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Preface

This thesis splits into two independent chapters and an appendix. The first chapter is on

the colored Tverberg problem, which is joint work with Pavle Blagojević and Günter Ziegler

[BMZ09], [BMZ11a], [BMZ11b]. First we find and prove a new and tight colored version of

Tverberg’s theorem that implies the Bárány–Larman conjecture for primes minus one and

asymptotically in general. We generalize it further to a transversal theorem and then to

manifolds.

The second chapter contains new results on inscribing squares and rectangles into closed

curves in the plane. These problems are old, beautiful, and very complicated. They show

that we still don’t completely understand continuous plane curves. The results in this chapter

are disjoint from the ones in [Mat08, Chap. III]. They will appear in [Mat09] and [Mat11].

The appendix contains two independent results on polytopes that I don’t want to omit.

The first one is joint work with Francisco Santos and Christophe Weibel [MSW11] on d-

spindles with large width, the second with Julian Pfeifle and Vincent Pilaud [MPP11] on

productsimplicial-neighborly polytopes.

Background material The books [Mat03], [dL12] and the articles [Bjö95], [Živ96], [Živ97],

and [Živ98] serve as very good introductions to topological combinatorics, especially on how

to attach topological methods to problems in discrete geometry and combinatorics. For

more background on equivariant topology I recommend [Bre72], [tD87], [Hsi75], [AM94],

[Bro82], and [Lüc89].
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Notations

The following notation is used throughout the book. Here, X denotes always

a topological space, K a simplicial complex, G a finite group which possi-

bly acts on X and K, and the rest are positive or non-negative integers.

{∗} one-point space.

[n] = {1, 2, . . . , n}.

∆n n-dimensional simplex.

∆n,m (n,m)-chessboard complex, ∆n,m = [n]
∗m
∆(2) = [m]

∗n
∆(2). Its nm

vertices correspond to an n×m-grid, and a subset of the grid
is a face if it takes from each row and each column at most

one vertex.

∆Xn thin diagonal of Xn, ∆Xn = {(x, . . . , x) ∈ Xn | x ∈ X}.

Xr∆(k) r -fold k-wise deleted product of a space X, Xr∆k =

{(x1, . . . , xr) | the xi are k-wise disjoint}. Here an n-tuple is
k-wise disjoint if no k of them are equal.

X∗r r -fold join of a space X.

X∗r∆(k) r -fold k-wise deleted join of a space X, X∗r∆k =

{
∑
λixi | if λ1 = . . . = λr then the xi are k-wise disjoint}.

Kr∆(k) r -fold k-wise deleted product of a simplicial complex K, Kr∆k =

{F1×. . .×Fr | the faces Fi of K have k-wise disjoint support}.

K∗r r -fold join of a simplicial complex K.

K∗r∆(k) r -fold k-wise deleted join of a simplicial complex K, K∗r∆k =

{F1] . . .]Fr | the faces Fi of K have k-wise disjoint support}.

t(d, r) see Colored Tverberg Problem 1.2, page 1.

t̃(d, r) see Topological Colored Tverberg Problem 1.5, page 2.

Sr symmetric group on r elements.

Zr = Z/rZ.

ix



x Notations

Wr standard representation of Sr , or its restriction to Zr , Wr =

{x ∈ Xr |
∑
xi = 0}.

EG = G ∗ G ∗ G ∗ . . ..

BG classifying space, BG = EG/G.

EG ×G X Borel construction, EG ×G X = (EG × X)/G (modding out
the diagonal action).

H∗(X) we usually mean Čech cohomology with coefficients in Fr for

some prime r .

H∗G(X) equivariant cohomology, H∗G(X) = H
∗(EG ×G X).

H∗(G) group cohomology, H∗(G) = H∗G({∗}) = H∗(BG).

IndexBG(X) cohomological index of a G-space X with respect to a pro-

jection p : X → B to a trivial G-space B, IndexBG(X) =

ker
(
H∗G(B)

p∗−→ H∗G(X)
)
⊆ H∗G(B) ∼= H∗(BG)⊗H∗(B).

IndexG(X) = Index
{∗}
G (X).

t, x, y generators of H∗(Z2;F2) = F2[t] and H
∗(Zr ;Fr) =

Fr [x, y ]/y
2 for r an odd prime; deg(t) = 1, deg(x) = 2,

deg(y) = 1, x = β(y).

N∗(X) unoriented bordism group of X.

Ω∗(X) oriented bordism group of X.



Chapter 1

The colored Tverberg problem

1 A new colored Tverberg theorem

1.1 Introduction

More than 50 years ago, the Cambridge undergraduate Bryan Birch [Bir59] showed that

any “3r points in a plane” can be split into r triples that span triangles with a non-empty

intersection. He also conjectured a sharp, higher-dimensional version of this, which was

proved by Helge Tverberg [Tve66] in 1964 (freezing, in a hotel room in Manchester):

Theorem 1.1 (Tverberg). Any family of N + 1 := (d + 1)(r − 1) + 1 points in Rd can be
partitioned into r sets whose convex hulls intersect.

Figure 1.1: Example of Theorem 1.1 for d = 2, r = 4, N + 1 = 10.

Figure 1.1 shows an example. A look at the codimensions of intersections shows that

the number (d +1)(r −1)+1 of points is minimal for this. The special case r = 2 is known
as Radon’s theorem [Rad21].

In their 1990 study of halving lines and halving planes, Bárány, Füredi & Lovász [BFL90]

observed “we need a colored version of Tverberg’s theorem” and provided a first case, for

three triangles in the plane. Soon after that Bárány & Larman [BL92] in 1992 formulated

the following general problem and proved it for the planar case.

Problem 1.2 (The colored Tverberg problem). Determine the smallest number t = t(d, r)

such that for every collection C = C1 ] . . . ] Cd+1 of points in Rd with |Ci | ≥ t, there are
r disjoint subcollections F1, . . . , Fr of C satisfying |Fi ∩ Cj | ≤ 1 for every i ∈ {1, . . . , r} and
j ∈ {1, . . . , d + 1}, and conv(F1) ∩ · · · ∩ conv(Fr) 6= ∅.

A family of such disjoint subcollections F1, . . . , Fr that contain at most one point from

each color class Ci is called a rainbow r -partition. (We do not require F1 ∪ · · · ∪ Fr = C for

1



2 Chapter 1. The colored Tverberg problem

this.) Multiple points are allowed in these collections of points, but then the cardinalities

have to account for these.

A trivial lower bound is t(d, r) ≥ r : Collections C with only (r − 1)(d + 1) points in
general position do not admit an intersecting r -partition, again by codimension reasons.

Bárány and Larman showed that the trivial lower bound is tight in the cases t(1, r) = r

and t(2, r) = r , presented a proof by Lovász for t(d, 2) = 2, and conjectured the following

equality.

Conjecture 1.3 (The Bárány–Larman Conjecture). t(d, r) = r for all r ≥ 2 and d ≥ 1.

Still in 1992, Živaljević & Vrećica [ŽV92] established for r prime the upper bound

t(d, r) ≤ 2r−1. The same bound holds for prime powers according to Živaljević [Živ96]. The
bound for primes also yields bounds for arbitrary r : For example, one gets t(d, r) ≤ 4r − 3,
since there is a prime p (and certainly a prime power!) between r and 2r .

Topological versions. As in the case of Tverberg’s classical theorem, one can consider a

topological version of the colored Tverberg problem.

Theorem 1.4 (The topological Tverberg theorem; [BSS81], [Öza87], [Mat03, Sect. 6.4]).

Let r ≥ 2 be a prime power, d ≥ 1, and N = (d + 1)(r − 1). Then for every continuous
map of an N-simplex ∆N to R

d there are r disjoint faces F1, . . . , Fr of ∆N whose images

under f intersect in Rd .

Problem 1.5 (The topological colored Tverberg problem). Determine the smallest number

t = t̃(d, r) such that for every simplex ∆ with (d+1)-colored vertex set C = C1] . . .]Cd+1,
|Ci | ≥ t, and every continuous map f : ∆ → Rd there are r disjoint faces F1, . . . , Fr of ∆
satisfying |Fi ∩ Cj | ≤ 1 for every i ∈ {1, . . . , r} and j ∈ {1, . . . , d + 1}, and f (F1) ∩ · · · ∩
f (Fr) 6= ∅.

The family of faces F1, . . . , Fr is called a topological rainbow partition.

The argument from [ŽV92] and [Živ96] gives the same upper bound t̃(d, r) ≤ 2r −1 for
r a prime power, and consequently the upper bound t̃(d, r) ≤ 4r − 3 for arbitrary r . Notice
that t(d, r) ≤ t̃(d, r).

Conjecture 1.6 (The topological Bárány–Larman conjecture). t̃(d, r) = r for all r ≥ 2 and
d ≥ 1.

The Lovász proof for t(d, 2) = 2 presented in [BL92] is topological and thus also valid

for the topological Bárány–Larman conjecture. Therefore t̃(d, 2) = 2.

The general case of the topological Bárány–Larman conjecture would classically be ap-

proached via a study of the existence of an Sr -equivariant map

∆r,|C1| ∗ · · · ∗ ∆r,|Cd+1| −→Sr S(W⊕(d+1)r ) ' S(r−1)(d+1)−1, (1.7)

whereWr is the standard (r−1)-dimensional real representation of Sr obtained by restricting
the coordinate permutation action on Rr to {(ξ1, . . . , ξr) ∈ Rr : ξ1 + · · · + ξr = 0} and
∆r,n denotes the r × n chessboard complex ([r ])∗n∆(2); cf. [Mat03, Remark after Thm. 6.8.2].



1. A new colored Tverberg theorem 3

However, this approach fails when applied to the colored Tverberg problem directly, since

an Sr -equivariant map (1.7) exists. This is because the square chessboard complexes ∆r,r
admit Sr -equivariant collapses that reduce the dimension.

The key in solving the topological Bárány–Larman conjecture (when r + 1 is a prime)

is first to reduce it geometrically to another, new, colored Tverberg problem that in turn

can be attacked with topological methods, that is, for which the corresponding test map in

question does not exist.

1.2 The main result

Our main result (Blagojević, M, Ziegler [BMZ09]) is the following strengthening of (the

prime case of) the topological Tverberg theorem.

Theorem 1.8 (Main theorem). Let r ≥ 2 be prime, d ≥ 1, and N := (r − 1)(d + 1). Let
∆N be an N-dimensional simplex with a partition of the vertex set into “color classes”

C = C1 ] . . . ] Cm,

with |Ci | ≤ r − 1 for all i .
Then for every continuous map f : ∆N → Rd , there are r disjoint “rainbow” faces

F1, . . . , Fr of ∆N whose images under f intersect, that is, |Fi∩Cj | ≤ 1 for every i ∈ {1, . . . , r}
and j ∈ {1, . . . , m}, and f (F1) ∩ · · · ∩ f (Fr) 6= ∅.

Figure 1.2: Example of Theorem 1.8 for d = 2, r = 5, N + 1 = 13.

The requirement |Ci | ≤ r−1 forces that there are at least d+2 non-empty color classes.
Theorem 1.8 is tight in the sense that there would exist counter-examples f if |C1| = r and
|C2| = . . . = |Cm| = 1.
We will present a generalization for maps into manifolds in Section 3 and a “transversal”

generalization in Section 2.

1.3 Applications

Either of our Theorems 1.8 and 1.18 immediately implies the topological Tverberg theorem

for the case when r is a prime, as it holds for an arbitrary partition of the vertex set into

color classes of the specified sizes. Thus it is a “constrained” Tverberg theorem as discussed

recently by Hell [Hel08].



4 Chapter 1. The colored Tverberg problem

It remains to be explored how the constraints can be used to derive lower bounds for the

number of Tverberg partitions; compare Vučić & Živaljević [VŽ93] [Mat03, Sect. 6.3].

More importantly, however, Theorem 1.8 implies the topological Bárány–Larman con-

jecture for the case when r + 1 is a prime, as follows.

Corollary 1.9. If r + 1 is prime, then t(d, r) = t̃(d, r) = r .

Proof. We prove that if r ≥ 2 is prime, then t̃(d, r − 1) ≤ r − 1. For this, let ∆N−1 be
a simplex with vertex set C = C1 ] . . . ] Cd+1, |Ci | = r − 1, and let f : ∆N−1 → R

d be

continuous. Extend this to a map ∆N → R
d , where ∆N has an extra vertex vN, and set

Cd+2 := {vN}. Then Theorem 1.8 can be applied, and yields a topological colored Tverberg
partition into r parts. Ignore the part that contains vN.

