Power of Two as Sums of Three Pell Numbers

Joint work with J. J. Bravo, F. Luca

Bernadette Faye

Ph.d Student

Journées Algophantiennes Bordelaises, 07-09 July 2017

Motivation

Diophantine equations obtained by asking that members of some fixed binary recurrence sequence be

- squares,
- ▶ factorials,
- ▶ triangular,
- belonging to some other interesting sequence of positive integers.

Motivation

Problem: Find all solutions in positive integers m, n, ℓ, a of the equation

$$P_m + P_n + P_\ell = 2^a,$$

where

$$\begin{cases} P_0 = 0 \\ P_1 = 1 \\ P_{n+2} = 2P_{n+1} + P_n, \text{ for } n \ge 0 \end{cases}$$

► Stewart(1980), "On the representation of integers in two different basis": the set

$$\{n: s_a(n) < K \text{ and } s_b(n) < K\}$$

► Stewart(1980), "On the representation of integers in two different basis": the set

$$\{n: s_a(n) < K \text{ and } s_b(n) < K\}$$

is finite.

• A. Pethő(1991): $P_n = x^q$, $P_1 = 1$ and $P_7 = 13^2$.

► Stewart(1980), "On the representation of integers in two different basis": the set

$$\{n: s_a(n) < K \text{ and } s_b(n) < K\}$$

- A. Pethő(1991): $P_n = x^q$, $P_1 = 1$ and $P_7 = 13^2$.
- ▶ Bravo and Luca(2014): $F_n + F_m = 2^a$.

► Stewart(1980), "On the representation of integers in two different basis": the set

$$\{n: s_a(n) < K \text{ and } s_b(n) < K\}$$

- A. Pethő(1991): $P_n = x^q$, $P_1 = 1$ and $P_7 = 13^2$.
- ▶ Bravo and Luca(2014): $F_n + F_m = 2^a$.
- ▶ Bravo and Bravo(2015): $F_n + F_m + F_\ell = 2^a$.

► Stewart(1980), "On the representation of integers in two different basis": the set

$$\{n: s_a(n) < K \text{ and } s_b(n) < K\}$$

- A. Pethő(1991): $P_n = x^q$, $P_1 = 1$ and $P_7 = 13^2$.
- ▶ Bravo and Luca(2014): $F_n + F_m = 2^a$.
- ▶ Bravo and Bravo(2015): $F_n + F_m + F_\ell = 2^a$.
- \blacktriangleright Bravo, Goméz and Luca(2016): $F_n^{(k)}+F_m^{(k)}=2^a$

Most Recent results...

▶ Meher and Rout(Preprint):

$$U_{n_1} + \cdots + U_{n_t} = b_1 p_1^{z_1} + \cdots + b_s p_s^{z_s}$$

Most Recent results...

▶ Meher and Rout(Preprint):

$$U_{n_1} + \cdots + U_{n_t} = b_1 p_1^{z_1} + \cdots + b_s p_s^{z_s}$$

$$F_n + F_m = 2^a + 3^b$$

Most Recent results...

▶ Meher and Rout(Preprint):

$$U_{n_1} + \cdots + U_{n_t} = b_1 p_1^{z_1} + \cdots + b_s p_s^{z_s}$$

$$F_n + F_m = 2^a + 3^b$$

► Chim and Ziegler(Preprint):

$$F_{n_1} + F_{n_2} = 2^{a_1} + 2^{a_2} + 2^{a_3}.$$

$$F_{m_1} + F_{m_2} + F_{m_3} = 2^{t_1} + 2^{t_2}.$$

Theorem 1 (Bravo, F., Luca, 2017)

The only solutions (n, m, ℓ, a) of the Diophantine equation

$$P_n + P_m + P_\ell = 2^a \tag{1}$$

in integers $n \ge m \ge \ell \ge 0$ are in

$$(2,1,1,2),(3,2,1,3),(5,2,1,5),(6,5,5,7),$$

$$(1,1,0,1),(2,2,0,2),(2,0,0,1),(1,0,0,0).$$

Strategy of the Proof

Assume $n \ge 150$, $n \ge m \ge \ell$

$$P_n + P_m + P_\ell = 2^a$$

▶ The iterated application of linear forms in logarithms...

