,15)
(21,4) 21+17-73470-73% 4 42.73% + 18- 73* + O(73%)
21+ 5273+ 67 -73% +20-73% +-27-73* + O(73%) (V3,4
(23,31) 234 18-73 459732 +23.73% +2.73% + O(73%)
23 +70-73 453732 4 21-73% + 50 - 73* + O(73%)
(25,25)
(27,4) 27 4+62-73+28-73%2 + 56 - 733 + 58 . 73% +- 0(73%) (i,4)
27 +24-73430-73% 420 - 73% + 65 - 73* + O(73%)
(29,8) 29 +70-73421-732 +56-73° +5.73* + O(73°)
29 +34-73 442732 419.73% 4 54.73% + O(73%)
(30,20)
(36,17) | 36+70-73+19-73% 4 11-73% +54.73% + O(73%)
36 + 3273423732 4 23.73% 428 . 73% + O(73%)
oot oot oot
(0,16) 61-73+63-732 +51-73% +16 - 73* + 0(73%)
12.73 49732 421733 +56- 734 + O(73%)
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Recovered points in X(Q101)

X(Fq01) recovered x(z) in residue disk z € X(K)
2,1) 24 0(1017) (2,1)
2438101 4 11-1012 + 99 - 1013 + 26 - 1014 + 0(101%)
(8,36) 8490101 +39 - 1012 + 80 - 1013 + 70 - 101% + O(101°)
8 +40- 101 + 84 - 1012 4 74 - 101% + 15 - 101 + 0(101%)
(10,4) 10 +5-101 +29 - 1012 + 66 - 1013 4 10 - 1014 + O(101°) (i,4)
10 +49 - 101 + 80 - 1012 + 74 - 1013 + 8 - 1014 + O(101%)
(12,7) 12 +12-101 + 95 - 1012 + 55 - 1013 4 48 - 101* + O(101°)
12436 - 101 + 62 - 1012 + 97 - 1013 + 27 - 101% + O(101°)
(14,21) | 144 62-101+ 621012 + 41 - 1013 + 51 - 101* + O(101°)
14 +80 - 101 + 72 - 1012 + 32 - 1013 4 75 - 101% + O(101°)
(15,11)
(17,18) 17 + 65 - 101 4 37 - 1012 + 80 - 101 + 45 - 101% + O(101°)
17 +50 - 101 + 61 - 1012 + 89 - 1013 + 61 - 1014 + O(101°)
(18,45)
(20,47)
(22,3) 22 459101 + 78 - 1012 + 43 - 1013 + 53 - 101* 4 O(101°)
22 496 - 101 + 29 - 1012 + 43 - 1013 + 86 - 1014 + O(101%)
(24,19)
(27,39)
(28,37) 28 4+ 30 - 101 + 83 - 1012 +5 - 1013 423 - 101* + O(101%)
28 + 37 - 101 + 24 - 1012 4 78 - 1013 + 35 - 1014 + 0(101%)
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Recovered points in X(Q1¢1), continued

X(Fy01) recovered x(z) in residue disk z € X(K)
(30,46)
(31,23) 31+ 23101 4 11 - 1012 + 67 - 1013 + 39 - 1014 + 0(101%)
31429101 + 68 - 1012 + 29 - 1013 + 24 - 101* + O(101°)
(34,45) 34 +91-101 + 46 - 1012 + 28 - 1013 + 34 - 1014 + 0(101)
34 451101 4 73 - 1012 + 34 - 1013 + 14 - 1014 + 0(101%)
(37,22)
(38,28)
(39,46) 39 476 - 101 4 86 - 1012 + 18 - 1013 + 64 - 1014 + 0(101%)
39 +31- 101 4 43 - 1012 + 10 - 1013 + 48 - 1014 + 0(101%)
(46,6)
(47,32)
(48,27) | 48+443-101+100-1012 +47-101% +19-101* + O(1015)
48 421101 4 38 - 1012 + 80 - 1013 + 95 - 1014 ++ 0(101%)
(50,5) 50 + 59 - 101 4 19 - 1012 + 64 - 1013 + 36 - 1014 + 0(101%)
50 + 74 - 101 + 69 - 1012 + 80 - 1013 + 21 - 1014 + 0(1015)
OO+ OO+
(0,21)
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Putting it together and computing X,(37)(Q(i))

Carry out the Mordell-Weil sieve on the sets of points found in
X(Qu1), X(Q73), and X(Q101); conclude that

X(Q) ={(£2:£1:1),(£i:£4:1),(1:£1:0)},
or in other words,

Xo(37)(Q(1)) ={(+2i : £1:1),(£1:£4:1),(i: +1:0)}
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Putting it together and computing X,(37)(Q(i))

Carry out the Mordell-Weil sieve on the sets of points found in
X(Qu1), X(Q73), and X(Q101); conclude that

X(Q) ={(£2:£1:1),(£i:£4:1),(1:£1:0)},
or in other words,

Xo(37)(Q(1)) ={(+2i : £1:1),(£1:£4:1),(i: +1:0)}

Note: the computation of points in X(Qy3) recovered the points

(£+v—=3,+4) € Xo(37)(Q(v/=3)) as well!
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Future directions

Francesca Bianchi has recently given an algorithm to compute
p-adic heights for families of elliptic curves; she can use this to
show that there are infinitely many elliptic curves over Q of
rank 2 with nonzero p-adic regulator.
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Future directions

Francesca Bianchi has recently given an algorithm to compute
p-adic heights for families of elliptic curves; she can use this to
show that there are infinitely many elliptic curves over Q of
rank 2 with nonzero p-adic regulator.

Up next: Steffen Miiller will discuss the latest in computing
p-adic heights (and rational points!) for curves whose Jacobians
admit real multiplication.
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