Using estimates on prime numbers one can derive from this tight bounds for the colored

Tverberg problem also in the general case. The classical Bertrand’s postulate (“For every

r there is a prime p with r + 1 ≤ p < 2r”) can be used here, but there are also much
stronger estimates available, such as the existence of a prime p between r and r + r 6/11+ε

for arbitrary ε > 0 if r is large enough according to Lou & Yao [LY92].

Corollary 1.10. For any r ≥ 2 we have r ≤ t(d, r) ≤ t̃(d, r) ≤ 2r − 2. Asymptotically,
r ≤ t(d, r) ≤ t̃(d, r) ≤ (1 + o(1)) r as r →∞.

Proof. The first, explicit estimate is obtained from Bertrand’s postulate: For any given r

there is a prime p with r + 1 ≤ p < 2r . We use |Ci | ≥ 2r − 2 ≥ p − 1 to derive the
existence of a colored Tverberg (p − 1)-partition, which in particular yields an r -partition
since p − 1 ≥ r . The second, asymptotic estimate uses the Lou & Yao bound instead.

Remark 1.11. The colored Tverberg problem was originally posed by Bárány & Larman

[BL92] in a different version than the one we have given above (we followed Bárány, Füredi

& Lovász [BFL90] and Vrećica & Živaljević [ŽV92]): Bárány and Larman had asked for an

upper bound N(d, r) on the cardinality of the union |C| that together with |Ci | ≥ r would
force the existence of a rainbow r -partition.

This original formulation has two major difficulties: Firstly, Vrećica’s and Živaljević’s

result gives no estimate on N(d, r), since their approach needs a lower bound on the color

class sizes that is larger than r . Secondly, the prime case of it doesn’t suffice to give any

estimate on N(d, r) when r is not a prime. That is, there is no induction on r : A bound on

N(d, r) for some r does not seem to give a bound on N(d, r ′) for r ′ 6= r .
Our Corollary 1.9 also solves the original version for the case when r + 1 is a prime.

The colored Tverberg problem originally arose as a tool to obtain complexity bounds

in computational geometry. As a consequence, our new bounds can be applied to improve

these bounds, as follows. Note that in some of these results t(d, d + 1)d appears in the

exponent, so even slightly improved estimates on t(d, d + 1) have considerable effect. For

surveys see [Bár93], [Mat02, Sect. 9.2], and [Živ97, Sect. 11.4.2].

Let S ⊆ Rd be a set of size n in general position, that is, such that no d + 1 points of
S are on a hyperplane. Let hd(n) denote the number of hyperplanes that bisect the set S

and are spanned by the elements of the set S. According to Bárány [Bár93, p. 239],

hd(n) = O(n
d−εd ) with εd = t(d, d + 1)

−(d+1).
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Thus we obtain the following bound and equality.

Corollary 1.12. If d + 2 is a prime then

hd(n) = O(n
d−εd ) with εd = (d + 1)

−(d+1).

For general d , we obtain e.g. εd ≥ (d + 1)−(d+1)−O(log d).

Let C ⊆ Rd be a finite set. A C-simplex is the convex hull of some collection of d + 1
points of C. The second selection lemma [Mat02, Thm. 9.2.1] claims that for any n-point set
C ⊆ Rd and a family F of α

(
n
d+1

)
C-simplices with α ∈ (0, 1] there exists a point contained

in at least c ·αsd
(
n
d+1

)
C-simplices of F . Here c = c(d) > 0 and sd are constants depending

only on d . For dimensions d > 2, the presently known proof gives that sd ≈ t(d, d +1)d+1.
Again, Corollary 1.10 yields the following, much better bounds for the constant sd .

Corollary 1.13. If d + 2 > 4 is a prime then the second selection lemma holds for sd =

(d + 1)d+1, and in general e.g. for sd = (2d + 2)
d+1.

Let X ⊂ Rd be an n element set. A k-facet of the set X is an oriented (d − 1)-simplex
conv{x1, . . . , xd} spanned by elements of X such that there are exactly k points of X on
its strictly positive side. When n − d is even n−d

2
-facets of the set X are called halving

facets. From [Mat02, Thm. 11.3.3] we have a new, better estimate for the number of

halving facets.

Corollary 1.14. For d > 2 and n−d even, the number of halving facets of an n-set X ⊂ Rd

is O(n
d− 1

(2d)d ).

1.4 The configuration space/test map scheme

Suppose we are given a continuous map

f : ∆N −→ R
d

and a coloring of the vertex set vert(∆N) = [N +1] := {1, . . . , N +1} = C1 ] · · · ]Cm such
that |Ci | ≤ r − 1. We want to find a colored Tverberg partition F1, . . . , Fr .
To measure those solutions we construct a test map F out of f . Let f ∗r : (∆N)

∗r −→Zr

(Rd)∗r be the r -fold join of f , which is equivariant with respect to the Zr -action that shifts

the join constituents cyclically. Since we are interested in pairwise disjoint faces F1, . . . , Fr ,

we restrict the domain of f ∗r to the r -fold 2-wise deleted join of ∆N, (∆N)
∗r
∆(2) = [r ]

∗(N+1).

(See [Mat03] for an introduction to these notions.) Since we are interested in colorful Fjs,

we restrict the domain further to the subcomplex

K := (C1 ∗ . . . ∗ Cm)∗r∆(2) = [r ]
∗|C1|
∆(2) ∗ · · · ∗ [r ]

∗|Cm|
∆(2) .

The space [n]∗m∆(2) is known as the chessboard complex ∆n,m. Hence K can be written as

K = ∆r,|C1| ∗ · · · ∗ ∆r,|Cm|. (1.15)
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Thus by restricting the domain of f ∗r to K we get a Zr -equivariant map

F ′′ : K −→Zr (R
d)∗r .

LetR[Zr ] ∼= Rr be the regular representation of Zr andWr ⊆ Rr the orthogonal complement
of the all-one vector 1 = e1 + · · · + er . We write W d+1r for (Wr)

⊕(d+1). The orthogonal

projection

p : Rr −→Zr Wr

yields a Zr -equivariant map

(Rd)∗r −→Zr W d+1r∑r
j=1 λjxj 7−→ (p(λ1, . . . , λr), p(λ1x1,1, . . . , λrxr,1), . . . , p(λ1x1,d , . . . , λrxr,d).

The composition of this map with F ′′ gives us the test map F ′,

F ′ : K −→Zr W
d+1
r . (1.16)

The preimages (F ′)−1(0) of zero correspond exactly to the colored Tverberg partitions.

Hence the image of F ′ contains 0 if and only if the map f admits a colored Tverberg

partition. Suppose that 0 is not in the image, then we get a map

F : K −→Zr S(W
d+1
r ) (1.17)

into the representation sphere by composing F ′ with the radial projection map. We will

derive contradictions to the existence of such an equivariant map.

1.5 First proof of the main theorem

In this Section we give a degree proof of Theorem 1.8.

Geometric reduction lemma. Our first step towards the proof is a reduction of Theo-

rem 1.8 to the following essential special case.

Theorem 1.18 (Essential special case). Let r ≥ 2 be prime, d ≥ 1, and N := (r−1)(d+1).
Let ∆N be an N-dimensional simplex with a partition of the vertex set into d + 2 parts

C = C1 ] . . . ] Cd+1 ] Cd+2,

with |Ci | = r − 1 for 1 ≤ i ≤ d + 1 and |Cd+2| = 1.
Then for every continuous map f : ∆N → Rd , there are r disjoint rainbow faces F1, . . . , Fr

of ∆N whose images under f intersect.

In fact, this is exactly the special case we need in order to prove Corollary 1.9, the

prime+1 case of the Bárány–Larman conjecture.

Lemma 1.19 ([BMZ09]). Theorem 1.18 implies Theorem 1.8.
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Proof. Suppose we are given such a map f and a coloring C1 ] . . . ] Cm of the vertex
set of ∆N. Let N

′ := (r − 1)m and Cm+1 := ∅. We enlarge the color classes Ci by
N ′ − N = (r − 1)(m − (d + 1)) new vertices and obtain color classes C ′1, . . . , C ′m+1, such
that Ci ⊆ C ′i for all i , and |C ′1| = . . . = |C ′m| = r − 1 and |C ′m+1| = 1. We construct from f
a new map f ′ : ∆N ′ → R

d ′, where d ′ := m − 1, as follows: We regard Rd as the subspace
of Rd

′
where the last d ′ − d coordinates are zero. So we let f ′ be the same as f on the

N-dimensional front face of ∆N ′ that is spanned by the original vertices C1 ] . . . ] Cm. We
assemble the further N ′−N vertices into d ′− d groups V1, . . . , Vd ′−d of r − 1 vertices each.
The vertices in Vi shall be mapped to ed+i , the (d + i)st standard basis vector of R

d ′. We

extend this map linearly to all of ∆N ′ and we obtain f
′. We apply Theorem 1.18 to f ′ and

the coloring C ′1, . . . , C
′
m+1 and obtain disjoint faces F

′
1, . . . , F

′
r of ∆n′. Let Fi := F

′
i ∩ ∆N

be the intersection of F ′i with the N-dimensional front face of ∆N ′. By construction of f
′,

the intersection f ′(F ′1) ∩ · · · ∩ f ′(F ′r ) lies in Rd . Therefore, already F1, . . . , Fr is a colorful
Tverberg partition for f ′, and hence it is for f : We have f (F1) ∩ · · · ∩ f (Fr) = ∅.

Such a reduction previously appears in Sarkaria’s proof for the prime power Tverberg

theorem [Sar00, (2.7.3)]; see also Longueville’s exposition [dL01, Prop. 2.5].

Degree proof. By the reduction, it suffices to consider the special case K = K ′ ∗ [r ] where
K ′ = (∆r,r−1)

∗(d+1). Let M = F |K′ : K ′ → S(W d+1r ) be the restriction of F to K ′. The

chessboard complex ∆r,r−1 for r ≥ 3 is a connected orientable pseudo-manifold, hence K ′
is one as well. For r = 2, K ′ is the boundary of a d + 1-dimensional crosspolytope, hence

a d-sphere. The dimensions dimK ′ = N − 1 = dimS(W d+1r ) coincide. Thus we can talk

about the degree deg(M) ∈ Z. Here we are not interested in the actual sign, hence we do
not need to fix orientations. Since K ′ is a free Zr -space and S

N−1 is (N − 2)-connected,
the degree deg(M) is uniquely determined modulo r : This is because M is unique up to

Zr -homotopy on the codimension one skeleton of K
′, and changing M on top-dimensional

cells of K ′ has to be done Zr -equivariantly, hence it affects deg(M) by a multiple of r .

To determine deg(M) mod r , we let f be the affine map that takes the vertices in

C1 to −1 = −(e1 + · · · + ed) and the vertices in Ci (2 ≤ i ≤ d + 1) to ei , where ei is
the ith standard basis vector of Rd . The position of the singleton Cd+2 does not matter,

we can choose it arbitrarily in Rd . Let P ∈ S(W d+1r ) be the normalization of the point

(p(1, . . . , 1, 0), 0, . . . , 0) ∈ W d+1r .

The preimageM−1(P ) is exactly the set of barycenters of the (r−1)!d+1 top-dimensional
faces of K ′ ∩ (∆r−1,r−1)∗(d+1). With ∆r−1,r−1 we mean the full subcomplex [r − 1]∗(r−1)∆(2) of

∆r,r−1. One checks that all preimages of P have the same preimage orientation. This was

essentially done in [BMZ09] when we calculated that cf (Φ) = (r − 1)!dζ. Hence

deg(M) = ±(r − 1)!d+1 = ±1 mod r. (1.20)

Alternatively one can take any map m : ∆r,r−1 −→Zr S(Wr), show that its degree is ±1
by a similar preimage argument in dimension d = 1, and deduce that

deg(M) = deg(m∗(d+1)) = deg(m)d+1 = ±1 mod r.
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Degree proof of Theorem 1.8. Since deg(M) 6= 0, M is not null-homotopic. Thus M does
not extend to a map with domain K ′ ∗ [1] ⊆ K. Therefore the test map F of (1.17) does
not exist.

Remark 1.21. The degree deg(M) is even uniquely determined modulo r !. To see this one

uses the Sr -equivariance of M and the fact that M is given uniquely up to Sr -homotopy

on the non-free part, which lies in the codimension one skeleton of K ′. The latter can be

shown with the modified test map F0 from [BMZ09]. This might possibly be an ansatz for

a proof of the affine version of Theorem 1.8 for non-primes r .