Strategy of the Proof

Assume $n \ge 150$, $n \ge m \ge \ell$

$$P_n + P_m + P_\ell = 2^a$$

- ▶ The iterated application of linear forms in logarithms...
- ▶ Baker-Devenport reduction algorithm

Strategy of the Proof

Assume $n \ge 150$, $n \ge m \ge \ell$

$$P_n + P_m + P_\ell = 2^a$$

- ▶ The iterated application of linear forms in logarithms...
- ▶ Baker-Devenport reduction algorithm
- ▶ Properties of the convergent of the continued fractions

► Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$

▶ Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$
 and $P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$

▶ Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$
 and $P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$

▶ Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$
 and $P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$

$$2^{\mathsf{a}} < \alpha^{\mathsf{n}-1} + \alpha^{\mathsf{m}-1} + \alpha^{\ell-1}$$

▶ Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$
 and $P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$

$$2^{\mathfrak{a}} < \alpha^{n-1} + \alpha^{m-1} + \alpha^{\ell-1} < 2^{2n-2} \big(1 + 2^{2(m-n)} + 2^{2(\ell-n)} \big)$$

▶ Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$
 and $P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$

$$2^{\mathfrak{a}} < \alpha^{n-1} + \alpha^{m-1} + \alpha^{\ell-1} < 2^{2n-2} \big(1 + 2^{2(m-n)} + 2^{2(\ell-n)} \big) < 2^{2n+1}.$$

▶ Recall that

$$\alpha^{n-2} < P_n < \alpha^{n-1}$$
 and $P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$

$$2^{\mathfrak{a}} < \alpha^{n-1} + \alpha^{m-1} + \alpha^{\ell-1} < 2^{2n-2} \big(1 + 2^{2(m-n)} + 2^{2(\ell-n)} \big) < 2^{2n+1}.$$

$$\implies$$
 $a \leq 2n$.

▶ One transform $P_n + P_m + P_\ell = 2^a$

▶ One transform $P_n + P_m + P_\ell = 2^a$ into

$$\left|\frac{\alpha^n}{2\sqrt{2}} - 2^a\right| \le \frac{|\beta|^n}{2\sqrt{2}} + P_m + P_\ell$$

▶ One transform $P_n + P_m + P_\ell = 2^a$ into

$$\left|\frac{\alpha^n}{2\sqrt{2}}-2^a\right| \leq \frac{|\beta|^n}{2\sqrt{2}} + P_m + P_\ell < \frac{1}{2} + \left(\alpha^m + \alpha^\ell\right).$$

• One transform $P_n + P_m + P_\ell = 2^a$ into

$$\left|\frac{\alpha^n}{2\sqrt{2}} - 2^a\right| \leq \frac{|\beta|^n}{2\sqrt{2}} + P_m + P_\ell < \frac{1}{2} + \left(\alpha^m + \alpha^\ell\right).$$

▶ Dividing both sides by $\alpha^n/(2\sqrt{2})$,

▶ One transform $P_n + P_m + P_\ell = 2^a$ into

$$\left|\frac{\alpha^n}{2\sqrt{2}} - 2^{\mathbf{a}}\right| \leq \frac{|\beta|^n}{2\sqrt{2}} + P_m + P_\ell < \frac{1}{2} + \left(\alpha^m + \alpha^\ell\right).$$

