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Diophantine m-tuples

Let R be a commutative ring with 1. In general, R = Z although
there are results when R = Q, or R = Z[X ], etc. For us, we will
always work with R = Z.

Definition
A Diophantine m-tuple in R is a set of m non-zero elements
{a1, . . . ,am} of R such that aiaj + 1 = � in R for 1 ≤ i < j ≤ m.

Example
Diophantus Found the example (over Q) with m = 4:{

1
16
,

33
16
,

68
16
,
105
16

}
.

Example
Fermat Found the first example with m = 4 over Z, namely:

{1, 3, 8, 120}.
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What is of interest?

Given R, what is usually of interest is the size of m, the
maximal length of a Diophantine m-tuple.

Take m = 4. Then there are infinitely Diophantine quadruples.

Example
The sets

{k − 1, k + 1, 4k , 16k3 − 4k}

are Diophantine quadruples for all k ≥ 2.

Example
The sets

{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3}

are Diophantine quadruples for all n ≥ 1, where F0 = 0, F1 = 1
and Fn+2 = Fn+1 + Fn for all n ≥ 0 is the Fibonacci sequence.
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Example

One starts with a Diophantine triple {a,b, c} and tries to extend
it to a Diophantine m-tuple for m ≥ 4. Usually, this involves the
theory of Pell equations.

Take, for example, {a, b, c} = {1,3,8}. This corresponds to
the case n = 1 of the previous example.

Then finding d such that

d + 1 = x2, 3d + 1 = y2, 8d + 1 = z2

is equivalent to solving the system of Pellian equations{
y2 − 3x2 = −2,
z2 − 8x2 = −7.

The only such d is 120. This was shown to be so by Baker,
Davenport in 1969.
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Why is there always a fourth number?

Arkin, Hoggatt and Straus, 1979 noted that if {a,b, c} is a
Diophantine triple with

ab + 1 = r2, bc + 1 = s2, ac + 1 = t2,

setting
d = a + b + c + 2abc + 2rst , (1)

then d fulfills:

ad +1 = (at + rs)2, bd +1 = (bs+ rt)2, cd +1 = (cr + st)2.

Diophantine quadruples a < b < c < d where d is given by (1)
in terms of a,b, c are called regular.

Conjecture
(1) Weak Dioph. Quintuple Conjecture There is no

Diophantine quintuple.
(2) Strong Dioph. Quadruple Conjecture All Diophantine

quadruples are regular.
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Dujella’s Work

Concerning the Weak Diophantine Quintuple Conjecture,
Dujella proved a series of important results from 2000 to 2004.

For example, he proved that m ≤ 5 and in fact, m ≤ 4 holds
with finitely many exceptions.

Very recently, He, Togbé, Ziegler 2016 announced a proof that
m ≤ 4 thus finishing off the Weak Diophantine Quintuple
Conjecture.

The Strong Diophantine Quadruple Conjecture remains open.
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Concerning the Strong Diophantine Quadruple Conjecture,
Dujella proved it to be true for various parametric families of
quadruples. One of his results from 2000 is the following:

Theorem
If

{a, b, c, d} = {F2n, F2n+2, F2n+4, d},

is a Diophantine quadruple, then d = 4F2n+1F2n+2F2n+3.

The above result confirmed a conjecture of Bergum and
Hoggatt.
One may ask if d = 4F2n+1F2n+2F2n+3 can ever be a Fibonacci
number, since then we would get an example of a Diophantine
quadruple of Fibonacci numbers. However, Jones proved in
1978 that

F6n+5 < d < F6n+6

holds for all n ≥ 1.
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A conjecture and a partial result

In 2015, in a joint paper with He, Togbé we proposed the
following conjecture.

Conjecture
There is no Diophantine quadruple of Fibonacci numbers
{Fa,Fb,Fc ,Fd}.

Earlier this year, in joint work with Y. Fujita, we proved the
following partial result in the direction of the above conjecture.

Theorem
There are at most finitely many Diophantine quadruples of
Fibonacci numbers.

The proof is ineffective so in order to settle completely the
above conjecture new ideas (rather than just a long
computation) are needed.
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Special Diophantine triples of Fibonacci numbers

As we have seen,

F2nF2n+2 + 1 = � and F2nF2n+4 + 1 = �

for all n. Nevertheless there are examples (a,b) with b − a > 4
such that FaFb + 1 = �, like

F1 · F6 + 1 = 32, F3 · F12 + 1 = 172, F4 · F19 + 1 = 1122.