Matoušek, Wagner, and Tancer [MTW10] found a point configuration for the non-prime

case r = 4 where the degree is 0. In their example however, the desired colored Tverberg

partition does exist nevertheless.

During a visit in Prague, Marek Krčál, Martin Tancer and I found an easy point config-

uration for r = 4 where the degree is zero: Put on each vertex of a triangle in R2 three

points, a red, a blue, and a green one. If one puts a further black point in the center of

the triangle, this point configuration admits exactly two colored Tverberg partitions, both

of which appear with the opposite sign in the degree. We also noted that for any point

configuration for parameters (r, d) such that the degree is zero, there is another point con-

figuration for (r, d +1) also with degree zero. For this simply add r −1 new points of a new
color above the given point configuration as in the proof of Lemma 1.19.

Other degree zero point configurations have been found by Kleist [Kle11].

Remark 1.22. The original proof of Theorem 1.18 was done via obstruction theory [BMZ09].

The degree proof is basically extracting the non-existence part from the obstruction theory

proof. The obstruction theory proof has the advantage that it shows exactly when the test

map in question exists. That is, the proof method fails when r is not a prime (except for

d = 0 and r = 4). We omit this proof here, because it is completely due to my coauthors (I

only helped slightly with the reverse direction, that is, when the test map in question does

exist). After the obstruction theory proof was published, Vrećica and Živaljević [VŽ11a]

derived from it the same degree proof, independently from us.

1.6 Problems

Approach for the affine main theorem for non-primes

Does Theorem 1.8 still hold for non-primes r , even in the special case when f is affine?

Originally Tverberg proved his Theorem 1.1 by a deformation argument [Tve66]: When

we move one point of a given point configuration generically such that at a certain time

a Tverberg partition becomes invalid then one can rearrange the partition such that it will

serve as a Tverberg partition from that time on for some time.

Newer proofs [Tve81], [Sar00], use Bárány’s colored Carathéodory theorem [Bár82].

These proofs can be written in terms of the test-map (1.16).

The affine version of Theorem 1.8 would now follow similarly from a corresponding “mul-

ticolored Carathéodory conjecture”, if this exists. Similarly one can state a corresponding

“multi-colored Helly conjecture”. Both of them also seem to be interesting on their own.
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Existence of the test-map for non-primes

What are the right conditions on the color class sizes such that the Sr -equivariant test-map

(1.17) does not exist?

In [BMZ09] we proved that for |C0| = . . . = |Cd | = r − 1 and |Cd+1| = 1, (1.17) exists
if and only if r divides (r − 1)!d . On the other hand, if all color classes are singletons then
Özaydin [Öza87] proved that (1.17) does not exist if and only if r is a prime power.

One guess is that, given r = pk , the test-map (1.17) does not exist if all color classes

are of size at most ϕ(r), where ϕ(r) = (p−1)pk−1 is Euler’s totient function, and that this
upper bound is best possible.

2 A transversal generalization

2.1 Introduction

In their 1993 paper [TV93] H. Tverberg and S. Vrećica presented a conjectured common

generalization of some Tverberg type theorems, some ham sandwich type theorems and

many intermediate results. See [Živ99] for a further collection of implications.

Conjecture 2.1 (Tverberg–Vrećica Conjecture). Let 0 ≤ k ≤ d and let C0, . . . , Ck be finite
point sets in Rd of cardinality |C`| = (r` − 1)(d − k + 1) + 1. Then one can partition each
C` into r` sets F `1 , . . . , F `r` such that there is a k-plane P in R

d that intersects all the convex

hulls conv(F `j ), 0 ≤ ` ≤ k , 1 ≤ j ≤ r`.

The Tverberg–Vrećica Conjecture has been verified for the following special cases:

◦ k = d (trivial),

◦ k = 0 (Tverberg’s theorem [Tve66]),

◦ k = d − 1 (Tverberg & Vrećica [TV93]),

◦ for k = d − 2 a weakened version was shown in [TV93] (one requires two more points
for each C`),

◦ k and d are odd, and r0 = · · · = rk is an odd prime (Živaljević [Živ99]),

◦ r0 = · · · = rk = 2 (Vrećica [Vre03]), and

◦ r` = pa`, a` ≥ 0, for some prime p, and p(d − k) is even or k = 0 (Karasev [Kar07]).

In this section we consider the following colorful generalization of the Tverberg–Vrećica

conjecture.

Conjecture 2.2. Let 0 ≤ k ≤ d , r` ≥ 2 (` = 0, . . . , k) and let C` (` = 0, . . . , k) be subsets
of Rd of cardinality |C`| = (r` − 1)(d − k + 1) + 1. Let the C` be colored,

C` =
⊎
C`i ,
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such that no color class is too large, |C`i | ≤ r` − 1. Then we can partition each C` into sets
F `1 , . . . , F

`
r`
that are colorful (in the sense that |C`i ∩ F `j | ≤ 1 for all i , j, `) and find a k-plane

P that intersects all the convex hulls conv(F `j ).

The Tverberg–Vrećica Conjecture 2.1 is the special case of the previous conjecture when

all color classes are given by singletons. The main result of Section 2 is the following special

case.

Theorem 2.3 (Transversal main theorem, [BMZ11a]). Let r be prime and 0 ≤ k ≤ d such
that r(d − k) is even or k = 0. Let C` (` = 0, . . . , k) be subsets of Rd of cardinality
|C`| = (r − 1)(d − k + 1) + 1. Let the C` be colored,

C` =
⊎
C`i ,

such that no color class is too large, |C`i | ≤ r − 1. Then we can partition each C` into
colorful sets F `1 , . . . , F

`
r and find a k-plane P that intersects all the convex hulls conv(F

`
j ).

Figure 1.3: Example of Theorem 2.3 for d = 2, k = 1, r = 3, |C`| = 5.

Figure 1.4: Example of Theorem 2.3 for d = 3, k = 1, r = 3, |C`| = 7.

Our earlier Main Theorem 1.8 is the special case when k = 0.

In Section 2.5 we will see that this theorem is quite tight in the sense that it becomes

false if one single color class C`i has r` elements and all the other ones are singletons.

Since we will prove Theorem 2.3 topologically it has a natural topological extension,

Theorem 2.12.

In Section 2.2 we present an alternative proof for the case k = 0, based on the configu-

ration space/test map scheme from Section 1.4. It puts the first one proof from Section 1.5

into the language of cohomological index theory. For this, we calculate the cohomological

index of joins of chessboard complexes. This allows for a more direct proof of the case

k = 0, which is the first of two keys for the Transversal Main Theorem 2.3.
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The second key is a new Borsuk–Ulam type theorem for equivariant bundles. We establish

it in Section 2.4, and prove the transversal main theorem in Section 2.5. The new Borsuk–

Ulam type theorem can also be applied to obtain an alternative proof of Karasev’s above-

mentioned result from [Kar07]; see Section 2.5. Karasev has also obtained a colored version

of the Tverberg–Vrećica conjecture, different from ours, even for prime powers, which can

also alternatively be obtained from our new Borsuk–Ulam type theorem.

For another recently established parametrized version of the Borsuk–Ulam theorem we

refer to [SSST11].

2.2 Second proof of the main theorem

In this section we present a new proof of Theorem 1.8. It puts the degree proof from

Section 1.5 into the language of cohomological index theory, as developed by Fadell and

Husseini [FH88]. Even though the second proof needs calculations and looks more difficult

it actually allows for a more direct path, since it avoids the non-topological reduction of

Lemma 1.19. This requires non-trivial index calculations, which however are very valuable

since they provide a first key step towards our proof of the transversal main theorem 2.3 in

Section 2.5.

Cohomological index theory

Let H∗ denote Čech cohomology with Zr -coefficients, where r is prime. The equivariant

cohomology of a G-space X is defined as

H∗G(X) := H
∗(EG ×G X),

where EG is a contractible free G-CW complex and EG ×G X := (EG × X)/G. The
classifying space of G is BG := EG/G. If p : X → B is furthermore a projection to a trivial
G-space B, we denote the cohomological index of X over B, also called the Fadell–Husseini

index [FH87], [FH88], by

IndexBG(X) := ker
(
H∗G(B)

p∗−→ H∗G(X)
)
⊆ H∗G(B) ∼= H∗(BG)⊗H∗(B).

If B = {∗} is a point then one also writes H∗G({∗}) = H∗(G) and IndexG(X) := Index
{∗}
G (X).

The cohomological index has the four properties

◦ Monotonicity: If there is a bundle map X −→G Y then

IndexBG(X) ⊇ IndexBG(Y ). (2.4)

◦ Additivity: If (X1 ∪X2, X1, X2) is excisive, then

IndexBG(X1) · IndexBG(X2) ⊆ IndexBG(X1 ∪X2).

◦ Joins:
IndexBG(X) · IndexBG(Y ) ⊆ IndexBG(X ∗ Y ).
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◦ Subbundles: If there is a is a bundle map f : X −→G Y and a closed subbundle Z ⊆ Y
then

IndexBG(f
−1(Z)) · IndexBG(Y ) ⊆ IndexBG(X). (2.5)

The first two properties imply the other two. The last one uses furthermore the continuity

of Čech cohomology H∗. For more information about this index theory see [FH87] and

[FH88].

If r is odd then the cohomology of Zr as a Zr -algebra is

H∗(Zr) = H
∗(BZr) ∼= Zr [x, y ]/(y 2),

where deg(x) = 2 and deg(y) = 1. If r is even, then r = 2 and H∗(Z2) ∼= Z2[t], deg t = 1.

Index calculations

Theorem 2.6. Let r be a prime. Let K be an n-dimensional connected free Zr -CW complex

and let S be an n-dimensional (n− 1)-connected free Zr -CW complex. If there is a Zr -map
M : K −→Zr S that induces an isomorphism on H

n, then

Index
{∗}
Zr
(K) = H∗≥n+1(BZr).

Proof. The Zr -equivariant map M : K −→Zr S induces a map of fibrations,

K
M //

��

S

��

EZr ×Zr K
(id,M)

//

��

EZr ×Zr S

��

BZr
id // BZr .

Consequently, M induces a morphism E∗,∗∗ (M) between associated Leray–Serre spectral se-

quences E∗,∗∗ (K) and E
∗,∗
∗ (S), see Figure 1.5. It has the property that E

∗,0
2 (M) = idH∗(BZr ).

For background on Leray–Serre spectral sequences see [McC01, Chapters 5 and 6]. More-

over, the nth rows E∗,n2 (K) = H
∗(Zr ;H

n(K)) and E∗,n2 (S) = H
∗(Zr ;H

n(S)) at the E2-pages

are identified via E∗,n2 (M).

At the E∞-pages both spectral sequences have to satisfy E
p,q
∞ = 0 whenever the total

degree p + q ≥ n + 1. This is because K is free Zr -space, hence H∗Zr (K) ∼= H
∗(K/Zr),

which is zero in degrees ∗ ≥ n + 1. The same holds for S. Therefore, the elements
E∗≥n+1,0∗ (S) = H∗≥n+1(Zr) in the bottom row of the spectral sequence E

∗,∗
∗ (S) must be

hit by some differential. These differentials can come only from the nth row at the En+1-

page (this argument even gives us the H∗(Zr)-module structure of the nth row). Hence

there is a non-zero transgressive element w ∈ E0,n2 (S) = H0(Zr ;Hn(S)) = Hn(S)Zr ,
that is, dn+1(w) 6= 0. Let z := E0,nr (M)(w) ∈ E0,n2 (K) = Hn(K)Zr . Then di(z) =
di(E

0,n
r (M)(w)) = E

i ,n−i+1
r (M)(di(w)), which is zero for i ≤ n. Therefore z survives at

least until En+1. Analogously, the whole nth row survives until En+1. We know that all
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0

n

0

n

EZr ×Zr S → BZrEZr ×Zr K → BZr

E∗,∗∗ (M) dN+1

H∗(BZr )

w H∗(BZr ;Hn(S))

H∗(BZr )

dN+1

z H∗(BZr ;Hn(K))

∗
n + 1

∗
n + 1

Figure 1.5: The morphism E∗,∗∗ (M) between the spectral sequences E
∗,∗
∗ (S) and E

∗,∗
∗ (K).

elements in E∗≥1,nn+1 (K) have to die eventually, so they do it exactly on page En+1. Thus

these elements are exactly the elements whose differentials make the part E∗≥n+2,0∗ of the

bottom row vanish.

