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Asymptotic extremal combinatorics studies densities of small combinatorial
structures in large ones of the same type. This talk surveys Razborov’s so called
flag algebras [2], which formalize common proof and calculation methods in that
area.

For simplicity we restrict to the category of simple undirected graphs (and some
subcategories). Razborov treats more generally any finite model theory.

1. Definitions

Definition 1.1. A type σ is a graph with labeled vertices 1, . . . , |σ|. A flag
F over σ is a pair of graphs (G, σ), σ being an induced subgraph of G (G is
unlabeled). We write |F | := |V (G)|. A morphism between two flags F = (G, σ)
and F ′ = (G′, σ) is an injective graph homomorphism m : G → G′ that is the
identity on σ. This also clarifies what we mean by isomorphisms. We define the
sum F ∪σF ′ as (G∪σG′, σ). A sunflower over σ is a sum of σ-flags F1∪σ . . .∪σFn;
here F1, . . . , Fn are called petals. Let Fσ` be the set of flags with |F | = `, and
Fσ :=

⋃
` Fσ` . For F1, . . . , Fn, F ∈ Fσ, define

p(F1, . . . , Fn;F )

as the probability that a uniformly randomly chosen injective map V (F1 ∪σ . . .∪σ
Fn) → V (F ) extending idσ yields an induced subgraph of F whose restriction to
V (Fi) is isomorphic to Fi, for all i.

Lemma 1.2 (Chain rule). If |F1 ∪σ . . . ∪σ Fn| ≤ ` ≤ |F |,

p(F1, . . . , Fn;F ) =
∑
F̃∈Fσ`

p(F1, . . . , Fn; F̃ )p(F̃ ;F ).

Definition 1.3. For a type σ, we define the flag algebra

Aσ := (RFσ)/Kσ,

where Kσ := 〈F −
∑
F̃∈Fσ`

p(F ; F̃ )F̃ | F ∈ Fσ and ` ≥ |F |〉.

It is instructive to think of the basis elements F ∈ RFσ as densities of F in
some large fixed σ-flag X. Modding out Kσ then implements the chain rule.

Lemma 1.4 (Product). There is a product Aσ ⊗Aσ → Aσ defined by

F1 · F2 :=
∑
F∈Fσ`

p(F1, F2;F )

for any ` ≥ |F1 ∪σ F2|. This makes Aσ into a commutative R-algebra with unit
1σ := (σ, σ).

Lemma 1.5. A flag F = (G, σ) is called connected if G\σ is a connected graph.
Fix a connected flag F0 ∈ Fσ|σ|+1. Then Aσ is a polynomial algebra over R, freely

generated by all connected flags except for 1σ and F0.
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2. Motivation

Let Hom(Aσ;R) denote all algebra homomorphisms from Aσ to R. Define

Hom+(Aσ;R) := {ϕ ∈ Hom(Aσ;R) | ϕ(F ) ≥ 0 for all F ∈ Fσ}.
We define the semantic cone as

Csem(Aσ) := {f ∈ Aσ | ϕ(f) ≥ 0 for all ϕ ∈ Hom+(Aσ;R)}.
Thus, Csem(Aσ) is obtained by polarizing twice the cone in Aσ spanned by all
σ-flags. We write f �σ g if f − g ∈ Csem(Aσ).

The following theorem is Razborov’s version of a theorem of Lovász and Szegedy
[1]. It follows from the fact that Hom+(Aσ;R) ⊆ [0, 1]F

σ

is the set of all limit
point (with respect to the product topology in [0, 1]F

σ

) of sequences (p( ;Fi))i∈N.

Theorem 2.1. Let f ∈ R[x1, . . . , xn]. Then f(F1, . . . , Fn) ∈ Csem(Fσ) if and
only if

(2.2) lim inf
F∈Fσ

f(p(F1, F ), . . . , p(Fn, F )) ≥ 0.

Several intersting statments in asymptotic extremal combinatorics can be writ-
ten in the form (2.2). Theorem 2.1 then gives us a reformulation of that in terms
of Csem(Fσ). Below we review some criteria for when an element of Aσ lies
in Csem(Fσ).

3. Cauchy–Schwarz inequality

Definition 3.1 (Restriction operator). Let σ0 ⊆ σ be a sub-type. We define
a linear map (in general not an algebra homomorphism) J Kσ,σ0

: Aσ → Aσ0 via
JF Kσ,σ0

:= qσ,σ0
(F )F |σ0

, where F = (G, σ), F |σ0
:= (G, σ0), and qσ,σ0

(F ) ∈ [0, 1] is
the probability that a (uniformly) random extension V (σ) ↪→ G of the embedding
V (σ0) ↪→ G induces a flag that is isomorphic to F .

For σ0 ⊆ σ1 ⊆ σ2, we have JF Kσ2,σ0
= JJF Kσ2,σ1

Kσ1,σ0
.

Theorem 3.2 (Cauchy–Schwarz inequality for Aσ). For any f, g ∈ Aσ and σ0 ⊆
σ,

Jf2Kσ,σ0
· Jg2Kσ,σ0

�σ0
JfgK2

σ,σ0
.

As an application, one obtains Goodman’s bound relating the asymptotic edge-
and triangle densities, which states (as flags over σ = ∅) that K3 � K2(2K2−K1).
For the proof one applies the Cauchy–Schwarz inequality for the flags (K2,K1) and
(K1,K1) with σ = K1 and σ0 = K0.

4. Differential method

We write the types K0, K1, K2 and K̄2 as 0, 1, E and Ē, respectively.
We define a linear map (in general not multiplicative) ∂1 : A0 → A1 by

∂1G := `
( ∑

(H,1)∈F1
`+1

G∼=H\1

(H, 1)−
∑

(H,1)∈F1
`

H∼=G

(H, 1)
)
,
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where ` := |G|.
Further, define a linear map ∂E : AĒ → AE by

∂E(G, Ē) :=

(
`

2

)( ∑
(H,Ē)∈FĒ`
H∼=G

(H ∪Ē E,E)−
∑

(H,E)∈FE`
H∼=G

(H,E)
)
.

Theorem 4.1. Let G1, . . . , Gn be finite graphs. Consider ϕ0 ∈ Hom+(A0;R)
and f ∈ C1(U) for some open subset U ⊆ Rn, such that Φ : Hom+(A0;R) → R

given by Φ(ϕ) := f(ϕ(G1), . . . , ϕ(Gn)) is maximal at ϕ0 among all ϕ such that
(ϕ(G1), . . . , ϕ(Gn)) ∈ U . Then, for any g ∈ A1,

ϕ0(Jg · ∂1〈∇f, (G1, . . . , Gn)〉K1,0) = 0.

Furthermore, for any g ∈ Csem(AE),

ϕ0(Jg · ∂E〈∇f, (G1, . . . , Gn)〉KE,0) ≥ 0.

As an application, Razborov [2, 3] calculated the asymptotically minimal pos-
sible triangle density in a graph for any given edge density. Based on a similar
ideas, Reiher [4] calculated more generally the minimal possible Kk-density in a
graph with a given edge density, and this not only asymptotically.
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