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1 Introduction

Consider a chain complex (C, d) that is filtered in n different compatible1 ways over the integers, or
alternatively, a space X that is filtered in n different ways over the integers together with a generalized
homology theory h∗. Then, according to [Mat13], there is an associated “spectral system over D(Zn)”
whose limit is H∗(C) respectively h∗(X). For n = 1 this contains the usual spectral sequence of C
respectively X as a substructure.

In that paper several connections between the first page and the limit of this spectral system have
been given (via differentials, extensions, and natural isomorphisms), which have been in particular
useful for unifying several spectral sequences that one would usually apply one after another. It was
conjectured that there should be many more differentials to choose from. In this paper, we prove this
conjecture. With these new differentials it seems justified to give spectral system over D(Zn) the new
name higher spectral sequences.

In particular, we construct for any admissible word ω ∈ L∗a (see Definition 3.2) over the alphabet

L := {1, . . . , n, 1∞, . . . , n∞, x}.

a so-called ω-page, which is a collection of abelian groups S(P ;ω). Here P ranges over a quotient
Zn/Vω ∼= Zn−k, where k is the number of letters x in ω. In the alphabet L, a letter j ∈ [n] stands for
taking homology with respect to the j’th differential, j∞ denotes the same but infinitely often, and x
stands for a group extension process.

In ordinary spectral sequences we have n = 1, and for ω = 1r−1 the ω-page consists of the columns
in Er∗∗, which are indexed over P ∈ Z. The letter 1 stands the connection between some Er∗∗ and Er+1

∗∗ ,
1∞ stands for the connection between some Er∗∗ and E∞∗∗ , and x for the connection between E∞∗∗ and
the “limit” of the spectral sequence, e.g. H(C) if the spectral sequence comes from a Z-filtered chain
complex C.

In Section 3, we define certain vectors rjω, δ
j
ω ∈ Zn, where riω will be the negated direction of the

i’th differential at the ω-page, and δiω is the negated change of direction for the i’th differential that
occurs when taking homology with respect to it. In ordinary spectral sequences, for ω = 1r−1 we have
r1ω = r, and δ1ω = 1.

Theorem 3.6 (Main theorem). Let ω ∈ L∗a and j ∈ [n] such that ω ∗ j is admissible. Then the
following holds.

a) There are natural differentials

. . . −→ S(P + rjω;ω) −→ S(P ;ω) −→ S(P − rjω;ω)→ . . . . (1)

1Compatibility means that the associated exact couple system (2) is excisive. This occurs for example if C (the
underlying abelian group) is of the form

⊕
P∈Zn CP with the n canonical Z-filtrations.
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Taking homology at S(P ;ω) yields S(P ;ω ∗ j).

b) S(P ;ω ∗ j∞) is a natural subquotient of S(P ;ω ∗ jk) for all k ≥ 0.

c) There exists a natural Z-filtration (Fi)i∈Z of S(P ;ω ∗ j∞x),

0 ⊆ . . . ⊆ Fi ⊆ Fi+1 ⊆ . . . ⊆ S(P ;ω ∗ j∞x),

such that S(P + i · δjω;ω ∗ j∞) ∼= Fi/Fi−1, for all i ∈ Z.

How is this useful: (a) gives a connection between the first page and arbitrary ω-pages for ω ∈ [n]∗.
In the Spzbq -description of S(P ;ω) in the proof below, b, p, q, z are lexicographic downsets. Thus one

can proceed with the small-step and/or big-step lexicographic connections from [Mat13, 3.2.1] in order
to connect the ω-page to the limit S∞,−∞∞,−∞ via further differentials and extensions.

Alternatively, we can proceed with (b) and take homology infinitely often in one direction. Note
that as with usual spectral sequences, S(P ;ω ∗ j∞) may indeed be a proper subquotient of the limit
of the S(P ;ω ∗ jk), compare with Weibel [Wei94], Boardman [Boa99], McCleary [McC01].

Then one can proceed with (c), which connects to S(P ;ω ∗ j∞x). Again as with usual spectral
sequences, the filtration (Fi) may be neither Hausdorff nor exhaustive, and even if they are, S(P ;ω ∗
j∞x) may not be complete with respect to (Fi).

As usual these two problems in (b) and (c) can be serious, but they are the standard ones in
spectral sequences.