We claim that no non-zero differential can arrive at the bottom row on an earlier page

of E∗,∗∗ (K). Assume that di(α) = x
ay b ∈ E∗,0i for some α and i ≤ n. This would imply that

di(x
kα) = xa+ky b for all k > 0. But we already know that the elements in E∗≥n+2,0∗ (K)

survive until page En+1, which gives the desired contradiction.

Therefore at E∞(K), the non-zero part of the bottom row is H
∗≤n(Zr). The index

defining map H∗
Zr
({∗})→ H∗

Zr
(K) is the edge homomorphism, which is the composition

H∗
Zr
({∗})

∼=−→ E∗,02 (K)� E∗,0∞ ↪→ H∗Zr (K).

Therefore the index of K is everything in the bottom row that got hit by a differential, that

is,

Index
{∗}
Zr
(K) = H∗≥n+1(BZr).

We apply this theorem to the above maps M : K ′ → S(W d+1r ) and (M ∗ id) : K ′ ∗ [r ]→
S(W d+1r )∗ [r ]. By the degree calculation (1.20) (p. 7), M induces an isomorphism in HN−1.

Corollary 2.7. The Zr -index of K
′ = (∆r,r−1)

∗(d+1) is

Index
{∗}
Zr
(K ′) = H∗≥N(BZr)

and the Zr -index of K
′ ∗ [r ] is

Index
{∗}
Zr
(K ′ ∗ [r ]) = H∗≥N+1(BZr).

Using the first part of this corollary we can compute the index for more general joins of

chessboard complexes.

Corollary 2.8. Let 0 ≤ c0, . . . , cm ≤ r − 1 and let s :=
∑
ci . Let K := ∆r,c0 ∗ · · · ∗ ∆r,cm .

Then

Index
{∗}
Zr
(K) = H∗≥s(BZr).
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Proof. Let L := ∆r,r−1−c0 ∗ · · · ∗ ∆r,r−1−cm and K ′ := (∆r,r−1)∗(m+1). Then dimK = s − 1
and dimK ′ = (r − 1)(m + 1) − 1. We calculate dimK ′ + 1 = (dimK + 1) + (dimL + 1).
There is an inclusion K ′ −→Zr K ∗ L. This implies

IndexZr (K
′) ⊇ IndexZr (K ∗ L) ⊇ IndexZr (K) · IndexZr (L). (2.9)

Since K is a free Zr -space, H
∗
Zr
(K) = H∗(K/Zr), hence

IndexZr (K) ⊇ H∗≥dimK+1(BZr), (2.10)

and analogously

IndexZr (L) ⊇ H∗≥dimL+1(BZr). (2.11)

The dimension a := dimK ′ is odd if r is odd. Using Corollary 2.7, we find that

IndexZr (K
′) = H≥a+1(BZr) = 〈x

a+1
2 〉 if r is odd, and IndexZr (K ′) = 〈ta+1〉 if r = 2. Together

with equation (2.9), the inclusions (2.10) and (2.11) have to hold with equality.

It is interesting that the last argument of the proof would fail for odd r if a+1 was odd,

due to the relation y 2 = 0 in H∗(Zr).

Now we plug in the configuration space K from (1.15) and obtain the second proof of

Theorem 1.8.

Second proof of Theorem 1.8. According to the monotonicity of the index, see (2.4), the

existence of the test map F : K −→Zr S(W
d+1
r ) of (1.17) would imply that

Index
{∗}
Zr
(K) ⊇ Index{∗}

Zr
(S(W d+1r )).

This is a contradiction since Index
{∗}
Zr
(K) = H∗≥N+1(BZr), whereas Index

{∗}
Zr
(S(W d+1r )) =

H∗≥N(BZr), since S(W
d+1
r ) is an (N − 1)-dimensional free Zr -sphere.

On the surface this proof seems to be a more difficult reformulation of the first proof.

However, its view point is essential for the transversal generalization, since we do not rely

on the geometric tools of the Reduction Lemma 1.19 anymore, and such a reduction

lemma does not seem to exist for the Tverberg–Vrećica type transversal theorem. Thus

we need to use the more general configuration space ∆r,|C0| ∗ · · · ∗ ∆r,|Cm| of (1.15) instead
of (∆r,r−1)

∗(d+1) ∗ [r ].

2.3 The transversal configuration space/test map scheme

The proof of our transversal main theorem 2.3 is based on a configuration space/test map

scheme for vector bundles. Such a proof scheme was already used in [Dol87], [Dol93],

[Živ99], [Vre03] and [Kar07]. Our progress in this paper stems from the topological index

calculations of Section 2.2 and from the Borsuk–Ulam type Theorem 2.15 in Section 2.4.

The proof gives actually the following more general topological version. Theorem 2.3 is

the special case when all maps f` are affine.
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Theorem 2.12 (Topological transversal main theorem). Let r be prime and 0 ≤ k ≤ d
such that r(d − k) is even or k = 0. Let C` (` = 0, . . . , k) be sets of cardinality |C`| =
(r − 1)(d − k +1)+ 1, which we identify with the vertex sets of simplices ∆|C`|−1. We color
them

C` =
⊎
C`i ,

such that no color class is too large, |C`i | ≤ r − 1. Let

f` : ∆|C`|−1 → R
d

be continuous maps. Then we can find r disjoint rainbow faces F `1 , . . . , F
`
r in each simplex

∆|C`|−1 (that is, |F `j ∩ C`i | ≤ 1) and a k-plane P ⊆ Rd that intersects all the sets f`(F `j ).

The proof scheme for our situation works as follows. Suppose we are given C`s, f`s and
r as in the assertion of Theorem 2.12 together with the colorings

C` =
m⊎̀
i=0

C`i .

A collection of rainbow faces F `j of the simplices ∆|C`|−1 admits a common k-plane P that

intersects all images f (F `j ) if and only if one can project these images orthogonally to a

(d − k)-dimensional subspace of Rd (namely the orthogonal complement of P ) such that
the convex hulls of the projected F `j s have a point in common (this point is the image of P

under the projection).

Calculations turn out to be easier if we look first at the set of colored Tverberg points

of all projections of one single fixed C` and then show that the corresponding sets for all C`s
have to intersect.

Fix an ` ∈ {0, 1, . . . , k}. Let B := Gd,d−k be the Grassmannian manifold of all (d − k)-
dimensional subspaces of Rd and γ → B the tautological bundle over B. For definitions
and context, see Chapter 5 of [MS74]. Let ε denote the trivial line bundle over B. Let

B ×Wr be the trivial bundle over B with fiber Wr , which was defined in Section 2.2. Let
E := (B × Wr) ⊕ γ⊕r . The group G := Zr acts on [r ] by left translations and on E by

fiberwise shifting the coordinates cyclically. E is a G-bundle over the trivial G-space B whose

fixed-point subbundle ∆ := EG = (B ×Wr)G ⊕ (γ⊕r)G ∼= γ is the thin diagonal bundle.
The space

K := ∆r,|C`0| ∗ · · · ∗ ∆r,|C`m` | = (C
`
0 ∗ . . . ∗ C`m`)

∗r
∆(2) ⊆ (∆|C`|−1)∗r (2.13)

will again be the configuration space. For each b ∈ B, we can compose the map f` with
the orthogonal projection to the (d − k)-space given by b, which can be identified with the
fiber over b in γ. This is gives function

B × ∆|C`|−1 → γ,

which is bundle map over B, B×∆|C`|−1 being the trivial bundle over B. Doing the analogous
construction as in Section 1.4 for the testmap in the non-transversal situation, we get a

Zr -equivariant bundle map

B ×K M−→ E,
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where the r join coefficients in K = (C`0 ∗ . . . ∗ C`m`)
∗r
∆(2) are mapped into the r trivial

summands ε of E. Define T ` := im(M) ∩ ∆, which is the set of colored Tverberg points
of the respective projected sets im(F`). Each point of T

` ⊆ ∆, which lies in the fiber over
say b ∈ B, lies in the intersection of the images im(F `j ) of r disjoint rainbow faces projected
to b.

Hence we need to show that

T 0 ∩ · · · ∩ T k 6= ∅. (2.14)

We will apply our results on the index of the configuration space K, derived in Corollary

2.8, and tools from Section 2.4 to show that this is indeed the case. The proof of Theorem

2.12 continues in Section 2.5.

2.4 A new Borsuk–Ulam type theorem

In this section we prove the following Borsuk–Ulam type theorem. It is the second topological

step towards the proof of Theorem 2.3. This theorem will be applied in combination with

the subsequent intersection Lemma 2.24.

Theorem 2.15 (Borsuk–Ulam type). Let

◦ p be a prime,

◦ G = (Zp)m an elementary abelian group,

◦ K a G-CW-complex with index Index{∗}G (K) ⊆ H∗≥n+1(BG;Zp),

◦ B a connected, trivial G-space,

◦ E φ−→ B a G-vector bundle (all fibers carry the same G-representation),

◦ ∆ := EG → B the fixed-point subbundle of E → B,

◦ C → B its G-invariant orthogonal complement subbundle (E = C ⊕ ∆),

◦ F be the fiber of the sphere bundle S(C)→ B.

Suppose that

◦ n = rank(C),

◦ π1(B) acts trivially on H∗(F ;Zp) (that is, C → B is orientable if p 6= 2), and

◦ we are given a G-bundle map M,

B ×K M //

pr1
##GG

GG
GG

GG
G E = C ⊕ ∆

φ
yysssssssssss

B .
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Then for S := M−1(∆) and T := M(S) = im(M) ∩ ∆ the composition

H∗(B;Zp) ↪−→ H∗G(B;Zp)
(pr1|S)∗−−→ H∗G(S;Zp) (2.16)

and the map induced by projection

H∗(B;Zp)
(φ|T )∗−−→ H∗(T ;Zp) (2.17)

are both injective.

If K is free then (2.16) is the same as the map induced by projection H∗(B;Zp) →
H∗(S/G;Zp).

Remark 2.18. The theorem generalizes

◦ a lemma of Volovikov [Vol96], which is the special case when B = {∗} and K is
(n − 1)-Zp-acyclic,

◦ and Theorem 4.2 of Živaljević [Živ99], from whose proof one can extract the special
case when m = 1 and K is (n − 1)-Zp-acyclic. and in particular

◦ the Borsuk–Ulam theorem, which is the special case when G = Z2, B = {∗}, K = Sn,
E = Rn, E and K with antipodal action.

Proof of Theorem 2.15. We use Čech cohomology with Zp-coefficients.

(1.) Let b ∈ B be the point over which F is the fiber in the sphere bundle S(C) → B.
We denote by E∗,∗∗ (F ) and E

∗,∗
∗ (S(C)) the Leray–Serre spectral sequences associated to the

fibrations

F ↪→ EG ×G F → BG × b (2.19)

and

F ↪→ EG ×G S(C)→ BG × B, (2.20)

respectively, see Figure 1.6. For details on the Leray–Serre spectral sequence, see [McC01,

Chapters 5 and 6].

The E2-page E
∗,∗
2 (F ) has only two non-zero rows, the 0-row and the (n − 1)-row. The

local coefficients in Ep,q2 (F ) = H
p(BG,Hq(F )) are given by the π1(BG)-module structure

on Hq(F ). Since G = π1(BG) is an elementary abelian group and F is a sphere, the

H∗(BG)-module structure on Hq(F ) is trivial, for the G action on Hq(F ) is induced by

homeomorphisms F → F , and the degree of this homeomorphism has to be 1 if p is odd.
Therefore

Ep,q2 (F ) = H
p(BG,Hq(F )) = Hp(BG)⊗Hq(F ).

The differentials are H∗(BG)-homomorphism, and

E∗,n−1n (F ) = E∗,n−12 (F ) = H∗(BG)⊗Hn−1(F )

is a H∗(BG)-module generated by

1 ∈ E0,n−1n (F ) = H0(BG)⊗Hn−1(F ),
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where 1 is regarded as the generator of Hn−1(F ). Hence there is a non-vanishing differential

in E∗,∗∗ (F ) if and only if the differential dn : E
0,n−1(F ) → En,0(F ) is non-zero. Since

F is fixed-point free, the edge homomorphism H∗(BG) → H∗G(F ) is not injective [tD87,
Prop. 3.14, p. 196]. Thus there must be a non-vanishing differential. Therefore there is a

non-zero element α = dn(1) ∈ Index{∗}G (F ) of degree n.
(2.) Now the inclusion F ↪→ S(C) gives a bundle map from (2.19) to (2.20),

EG ×G F //

��

EG ×G S(C)

��

BG × b // BG × B

(2.21)

which induces a morphism E∗,∗∗ (S(C)) → E∗,∗∗ (F ) of associated Leray–Serre spectral se-
quences, see Figure 1.6.