In 2015, He, L., Togbé proved the following theorem about
triples of Fibonacci numbers {Fa,Fb,Fc} when
(a,b) = (2n,2n + 2).

Theorem

If {F2n,F2n+2,Fk} is a Diophantine triple, then
k ∈ {2n + 4,2n − 2}, except when n = 2, case in which we
have the additional solution k = 1.

Note that the exception k = 1 in case n = 2 is not truly an
exception but it appears merely due to the fact that F1 = F2.

Florian Luca Diophantine sets of Fibonacci numbers



Preliminary results

We collect some known facts about Fibonacci numbers.

Let

(α, β) =

(
1 +
√

5
2

,
1−
√

5
2

)
be the two roots of the characteristic equation of the Fibonacci
sequence x2 − x − 1 = 0. Then the Binet formula for Fn is

Fn =
αn − βn

α− β
for all n ≥ 0. (2)

The Fibonacci sequence has a Lucas companion {Ln}n≥0 given
by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. Its Binet
formula is

Ln = αn + βn for all n ≥ 0. (3)

There are many formulas involving Fibonacci and Lucas
numbers. One which is useful to us is

L2
n − 5F 2

n = 4(−1)n for all n ≥ 0. (4)
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A theorem of Siegel

We next recall a result of Siegel concerning the finiteness of the
number of solutions of a hyperelliptic equation.

Lemma

Let K be any number field and OK be the ring of its algebraic
integers. Let f (X ) ∈ K[X ] be a non constant polynomial having
at least 3 roots of odd multiplicity. Then the Diophantine
equation

y2 = f (x)

has only finitely many solutions (x , y) in OK.
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Facts about quadruples

We next need one more fact about Diophantine quadruples.
The following result is due to Fujita, Miyazaki 2016.

Lemma

Let {a,b, c,d} be a Diophantine quadruple with a < b < c < d.
If c > 722b4, then the quadruple is regular.
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One lemma

Lemma

If k is a fixed nonzero integer, then the Diophantine equation
kFn + 1 = x2 has only finitely many integer solutions (n, x).

Proof. Inserting Fn = (x2 − 1)/k into (4) and setting y := Ln, we
get

y2 = 5F 2
n + 4(−1)n =

1
k2

(
5x4 − 10x2 + (5± 4k2)

)
.

Should the above equation have infinitely many integer
solutions (x , y) it would follow, by Lemma 11 (we take K = Q),
that one of the polynomials

f±,k (X ) = 5X 4 − 10X 2 + (5± 4k2)

has double roots. However, f±,k (X )′ = 20X (X 2 − 1), so the only
possible double roots of f±,k (X ) are 0 or ±1. Since
f±,k (0) = 5± 4k2 6= 0 and f±,k (±1) = ±4k2 6= 0, it follows that
f±,k (X ) has in fact only simple roots, a contradiction.
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A result of Nemes and Pethő 1986

All polynomials P(X ) of degree larger than 1 such that the
Diophantine equation Fn = P(x) has infinitely many integer
solutions (n, x) were classified by the authors mentioned above.
In particular, we could have used this classification in the proof
of the previous lemma. However, we preferred to give a direct
proof of the lemma especially since our proof reduces to an
immediate verification of the hypotheses from Siegel’s theorem.
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Another lemma

Lemma

Assume that k is a positive integer such that the Diophantine
equation

FnFn+k + 1 = x2 (5)

has infinitely many integer solutions (n, x). Then k = 2,4 and
all solutions have n even.
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Proof. Using (2) and (3), we get

FnFn+k+1 =
1
5
(αn−βn)(αn+k−βn+k )+1 =

1
5
(
L2n+k − (−1)nLk + 5

)
.

Thus, if (n, x) satisfy (5), then L2n+k = 5x2 + ((−1)nLk − 5).
Inserting this into (4) (with n replaced by 2n + k ) and setting
y := F2n+k , we get

5y2 = L2
2n+k − 4(−1)k

= 25x4 + 10((−1)nLk − 5)x2 + ((−1)nLk − 5)2 − 4(−1)k .