Arriving at S(P ;ω ∗ j∞x) we can start again at (a) until ω is final.

Outline. This paper is organized as follows. In Section 2 we review the notions and basic properties
of exact couple systems (“higher exact couples”) and their associated spectral systems (“higher spectral
sequences”).

In Section 3 the necessary new notation is developed, and the main theorem is precisely restated
and proved. During the proof, several equivalent descriptions for the ω-pages are given, some of which
are more intuitive — the SZB-descriptions — and some of which are much easier to work with — the
Spzbq -descriptions. At the end we discuss some more properties of the n = 2 case, which may also serve
as an example that gives more intuition.

2 Preliminaries

Let n ≥ 1 and [n] := {1, . . . , n}. Let e1, . . . , en be the standard basis vectors in Zn, and 1 :=
(1, . . . , 1)t ∈ Zn. Zn is a poset via (x1, . . . , xn) ≤ (x′1, . . . , x

′
n) if and only if xi ≤ x′i for all i.

Throughout the paper, let I := D(Zn) denote the lattice of downsets of Zn. (Everything in this
paper can also be done for filtrations over D(Z

n
), where Z = Z∪{±∞}; here we consider only D(Zn)

because it makes the presentation cleaner.)
I has minimum −∞ := ∅ and maximum ∞ := Zn. We write Ik := {(p1, . . . , pk) ∈ Ik | p1 ≥ . . . ≥

pk}, which is again a poset via (p1, . . . , pk) ≤ (p′1, . . . , p
′
k) if and only if pi ≤ p′i for all i.

For us a chain complex is an abelian group C together with an endomorphism d : C → C with
d ◦ d = 0, and its homology is H(C, d) := ker(d)/im(d); the grading is not of importance for us. An
I-filtration of C is a family of subchain complexes (Fp)p∈I such that Fq ⊆ Fp whenever q ≤ p.

Similarly, if X is a topological space then an I-filtration of X is a family of open subspaces (Xp)p∈I
such that Xq ⊆ Xp whenever q ≤ p.

Whenever we have an I-filtered chain complex (C, d), or an I-filtered space X together with a
generalized homology theory h∗, we can associate a so-called exact couple system via

Epq := H(Fp/Fq) (2)
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or
Epq := h∗(Xp, Xq), (3)

respectively, which is defined as follows.

Definition 2.1 (Exact couple system). And exact couple system over I is a collection of abelian

groups (Epq )(p,q)∈I2 together with homomorphisms `p,qp′,q′ : Epq → Ep
′

q′ for any (p, q) ≤ (p′, q′) and

homomorphisms kp,q : Epq → Eq−∞ for any (p, q) ∈ I2, such that the following properties are satisfied:

1. `p
′,q′

p′′,q′′ ◦ `
p,q
p′,q′ = `p,qp′′,q′′ .

2. The triangles

Eq−∞
`q,−∞p,−∞

// Ep−∞

`p,−∞p,q}}

Epq

kpq

aa

are exact.

3. The diagrams

Epq

`pq
p′q′
��

kpq
// Eq−∞

`q,−∞
q′,−∞
��

Ep
′

q′ kp′q′
// Eq

′

−∞

commute.

Let E be an exact couple system over I. There is a natural differential dpqz : Epq → Eqz for any
(p, q, z) ∈ I3 defined by dpqz := `q,−∞q,z ◦ kpq. With this we define an associated spectral system over I
via

Spzbq :=
ker(dpqz : Epq → Eqz )

im(dbpq : Ebp → Epq )
, (b, p, q, z) ∈ I4. (4)

At a first glance this is just a collection of abelian groups, one for each element in I4, however there
are many connections between them:

First note that the usual goal of computation, E∞−∞, appears as S∞,−∞∞,−∞ . It is called the limit of
this spectral system (this is just a name; it does not imply any convergence or comparison property).
Moreover, terms of the form Spqpq = Epq are usually known when q covers p, that is, when |q \ p| = 1.

The following facts are proved in [Mat13]. For any (b, p, q, z) ≤ (b′, p′, q′, z′) in I4, `pqp′q′ induces
maps

Spzbq → Sp
′z′

b′q′ ,

which we call maps induced by inclusion. When there is no confusion, we abbreviate all of them as `.