0

n − 1

0

n − 1

EG ×G F → BG × b

1

H∗(BG)

H∗(BG)

H∗(BG)⊗H∗(B)

H∗(BG)⊗H∗(B)

α⊗ 1 + . . .

α

1⊗ 1

EG ×G S(C)→ BG × B

Figure 1.6: The morphism of spectral sequences induced by the bundle map (2.21).

The E2-page of E
∗,∗
∗ (S(C)) is E

p,q
2 (S(C)) = H

p(BG ×B,Hq(F )), where the local coef-
ficients are given by the π1(BG × B)-module structure on Hq(F ). Since H∗(F ) is a trivial
G × π1(B)-module, for q = 0 and q = n − 1 we have

Ep,q2 (S) = H
p(BG × B;Hq(F )) =

p⊕
i=0

Hi(BG)⊗Hp−i(B).

The morphism of the spectral sequences E∗,∗∗ (S(C)) → E∗,∗∗ (F ) on the 0-row and on the
(n − 1)-row of the E2-page,

p⊕
i=0

Hi(BG)⊗Hp−i(B)→ Hp(BG),
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is zero on
⊕p
i=1H

i(BG) ⊗ Hp−i(B). On Hp(BG) ⊗ H0(B) = Hp(BG) it is just the iden-
tity. The differential of the generator 1 ⊗ 1 ∈ H0(BG) ⊗ H0(B) of E0,n−1n (S(C)) hits an

element γ ∈ En−1,0n (S(C)) of the bottom row
⊕n
i=0H

i(BG) ⊗ Hn−i(B). Since the differ-
entials commute with morphisms of spectral sequences, γ is an element in IndexBG(S(C)) ⊆
H∗(BG)⊗ H∗(B) that restricts to α under the map

⊕n
i=0H

i(BG)⊗ Hn−i(B)→ Hn(BG),
hence γ 6= 0. Since α and γ are of degree n, γ has the form

γ = α⊗ 1 +
∑
i

δi ⊗ εi , (2.22)

for some δi and εi with deg δi + deg εi = n and deg δi ≤ n − 1.
(3.) Formula (2.5) of Section 2.2 yields

IndexBG(S) · IndexBG(S(C)) ⊆ IndexBG(B ×K) = Index
{∗}
G (K)⊗H

∗(B). (2.23)

We know that Index
{∗}
G (K) ⊆ H∗≥n+1(BG), and in (2.22) we got an element γ ∈ Index

B
G(S(C)).

We claim that IndexBG(S) ⊆ H∗(BG)⊗H∗(B) does not contain any non-zero element of the
form 1⊗ β, β ∈ H∗(B). Indeed, if 1⊗ β ∈ IndexBG(S)\{0}, then

(1⊗ β) · γ = α⊗ β +
∑
i

δi ⊗ (β · εi) ∈ Index{∗}G (K)⊗H
∗(B).

Here we omitted signs for simplicity. Since deg(δi) < deg(α) = n, this implies that α ∈
Index

{∗}
G (K). This contradicts Index

{∗}
G (K) ⊆ H∗≥n+1(BG).

Hence the following composition is injective,

H∗(B)
1⊗id−→ H∗(BG)⊗H∗(B)→ H∗G(S),

where both maps are induced by projection. The following diagram is induced by the obvious

maps

H∗G(S) H∗G(T ) = H
∗(BG)⊗H∗(T )oo H∗(T )oo

H∗(B)

inj.

iiTTTTTTTTTTTTTTTTT

OO 55kkkkkkkkkkkkkkkkk

which shows that H∗(B)→ H∗(T ) has to be injective as well.

We will use Theorem 2.15 together with the following intersection lemma.

Lemma 2.24 (Intersection lemma). Let p be prime and ∆
pr−→ B be a vector bundle over a

Zp-orientable compact manifold B, whose mod-p Euler class e := e(∆) ∈ H∗(B;Zp) satisfies

ek 6= 0. Let T0, . . . , Tk ⊆ ∆ be closed sets such that HdimB(B;Zp)
(pr |Ti )

∗

−−→ HdimB(Ti ;Zp) is
injective for all i . Then

T0 ∩ · · · ∩ Tk 6= ∅.

A proof for the case where p is prime can be extracted from [Živ99]. For the convenience

of the reader and for Remark 2.26 we repeat the argument.
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Proof of Lemma 2.24. In the case k = 0 we need to show that T0 6= ∅. This is true since
(pr |T0)∗ is injective. So let us assume that k ≥ 1.
Let D(∆) and S(∆) be the disc and sphere bundles of ∆. As a bundle, ∆ is Zp-orientable

since e 6= 0, and B is a Zp-orientable manifold. Hence D(∆) is a Zp-orientable manifold as
well. We may assume that the Tis lie in the interior of D(∆) by rescaling the fibers. Let

b := dim(B) and r := rank(∆). Let τ ∈ Hr(D(∆), S(∆)) be the Thom class. We have
e = i∗(τ), where i : (B, ∅) → (D(∆), S(∆)) is the inclusion. Hence τk+1 = ekτ 6= 0, since
ek 6= 0 and multiplication by τ is the Thom isomorphism.
Suppose that T0 ∩ · · · ∩ Tk = ∅. Then there are open neighborhoods Vi of Ti such that

V0 ∩ · · · ∩ Vk = ∅. We will derive a contradiction to that. Since the Čech-cohomology of
Ti is the limit of the ordinary cohomology over open neighborhoods in E, we can make the

neighborhoods Vi smaller such that the maps H
b(B;Zp)

(pr |Vi )
∗

−−→ Hb(Vi ;Zp) are injective for
all i . Therefore the universal coefficient theorem for cohomology implies that Hb(Vi ;Zp)→
Hb(B;Zp) is surjective, because we use field coefficients.

In the following commutative diagram, the vertical arrows are Poincaré–Alexander–

Lefschetz duality and the bottom map ji is induced by inclusion.

Hb(Vi) //

∼=
��

Hb(B)
∼= // Hb(D(∆))

∼=
��

Hr(D(∆), D(∆)\Vi)
ji // Hr(D(∆), S(∆))

Since τ is the Poincaré dual of the orientation class [B] ∈ Hb(B) = Hb(D(∆)) and the top
map is surjective, we find an element αi ∈ Hr(D(∆), D(∆)\Vi) such that ji(αi) = τ . Hence

τk+1 = j0(α0) · . . . · jk(αk) = j(α0 · . . . · αk),

where j is the map induced by inclusion,

j : Hr(k+1)(D(∆), D(∆)\(V0 ∩ . . . ∩ Vk))→ Hr(k+1)(D(∆), S(∆)).

Since the image of the map j contains τk+1 6= 0, we find that V0 ∩ . . . ∩ Vk 6= 0.

Possible extensions

Remark 2.25 (Extension of Theorem 2.15). Suppose that all the assumptions of the pa-

rameterized Borsuk–Ulam type theorem 2.15 are fulfilled and that the index of K satisfies

the stronger bound

Index
{∗}
G (K) ⊆ H

∗≥n+1+x(BG;Zp),

for some x ∈ N. Then the above proof yields a stronger implication: The composition

H∗≤x(BG)⊗H∗(B;Zp) ↪−→ H∗G(B;Zp)
(pr1|S)∗−−→ H∗G(S;Zp)

is injective. For this extension, only part (3.) of the proof needs adjustments. Sometimes

one can get an even stronger implication if one directly uses inequality (2.23).
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Remark 2.26 (Extension of Lemma 2.24). The intersection lemma can be extended to all

positive integers p. This is possibly interesting for applications, however it won’t be needed

here. We have to change the argument only at the point where we need Hb(Vi ;Zp) →
Hb(Vi ;Zp) to be surjective. The key is that Zp is an injective Zp-module, which can be

deduced from the criterion [Hun96, Lemma IV.3.8]. Hence hom( ,Zp) is an exact func-

tor. Therefore we have natural isomorphisms Hb(B)
∼=−→ hom(Hb(B),Zp) and Hb(Vi)

∼=−→
hom(Hb(Vi),Zp) and the injectivity of the map H

b(B) → Hb(Vi) implies that Hb(Vi) →
Hb(B) is surjective.

2.5 Proof of the transversal main theorem

Now we have all the topological tools to prove the transversal main theorem. We continue

from where we stopped at in Section 2.3. We need to prove (2.14), that is,

T0 ∩ . . . ∩ Tk 6= ∅.

Continuation of the proof of Theorem 2.12. First we assume that p = 2 or that d and k

are odd. The remaining case, when p is odd and d and k are even, will be a consequence

of an elementary reduction lemma at the end of the proof.

The configuration space K is of dimension (r − 1)(d − k). The ranks of E and ∆ are
r(d − k + 1) − 1 and d − k . We claim that the orthogonal complement bundle C of ∆ in
E is Zr -orientable. Since all vector bundles are Z2-orientable, we only need to deal with the

case where r is odd. Then r − 1 is even and C is stably isomorphic to γr−1, which is an
even power of a bundle, hence orientable. Therefore we can apply the Borsuk–Ulam type

Theorem 2.15 and get that H∗(B)→ H∗(Ti) is injective. To apply the Intersection Lemma
2.24, we need that ek 6= 0 for the mod-r Euler class e ∈ Hd−k(B) of ∆ ∼= γ.
If r = 2 then e is the top Stiefel–Whitney class wd−k , whose k-th power is the mod-2

fundamental class of B (see e.g. [Hil80, Lemma 1.2]), which proves the theorem in this case.

Now we come to the case where r is odd. If rank(γ) = d − k is odd then the mod-r Euler
class is zero and our method yields no conclusion. If d −k is even then we may assume that
d and k are odd, otherwise we prove the theorem for d ′ = d + 1 and k ′ = k + 1 first and

use the Reduction Lemma 2.27 below afterwards. Then ek 6= 0 was proved in Proposition
4.9 of [Živ99], based on [FH88]. In fact, he even shows it for the tautological bundle over

the oriented Grassmannian. Since this bundle is the pullback of γ we are done by naturality

of the Euler class. Now the Intersection Lemma 2.24 gives that T0 ∩ · · · ∩ Tk 6= ∅. Hence
by the preliminary work of Section 2.3 we are done.

Finally we prove the elementary Reduction Lemma 2.27 that also implies the case when

p is odd and d and k are even.

Lemma 2.27 (Reduction Lemma). If Conjecture 2.2 holds for parameters (d, k, r0, . . . , rk)

then so it does for (d ′, k ′, r0, . . . , rk−1) with d
′ := d − 1 and k ′ := max(k − 1, 0).

Proof. We will prove only the case k ≥ 1, since the case k = 0 is exactly the reduction that
is used in the proof of Lemma 1.19 [BMZ09].

Assume that Conjecture 2.2 is true for parameters (d, k, r0, . . . , rk) and suppose we are

given colored sets C0, . . . , Ck−1 ⊆ Rd−1 where we have to partition C` into r` pieces such
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that some (k − 1)-dimensional plane meets the convex hulls of all pieces. To do this, view
R
d−1 as the hyperplane in Rd where the last coordinate is zero, and define Ck ⊂ Rd to be a
set of (rk −1)(d − k +1)+1 points all of which lie close to (0, . . . , 0, 1). We color Ck in an
arbitrary way. For example, we may give each point a different color. Since Conjecture 2.2

is true for (d, k, r0, . . . , rk), we can partition the sets C` appropriately and find a k-plane P
meeting all of the convex hulls of the pieces. Since P goes through the convex hull of Ck , it
cannot be fully contained in Rd−1. Therefore P ∩Rd−1 is a (k − 1)-plane intersecting the
convex hulls of the pieces of the sets C0, . . . , Ck−1.

This finishes the proof of the transversal main theorem.

Our proof of the transversal main theorem does not extend to prime powers r` = p
a`

over the same prime p. The basic reason is that the degree of M vanishes modulo r if and

only if r divides (r − 1)!d (see (1.20)). Therefore this proof can only work if r is a prime or
if r = 4 and d = 1. For k = 0, even using the full symmetry group Sr does not help since

an Sr -equivariant test map exists if and only if r divides (r −1)!d ; see [BMZ09]. To see this
one needs to take a closer look at the obstruction; the degree proof from Section 2.2 does

not yield this.

