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Motivation: The Unit Equation

Let R be an integer ring with a finite set of primes inverted (= Ok [1/S ])
and X = P1 \ {0, 1,∞}.

Theorem

There are finitely many x , y ∈ R× such that x + y = 1
Equivalently, |X (R)| <∞.

Originally proven by Siegel using Diophantine approximation around 1929.

Problem

Find X (R) for various R, or even find an algorithm.

In 2004, Minhyong Kim gave a proof in the case k = Q using fundamental
groups and p-adic analytic Coleman functions.

Refined Problem (Chabauty-Kim Theory)

Find p-adic analytic (Coleman) functions on X (Qp) that vanish on X (R).
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Periods

Let X be an algebraic variety of dimension d over Q and D a normal
crossings divisor in X .

Definition

A period is a complex number equal to an integral
∫
γ ω, where ω is an

algebraic differential form of degree d on X , and ω is an element of the
relative homology Hd(X (C),D(C);Q).

Examples

Algebraic numbers, π, ζ(n), log(n), Lik(n), · · ·

One may deduce relations between periods using rules for linearity,
products, algebraic changes of variables, and Stokes’ Theorem.

For example, one can theoretically deduce 6ζ(2) = π2 in this way.
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Motivic Periods

Defintion

The ring P of effective motivic periods is the formal Q-algebra generated
by tuples (X ,D, ω, γ) as in the previous slide, modulo relations coming
from linearity, algebraic change of variables, and Stokes’ Theorem.

Conjecture (Kontsevich-Zagier)

The natural map I : P→ C given by integration is injective.

Examples

We denote the corresponding “motivic special values” by ζm(n), logm(n),
Limk (n), · · ·

Examples

Applying IBC to each, we obtain ζp(n), logp(n), Lipk(n), · · ·
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De Rham Periods

Coleman integrals use de Rham cohomology (specifically, the Frobenius
and Hodge filtration) but not Betti cohomology. We therefore need:

Definition

The ring Pdr of effective de Rham periods is a variant of P in which γ
represents a de Rham homology class. For each p, there is a map
IBC : Pdr → Qp given by Coleman integration.

Examples

We similarly write ζdr(n), logdr(n), Lidrk (n), · · ·
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Mixed Tate Periods

We will focus on a subring Pdr,+(R) ⊆ Pdr of effective mixed Tate de
Rham periods over R. These contain all periods coming from
unirational pairs (X ,D) with good reduction over R.

Furthermore, as Coleman integrals are path independent, the
Coleman version of ζ(2) is 0.

Our Motivic Periods

We will therefore work with Pu(R) : = Pdr,+(R)/ζ(2) and the integration
map IBC : Pu(R)→ Qp for p ∈ Spec(R).

We note that an inclusion R ⊆ R ′ gives rise to an inclusion
Pu(R) ⊆ Pu(R ′) (e.g., Pu(Q) contains Pu(Z[1/S ]) for all S).
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Why Motivic Periods

The reason working with motivic periods rather than ordinary periods is
useful is that they have a nice algebraic structure.

Theorem (Deligne, Goncharov, Borel, ...)

Pu(R) has the structure of a graded Hopf algebra, and as such is
abstractly isomorphic to an explicit free shuffle algebra. Assuming
Frac(R) = Q, it is the free shuffle algebra

Q〈{{gp}p∈S , {f2n+1}n≥1}〉,

where each gp has degree 1, and f2n+1 has degree 2n + 1.

As a graded vector space, it’s the free non-commutative algebra in these
generators. However, it’s equipped with a commutative product denoted
by X.
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Polylogarithms and Integral Points

Definition

Let O(ΠX )PL = Q[Liu0 = logu,Liu1,Liu2, · · · ] as a Q-algebra.

As before, let X = P1 \ {0, 1,∞}. Let z ∈ X (Q). For each integer k,
one can define a motivic period Liuk(z) ∈ Pu(Q).

It follows that each z ∈ X (Q) defines a homomorphism
κ(z) : O(ΠX )PL → Pu(Q) sending Liuk to Liuk(z).

Fact

z ∈ X (R) iff Image(κ(z)) ⊆ Pu(R)
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Hopf Algebra Structure

There is furthermore a graded Hopf algebra structure on O(ΠX )PL, in
which Liuk has degree max(k , 1), and the reduced coproduct is given by:

d ′Liuk =
k−1∑
i=1

(logu)Xi

i !
⊗ Liuk−i .