Lemma 2.2 (Extensions). For any z ≤ p1 ≤ p2 ≤ p3 ≤ b in I, we have a short exact sequence of
maps induced by inclusion,

0→ Sp2,zb,p1
→ Sp3,zb,p1

→ Sp3,zb,p2
→ 0. (5)

Lemma 2.3 (Differentials). For any (b, p, q, z), (b′, p′, q′, z′) ∈ I4 with z ≤ p′ and q ≤ b′ there are
natural differentials

d : Spzbq → Sp
′z′

b′q′ , (6)

which commute with `, that is, ` ◦ d = d ◦ `.
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Lemma 2.4 (Kernels and cokernels). For any (b, p, q, z), (b′, p′, q′, z′) ∈ I4 with z = p′ and q = b′ we
have

ker
(
d : Spzbq → Sp

′z′

b′q′

)
= Spq

′

bq

and
coker

(
d : Spzbq → Sp

′z′

b′q′

)
= Sp

′z′

pq′

Lemma 2.5 (∞-page as filtration quotients). E∞−∞ can be I-filtered by

Gp := im(` : Ep−∞ → E∞−∞) ∼= Sp,−∞∞,−∞, p ∈ I.

Furthermore the S-terms on the ∞-page are filtration quotients

Sp,−∞∞,q
∼= Gp/Gq.

Lemma 2.6 (∞-page as quotient kernels). E∞−∞ has quotients

Qp :=
E∞−∞

ker(` : E∞−∞ → E∞p )
∼= S∞,−∞∞,p , p ∈ I.

Furthermore the S-terms on the ∞-page are quotient kernels

Sp,−∞∞,q
∼= ker(Qq → Qp).

Definition 2.7 (Excision). An exact couple system E over I is called excisive if for all a, b ∈ I,

Eaa∩b
`−→ Ea∪bb

is an isomorphism.

The exact couple system (3) is automatically excisive by the excision axiom of h∗. Note however
that (2) is in general not excisive, though in many applications it is, for example when C =

⊕
P∈Zn Cp

(as abelian group) and (Fp)I is the canonical I-filtration given by Fp =
⊕

P∈p Cp.
Let us think of J := Zn as an undirected graph, whose vertices are the elements of J , and x, y ∈ J

are adjacent if they are related, i.e. x ≥ y or x ≤ y (coordinate-wise). For (b, p, q, z) ∈ I4, let
Z(z, q, p, b) ⊆ J denote the union of all connected components of p \ z that intersect p \ q, and let
B(z, q, p, b) ⊆ I denote the union of all connected components of b \ q that intersect p \ q.

Lemma 2.8 (Natural isomorphisms). In an excisive exact couple system E over I = D(J), Spzbq is
uniquely determined up to natural isomorphism by Z := Z(z, q, p, b) and B := B(z, q, p, b).

We also write SZB for Spzbq , which is only defined up to natural isomorphisms. A word of warning:

This B-Z-description of Spzbq looks quite appealing. However it may be combinatorially non-trivial to
check whether some given B and Z come from some (b, p, q, z), and if so there might be several good
choices. Moreover, it can be quite challenging to see whether there is a differential from SZ1

B1
to SZ2

B2

and what the resulting kernels and cokernels are in this case.

3 New differentials

Throughout this section let us fix an excisive exact couple system E over I = D(Zn).
Define an alphabet L,

L := {1, . . . , n, 1∞, . . . , n∞, x}.
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Remark 3.1 (Some intuition). Here, a letter j ∈ [n] stands for taking homology with respect to the
j’th differential, j∞ denotes the same but infinitely often, and x stands for a group extension process.
In ordinary spectral sequences, n = 1, and the letter 1 stands the connection between some Er∗∗ and
Er+1
∗∗ , 1∞ stands for the connection between some Er∗∗ and E∞∗∗ , and x for the connection between E∞∗∗

and the “limit” of the spectral sequence, e.g. H(C) if the spectral sequence comes from a Z-filtration
of a chain complex C.

Let L∗ denote the monoid of words of finite length with letters in L. Denote the empty word by ε,
the concatenation of two words ω and ω′ by ω ∗ ω′, ωn := ω ∗ . . . ∗ ω (n times), and the length of ω by
|ω|. L∗a becomes a poset via τ ≤ ω if and only if τ is a prefix of ω, that is, a subword that starts from
the beginning (τ = ε and τ = ω are allowed).