A new proof for Karasev’s result [Kar07]

We can extend the above proof to arbitrary powers of a fixed prime p if all color classes

are singletons, or in other words, if we omit all the color constraints. In this case, the

configuration space K of (2.13) becomes

K = [r`]
∗(N+1) = (∆N)

∗r`
∆(2),

which is the r`-wise 2-fold deleted join of an N-simplex. It follows from the connectivity

relation conn(A ∗ B) ≥ conn(A) + conn(B) + 2 for CW -complexes that K is (N − 1)-
connected. As symmetry group we take instead of Zr a subgroup G ∼= (Zp)m` of Sr` that
acts fixed-point freely on [r`]. By the connectivity of K, Index

{∗}
G (K) ⊆ H∗≥N+1(BG), as we

can directly deduce from the Leray–Serre spectral sequence of K ↪→ EG ×G K → BG. We
obtain Karasev’s result.

Theorem 2.28 ([Kar07]). The Tverberg–Vrećica Conjecture 2.1 holds in the special case

r` = p
a`, where p is a prime such that p(d − k) is even or k = 0.

Tightness of the Transversal Main Theorem 2.3

Observation 2.29. For any 0 ≤ k ≤ d − 1, 0 ≤ `∗ ≤ k , r`∗ ≥ 2, we can choose point sets
C` ⊂ R

d of size |C`| = (r` − 1)(d − k + 1) + 1 and make all the color classes singletons
except for one single color class C`

∗
0 of size r`∗ such that there are no colorful partitions of

the C`s into r` pieces each that admit a common k-dimensional transversal.

Proof. Let V `, 0 ≤ ` ≤ k , be pairwise parallel (d − k)-dimensional affine subspaces of Rd
such that their projections to an orthogonal k-space are the k + 1 vertices of a k-simplex.
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On each V ` we place a standard point configuration C`: Take a (d − k)-simplex ∆` in V `,
let C` have r` − 1 points on each vertex of ∆` and put the last vertex of C` into the center
c ` of ∆`.

The sets C` admit only one Tverberg point, namely c `. Hence a potential common k-
dimensional transversal P must intersect all c `. Since the V ` have been chosen generically

enough, P is uniquely determined and P ∩ V ` = {c `}.
Now we color the points of an arbitrary C`∗ at an arbitrary vertex of ∆`∗ red, together

with a further point at another vertex. Even if all other color classes in C`∗ are singletons
there will be no colored Tverberg partition of C`∗. Together with P ∩V `∗ = {c `∗} this proves
the observation.

3 Colored Tverberg on manifolds

3.1 Introduction

In this section we present an extension of Theorem 1.8 that treats continuous maps ∆N → M
from the N-simplex to an arbitrary d-dimensional manifold M in place of Rd , [BMZ11b].

Suppose that the vertices of ∆N are colored with color classes C1, . . . , Cm. Let R =

C1 ∗ . . . ∗ Cm denote the subcomplex of rainbow faces in ∆N.

Theorem 3.1 (New colored Tverberg theorem for M, [BMZ11b]). For d ≥ 1 and a prime
r ≥ 2, set N := (d + 1)(r − 1), and let the N + 1 vertices of an N-dimensional simplex ∆N
be colored such that all color classes are of size at most r − 1. Let R be the corresponding
rainbow subcomplex of ∆N.

Then for every continuous map f : R→ M to a d-dimensional manifold M, the simplex
∆N has r disjoint rainbow faces whose images under f have a point in common.

Figure 1.7: Example of Theorem 3.1 for d = 2, r = 3, N+1 = 7, and M is the Klein bottle.

Theorem 3.1 without color constraints (that is, when all color classes are of size 1, and

thus all faces are rainbow faces) was previously obtained by Volovikov [Vol96], which also

works for prime powers r . The prime power case for the colored version, Theorem 3.1,

seems however out of reach at this point, since so it does in the case M = Rd .

Finally we remark that it is not obvious that Theorem 3.1 holds when the domain of f

is less than the whole N-simplex, even though any colored Tverberg partition will take only
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faces in R ⊂ ∆N of dimension at most N − r +1. Let us give an example to illustrate that.
Let d = r = 2 and let M be the 2-dimensional sphere. Then N = 3 and we give the vertices

of the tetrahedron ∆N all different colors. Since the N-dimensional face of ∆N is never part

of a Tverberg partition, we might guess that the conclusion of Theorem 3.1 should hold

true also for any map f : ∂∆3 → M. However this is wrong: any homeomorphism f gives a
counter-example!

3.2 Proof

The configuration space/test map scheme

Suppose we are given a continuous map

f : R −→ M,

and a coloring of the vertex set vert(∆N) = [N + 1] = C0 ] · · · ] Cm such that the color
classes Ci are of size |Ci | ≤ r − 1.
This time we take the deleted product of R as our configuration space,

K× = Rr∆(2) = (C0 ∗ . . . ∗ Cm)r∆(2),

instead of the deleted join K = R∗r∆(2) that we used in Section 1.4.

The index of K = R∗r∆(2) was computed in Corollary 2.8,

IndexZr (K) = H
∗≥N+1(BZr).

We can use this together with a lemma of Karasev [Kar09a, Lemma 3.2], which was inde-

pendently proved by Carsten Schultz in a different way (unpublished).

Lemma 3.2 (Karasev, Schultz). Let r be a prime and let R be a simplicial complex. If r = 2

then

t · IndexG(Rr∆(2)) ⊆ IndexG(R∗r∆(2)),
and if r is odd then

x (r−1)/2 · IndexG(Rr∆(2)) ⊆ IndexG(R∗r∆(2)).

Hence the index of K× is given by

IndexZr (K
×) = H∗≥N−r+2(BZr). (3.3)

Note that N − r + 2 = d(r − 1) + 1. Now we only need to use a Borsuk–Ulam type
theorem of Volovikov [Vol93, Theorem 1] to finish the proof of Theorem 3.1, as it is done

by Volovikov in [Vol96] to prove the (uncolored) topological Tverberg problem for prime

powers (which was first proved by Özaydin [Öza87] using equivariant obstruction theory).

Theorem 3.4 (Volovikov). Let r be a prime, let M be a compact d-dimensional topological

manifold that is orientable if r is odd, and let K× be a free paracompact Zr -space. Suppose

that h : K× → M is a map that induces zero in reduced cohomology and that IndexZr (K×) ⊆
H∗≥d(p−1)+1Zr . Then there exists an x ∈ K× whose orbit Zp · x gets mapped to a point by
h.
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We apply this theorem to the map h : K× → M that is given by h(x1, . . . , xr) := f (x1).
The assumption that H̃∗(M)→ H̃∗(K×) is zero is indeed fulfilled: Since all color classes are
of size less than r we have at least d+2 color classes. Hence R = C0∗. . .∗Cm is d-connected.
Since h factors as K×

pr1−→ R f−→ M, h is contractible. If M is non-orientable then one can
instead take its universal cover M̃ and apply Theorem 3.4 to the lift h̃ : K× → M̃.
The conclusion of Theorem 3.4 yields r points on disjoint faces of R whose images under

f are the same.

Remark 3.5. Both, Lemma 3.2 and Theorem 3.4 have analogous versions also for prime

powers r = pk and Zkp-actions, see [Kar09a] and [Vol93].

Let us also remark that the index of K× becomes larger with respect to inclusion than in

(3.3) if just one color class Ci has more than r −1 elements. That is, in this case this proof
of Theorem 3.1 does not work anymore. In fact, for any r and d there exist N + 1 colored

points in Rd such that one color class is of size r and all other color classes are singletons

that admit no colored Tverberg partition. In our paper [BMZ11b] we gave another proof of

Theorem 3.1 based on the deleted join scheme and the monotonicity of the index, however

only in the case when the map f is a map from the full simplex f : ∆N → M, or if the
number of color classes is large enough. Hence this proof does not give the full result, but

it is simpler than Volovikov’s proof of Theorem 3.4.

3.3 Remarks

Theorem 3.1 strictly generalizes Theorem 1.8

One may ask whether Theorem 3.1 can be reduced to Theorem 1.8 by factorizing the given

map f : ∆N → M over Rd ,
f : ∆N

f ′−→ R
d → M.

When ever this is possible Theorem 1.8 immediately implies Theorem 3.1. However this is

not always possible.

Proposition 3.6. Let f be the composed map ∆3 → S3 → S2 that first quotients out the
boundary of ∆3 and then sends S3 to S2 via the Hopf map. Then f does not factor over

R
d .

The following proof is due to Elmar Vogt.

Proof. Suppose that f factors as f : ∆N
f ′−→ R

d g−→ M. Let h : S3 → S2 denote the Hopf
map. Let z := h−1(n) ⊂ S3, where n is the north pole of S2. We think of z being the closure
of the z-axis in the stereographic projection of S3 to R3 in the one-point compactification

of R3. Let D be the halfspace {(x, y , z) | x > 0, y = 0}, which is a disc in S3 whose
boundary is z . Then all fibers h−1(x) other than z intersect D transversally. In particular,

h maps D homeomorphically to S2\{n}. Then f ′ also maps D (regarded as a disc in ∆3)
homeomorphically to a set D′ ⊂ R2. Moreover, for every x 6= n, f ′(h−1(x)) is a singleton
in D′. Further, D′ is bounded, since ∆3 is compact. Let p ∈ z and let (pi) be a sequence
in D converging to p. Then the fibers h−1(h(pi)) contain sequences of points that come
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close to any other point of z . By continuity, f ′(z) must be a singleton in R2 as well. But

f ′(z) must also be the boundary of D′ which is bounded and homeomorphic to an open disc,

which gives a contradiction.

Deleted joins versus deleted products

An interesting question is which test map scheme is more powerful, the one coming from

the deleted-product construction or the one from the deleted-join construction?

In many applications we investigate the existence of a Sr -equivariant test map of deleted

products

f × : Xr∆(`) −→Sr Y r∆(k), (3.7)

where X is a simplicial complex and Y is a space. Here Sr stands for the group of permu-

tations on r letters. The corresponding Sr -equivariant test map for deleted joins would be

f ∗ : X∗r∆(`) −→Sr Y ∗r∆(k). (3.8)

In the case when Y = Rd , for some d , the existence of the Sr -equivariant map f
× implies

the existence of the Sr -equivariant map f
∗. Indeed, if f × : Xr∆(`) −→Sr (Rd)r∆(k) is given,

then we can define

f ∗(λ1x1 + . . .+ λrxr) :=

r∑
i=1

λiyi ,

where

yi :=

(
r∏
j=1

rλj

)
· f ×i (x1, . . . , xr) ∈ Rd .

The constant factor r r is included in the definition of yi because X
r
∆(`) can be seen as a

subspace of X∗r∆(`) where all join coefficients are
1
r
. The cell F1 × . . . × Fr of the deleted

product complex can be identified with the subspace {1
r
· x1 + . . . + 1

r
· xr | xi ∈ Fi} of the

simplex F1 ∗ . . . ∗ Fr in the deleted join complex.
Therefore, in the case when Y = Rd , the deleted-product scheme (3.7) is at least as

strong as the deleted-join scheme (3.8).

Nevertheless, proving the non-existence of f ∗ might be easier than proving the non-

existence of f ×. For instance, if one only wants to argue with the high connectivity of the

domain, then this is usually easier for f ∗, see e.g. [Mat03, Sections 5.5–5.8].

Also the monotonicity of the Fadell–Husseini index sometimes puts a stronger condition

on f ∗ than on f ×. In particular, this affects Theorem 3.1. The range of f × is Mr∆(r). If

M = Rd then the corresponding index is

IndexZr ((R
d)r∆(r)) = H

∗≥d(r−1)(BZr),

since (Rd)r∆(r) deformation retracts equivariantly to a fixed-point free sphere whose dimen-

sion is d(r − 1)− 1. Hence we can show the non-existence of f × using the monotonicity of
the index. However, for M = Sd the index is smaller with respect to inclusion by the follow-

ing proposition, so the monotonicity of the index alone is not enough to prove Theorem 3.1

in the deleted-product scheme.
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Proposition 3.9. If d ≥ 2, then

IndexZr ((S
d)r∆(r)) ⊆ H∗≥d(r−1)+1(BZr).

Proof. We have to show that in the Leray–Serre spectral sequence associated to EG ×G
(Sd)r∆(r) → BG, no non-zero differential hits the bottom row in filtration degree smaller or
equal to d(r − 1). The E2 entries are H∗(BG,H∗((Sd)r\∆)), where ∆ is the thin diagonal
in (Sd)r . Now,

Hi((Sd)r\∆) ∼= Hdr−i((Sd)r ,∆) ∼= Hdr−i((Sd)r ,∆).