Assuming that there are infinitely many integer solutions (n, x)
to equation (5), it follows, by Lemma 11 (again, we take K = Q),
that for ζ, η ∈ {±1}, one of the polynomials

gζ,η,k (X ) = 25X 4 + 10(ζLk − 5)X 2 + (ζLk − 5)2 − 4η

has double roots.
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Now
gζ,η,k (X )′ = X (100X 2 + 20(ζLk − 5))

so the only zeros of the derivative of gζ,η,k (X ) are 0 and
±
√
ζLk − 5/5.

Now
gζ,η,k (0) = (ζLk − 5)2 − 4η.

If this is zero, then η = 1, and ζLk − 5 = ±2. We thus get
ζLk = 3,7, showing that ζ = 1 and k ∈ {2,4}. Thus, k ∈ {2,4}
and (−1)n = ζ = 1, so n is even.
The other situation gives

gζ,η,k (±
√
ζLk − 5/5) = −4η.

Hence, this situation does not lead to double roots of gζ,η,k (X ).
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Finally, when k = 2, 4 it is easy to see that if FnFn+k + 1 is a
square then n is even. Indeed for n odd we have in fact

FnFn+2 − 1 = F 2
n+1 and FnFn+4 − 1 = F 2

n+3.

Hence, if also one of FnFn+2 + 1 or FnFn+4 + 1 is a square, we
would get two squares whose difference is 2, which of course is
impossible.
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The proof of the main result

For a contradiction, we assume that there are infinitely many
Diophantine quadruples of Fibonacci numbers. We denote a
generic one by {Fa,Fb,Fc ,Fd} with a < b < c < d . Hence,
d →∞ over such quadruples. Since

FaFd + 1 = �

and d →∞, it follows, by Lemma 13, that a→∞. We next
show that both d − c →∞ and c − b →∞.
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Assume say that c − b = O(1) holds for infinitely many
quadruples. Then there exists a positive integer k such that
c = b + k holds infinitely often. By Lemma 14, it follows that
k ∈ {2,4} and b is even. If k = 2, then by Lemma 10 applied
several times, it follows that (a,b, c,d) = (a,a + 2,a + 4,a + 6),
which contradicts the results of Dujella and Jones. Thus, we
must have c = b + 4.
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Consider the following equations

FaFb + 1 = x2 and FaFb+4 + 1 = y2

with some integers x and y . Multiplying the two relations above
we get

F 2
a FbFb+4 + Fa(Fb + Fb+4) + 1 = (xy)2.

Since FbFb+4 = F 2
b+2 − 1 and Fb+4 + Fb = 3Fb+2, we get

(xy)2 = F 2
a (F

2
b+2−1)+3FaFb+2+1 =

(
FaFb+2 +

3
2

)2

−
(

5
4
+ F 2

a

)
,

so

4F 2
a + 5 = (2FaFb+2 + 3)2 − (xy)2

= (2FaFb+2 + 3− xy)(2FaFb+2 + 3 + xy).

The right–hand side is

≥ 2FaFb + 3 + xy � αa+b,

while the left–hand side is� α2a. Thus α2a � αa+b, showing
that b − a = O(1).
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By Lemma 14 again, it follows that b − a ∈ {2,4} with finitely
many exceptions. The case b = a + 2 leads, via Lemma 10
applied again several times, to the situation
(a,b, c,d) = (a,a + 2,a + 4,a + 6), which we already saw that
it is impossible, while the situation b = a + 4 together with
c = b + 4 = a + 8, leads to

FaFa+8 + 1 = �,

which, by Lemma 14, can have only finitely many solutions a.
Thus, c − b →∞. Notice that d was not used in the above
argument (we only worked with the triple {Fa,Fb,Fc}). Thus,
the same argument implies that d − c →∞ by working with the
triple {Fb,Fc ,Fd} instead of the triple {Fa,Fb,Fc}.

Florian Luca Diophantine sets of Fibonacci numbers



Assume next that c ≥ 4b + 15 infinitely often. Then

Fc ≥ F4b+15 = F16F4b + F15F4b−1 > 722F4b > 722F 4
b ,

so, by Lemma 12, it follows that the Diophantine quadruple
{Fa,Fb,Fc ,Fd} is regular. Hence,

Fd = Fa+Fb+Fc+2FaFbFc+2
√

(FaFb + 1)(FbFc + 1)(FaFc + 1).