Definition 3.2 (Admissible words). Call a finite word ω ∈ L∗ admissible if the following holds:

1. if j∞ appears, the subsequent subword of ω contains neither j nor j∞,

2. the only letter allowed directly after j∞ is x,

3. any x occurring in ω comes directly after some j∞.

If furthermore ω contains subwords j∞x for all j ∈ [n] then ω is called final .

An exemplary final word for n = 3 is 123122∞x133313∞x111∞x and any prefix of a final word is
admissible. Let L∗a denote the set of all admissible words in L∗. Define X(ω) ⊆ [n] as the set of j ∈ [n]
such that j∞x is a subword of ω, and Y (ω) := [n] \X(ω). X(ω) is so to speak the set of indices along
which the extension process has been already made, and Y (ω) is the set of indices along which we still
have differentials.

For ω ∈ L∗a, i, j ∈ [n], we inductively define riω, δ
i
ω ∈ Zn and Bω, Zω ⊂ Zn as follows. Put riε := ei,

riω∗j∞ := riω, riω∗x := riω, and

riω∗j :=

{
riω if i 6= j,

riω + δiω if i = j,

where δiε := ei, δ
i
ω∗j∞ := δiω, δiω∗x := δiω, and

δiω∗j :=

{
δiω if i ∈ X(ω) ∪ {j},
δiω − δjω if i ∈ Y (ω) \ {j}.

For ω ∈ [n]∗, δiω = 1−
∑
k∈[n] \ i r

k
ω.

Remark 3.3 (Some intuition 2). riω will be the negated direction of the i’th differential at the ω-page,
and δiω is the negated change of direction for the i’th differential that occurs when taking homology
with respect to it. In ordinary spectral sequences, n = 1, and for ω = 1r−1 the ω-page consists of the
columns in Er∗∗, with r1ω = r, and δ1ω = 1.

Further put Bε := {0},

Bω∗j := Bω + {0, δjω}, (7)

Bω∗j∞ := Bω + Z≥0 · δjω, (8)

Bω∗j∞x := Bω + Z · δjω. (9)

Here plus denotes a Minkowski sum. Thus for ω ∈ [n]∗, Bω can be regarded as a discrete zonotope, that
is, an affine image of the vertices of an |ω|-dimensional cube. See Figures 1 and 2. Define Zω := −Bω,
and for P ∈ Zn,

S(P ;ω) := SP+Zω

P+Bω
. (10)
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Below we show that this is indeed a well-defined S-term (only up to natural isomorphism of course)
by constructing (b, p, q, z) ∈ I4 such that Spzbq represents S(P ;ω).

Define lattices Vω ⊆ Zn for ω ∈ L∗a inductively as follows. Put Vε := {0}, Vω∗j := Vω, Vω∗j∞ := Vω,
and

Vω∗j∞x := Vω + Z · δjω.

Alternatively, Vω = Bω ∩ Zω. For P, P ′ ∈ Zn with P − P ′ ∈ Vω, S(P ;ω) = S(P ′;ω). Thus we may
also think of S(P ;ω) as being parametrized over P ∈ Zn/Vω.

Definition 3.4 (ω-page). Let ω ∈ L∗a. We call the collection of all S(P ;ω), P ∈ Zn/Vω, the ω-page.

For ω = ε this was called the first page in [Mat13], for ω = 123 . . . n the second page, and for
ω = 1q1 . . . nqn a generalized second page, or the Q-page, where Q = (q1, . . . , qn) ∈ Zn≥0.

12221221121212111122112111121111

111 112 121 122

11 12

1

Figure 1: All Bω with |ω| ≤ 4, ω1 = 1, and n = 2. For each Bω, the origin is marked with a solid
square, and the two points riω − ei/2 are marked with a black dot.

B1 B12 B123 B1231 B12312 B123123

Figure 2: Bω for ω = 1, . . . , 123123 and n = 3. For each Bω, the origin is marked with a dark cube,
and the three points riω − ei/2 with a black dot.

