
Kadison–Singer conjecture for strongly Rayleigh measures

Benjamin Matschke

1. Introduction

Marcus, Spielman and Srivastava [5] proved the following theorem. It implies
the long-standing Kadison–Singer conjecture [4, 1, 6], which asserts that every pure
state on the abelian von Neumann algebra D(`2) of bounded diagonal operators
on `2 has a unique extension to a pure state on B(`2).

Theorem 1 (MSS). Let V1, . . . , Vk be independent random vectors in Rd, each of
which take only finitely many values, and let ε > 0 be such that

∑
E[ViV

t
i ] = idd

and E
[
||Vi||2

]
≤ ε for all i = 1, . . . , k. Then

P
[
||
∑

ViV
t
i || ≤ (1 +

√
ε)2
]
> 0.

Anari and Oveis Gharan [2] proved a version of the MSS theorem (see Section 3)
in which in some sense they managed to weaken the independence assumption for
the random vectors V1, . . . , Vk. This allowed them to apply this technique to the
Asymmetric Traveling Salesman Problem. In particular they proved a new upper
bound for the integrality gap of its natural LP-relaxation.

2. Strongly Rayleigh measures.

Borcea, Brändén and Liggett [3] recently introduced the notion of strongly
Rayleigh measures. Let Pn denote the set of all probability measures on 2[n].
For such a measure µ ∈ Pn, let gµ :=

∑
S⊆[n] µ(S)xS ∈ R[x1, . . . , xn] denote its

generating function. We say that µ ∈ Pn is homogeneous of degree d if and only
if gµ is. Homogeneous µ ∈ Pn of degree 1 are the same as probability measures
on [n]. There is a product map Pn1

× Pn2
→ Pn1+n2

, the product of µ1 and µ2

being given via gµ1×µ2(x1, . . . , xn1+n2) := gµ1(x1, . . . , xn1)·gµ2(xn1+1, . . . , xn1+n2).
We call µ ∈ Pn strongly Rayleigh if gµ is a real stable polynomial, i.e. when gµ
has no complex roots (x1, . . . , xn) with im(xi) > 0 for all i. A basic example of
homogeneous strongly Rayleigh measures are homogeneous µ ∈ Pn of degree 1,
and products of such measures.

3. MSS theorem for strongly Rayleigh measures.

Anari and Oveis Gharan [2] proved the following version of the MSS theorem.

Theorem 2 (AO). Let µ be a homogeneous strongly Rayleigh probability measure
on 2[m] that satisfies PS∼µ[i ∈ S] ≤ ε1 for all i = 1, . . . ,m. Let v1, . . . , vm ∈ Rd
such that

∑
viv

t
i = idd and ||vi||2 ≤ ε2 for all i. Then

PS∼µ
[
||
∑
i∈S

viv
t
i || ≤ 4(ε1 + ε2) + 2(ε1 + ε2)2

]
> 0.
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Theorems 1 and 2 are related as follows. The random vectors V1, . . . , Vk from
Theorem 1 have finite supports and can thus be considered as homogeneous mea-
sures on 2[ni], respectively. Let µ ∈ Pm be their product measure according to the
previous section, with m =

∑
ni. Thus µ is supported on (some of) the k-subsets

of the multiset {v1, . . . , vm} := [n1] ∪̇ . . . ∪̇ [nk]. With this correspondance we see
that Theorem 2 holds for more general probability measures, but in turn it needs
a bound on each ||vi|| and not only on some expected norms, and the assertion is
also not exactly the analog of the one in Theorem 1.

4. Motivation: Asymmetric Travelling Salesman Problem.

LetG = (V,E) be a directed graph on n vertices with cost function c : E → R≥0.
The Asymmetric Travelling Salesman Problem (ATSP) askes for the shortest tour
in G that visits each vertex at least once. (Equivalently one can write “exactly
once” instead of “at least once” if one further requires the triangle inequality for
c.) If c is symmetric, c(u, v) = c(v, u), then this is called the Symmetric TSP, for
which it is considerably easier to find approximate solutions. On the other hand,
the associated decision problems for both ATSP and STSP are NP-complete.

