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In this talk certain geometry of numbers (discrete geometry) aspects of the
project [5] have been presented. The plan of the present abstract is as follows.
We first summarize the content of [5]. Then we briefly discuss S-unit and Mordell
equations and we state parts of the results of [5]. Finally we mention two problems
related to non-convex polytopes, which are motivated by [5].

Summary. Mordell and S-unit equations are classical Diophantine equations.
In [5] we construct two types of practical algorithms that solve S-unit and Mordell
equations. The first type builds on Cremona’s algorithm using modular symbols.
The second type combines explicit height bounds with sieving and enumeration
algorithms. Here we conduct some effort to work out optimized height bounds and
to construct refined enumeration algorithms (e.g. we develop a refined de Weger
sieve and we obtain a global elliptic logarithm sieve). To illustrate the utility of our
algorithm we solved large classes of S-unit and Mordell equations, and we used the
resulting data to motivate various questions (e.g. Baker’s explicit abc-conjecture)
related to these fundamental Diophantine equations. Furthermore we establish
new results for Mordell equations, which for example directly imply improved
versions of two old theorems of Coates on the difference of coprime squares and
cubes. Our results and algorithms all crucially rely on the Shimura–Taniyama
conjecture [8, 6, 2] combined with the method of Faltings [3] (Arakelov, Paršin,
Szpiro) and they do not use the theory of logarithmic forms.

Mordell and S-unit equations. Let S be a finite set of rational primes and let
NS =

∏
p∈S p. Denote by O = Z[1/NS ] the ring of S-integers and by O× their

units, the S-units. We consider the classical S-unit equation

(1) x + y = 1, x, y ∈ O×.
Many important Diophantine problems can be reduced to the study of S-unit
equations. For example, the abc-conjecture of Masser–Oesterlé is equivalent to a
certain height bound for the solutions of S-unit equations. On using Diophantine
approximations à la Thue–Siegel, Mahler (1933) showed that (1) has only finitely
many solutions. Furthermore there already exists a practical algorithm of de
Weger [7] which solves the S-unit equation (1) using the theory of logarithmic
forms [1]. Next we take a non-zero a ∈ O and we consider the Mordell equation

(2) y2 = x3 + a, x, y ∈ O.
This equation is a priori more difficult than (1). The simplest case O = Z of
equation (2) goes back at least to Bachet (1621). For this case, using a Diophantine
approximation result of Thue, Mordell (1923) showed that (2) has only finitely
many solutions. Furthermore there already exist practical algorithms which resolve
Mordell equations (2) by using the theory of logarithmic forms [1].
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Algorithm for S-unit equation. We first describe the main ingredients for
our algorithm solving the S-unit equation (1) by using height bounds. The
Shimura–Taniyama conjecture together with Faltings’ method leads to explicit
height bounds for the S-unit equation (1). For practical purposes, these bounds
are the actual best ones. However they are still too large to check all candidates
with height below this bound. A method of de Weger [7], using Diophantine
approximation and the LLL lattice reduction algorithm, can considerably reduce
these bounds in practice. In [5] we refined the reduction method, we worked out
a refined sieve which is very efficient for sets S of cardinality at least 6, and we
developed an improved enumeration of solutions with very small height. Here we
used ideas and methods from geometry of numbers (discrete geometry).

We now discuss some results which we obtained by using the above described
algorithm. To solve the S-unit equation (1), it is natural to consider the set Σ(S)
of solutions of (1) modulo symmetry. Here two solutions (x, y) and (x′, y′) are
called symmetric if x′ or y′ lies in {x, 1

x ,
1

1−x}. Previously, de Weger [7] computed

the set Σ(S) in the case S = {2, 3, 5, 7, 11, 13}. We obtained the following theorem.

Theorem 1. Let n ∈ {1, 2, . . . , 16} and let S(n) be the set of the n smallest
rational primes. The cardinality # of Σ(S(n)) is given in the following table.

n 1 2 3 4 5 6 7 8

# 1 4 17 63 190 545 1433 3649

n 9 10 11 12 13 14 15 16

# 8828 20015 44641 95358 199081 412791 839638 1663449

Let N ∈ {1, 10, . . . , 107}. If Σ(N) = ∪SΣ(S) with the union taken over all sets S
with NS ≤ N , then the cardinality # of Σ(N) is given in the following table.

N 1 10 102 103 104 105 106 107

# 0 5 42 354 2362 13902 79125 432408

In fact our algorithm completely determined the sets Σ(S(n)) and Σ(N) ap-
pearing in the above theorem. Further we remark that given the set Σ(S), one
can directly write down all solutions of the S-unit equation (1).

Mordell equations and primitive solutions. To discuss some results for Mor-
dell equations (2), we need to introduce more notation. Following Bombieri–
Gubler, we say that (x, y) ∈ Z × Z is primitive if ±1 are the only n ∈ Z with n6

dividing gcd(x3, y2). In particular (x, y) ∈ Z × Z is primitive if x, y are coprime.
To measure the finite set S and a ∈ O, we take

aS = 1728N2
S

∏
pmin(2,ordp(a))
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with the product taken over all rational primes p /∈ S. Let h be the usual logarith-
mic Weil height with h(n) = log |n| for n ∈ Z − {0}. Building on the arguments
of [4, Cor 7.4], we establish the following result.

Theorem 2. Let a ∈ Z be nonzero. Assume that y2 = x3 + a has a solution in
Z× Z which is primitive. Then any (x, y) ∈ O ×O with y2 = x3 + a satisfies

max
(
h(x), 2

3h(y)
)
≤ aS log aS .

We now discuss several aspects of this result. A useful feature of Theorem 2 is
that it does not involve |a|. To illustrate this we take n ∈ Z≥1, we let Fn be the
infinite family of integers a with radical rad(a) at most n, and we put a∗ = aS for
S empty. Then it holds a∗ ≤ 1728rad(a)2 and we obtain the following corollary.

Corollary. For any n ∈ Z≥1, the set of primitive (x, y) ∈ Z × Z with y2 − x3 ∈
Fn is finite and can in principle be determined. Furthermore if a ∈ Z satisfies
log |a| ≥ a∗ log a∗, then there are no primitive (x, y) ∈ Z× Z with y2 − x3 = a.

Two problems in discrete geometry. The following problem is motivated by
the global elliptic logarithm sieve constructed in [5]. This sieve is applied in our
algorithm, which solves the Mordell equation (2) by using height bounds.

Problem. Let A := Rn
≥0. Given k ≥ n, how does one choose x1, . . . , xk ∈ A with

||x1||1 = . . . = ||xk||1 = 1 such that sup{||a||1 : a ∈ A\
⋃

i(xi + A)} is minimal?

In [5] we chose some reasonable xi, but they are probably not yet optimal. In
practice, approximately optimal solutions are good enough. Our refined sieve for
the S-unit equation (1) motivates a similar but a bit more technical problem.

Problem. Let [n] = {1, . . . , n}. For any X = (J, x) with J ⊆ [n] and x ∈ RJ
≥0

with ||x||1 = 1, define A(X) = {a ∈ R[n] : aj ≤ xj for some j ∈ J} and B(X) =
A(X) ∩ (−A(X)). Given k ≥ n, how does one choose k such pairs X1, . . . , Xk

such that sup{||a||1 : a ∈
⋂

i B(Xi)} is minimal?

References
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