Remark 3.5 (Relation between jj∞ and j∞). Suppose w ∈ L∗a contains j∞, and let w′ be the same
word except that j∞ is replaced by jkj∞ for some k ≥ 1. Then in general, riω 6= riω′ and δiω 6= δiω′ ,
but they always agree modulo Vω = Vω′ . Also Bω = Bω′ and hence S(P ;ω) = S(P ;ω′). Moreover
one can check that the differentials in the main theorem 3.6 below are the same for ω and ω′. Thus
in order to speak about the ω-page it is enough to know the image of ω in the quotient semigroup
L∗/(jj∞ ∼ j∞).

Theorem 3.6 (Main theorem). Let ω ∈ L∗a and j ∈ [n] such that ω ∗ j is admissible. Then the
following holds.

a) There are natural differentials

. . . −→ S(P + rjω;ω) −→ S(P ;ω) −→ S(P − rjω;ω)→ . . . . (11)

Taking homology at S(P ;ω) yields S(P ;ω ∗ j).
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b) S(P ;ω ∗ j∞) is a natural subquotient of S(P ;ω ∗ jk) for all k ≥ 0.

c) There exists a natural Z-filtration (Fi)i∈Z of S(P ;ω ∗ j∞x),

0 ⊆ . . . ⊆ Fi ⊆ Fi+1 ⊆ . . . ⊆ S(P ;ω ∗ j∞x),

such that S(P + i · δjω;ω ∗ j∞) ∼= Fi/Fi−1, for all i ∈ Z.

Remark 3.7 (Multiplicative structure). As usual, under certain assumptions on E there will be a
multiplicative structure. The simplest instance is when E comes via (2) from an I-filtered differential
algebra C, whose filtration (Fp)I satisfies Fp · Fq ⊆ Fp+q, where p + q denotes the Minkowski sum.
Then for any ω ∈ L∗a there is a natural product S(P ;ω) ⊗ S(Q;ω) → S(P + Q;ω), which satisfies a
Leibniz rule with respect to the differentials (a). Furthermore they are compatible with respect to (b)
and (c) in the usual way, and for final ω it coincides with the product on H(C). For details and a
more general criterion see [Mat13, 4.4].

3.1 Proof of the main theorem

Before proving Theorem 3.6 we need some preparation. In particular it will be convenient to move to
another basis spanned by the δiω, which depends on ω.

For ω ∈ L∗a, define

Mω :=
(
δ1ω · · · δnω

)−1 ∈ Qn×n.

For k ∈ [n] and ω ∈ L∗a, let T kω denote the matrix

T kω := idZn + ek(1X(ω) \{k})
t = (δi=j or (i=k and j∈X(ω)))ij ∈ SL(n,Z).

A quick calculation shows that Mε = idn, Mω∗j∞ = Mω, Mω∗x = Mω, and

Mω∗j = T jωMω.

Therefore, Mω ∈ SL(n,Z), and all its entries are non-negative. It will be very convenient to transform
Bω and Vω by Mω, so we define

BMω := Mω ·Bω, VMω := Mω · Vω ⊂ Zn.

In particular,

BMω∗j = T jω(BMω + {0, ej}), (12)

BMω∗j∞ = T jω(BMω + Z≥0 · ej), (13)

BMω∗j∞x = T jω(BMω + Z · ej), (14)

and VMω = Z · {ei | i ∈ X(ω)}. In particular, Zn/VMω can be naturally identified with ZY (ω).
Define uω ∈ Zn inductively via uε := 0, uω∗j∞ := uω, uω∗x := uω, and

uω∗j := ej + T jωuω.

For n ≥ 2 and ω ∈ [n]∗, a more explicit formula is uω = 1
n−1 (Mω1− 1).

The following lemmas about Bω are stated and proved only in the special case when ω ∈ [n]∗, since
this simplifies the notation considerably. When working modulo Vω and VMω , respectively, analogous
statements still hold for arbitrary ω ∈ L∗a, as long as ω does not end on some j∞. It should be rather
clear how to state and prove them.

Lemma 3.8. For any ω ∈ [n]∗, BMω is a path in the unit-distance graph of Zn from 0 to uω, which is
monotone with respect to all coordinates.
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Proof. By induction, assume that the lemma holds for BMω , and we want to prove it for BMω∗j .