The ATSP has a natural LP relaxation (by Held and Karp ’70). The integrality
gap is defined as the quotient between the costs of the optimal tours for the LP
relaxation and for the original ATSP. It is known that this gap can be at least 2.
It is unknown whether it is bounded from above by a constant. The prevous best
upper bound was O(log(n)/ log log(n)), and Anari and Oveis Gharan were able
to improve it to O((log log(n))a) for some a. Their approach was via so-called
α-spectrally thin trees, which are defined as follows.

Let LG denote the discrete Laplace operator on G, now regarded as an undi-
rected graph. A matrix representation of LG is LG =

∑
e∈E beb

t
e ∈ Rn×n, where

be is the vector 1u − 1v ∈ Rn. Similarly for a spanning tree T ⊆ G, define
LT =

∑
e∈T beb

t
e ∈ Rn×n. Now, a spanning tree T ⊆ G is called α-spectrally thin,

α ∈ R>0, if LT � αLG.
A sufficient condition for T being α-spectrally thin is ||

∑
e∈T vev

t
e|| ≤ α, where

ve := L
†/2
G · be, L†/2G denoting the square root of the pseudo inverse of LG. This

is precisely a condition that can be obtained from Theorem 2. For this one needs
further an adequate probability distribution on the set of spanning trees of G.
In [3] it was proved that for any γ : E → R the measure µ supported on the
spanning trees of G and given via Pµ(T ) ∼

∏
e∈T exp(γ(e)) is a homogeneous and

strongly Rayleigh measure in P|E|.

5. Mixed characteristic polynomials

Let µ ∈ Pm be a homogeneous probability distribution on 2[m] of degree dµ.
For m given vectors v1, . . . , vm ∈ Rd, the mixed characteristic polynomial of µ at
v1, . . . , vm is defined as

µ[v1, . . . , vm](x) = ES∼µχ
[∑
i∈S

2viv
t
i

]
(x2) ∈ R[x].
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where χ[M ] denotes the ordinary characteristic polynomial of a square matrix M.

Theorem 3 ([2]). µ[v1, . . . , vm](x) equals

xd−dµ ·
(∏

(1− ∂2zi)
)
·
(
gµ(x · 1+ z) · det(x · idd +

∑
ziviv

t
i)
)∣∣∣∣
z1=...=zm=0

∈ R[x].

Here, z1, . . . , zm are m further variables. In the formula of the theorem, the
differential operators (1 − ∂2zi) are applied to gµ(. . .) det(. . .) before the variables
zi are put to zero. Note that both factors gµ(. . .) and det(. . .) are are linear in
each zi, whence each operator ∂2zi gets “distributed”, one ∂zi for each factor.

This representation of the mixed characteristic polynomial opens the way to
apply the theory of stable polynomials. Using the lemmas from [5] the following
corollary follows immediately.

Corollary. If µ is strongly Rayleigh, then µ[v1, . . . , vm] is real rooted.

6. Interlacing families

Let F := {S ⊆ [n] | µ(S) 6= 0}. Let {qS}S∈F denote the family of polynomials
given by qS(x) = µ(S) · χ

[∑
i∈S 2viv

t
i

]
(x2). The characteristic polynomial at

v1, . . . , vm is clearly the sum of the qS . In fact {qS}F is a so-called interlacing
family (in the sense of [2]; the proof uses the previous corollary), by which one
obtains the following theorem.

Theorem 4. There exists an S ∈ F such that the largest root of qS is less or
equal to the largest root of µ[v1, . . . , vm](x).

7. Proof scheme for Theorem 2.

By an extension of the so-called multivariate barrier argument of [5], Anari and
Oveis Gharan proved that the largest root of µ[v1, . . . , vm](x) is at most 4(2ε+ε2),
where ε = ε1+ε2. We omit this part, as this is given in large detail in the next talk
by Romanos Malikiosis. Then one applies Theorem 4 and obtains the existence of
some S ∈ F such that all roots of qS are bounded from above. As qS is essentially
the characteristic polynomial of a matrix

∑
i∈S viv

t
i , this bounds the operator

norm of that matrix. And this finishes the proof of Theorem 2.
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