Fact

For z ∈ X (Q), the homomorphism κ(z) is a homomorphism of graded
Hopf algebras.

In particular, d ′Liuk(z) =
∑k−1

i=1
(logu(z))Xi

i! ⊗ Liuk−i (z).
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Motivic Kim’s Cutter

For a prime p, this gives us a diagram:

X (R) −−−−→ X (Z)

κ

y

y

HomGrHopf(O(ΠX )PL,Pu(R))

IBC−−−−→ HomAlg(O(ΠX )PL,Qp)

We recall the integration map IBC : Pu(R)→ Qp.

This induces
HomGrHopf(O(ΠX )PL,Pu(R))

IBC−−→ HomAlg(O(ΠX )PL,Qp).

In addition, an arbitrary z ∈ X (Zp) induces a homomorphism
O(ΠX )PL → Qp sending Liuk to Lipk(z).
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Motivic Kim’s Cutter, cont.

X (R) −−−−→ X (Zp)

κ

y y
HomGrHopf(O(ΠX )PL,Pu(R))

IBC−−−−→ HomAlg(O(ΠX )PL,Qp)

The above diagram is known as Kim’s Cutter.

We may think of the two bottom objects as schemes (one over Q and
the other over Qp).

After tensoring the first with Qp, the bottom arrow becomes a map of
schemes, and the right vertical arrow is Coleman-analytic.

Dimension counts show that this arrow is non-dominant, which is
what proves Siegel’s theorem.

Therefore, there is a nonzero ideal ICK ⊆ O(ΠX )PL vanishing on the
image of the bottom arrow, known as the Chabauty-Kim ideal.
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The Chabauty-Kim Ideal

Elements of ICK pull back to X (Zp) to give Coleman functions that
vanish on X (R).

General goal: Compute some of these functions and show that they
cut out the rational points.

Theorem (Dan-Cohen, Wewers, 2013)

For R = Z[1/2], the following Coleman function is in ICK :

det

 Lip4(z) logp(z)Lip3(z) (logp(z))3Lip1(z)
Lip4(12) logp(12)Lip3(12) (logp(12))3Lip1(12)

1
24

1
6 1


In 2015, Dan-Cohen posted a preprint showing that, assuming certain
well-known conjectures, this could be made into an algorithm.
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Our Current Work

Our current work revolves around improving the algorithm, extending
to multiple polylogarithms, and verifying cases of Kim’s conjecture.

More specifically, we are working on Z[1/6].

To do this, we need to compute a basis for Pu(Z[1/6]) (up to a
certain degree) as linear combinations of explicit polylogarithms of
the form Liu(z) for z ∈ X (Q).
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Computations for Z[1/6]

To simplify notation, we let A denote Pu(Z[1/6]). We let An denote
the nth graded piece.

The abstract description shows that dim(A0) = 1, dim(A1) = 2,
dim(A2) = 4, dim(A3) = 9, and dim(A4) = 20.

In fact, A is a free polynomial algebra on infinitely many generators,
so we only need to find such generators. There are two in degree 1,
one in degree 2, three in degree 3, and five in degree 4.

Basic tool: use the reduced coproduct d ′. It’s injective in degrees 2
and 4 and has a kernel of dimension one in degree 3, generated by
ζu(3).

Procedure: Inductively on k , Write down motivic periods of the form
Liuk(z) for z ∈ X (R), apply d ′, check dependence lower degree.

The non-injectivity of d ′ for k = 3 requires use of p-adic
approximation to determine rational multiples of ζu(3).
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Useful References

The following are on arXiv:

Mixed Tate Motives and the Unit Equation, Ishai Dan-Cohen and
Stefan Wewers

Mixed Tate Motives and the Unit Equation II, Ishai Dan-Cohen

Single-Valued Motivic Periods, Francis Brown

Motivic Periods and P1 \ {0, 1,∞}, Francis Brown

Notes on Motivic Periods, Francis Brown

Integral Points on Curves and Motivic Periods, Francis Brown

Our definition of motivic periods comes from Periods, Kontsevich and
Zagier (http://www.maths.ed.ac.uk/ aar/papers/kontzagi.pdf).
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Thank You!
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