Suppose x, x+ ek ∈ BMω are the vertices of an edge in BMω . If k 6= j then this edge gives rise to a
path of length 2 in BMω∗j along the vertices T jωx, T jω(x+ej) = T jωx+ej , and T jω(x+ek) = T jωx+ej +ek.

If k = j then this edge gives rise to an edge in BMω∗j whose vertices are T jωx and T jω(x+ek) = T jωx+ej .

Moreover uω∗j = T jω(uω + ej).

Corollary 3.9. For any ω ∈ [n]∗, BMω ⊆ {x ∈ Zn | 0 ≤ x ≤ uω}. Moreover, BMω = uω −BMω .

Lemma 3.10. For any ω ∈ [n]∗, i, j ∈ [n], x ∈ BMω , the following holds:

1. Either x−Mωei ∈ BMω , or x−Mωei ≤ 0, or both.

2. Either x+Mωei ∈ BMω , or x+Mωei ≥ uω, or both.

Proof. Suppose the lemma holds for BMω , and we want to prove it for BMω∗j . By Corollary 3.9 it is

enough to prove the first statement. By (12), any element of BMω∗j is of the form T jωx or T jω(x+ ej) =

T jωx + ej for some x ∈ BMω . If now z := x −Mωei ∈ BMω , then also z′ := T jωx −Mω∗jei = T jωz and
z′′ := T jω(x+ ej)−Mω∗jei = T jω(z + ej) lie in BMω∗j .

Thus it remains to check the case when z ≤ 0. Then clearly z′ = T jωz ≤ 0 since all entries of T jω
are non-negative. Similarly z′′ = T jωz + ej ≤ ej . If z′′ ≤ 0 does not hold, then 1 = z′′j = 1 +

∑
k zk,

hence z = 0, thus z′′ = ej , which lies in BMω∗j since 0 ∈ BMω .

Let us regard any subset of Zn as a graph by connecting any two elements with distance 1 by an
edge. In particular we can then talk about connected components of such subsets.

Lemma 3.11. For any ω ∈ [n]∗, Bω is connected.

Proof. By induction one immediately sees that

rjω − ej ∈ Bω. (15)

Also by induction,
Mωr

j
ω = uω + ej ∈ ej +BMω , (16)

from which we get
rjω ∈ δjω +Bω. (17)

Thus if Bω is connected then so is Bω∗j by (7), (15), and (17).

For any subset X ⊆ Zn, let Comp0(X) denote the connected component that contains 0.
From Lemmas 3.10 and 3.11 it follows that Bω is Comp0(X) where X is the intersection of the n

“discrete hyperplanes”
{x ∈ Zn | 0 ≤ etiMωx ≤ etiuω}, 1 ≤ i ≤ n.

For our purposes the following similar description of Bω is more useful. The symmetric group Sn

acts on Zn by permutation of the coordinates, σ ·x := (xσ−1(i))i∈[n]. Let ≤lex denote the lexicographic
relation on Zn. Define a new relation ≤σ-lex by setting x ≤σ-lex y if and only if σx ≤lex σy.

For any P ∈ (Z ∪ {∞})n, M ∈ Zn×n≥0 with detM = 1, and σ ∈ Sn, define

D(P ;M,σ) := {x ∈ Zn | Mx ≤σ-lex MP}

and
D◦(P ;M,σ) := {x ∈ Zn | Mx <σ-lex MP}.

Lemma 3.12. For any ω ∈ [n]∗, j ∈ [n], and σ ∈ Sn with σ(j) = n, the following two equations hold.

1. Bω = Comp0

(
D◦(rjω;Mω, σ) \D◦(0;Mω, σ)

)
.
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2. Bω∗j = Comp0

(
D(rjω;Mω, σ) \D◦(0;Mω, σ)

)
.

Of course analogous formulas also hold for Zω and Zω∗j .

Proof. Since σ(j) = n, the only z ∈ Zn with uω <σ-lex Mωz ≤σ-lex Mωr
j
ω is rjω. Now the first equation

follows readily from Lemmas 3.10 and 3.11.
As for the second equation, “⊆” follows from MωBω∗j = MωBω + {0, ej} and the connectivity

of Bω∗j . It remains to check “⊇”. By Lemma 3.10 and (16) the only neighbor y of x ∈ Bω such
that y 6∈ Bω and y ∈ D(rjω;Mω, σ) \D◦(0;Mω, σ) is y = rjω. Similarly (or by symmetry), the only
neighbor y of x ∈ Bω + δjω such that y 6∈ Bω + δjω and y ∈ D(rjω;Mω, σ) \D◦(0;Mω, σ) is y = 0. Both,
0 and rjω, lie in Bω∗j , which proves the claimed equality.