▶ Dividing both sides by $\alpha^n/(2\sqrt{2})$, we get

$$\left|1-2^{a+1}\cdot\alpha^{-n}\cdot\sqrt{2}\right|<\frac{8}{\alpha^{n-m}}.$$

▶ One transform $P_n + P_m + P_\ell = 2^a$ into

$$\left|\frac{\alpha^n}{2\sqrt{2}}-2^{a}\right| \leq \frac{|\beta|^n}{2\sqrt{2}} + P_m + P_{\ell} < \frac{1}{2} + \left(\alpha^m + \alpha^{\ell}\right).$$

▶ Dividing both sides by $\alpha^n/(2\sqrt{2})$, we get

$$\left|1 - 2^{a+1} \cdot \alpha^{-n} \cdot \sqrt{2}\right| < \frac{8}{\alpha^{n-m}}.$$

▶ Bounding n - m in terms of n

Linear forms in Logarithms à la Baker

Theorem 2 (Matveev 2000)

Let \mathbb{K} be a number field of degree D over \mathbb{Q} , η_1, \ldots, η_t be positive real numbers of \mathbb{K} , and b_1, \ldots, b_t rational integers. Put

$$\Lambda = \eta_1^{b_1} \cdots \eta_t^{b_t} - 1 \qquad \text{and} \qquad B \geq \max\{|b_1|, \dots, |b_t|\}.$$

Let $A_i \ge \max\{Dh(\eta_i), |\log \eta_i|, 0.16\}$ be real numbers, for i = 1, ..., t.

Linear forms in Logarithms à la Baker

Theorem 2 (Matveev 2000)

Let \mathbb{K} be a number field of degree D over \mathbb{Q} , η_1, \ldots, η_t be positive real numbers of \mathbb{K} , and b_1, \ldots, b_t rational integers. Put

$$\Lambda = \eta_1^{b_1} \cdots \eta_t^{b_t} - 1$$
 and $B \ge \max\{|b_1|, \dots, |b_t|\}.$

Let $A_i \ge \max\{Dh(\eta_i), |\log \eta_i|, 0.16\}$ be real numbers, for $i=1,\ldots,t.$ Then, assuming that $\Lambda \ne 0$, we have

$$|\Lambda| > \exp(-1.4 \times 30^{t+3} \times t^{4.5} \times D^2(1 + \log D)(1 + \log B)A_1 \cdots A_t).$$

First Linear Forms in Logarithms

From

$$\left|1-2^{\mathsf{a}+1}\cdot\alpha^{-\mathsf{n}}\cdot\sqrt{2}\right|<\frac{8}{\alpha^{\mathsf{n}-\mathsf{m}}}.$$

First Linear Forms in Logarithms

From

$$\left|1-2^{\mathsf{a}+1}\cdot\alpha^{-\mathsf{n}}\cdot\sqrt{2}\right|<\frac{8}{\alpha^{\mathsf{n}-\mathsf{m}}}.$$

we consider

$$\Lambda = 1 - 2^{a+1} \cdot \alpha^{-n} \cdot \sqrt{2}.$$

First Linear Forms in Logarithms

From

$$\left|1 - 2^{a+1} \cdot \alpha^{-n} \cdot \sqrt{2}\right| < \frac{8}{\alpha^{n-m}}.$$

we consider

$$\Lambda = 1 - 2^{a+1} \cdot \alpha^{-n} \cdot \sqrt{2}.$$

Then

$$|\Lambda| \ge \exp\left(-1.4 \times 30^6 \times 3^{4.5} \times 2^2 \times (1 + \log 2)(2 \log n) \times 1.4 \times 0.9 \times 0.7\right)$$
$$\Longrightarrow (n - m) \log \alpha < 1.8 \times 10^{12} \log n.$$

Second Linear Forms in Logarithms

Rewriting the equation $P_n + P_m + P_\ell = 2^a$ in a different way, we get to

$$\left|1-2^{a+1}\cdot\alpha^{-n}\cdot\sqrt{2}(1+\alpha^{m-n})^{-1}\right|<\frac{5}{\alpha^{n-\ell}}.$$

