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Motivation

Diophantine equations obtained by
asking that members of some fixed

binary recurrence sequence be
> squares,
» factorials,
> triangular,

» belonging to some other
interesting sequence of positive

integers.
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Motivation

Problem: Find all solutions in positive integers m, n, ¢, a of the
equation
Pm+Pn+P€:2aa

where
Po=0

Pi=1
Ppy2 =2Ppy1+ Py, for n >0
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Bravo, Goméz and Luca(2016): F + F) = 02
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Most Recent results...
» Meher and Rout(Preprint):

Un1+"'+Unt=b1pf1+~'+bsp§5

Fo+ Fm=2+3b

» Chim and Ziegler(Preprint):
Fry + Fny, = 2% 4272 4 2%,

Frmy + Fmy + Frmy = 21 4 2%,



Theorem 1 (Bravo, F., Luca, 2017)

The only solutions (n, m, ¢, a) of the Diophantine equation
Pn+ Pm+ Py =22 (1)
in integersn > m > £ >0 are in
(2,1,1,2),(3,2,1,3),(5,2,1,5),(6,5,5,7),

(1,1,0,1),(2,2,0,2),(2,0,0,1),(1,0,0,0).
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» The iterated application of linear forms in logarithms...
» Baker-Devenport reduction algorithm

» Properties of the convergent of the continued fractions
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» Recall that

» Assume n > 150. We find a relation between a and n using

23 Oén_l—{—ozm_l—l—()/_l < 22n—2(1+22(m—n)+22(€—n)) < 22n+1

= a < 2n.
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Proof

» One transform P, + P, + P, = 27 into

<‘6’n P P 1 m y4

n
a

‘ a

2V2

» Dividing both sides by a"/(2v/2),we get

8

ah—m :

1-22t. 47" 2| <

» Bounding n — m in terms of n



Linear forms in Logarithms a la Baker

Theorem 2 (Matveev 2000)
Let K be a number field of degree D over Q, n1,...,n: be positive

real numbers of K, and by, ..., by rational integers. Put
A=nProop—1  and B >max{|bi],..., |b:|}.

Let A;i > max{Dh(n;),|logni|,0.16} be real numbers, for
i=1,...,t.
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Theorem 2 (Matveev 2000)
Let K be a number field of degree D over Q, n1,...,n: be positive

real numbers of K, and by, ..., by rational integers. Put
A=nProop—1  and B >max{|bi],..., |b:|}.

Let A; > max{Dh(n;), |logni|,0.16} be real numbers, for
i=1,... t.Then, assuming that \ # 0, we have

IA| > exp(—1.4 x 30773 x t*° x D?(1+log D)(1+log B)A; - - - A;).
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First Linear Forms in Logarithms

From

8
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we consider

A=1-2"1.47". /2.

Then

IA] > exp (—1.4 x 30° x 3*° x 22 x (1 + log 2)(2log n) x 1.4 x 0.9 x 0.7

— (n—m)loga < 1.8 x 10* log n.
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Matveev’s Theorem

— (n—{)loga < 5 x 10**log? n.



Third Linear Forms in Logarithms

2
1-22" 0™ V21 +a™ "+ oMY < =
an



Third Linear Forms in Logarithms

2
1-22" 0™ V21 +a™ "+ oMY < =
an

Matveev’s Theorem



Third Linear Forms in Logarithms

2
1— 2a+1 . a—n . \6(1 +am—n +O/—n)—1 < =
an
Matveev’s Theorem

— n< 1.7 x 10%.
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Summary of the above finding

Lemma 3
If (n,m, ¢, a) is a solution in positive integers of equation

Pn+ Pm+ Py =22, withn> m > {, then
» (n— m)loga < 1.8 x 10* log n.
» (n—{)loga < 5 x 10%*log? n.
> n < 1.7 x10%.

» a<2n+1<4x10%.



Reducing the bound on n

Lemma 4 (Baker-Devenport reduction Algorithm)
Let M be a positive integer, let p/q be a convergent of the
continued fraction of the irrational v such that q > 6M, and let
A, B, u be some real numbers with A >0 and B > 1. Let
€ .= ||ngl| — M||vq||. If e > 0, then there is no solution to the
inequality

0<|uy—v+pu <AB™Y,

in positive integers u,v and w with
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Lemma 4 (Baker-Devenport reduction Algorithm)

Let M be a positive integer, let p/q be a convergent of the
continued fraction of the irrational v such that q > 6M, and let
A, B, u be some real numbers with A >0 and B > 1. Let
€ .= ||ngl| — M||vq||. If e > 0, then there is no solution to the
inequality

0<|uy—v+pu <AB™Y,

in positive integers u,v and w with

log(Aq/€)

u<M and w> log B
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Reducing the bound on n

Put
A1 :=(a+1)log2 — nloga + log V2.
Then,
11— eM| < .
Odnfm
Hence,
8
O<N<eM-1< .
an—m

Dividing across by log a we get

log 2 20
0<(2a+3)<Og )—2n< —.
log o o




The inequality

log 2 20
0<(2a+3)<°g >—2n<

log a an—m

has the shape
|xv —y| <20/a"""™.




Find a lower bound for
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Find a lower bound for

7 < |xy—y|l<20/a"™.

We use properties of the convergents of the continued fraction

to v = [80,31,32, .. ] = [0, 1,3, 1,2, o ]
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Furthermore ap := max{a; : i = 1...,88} = 100. Then, from

the properties of the continued fractions,

1 20
2 3)y—2
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Finally, in order to obtain a better upper bound on n, we use

consider the relation
As:=(a+1)log2—nloga+ logp(n— m,n— 1),

with ¢(X1,X2) = ﬁ(l + a7+ afxz)fl.



Last Computations...

Hence, we use the inequality
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Last Computations...

Hence, we use the inequality

0< ’(a—i—l) <|°g2> —n+ (Iog(b(n_m’n_e))‘ <ai

log log o

with ¢(x1, %) = V2(1 + o™ + a72) 7L,
» For all possible choices of n — m € [0, 124] and
n— ¢ € [0,140], use the reduction algorithm

» Find if (n, m, ¢, a) is a possible solution of the equation
Pn+ Pm+ Py =22,

> One gets that n < 150, contradiction.



Theorem 5 (Bravo, F., Luca, 2017)

The only solutions (n, m, ¢, a) of the Diophantine equation
Pn+ Pm+ Py =22 (2)
in integersn > m > £ >0 are in
(2,1,1,2),(3,2,1,3),(5,2,1,5),(6,5,5,7),

(1,1,0,1),(2,2,0,2),(2,0,0,1),(1,0,0,0).




”T love mathematics for its own sake, because it allows for no

hypocrisy and no vagueness.” Stendhal

THANKS FOR YOUR ATTENTION !
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