Proof of Theorem 3.6. We may assume P = 0, otherwise translate everything.
(a) We first consider the case ω ∈ [n]∗. Let σ ∈ Sn be any permutation with σ(j) = n. Define

pω := D(0;Mω, σ),

qω := D◦(0;Mω, σ) = pω \ 0,

bω := D◦(rjω;Mω, σ),

zω := D(−rjω;Mω, σ).

Then Lemma 3.12 implies that Spωzωbωqω
represents SZω

Bω
, which by definition is S(0;ω). One can describe

S(rjω;ω) and S(−rjω;ω) similarly by translating all downsets by ±rjω. Now Lemma 2.3 implies the

claimed differentials in (11). Lemma 2.4 shows that taking homology in (11) at S(0;ω) yields S
pωz
∗
ω

b∗ωqω
where

b∗ω := D(rjω;Mω, σ) = bω ∪ {rjω},
z∗ω := D◦(−rjω;Mω, σ) = zω \{−rjω}.

By Lemma 3.12, S
pωz
∗
ω

b∗ωqω
represents S

Zω∗j
Bω∗j

= S(0;ω ∗ j).
The general case ω ∈ L∗a only needs minor modifications: In particular, the downsets bω, pω,

qω, zω need to be replaced by the sum of Vω with the analogous downsets in Zn/Vω. Explicitly, let
k := |X(ω)|, and choose a σ ∈ Sn that satisfies σ(j) = n− k and σ(i) > n− k for all i ∈ X(ω). Then
pω can be defined as

pω := {x ∈ Zn | Mωx ≤σ-lex (0n−k,∞k)},
and put qω := pω \Vω, bω := qω+rjω, zω := pω−rjω, b∗ω := pω+rjω = bω∪(rjω+Vω) and z∗ω := qω−rjω =
zω \(−rjω + Vω). Note that VMω = ZX(ω). Now one can repeat the previous argument in the quotient
space Zn/Vω.

(b) In Mω-coordinates,
MωBω∗ji = BMω + {0, . . . , i}.

Hence as in the proof of Lemma 3.12 one can show that

Bω∗ji = Comp0

(
(bω + i · δiω) \ qω

)
,

where bω and qω are as above. Therefore S(0;ω ∗ ji) can be represented by S
pωz

i
ω

biωqω
, where

biω := bω + i · δjω = {x ∈ Zn | Mωx ≤σ-lex uω + (0n−k−1, i,∞k)t},
ziω := zω − i · δjω = {x ∈ Zn | Mωx ≤σ-lex −uω + (0n−k−1,−i− 1,∞k)t}.

Let b∞ω :=
⋃
i b
i
ω and z∞ω :=

⋂
i z
i
ω. Then S(0;ω ∗ j∞) = S

pωz
∞
ω

b∞ω ,qω
.

(c) Let pω, b
∞
ω , z

∞
ω as above. Put piω := i · δjω + pω, p−∞ω :=

⋂
i∈Z p

i
ω, and p∞ω :=

⋃
i∈Z p

i
ω. Define

Fi := im
(
` : S

piωz
∞
ω

b∞ω p−∞ω
→ S

p∞ω z∞ω
b∞ω p−∞ω

)
.

Then the assertion follows from Lemma 2.2 (or from the proof of Lemma 2.5).
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3.2 The 2-dimensional case

The probably most frequent case (apart from the classical one, n = 1) is n = 2. A few more things
can be said about this case:

Every final ω ∈ L∗a is of the form
ω = τ ∗ j∞1 xjk2 j

∞
2 x, (18)

for some τ ∈ [2]∗, {j1, j2} = [2], and k ≥ 0. Any such ω gives a recipe to connect the first page to the
limit of the spectral system. This recipe is therefore already determined by τ and j1.