Second Linear Forms in Logarithms

Rewriting the equation $P_n + P_m + P_\ell = 2^a$ in a different way, we get to

$$\left|1 - 2^{a+1} \cdot \alpha^{-n} \cdot \sqrt{2} (1 + \alpha^{m-n})^{-1}\right| < \frac{5}{\alpha^{n-\ell}}.$$

Matveev's Theorem

$$\Longrightarrow (n-\ell)\log \alpha < 5 \times 10^{24}\log^2 n.$$

Third Linear Forms in Logarithms

$$\left|1-2^{a+1}\cdot\alpha^{-n}\cdot\sqrt{2}(1+\alpha^{m-n}+\alpha^{\ell-n})^{-1}\right|<\frac{2}{\alpha^n}.$$

Third Linear Forms in Logarithms

$$\left|1-2^{\mathfrak{a}+1}\cdot\alpha^{-n}\cdot\sqrt{2}(1+\alpha^{m-n}+\alpha^{\ell-n})^{-1}\right|<\frac{2}{\alpha^{n}}.$$

Matveev's Theorem

Third Linear Forms in Logarithms

$$\left|1-2^{a+1}\cdot\alpha^{-n}\cdot\sqrt{2}(1+\alpha^{m-n}+\alpha^{\ell-n})^{-1}\right|<\frac{2}{\alpha^n}.$$

Matveev's Theorem

$$\implies n < 1.7 \times 10^{43}$$
.

Lemma 3

If (n, m, ℓ , a) is a solution in positive integers of equation $P_n+P_m+P_\ell=2^a \ , \ with \ n\geq m\geq \ell, \ then$

Lemma 3

$$P_n + P_m + P_\ell = 2^a$$
 , with $n \geq m \geq \ell$, then

•
$$(n-m)\log \alpha < 1.8 \times 10^{12}\log n$$
.

Lemma 3

$$P_n + P_m + P_\ell = 2^a$$
 , with $n \geq m \geq \ell$, then

- $(n-m)\log \alpha < 1.8 \times 10^{12}\log n$.
- $(n-\ell)\log \alpha < 5 \times 10^{24}\log^2 n$.

Lemma 3

$$P_n + P_m + P_\ell = 2^a$$
 , with $n \geq m \geq \ell$, then

- $(n-m)\log \alpha < 1.8 \times 10^{12}\log n$.
- $(n-\ell)\log \alpha < 5 \times 10^{24}\log^2 n$.
- ► $n < 1.7 \times 10^{43}$.

Lemma 3

$$P_n + P_m + P_\ell = 2^a$$
 , with $n \geq m \geq \ell$, then

- $(n-m)\log \alpha < 1.8 \times 10^{12}\log n$.
- $(n \ell) \log \alpha < 5 \times 10^{24} \log^2 n$.
- ► $n < 1.7 \times 10^{43}$.
- $a < 2n + 1 < 4 \times 10^{43}$.

Lemma 4 (Baker-Devenport reduction Algorithm)

Let M be a positive integer, let p/q be a convergent of the continued fraction of the irrational γ such that q>6M, and let A,B,μ be some real numbers with A>0 and B>1. Let $\epsilon:=||\mu q||-M||\gamma q||$. If $\epsilon>0$, then there is no solution to the inequality

$$0<|u\gamma-v+\mu|< AB^{-w},$$

in positive integers u, v and w with

Lemma 4 (Baker-Devenport reduction Algorithm)

Let M be a positive integer, let p/q be a convergent of the continued fraction of the irrational γ such that q>6M, and let A,B,μ be some real numbers with A>0 and B>1. Let $\epsilon:=||\mu q||-M||\gamma q||$. If $\epsilon>0$, then there is no solution to the inequality

$$0<|u\gamma-v+\mu|< AB^{-w},$$

in positive integers u, v and w with

$$u \leq M$$
 and $w \geq \frac{\log(Aq/\epsilon)}{\log B}$.