Since Fm =
αm
√

5
(1 + o(1)) as m→∞, and a→∞, we get

αd
√

5
(1 + o(1)) =

4
53/2α

a+b+c(1 + o(1)),

showing that∣∣∣∣αd−a−b−c − 4
5

∣∣∣∣ = o(1), as a→∞.

Thus, αd−a−b−c = 4/5, which is impossible because 4/5 does
not belong to the multiplicative group generated by α.
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Hence, c ≤ 4b + 14 holds with finitely many exceptions. Thus,
we arrived at the scenario where

FbFc + 1 = x2

has infinitely many integer solutions (b, c, x) with
b < c ≤ 4b + 14. Now the Corvaja, Zannier method based on
the Subspace Theorem (see also some of Fuchs early papers)
leads to the conclusion that there exists a line parametrized as

b = r1n + s1, c = r2n + s2

for positive integers r1, r2 and integers s1, s2, such that for
infinitely many positive integers n, there exists an integer vn
such that

Fr1n+s1Fr2n+s2 + 1 = v2
n .

We sketch the details of this deduction at the end.
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The condition c ≤ 4b + 14 implies r2 ≤ 4r1. The condition c > b
together with the fact that c − b →∞, implies that r2 > r1. By
writing

s1 = r1q + s′1 with q = bs1/r1c and s′1 ∈ {0,1, . . . , r1 − 1},

and making the linear shift

n 7→ n + bs1/r1c,

we may assume that s1 ∈ {0,1, . . . , r1 − 1}. Finally, we may
assume that

gcd(r1, r2) = 1

(otherwise, we let δ := gcd(r1, r2) and replace n by δn).

We may also assume that both r1n and r2n are even infinitely
often (this is the case when n is even, for example), so
βr1n = α−r1n and βr2n = α−r2n. The other cases can be dealt
with by similar arguments.
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We now use formula (2) and get

Fr1n+s1Fr2n+s2 + 1 =
1
5
(αr1n+s1 − βr1n+s1)(αr2n+s2 − βr2n+s2) + 1

=:
α−n(r1+r2)

5
Pr1,r2,s1,s2(α

n),

where

Pr1,r2,s1,s2(X ) = (αs1X 2r1 − βs1)(αs2X 2r2 − βs2) + 5X r1+r2 .
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Let K := Q(
√

5). We thus get that

Pr1,r2,s1,s2(α
n) =

(
α−n(r1+r2)/2
√

5

)2

v2
n , (6)

infinitely often with some integer vn, and the right–hand side
above is a square in OK for infinitely many n. Thus, the
Diophantine equation

y2 = Pr1,r2,s1,s2(x)

has infinitely many solutions (x , y) in OK. In particular,
Pr1,r2,s1,s2(X ) can have at most two roots of odd multiplicity by
Lemma 11. In fact, we shall show that it has no root of odd
multiplicity.
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Indeed, assume that z0 is some root of odd multiplicity of
Pr1,r2,s1,s2(X ). Let D be any positive integer. Infinitely many of
our n will be in the same residue class r modulo D. Thus, such
n can be written under the form n = Dm + r . We may then
replace X by X Dαr and work with Q(X ) := Pr1,r2,s1,s2(X

Dαr ).
Equation

y2 = Q(x)

still has infinitely many solutions (x , y) in OK (just take in (6)
positive exponents n which are congruent to r modulo D), yet
Q(X ) has at least D roots of odd multiplicity, namely all the
roots of X Dαr − z0. Since D is arbitrary (in particular, it can be
taken to be any integer larger than 2), we conclude that this is
possible only when Pr1,r2,s1,s2(X ) has all its roots of even
multiplicity, so it is associated to the square of a polynomial in
OK[X ].
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So, let us write

Pr1,r2,s1,s2(X ) = γ(X 2r1+2r2 + γ1X 2r2 + γ2X r1+r2 + γ3X 2r1 + γ4)

for some nonzero coefficients γ, γ1, γ2, γ3, γ4. Since r1 < r2, all
the above monomials are distinct. Write Pr1,r2,s1,s2(X ) = γR(X )2

for some monic polynomial R(X ) ∈ K[X ] and let us identify
some monomials in R(X ). Certainly, R(0) 6= 0. Further,
degR(X ) = r1 + r2 and the last nonzero monomial in R(X ) is
certainly X 2r1 . Hence, we get

Pr1,r2,s1,s2(X ) = γ(X r1+r2 + · · ·+ δ1X 2r1 + δ0)
2,

for some nonzero coefficients δ0, δ1 which can be computed,
up to sign, in terms of γ, γ3, γ4.
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Assume first that R(X ) does not have other monomials. Then

γR(X )2 = γ(X 2r1+2r2+2δ1X 3r1+r2+δ2
1X 4r1+2δ0X r1+r2+2δ0δ1X 2r1+δ2

0).