Note that for all prefixes τ ≤ ω′ ≤ ω, Mτ = Mω′ = Mω. Let’s define

Nω := (ej2)t ·Mω,

which is the “normal vector” along which the downsets b, p, q, z grow respectively shrink during jk2 j
∞
2 x.

Clearly Nω ≥ 0 and it is primitive (i.e. its entries are coprime), and N = (ei)
t can happen only if

i = j2. Also, Nω is invariant under the relation jj∞ ∼ j∞, compare with Remark 3.5.

Observation 3.13. Modulo jj∞ ∼ j∞, ω is uniquely determined by Nω and j1. Conversely, for any
primitive N t ∈ Z2

≥0 and j1 ∈ [2] with N t 6= ej1 there is a final ω ∈ L∗a of the form (18) such that
N = Nω.

Thus the connection determined by ω can be equivalently described by Nω and j1.

Proof. In fact there is a simple algorithm that determines all possible τ from N (respectively Nω) and
j2 = 3− j1. If j2 = 1, choose (N ′)t ∈ Z2

≥0 such that M :=
(
N
N ′
)
∈ SL(2,Z) ∩ Z2×2

≥0 . If j2 = 2, choose

(N ′)t ∈ Z2
≥0 such that M :=

(
N ′

N

)
∈ SL(2,Z) ∩ Z2×2

≥0 . In any case, N ′ is well-defined up to adding an
integral multiple of N . If N ′0 is the smallest choice, then all others are of the form N ′k := N ′0 + kN ,
k ∈ Z≥0. Now one can repetitively take one of the two rows of M and subtract it from the other one
such that all entries stay non-negative until one arrives at idZ2 , and there is a unique way to do that.
Let qi ∈ [2] denote the index of the column from which the other column was subtracted during the
i’th round. And say there were ` rounds. Then M = Mω for ω = τj∞1 xj∞2 x and τ := q` ∗ . . . ∗ q1. The
choice of N ′ correspond to how often j1 appears at the end of τ , namely k times if N ′ = N ′k.

The algorithm has similarities to the extended Euclidean algorithm applied to the first column of
M .

Example 3.14. Consider an excisive exact couple system E over I(Z2). Suppose we want to determine
both ω for which Nω = (3, 5). For j1 = 1, the algorithm runs as follows:(

2 3
3 5

) 2−→
(
2 3
1 2

) 1−→
(
1 1
1 2

) 2−→
(
1 1
0 1

) 1−→
(
1 0
0 1

)
,

Thus ω = 12121∞x2∞x does it. Similarly, for j1 = 2 one gets ω = 12112∞x1∞x. See Figure 3.

12121∞ 12112∞ 12121∞x2k and 12112∞x1k 12121∞x2∞ and 12112∞x1∞

1

1

1

2

2

2

3

3

4

4

4

5

5

Figure 3: B12121∞ , B12112∞ , and B12121∞x2k = B12112∞x1k for 0 ≤ k ≤ 5 and for k = ∞. In the
third figure, the squares with number i belong to B12121∞x2k if and only if i ≤ k. The solid squares
depict Vσ.
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Continued fractions. This algorithm is essentially the same as the one behind continued fractions:
Write

(a0, a1, . . . , a`) := a0 +
1

a1 + 1
...+ 1

a`

.

LetN t = (x, y) ∈ Z2
≥0 be primitive, and write the slope ofN as a continued fraction, yx = (a0, . . . , a`,∞),

with ai ∈ Z, all positive except for possibly a0 = 0. For each N 6= eti, there are two such represen-
tations, namely one with a` ≥ 2, and one with a` = 1: To get from the former representation to the
latter, write a` = (a` − 1) + 1

1 . Comparing the above algorithm with the recursion for the successive
convergents of this continued fraction, one sees immediately that N = Nω for τ = 1a02a11a22a3 · · · .

Fun fact 3.15. The golden ratio can be arbitrarily well approximated by the slope of Nω using

τ = (12)k, since for this τ , Mτ =
(
1 1
1 2

)k
=
( f2k−1 f2k

f2k f2k+1

)
, where fk are the Fibonacci numbers. In

terms of continued fractions, this is because the golden ratio satisfies (1+
√

5)/2 = (1, 1, 1, . . .). However
irrational slopes are not particularly useful, since one cannot connect the obtained page naturally to
the limit (at least without further assumptions on E and without going backwards).
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