Put

$$\Lambda_1 := (a+1)\log 2 - n\log \alpha + \log \sqrt{2}.$$

Put

$$\Lambda_1 := (a+1)\log 2 - n\log \alpha + \log \sqrt{2}.$$

Then,

$$|1-e^{\Lambda_1}|<\frac{8}{\alpha^{n-m}}.$$

Put

$$\Lambda_1 := (a+1)\log 2 - n\log \alpha + \log \sqrt{2}.$$

Then,

$$|1-e^{\Lambda_1}|<\frac{8}{\alpha^{n-m}}.$$

Hence,

$$0<\Lambda_1\leq e^{\Lambda_1}-1<\frac{8}{\alpha^{n-m}}.$$

Put

$$\Lambda_1 := (a+1)\log 2 - n\log \alpha + \log \sqrt{2}.$$

Then,

$$|1-e^{\Lambda_1}|<\frac{8}{\alpha^{n-m}}.$$

Hence,

$$0<\Lambda_1\leq e^{\Lambda_1}-1<\frac{8}{\alpha^{n-m}}.$$

Dividing across by $\log \alpha$ we get

Put

$$\Lambda_1 := (a+1)\log 2 - n\log \alpha + \log \sqrt{2}.$$

Then,

$$|1-e^{\Lambda_1}|<\frac{8}{\alpha^{n-m}}.$$

Hence,

$$0<\Lambda_1\leq e^{\Lambda_1}-1<\frac{8}{\alpha^{n-m}}.$$

Dividing across by $\log \alpha$ we get

$$0<\left(2a+3\right)\left(\frac{\log 2}{\log \alpha}\right)-2n<\frac{20}{\alpha^{n-m}}.$$

The inequality

$$0<(2a+3)\left(\frac{\log 2}{\log \alpha}\right)-2n<\frac{20}{\alpha^{n-m}}$$

has the shape

$$|x\gamma - y| < 20/\alpha^{n-m}$$
.

Find a lower bound for

$$|x - y| < 20/\alpha^{n-m}$$
.

Find a lower bound for

$$|x\gamma - y| < 20/\alpha^{n-m}$$
.

We use properties of the convergents of the continued fraction to $\gamma:=[a_0,a_1,a_2,\ldots]=[0,1,3,1,2,\ldots].$

Since $2a+3<9\times10^{43},$ with a quick computation with Mathematica

Since $2a + 3 < 9 \times 10^{43}$, with a quick computation with Mathematica

$$\implies q_{87} < 9 \times 10^{43} < q_{88}.$$

Since $2a+3<9\times10^{43},$ with a quick computation with Mathematica

$$\implies q_{87} < 9 \times 10^{43} < q_{88}.$$

Furthermore $a_M := \max\{a_i : i = 1..., 88\} = 100$. Then, from the properties of the continued fractions,

$$\frac{1}{(a_M+2)(2a+3)} < (2a+3)\gamma - 2n < \frac{20}{\alpha^{n-m}}$$

Since $2a + 3 < 9 \times 10^{43}$, with a quick computation with Mathematica

$$\implies q_{87} < 9 \times 10^{43} < q_{88}.$$

Furthermore $a_M := \max\{a_i : i = 1..., 88\} = 100$. Then, from the properties of the continued fractions,

$$\frac{1}{(a_M+2)(2a+3)} < (2a+3)\gamma - 2n < \frac{20}{\alpha^{n-m}}$$

$$\alpha^{n-m} < 20 \cdot 102 \cdot 9 \times 10^{43}$$
.

Since $2a+3<9\times10^{43},$ with a quick computation with Mathematica

$$\implies q_{87} < 9 \times 10^{43} < q_{88}.$$

Furthermore $a_M := \max\{a_i : i = 1..., 88\} = 100$. Then, from the properties of the continued fractions,

$$\frac{1}{(a_M+2)(2a+3)} < (2a+3)\gamma - 2n < \frac{20}{\alpha^{n-m}}$$

$$\alpha^{n-m} < 20 \cdot 102 \cdot 9 \times 10^{43}$$
.