From the long exact sequence in cohomology of the pair ((Sd)r ,∆),

. . .→ H∗((Sd)r ,∆)→ H∗((Sd)r)→ H∗(∆)→ . . . ,

we see that Hdr((Sd)r ,∆) = Fr , H
d((Sd)r ,∆) ∼= Fr [Zr ]/(1 + t + . . . + t

r)Fr , and for

d < j < dr we have Hj((Sd)r ,∆) ∼= Fr [Zr ]⊕αj , where αj ≥ 0 depends on j . Therefore the
first non-zero row (up to the 0-column entries) in the spectral sequence above the bottom

row is the d(r−1)-row. Thus the first element in the bottom row that is hit by a differential
has degree at least d(r − 1) + 1.

On the other hand, the monotonicity of the Fadell–Husseini index proves the non-

existence of f ∗ for M = Sd , since (Sd)∗r∆(r) deformation retracts equivariantly to an (N−1)-
dimensional fixed-point free sphere, whose index is equal to H∗≥N(BZr).

So, in this particular instance of proving the non-existence of the test-map for Theorem

3.1 using the Fadell–Husseini index, the deleted-join scheme is stronger than the deleted-

product scheme.
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Chapter 2

On the square peg problem and some
relatives

1 Introduction

The square peg problem was first posed by Otto Toeplitz in 1911:

Conjecture 1.1 (Square peg problem, Toeplitz [Toe11]). Every continuous embedding γ :

S1 → R
2 contains four points that are the vertices of a square.

The name square peg problem might be a bit misleading. We do not require the square

to lie inside the curve, otherwise there are easy counter-examples:

Toeplitz’ problem has been solved affirmatively for various restricted classes of curves

such as convex curves and curves that are “smooth enough”, by various authors; the

strongest version so far was due to W. Stromquist [Str89, Thm. 3] who established the

square peg problem for “locally monotone” curves. All known proofs are based on the fact

that generically the number of squares on a curve is odd, which can be measured in various

topological ways. See Section 2.1 for a short survey. For general embedded plane curves,

the problem is still open.

We start our discussion with a proof idea due to Shnirel’man [Shn44] (in a modern

version, in terms of a bordism argument), which establishes the square peg problem for the

class of smooth curves.

In Section 2.4 we prove it for a new class of curves that is defined by a weaker smoothness

criterion than Stromquist’s. Hence it contains all previous known curves for which the square

peg problem is proved, see Theorem 2.5. The first drawing above is an example that lies

in this new class, but not in Stromquist’s. The proof extends to curves in arbitrary metric

spaces.

29
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In Section 2.5 we present the first known open set of curves in the compact-open topology

(equivalently, in ((R2)S
1
, ||.||∞)) for which the square peg problem holds, see Theorem 2.9.

It does neither require the curve to be smooth nor injective, and it finds a square whose

size is bounded from below; see Section 2 for the rather simple proof and variations of the

statement.

In Section 2.6 we deal with immersed planar curves and the parity of their inscribed

squares. Cantarella [Can08] conjectured that this parity is an isotopy invariant and he

stated a precise formula based on examples. We disprove Cantarella’s conjecture and state

in Theorem 2.13 how the parity can be computed from the angles at the intersection points.

Theorem 2.14 gives a similar formula for the parity of inscribed rectangles of a fixed aspect

ratio.

Section 3 deals with the existence of rectangles with a given aspect ratio on smooth

curves.

Conjecture 1.2 (Rectangular peg problem). Every C∞ embedding γ : S1 → R
2 contains

four points that are the vertices of a rectangle with a prescribed aspect ratio r > 0.

We state this conjecture for smooth curves only, since already this seems to be a hard

problem. It is equivalent to stating this conjecture for piecewise linear curves. So far it is

only known to hold in the case r = 1, that is, for inscribed squares. The proof in Griffiths’

paper [Gri90] unfortunately contains a fatal error in the calculation of intersection numbers;

see [Mat08] for details. The difficulty comes from the fact that, counted with orientations,

every smooth curve contains generically zero rectangles of a prescribed aspect ratio. E.g.

an ellipse contains two rectangles with opposite orientations. This makes the configuration

space-test map method fail. That is, more geometric arguments are needed to attack the

problem.

In Section 3.1 we will present some intuition why those inscribed rectangles should exist

for all r . Then in Section 3.2 we prove the a first non-square special case of the rectangular

peg problem, namely for r =
√
3 and 60◦-angular convex curves, see Theorem 3.4.

The final Section 4 treats a higher-dimensional analog. We ask for d-dimensional regular

crosspolytopes on smoothly embedded (d − 1)-spheres in Rd . The square peg problem for
smooth curves is the case d = 2. This crosspolytopal peg problem is proved for prime powers

d ≥ 3 [Mak03], [Kar09b], and is open otherwise. As one possible generalization one might
ask whether any smoothly embedded (d − 1) in a Riemannian manifold contains a regular
crosspolytope. We use Koschorke’s obstruction theory [Kos81] to derive that for d = 3, a

natural topological approach for a proof fails: The strong test map in question exists.

2 Squares on curves

2.1 Some short historic remarks

The square peg problem first appears in the literature in the conference report [Toe11]

(1911). It states the problem and that Toeplitz was only able to find a solution for convex

curves. Afterwards Emch [Emc13, Emc15] presents two proofs of the square peg problem
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for “smooth enough” convex curves. In [Emc15] he states that he had not been aware of

Toeplitz’ and his students’ work and that the problem was suggested to him by Kempner.

In 1929 Schnirel’man proved it for class of curves that is slightly larger than C2. An ex-

tended version [Shn44], which corrects also some minor errors, was published posthumously

in 1944. Guggenheimer [Gug65] states that the extended version still contains errors which

he claims to correct. However in my point of view Schnirel’man’s proof is up to minor errors

correct. His main idea is a bordism argument. On the other hand, Guggenheimer’s main

lemma admits counter-examples [Mat08, Section III.9]; he was not aware that squares can

vanish pairwise when one deforms the curve.

Other proofs are due to Jerrard [Jer61] for analytic curves, Stromquist [Str89] for lo-

cally monotone curves, Vrećica & Živaljević [VŽ11b] for Stromquist’s curves, Pak [Pak08,

2. proof] for piecewise linear curves (his first proof unfortunately contains an error), and

Cantarella, Denne & McCleary [CDM] for curves with bounded total curvature. Stronquist’s

result was the so far strongest one: A curve γ : S1 ↪→ R
2 is locally monotone if every point

of x ∈ S1 admits a neighborhood U and a linear functional ` : R2 → R such that ` ◦ γ|U is
monotone. Another interesting proof for convex curves is due to Fenn [Fen70]. He obtains

it as a corollary of his table theorem. For more historical background and related problems,

see [KW96, Problem 11], [Pak08], [Mat08].

2.2 Notations and the parameter space of polygons on curves

For an element x of the unit circle S1 ∼= R/Z and t ∈ R we define x + t ∈ S1 as the result
of a counter-clockwise rotation of x by the angle 2πt around 0. Let ∆n = {(t0, . . . , tn) ∈
R
n+1
≥0 |

∑
ti = 1} be the standard n-simplex.

The natural parameter space of polygons is

Pn := S
1 × ∆n−1.

It parameterizes polygons on S1 or on some given curve S1 → R
∞ by their vertices in the

following way

ϕ : Pn → (S1)n : (x ; t0, . . . , tn−1) 7→ (x, x + t0, x + t0 + t1, . . . , x +
n−2∑
i=0

ti).

The so parameterized polygons are the ones that are lying counter-clockwise on S1. The map

ϕ is not injective, as all (x ; 0, . . . , 0, 1, 0, . . . , 0) are mapped to the same point (x, . . . , x);

but it is injective on Pn\ϕ−1(∆(S1)n), where ϕ−1(∆(S1)n) = (S1 × vert(∆n−1)), and on this
set ϕ bijects to (S1)n\∆(S1)n . The map ϕ identifies the interior P ◦n with the set of n-tuples
of pairwise distinct points in counter-clockwise order on S1. We define the boundary as

∂P ◦n := Pn\P ◦n .
We let Zn := Z/nZ = 〈ε〉 act on Pn by

ε · (x ; t0, . . . , tn−1) = (x + t0; t1, . . . , tn−1, t0).

This corresponds to a cyclic relabeling of the vertices of the parameterized polygon.
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A substitution

The following coordinate transformation makes the Zn-action on Pn look nicer. We substi-

tute (x ; t0, . . . , tn−1) ∈ Pn by (x∗; t0, . . . , tn−1), where x∗ := x +
∑n−1
k=1

n−k
n
· tk−1 ∈ S1. In

terms of the new coordinates,

ε · (x∗; t0, . . . , tn−1) = (x∗ +
1

n
; t1, . . . , tn−1, t0).

Further notations

When we talk about an arc on S1 from a point x to y , we always mean the arc that goes
counter-clockwise. For x, y ∈ S1, we denote by y − x the length of the arc from x to y ,
normalized with the factor 1

2π
. For an n-tuple (x1, . . . , xn) ∈ ϕ(Pn) ⊂ (S1)n we write

[x1, . . . , xn] := (x1; x2 − x1, x3 − x2, . . . , xn − xn−1, 1−
n∑
k=2

(xk − xk−1)) ∈ Pn.

The function [. . .] : ϕ(Pn)→ (S1)n is right-inverse to ϕ, but not continuous.
Smooth means C∞ for us. An ε-close square is a quadrilateral whose ratios between the

edges and diagonals are up to an ε-error the ones of a square. The precise definition will

not matter. We will use “ε-closeness” with other polygons analogously.

2.3 Shnirel’man’s proof for the smooth square peg problem

We start with L. G. Shnirel’man’s proof [Shn44], since it is in my point of view the most

beautiful one. The following presentation uses transversality and a bordism argument; in

Shnirel’man’s days, these notions had not been formalized and baptized yet, but his argument

works like this.

Proof. Suppose that γ is smooth. P4 parameterizes quadrilaterals on γ. Let f : P4 → R
6

be the function that measures the four edges and the two diagonals of the quadrilaterals,

f : P4 −→ R
4 ×R2

[x1, x2, x3, x4] 7−→ (||γ(x1)− γ(x2)||, ||γ(x2)− γ(x3)||, ||γ(x3)− γ(x4)||,
||γ(x4)− γ(x1)||, ||γ(x1)− γ(x3)||, ||γ(x2)− γ(x4)||)

(2.1)

We can compose f with the quotient map R6 → R
6/∆

R4×∆R2
∼= R4 and get f : P4 → R

4.

f measures squares, since Q := f
−1
(0)\φ−1(∆(S1)4) = f

−1
(0) ∩ P ◦4 is the set of all squares

that lie counter-clockwise on γ. f is Z4-equivariant with respect to the natural Z4-actions.

Here we removed the φ−1(∆(S1)4), i.e. the set of squares that are degenerate to a point.

Since γ is smooth there is a small neighborhood of ∂P4 in P4 that intersects f
−1
(0) only

in ϕ−1(∆(S1)4) ⊂ ∂P4. We can deform f relative to a possibly smaller neighborhood of ∂P ◦4
equivariantly by a small ε-homotopy to make 0 a regular value of f |P ◦4 . Note that Q lies
in P ◦4 , which is free. So Q becomes a zero-dimensional Z4-manifold of ε-close squares. If

we deform the curve smoothly to another curve (e.g. the ellipse) then Q changes by a Z4-

bordism. We can do such a deformation between any two embedded curves for simplicity in



2. Squares on curves 33

R
4; since f depends only on distances. This bordism stays away from the boundary of P ◦4 , if

the homotopy is chosen smoothly, since then no curve inscribes ε-close squares which have

arbitrarily small edges (the angles get too close to π). Hence Q represents a unique class

[Q] in the zero-dimensional unoriented bordism group N0(P ◦4 /Z4) ∼= H0(P ◦4 /Z4;Z2) ∼= Z2. If
γ is an ellipse then 0 is a regular value of f and Q consists of one Z4-orbit. Hence [Q] is

the generator of Z2, so Q is non-empty for any smooth curve γ. Letting ε go to zero and

taking a convergent subsequence of ε-close squares finishes the proof.