The second leading monomial above is X 3r1+r2 and matching it
with the second leading monomial in Pr1,r2,s1,s2(X ), which is
X 2r2 , we get r2 = 3r1. Hence, since gcd(r1, r2) = 1, we get
(r1, r2) = (1,3).
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Assume next that R(X ) contains monomials of intermediary
degrees between r1 + r2 and 2r1. Let the leading one of them
be of degree e. Thus,

R(X ) = X r1+r2 + δX e + · · ·+ δ1X 2r1 + δ0,

with some nonzero coefficient δ. Then the second leading
monomial of γR(X )2 is X r1+r2+e and matching that with the
second leading monomial appearing in Pr1,r2,s1,s2(X ) which is
X 2r2 , we get that r1 + r2 + e = 2r2, therefore e = r2 − r1. The
condition e > 2r1 yields r2 > 3r1. Now let us look at X 2e. It
might appear with nonzero coefficient in R(X )2, or not. If it
does, its degree must match the degree of one of the
monomials of a lower degree in Pr1,r2,s1,s2(X ), which are X r1+r2

or X 2r2 . We thus get 2e = 2r2 − 2r1 ∈ {r1 + r2,2r2}, which give
r2 = 3r1 or r2 = 2r1, respectively, none of which is possible
since we just established that r2 > 3r1. So, X 2e cannot appear
in R(X )2.
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Well, that is only possible if R(X ) itself contains with a nonzero
coefficient λ the monomial X f such that δ2X 2e appearing in
R(X )2 is eliminated by the cross term 2λX r1+r2+f of R(X )2.
Comparing degrees we get r1 + r2 + f = 2e = 2r2 − 2r1, so
f = r2 − 3r1. However, since f ≥ 2r1, we get r2 − 3r1 ≥ 2r1, so
r2 ≥ 5r1, a contradiction since r2 ≤ 4r1. Hence, this case cannot
appear.
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Thus, the only possibility is (r1, r2) = (1,3). Since r1 = 1, it
follows that s1 = 0. Thus,

Pr1,r2,s1,s2(X ) = P1,3,0,s2(X ) = (X 2 − 1)(αs2X 6 − βs2) + 5X 4

= α−s2((X 2 − 1)(α2s2X 6 − (−1)s2) + 5αs2X 4).

We thus took

Pζ(X ,Y ) = (X 2 − 1)(Y 2X 6 − ζ) + 5YX 4 for ζ ∈ {±1}.

We computed the derivative of Pζ(X ,Y ) with respect to X and
computed the resultant, with respect to the variable X , of this
polynomial with Pζ(X ,Y ). We got

Qζ(Y ) := ResX

(
Pζ(X ,Y ),

∂Pζ
∂X

(X ,Y )

)
.
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So, the roots of Qζ(Y ) are exactly the values of Y for which
Pζ(X ,Y ) has a double root as a polynomial in X . It turns out
when ζ = 1, the only roots of Q1(Y ) are zero, and the roots of
an irreducible polynomial of degree 4, so such roots are not
powers of α of some integer exponent s2. However, when
ζ = −1, we have that

Q−1(Y ) = −256Y 12(Y 2 − 29Y − 1)2(27Y 2 − 527Y − 27)2,

and we recognize that α7 and β7 are roots of Q−1(Y ). The
other factor 27X 2 − 527X − 27 has roots which are not
algebraic integers, so they cannot be αs2 . So, s2 ∈ {±7}.
However,

P−1(X , α7) = (X 2 − β4)2G(X ),

where
G(X ) = α14X 4 − (α13 + α9)X 2 − α8

is an irreducible polynomial of degree 4 in K[X ]. Replacing α7

by β7 above gives the conjugate of P−1(X 7, α7) in K[X ]. Thus,
Pr1,r2,s1,s2(X ) does not have all its roots of even multiplicity.
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THANK YOU!
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