 $\implies n-m < 124.$

The same argument as before gives

▶ n - m < 124.

The same argument as before gives

- ▶ n m < 124.
- ▶ $n \ell < 122$.

Finally, in order to obtain a better upper bound on n, we use consider the relation

$$\Lambda_3 := (a+1)\log 2 - n\log \alpha + \log \phi(n-m, n-\ell),$$

with
$$\phi(x_1, x_2) := \sqrt{2}(1 + \alpha^{-x_1} + \alpha^{-x_2})^{-1}$$
.

Hence, we use the inequality

$$0 < \left| (a+1) \left(\frac{\log 2}{\log \alpha} \right) - n + \left(\frac{\log \phi(n-m,n-\ell)}{\log \alpha} \right) \right| < \frac{5}{\alpha^n},$$

with
$$\phi(x_1, x_2) := \sqrt{2}(1 + \alpha^{-x_1} + \alpha^{-x_2})^{-1}$$
.

Hence, we use the inequality

$$0 < \left| (a+1) \left(\frac{\log 2}{\log \alpha} \right) - n + \left(\frac{\log \phi(n-m,n-\ell)}{\log \alpha} \right) \right| < \frac{5}{\alpha^n},$$

with
$$\phi(x_1, x_2) := \sqrt{2}(1 + \alpha^{-x_1} + \alpha^{-x_2})^{-1}$$
.

For all possible choices of $n-m \in [0,124]$ and $n-\ell \in [0,140]$, use the reduction algorithm

Hence, we use the inequality

$$0 < \left| (a+1) \left(\frac{\log 2}{\log \alpha} \right) - n + \left(\frac{\log \phi(n-m,n-\ell)}{\log \alpha} \right) \right| < \frac{5}{\alpha^n},$$

with
$$\phi(x_1, x_2) := \sqrt{2}(1 + \alpha^{-x_1} + \alpha^{-x_2})^{-1}$$
.

- For all possible choices of $n-m \in [0,124]$ and $n-\ell \in [0,140]$, use the reduction algorithm
- Find if (n, m, ℓ, a) is a possible solution of the equation $P_n + P_m + P_\ell = 2^a$,

Hence, we use the inequality

$$0 < \left| (a+1) \left(\frac{\log 2}{\log \alpha} \right) - n + \left(\frac{\log \phi(n-m, n-\ell)}{\log \alpha} \right) \right| < \frac{5}{\alpha^n},$$

with
$$\phi(x_1, x_2) := \sqrt{2}(1 + \alpha^{-x_1} + \alpha^{-x_2})^{-1}$$
.

- For all possible choices of $n m \in [0, 124]$ and $n \ell \in [0, 140]$, use the reduction algorithm
- Find if (n, m, ℓ, a) is a possible solution of the equation $P_n + P_m + P_\ell = 2^a$,
- ▶ One gets that n < 150, contradiction.

Theorem 5 (Bravo, F., Luca, 2017)

The only solutions (n, m, ℓ, a) of the Diophantine equation

$$P_n + P_m + P_\ell = 2^a \tag{2}$$

in integers $n \ge m \ge \ell \ge 0$ are in

$$(2,1,1,2),(3,2,1,3),(5,2,1,5),(6,5,5,7),$$

$$(1,1,0,1),(2,2,0,2),(2,0,0,1),(1,0,0,0).$$

"I love mathematics for its own sake, because it allows for no hypocrisy and no vagueness." Stendhal

THANKS FOR YOUR ATTENTION!

Power of Two as Sums of Three Pell Numbers

Joint work with J. J. Bravo, F. Luca

Bernadette Faye

Ph.d Student

Journées Algophantiennes Bordelaises, 07-09 July 2017