If γ is only continuous one might try to approximate it with smooth curves and then take

a convergent subsequence of the squares that we get on them. The problem is to guarantee

that this subsequence does not converge to a square that degenerates to a point. Natural

candidates for which this works are continuous curves with bounded total curvature without

cusps, see Cantarella, Denne & McCleary [CDM]. So far, nobody managed to do this for

all continuous curves.

Shnirel’man’s proof can be refined to get a slightly stronger result.

Corollary 2.2 (of the proof). We may assume that γ goes counter-clockwise around its

interior. Then one can find and order four vertices of a square on γ, such that they lie

counter-clockwise on γ and also label the square counter-clockwise.

Proof. This can be achieved by restricting Q in the above proof to the set of squares

[x1, x2, x3, x4] in P4 that are labeled by (γ(x1), . . . , γ(x4)) in counter-clockwise order. Along

a path in the bordism this cannot change (here we take a bordism that is induced by a

deformation of the curve in the plane). If γ is an ellipse then it is clear that the restricted

Q is equal to Q, so it represents the generator in N0(P ◦4 /Z4).

Remark 2.3. The square peg problem is still open for general continuous curves, for no valid

approximation argument is known. If we approximate a given continuous curve by smooth we

get a sequence of squares on the approximating curves, which contains a subsequence that

converges to a square on the given curve. However the limit square might be degenerate to

a point.

Hence one would like to find “big” squares to make the limit argument work (this idea

is old). It seems reasonable to conjecture that any smooth curve γ in the plane inscribes a

square with side length at least
√
2a if the interior of γ contains a ball of radius a (which

would be a tight bound). This conjecture implies the same statement for all continuous

curves using an outer approximation and hence the square peg problem. A very similar

conjecture was independently posed by Tverberg [Tve11].

2.4 A weaker smoothness criterion

Let γ : S1 → R
2 be a simple closed curve (that is, injective and continuous). We need

some preparation. Let f : P4 → R
6 be the corresponding test map that measure the four

edges and two diagonals, which was defined in equation (2.1). For y1, y4 ∈ S1, y1 6= y4, let

P4(y1, y4) := {[y1, x2, x3, y4] ∈ P ◦4 }
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the set of all quadrilaterals counter-clockwise on S1 whose first and last vertices are given.

For a path y : S1 → (S1)2\∆(S1)2, y(t) = (y1(t), y4(t)), we define

P4(y) :=
⋃
t∈S1
P4(y(t)) = {[y1(t), x2, x3, y4(t)] ∈ P ◦4 | t ∈ S1}.

Definition 2.4. We call a quadrilateral on γ given by [x1, x2, x3, x4] special if

f ([x1, x2, x3, x4]) = (a, a, a, b, e, e) with a ≥ b, for some reals a, b, e.

Let S denote the set of all special quadrilaterals in P4. The size of a special quadrilateral

[x1, x2, x3, x4] is the normalized arc length x4 − x1, measured in the domain of γ.

The following figure shows a special quadrilateral of small size on γ.

γ(x4)

γ(x2)

γ(x1)

γ(x3)

Theorem 2.5. Suppose there is an ε ∈ (0, 1), such that γ inscribes no (or generically an
even number of) special quadrilateral of size ε. Then γ circumscribes a square.

This theorem is probably most useful for very small ε > 0.

Proof. Use the following lemma with y1 := idS1 and y4 := idS1 + ε.

Lemma 2.6. Suppose there is a path y : S1 → (S1)2\∆(S1)2 ∼= P ◦2 , y(t) = (y1(t), y4(t)),
that represents a generator in π1((S

1)2\∆(S1)2) ∼= π1(S1) ∼= Z. If γ does not inscribe a

square then the mod-2 intersection number of P4(y) and S is 1.

The mod-2 intersection number will be described in the proof. The proof is based on

equivariant obstruction theory, which was first used in connection to the square peg problem

by Vrećica and Živaljević [VŽ11b]. The second part of our proof will be very close to

what they did. One can of course use different topological methods, but their way is quite

straight-forward and beautiful. Another point of view will be sketched in Remarks 2.8

Proof. P4(y) can be parameterized by g : S
1 ×∆2 → P4(y), where S1 parameterizes y and

∆2 the three arc lengths between the points y1(t), x2, x3 and y4(t). The map g is injective

if and only if y is.

The mod-2 intersection number in the theorem is defined as the mod-2 intersection

number of f (g(S1 × ∆2)) and V := {(a, a, a, b, e, e) ∈ R6 | a ≥ b} in R6. This is only
well-defined if f (g(S1 × ∂∆2)) ∩ V = ∅ and im(f ◦ g) ∩ ∂V = ∅. The former is trivially
fulfilled, the latter if and only if no quadrilateral on γ given by P4(y) is a square (this is

interesting if one deforms y ; compare with Remark 1.) in 2.8). The map f ◦ g can now
be deformed by a homotopy rel S1 × ∂∆2, such that at no time it intersects the boundary
of V , and such that it becomes transversal to V . The intersection number then counts the

preimages of V under f ◦ g modulo 2.
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Suppose that γ does not inscribe a square, but the described mod-2 intersection number

is zero. We want to derive a contradiction.

For some ε ∈ (0, 1
2
) (later we might choose ε = 1

3
), let T = T ε ⊂ ∆3 be a polytope

obtained from a tetrahedron by cutting an open vertex figure of size ε from the vertices

(we delete all points (t0, . . . , t3) ∈ ∆3 that have an entry > 1− ε). The four vertices of ∆3
are given by the standard basis vectors e0, . . . , e3 of R

3. The four corresponding triangular

facets of T are denoted by T0, . . . , T3, and their opposite hexagonal facets by H0, . . . , H3.

S1 × T3 ⊂ P4 parameterizes the 4-tuples (x1, . . . , x4) ∈ (S1)4 with x4 − x1 = ε.
Here is a sketch of T in one dimension smaller where we draw S1×T ⊂ P4 as a cylinder

whose the bottom and top face are identified:

S1 × TiS1 × T :

S1 ×Hj

We will construct for some small δ > 0 a Z4-equivariant map

h : S1 × T ε −→Z4
S1 × T δ

that satisfies the following conditions:

1. h maps S1 ×Hi to S1 ×Hi , 0 ≤ i ≤ 3,

2. h is prescribed on S1 × T ε3 ⊂ P4 as

h(t; t0, t1, t2, t3 = 1− ε) := (y1(t);λtt0, λtt1, λtt2, y1(t)− y4(t)),

where λt > 0 is chosen uniquely such that the last four entries sum up to one, that

is, we want h(t; , , , 1− ε) ∈ P4(y1(t), y2(t)).

The second condition prescribes h on all S1× Ti , i = 0, . . . , 3, since h is Z4-equivariant.
Now we construct h. If y = (y1, y4) is given by (idS1, idS1 + ε), then we can choose

δ = ε and h = idS1×T ε. Otherwise there is a homotopy Ys : S
1 → (S1)2\∆(S1)2, s ∈ [0, 1],

from y to the previous one. For each time s ∈ [0, 1] we can now ask how to find an hs as
above for Ys . If we only require condition (2) then this is a homotopy extension problem.

Since (S1 × T ε, S1 × (T0 ∪ . . . ∪ T3)) is a pair of free Z4-CW-complexes, we can solve
this. The standard proof for this, see e.g. [Bre93, Corollary VII.1.4], gives a solution that

automatically satisfies condition (1) at each time, so especially for y . Therefore h exists.

Hence we get a test map

t := pr ◦ f ◦ h : S1 × T f ◦h−→Z4
R
6\(∆R4 × ∆R2)

pr
−→
' Z4

R
4\{0}

which is avoiding 0 ∈ R4 since we assumed that γ inscribes no square.
The range R4\{0} of t is a product of the standard Z4-representation W4 := R4/∆

R4

and U := R2/∆
R2
(ε · u = −u, u ∈ U), with 0 deleted. The corresponding components of
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t are tW and tU. The images f0, . . . , f3 ∈ W4 of the four standard basis vectors e0, . . . , e3
of R4 span a tetrahedron which defines a fan with apex in 0 and with four facets, which

we label by F0, . . . , F3, such that −fi ∈ Fi . V ⊂ R6 projects under pr in R4 = W4 × U to
V ′ := R≤0 · (−f3)× {0}.
We have enough information to disprove the existence of t using an obstruction argu-

ment. Assume that only the restriction of t to ∂(S1 × T ) = S1 × ∂T is given, we look
whether we can extend it.

We are allowed to deform t by an arbitrary Z4-homotopy. First of all we make t transver-

sal to V ′ on S1×T3 relative to its boundary (and extend this deformation Z4-equivariantly).
Let t−1(V ′) ∩ (S1 × T3) = {p1, . . . , p2k}.
From now on we write S1 × T ⊂ Pn in the coordinates that were introduces in Section

2.2. We see that it has a simple Z4-CW-complex structure with only one four-dimensional

Z4-cell orbit:

One three-cell e shall be ∗ × T , ∗ ∈ S1. We may assume that t(∂(e) ∩ T3) ∩ V ′ = ∅
and analogously for the other Ti , since there are only finitely many points ∗ ∈ S1 which are
forbidden in this way (namely the S1-coordinates of the pi and their Z4-translates).

Note that tW (S
1×Hi) ⊂ Fi\{0}. This is because on such points the ti -coordinate is zero,

hence the corresponding edge of the parameterized quadrilateral is zero and thus minimal

among all edges. Therefore we can Z4-deform tU on a sufficiently small neighborhood of

S1× (H0∪ . . .∪H3) such that tU becomes zero on S1× (H0∪ . . .∪H3) and such that during
no time of this deformation change the new intersections of t(S1 × T3) and V ′.
By the degree of a map Sn−1 → R

n\{0} we mean the degree of the normalized map to
Sn−1, or the scaling factor of the induced map on homology Hn−1( ).

Since t(∂(e)∩ T3)∩ V = ∅, we can also deform t on a small neighborhood of ∂(e)∩ T3
such that tW |∂(e)∩T3 lies in F0 ∪ F1 ∪ F2 and such that tU |∂(e)∩T3 is zero, without changing
the intersections of t(S1 × T3) and V . Suppose we have extended t on e such that tU is
positive on the interior of e. Then tU is negative on the interior of ε · e (Z4 = 〈ε〉). Let E
be the 4-cell of S1 × T that has e and ε · e as boundary faces. The degree of tW on ∂e is
one.

Recall t−1(V ) ∩ (S1 × T3) = {p1, . . . , p2k}. If 2k = 0, then one could also deform t on
∂E ∩ ∂(S1 × T ) as we did with t on ∂e. In this case, t|∂E is homotopic to the suspension
of tW |∂e, hence it was of degree 1. However for every pi ∈ ∂E the degree changes by
one. This also happens at the other facets ∂E ∩ (S1 × Ti) of ∂E with the Z4-translates of
{p1, . . . , p2k}. In total there are 2k such points, hence the degree of t|∂E is odd. If t|e was
chosen differently, the degree of t|E would change twice ± the same number, once for e
and once for ε · e. Hence one cannot extend t to E, contradiction.

Corollary 2.7. Suppose there is a path y : S1 → (S1)2\∆(S1)2 = P ◦2 , y(t) = (y1(t), y4(t)),
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that represents a generator in π1((S
1)2\∆(S1)2) ∼= π1(S1) ∼= Z. If P4(y) ∩ S = ∅, then γ

circumscribes a square.

Proof. The mod-2 intersection number of Lemma 2.6 is here trivially zero.

Remarks 2.8. 1.) An alternative view point to the proof of Lemma 2.6 is to look at S as a

1-dimensional manifold, after one made f transversal to V by a small ε-homotopy, at first

on P4(y) and then on P4. Here a technical trick is to choose ε not as a constant but as a

function on P ◦4 that becomes arbitrarily small at the boundary, such that all technicalities

work out. What Theorem 2.6 measures is the following.

P4(y) can be seen as a “membrane”, which separates P4 into two components if y is

injective. If γ circumscribes no square then there is an odd number of paths in S that pass

through P4(y) and approach the boundary at S
1× e3, e3 being the one vertex of ∆3. These

paths might look very chaotic close to the boundary. On the other side of the membrane

P4(y), this odd number of paths cannot all end in each other. One of them has to end

somewhere else. It might end suddenly in P ◦4 , which means that it found a square, or it

might end somewhere else at ∂P ◦4 . My hope was that the latter is not possible, but it is:

The drawn path of special quadrilaterals starts in the middle of the spiral at S1× e3 with
a quadrilateral that is degenerate to a point, and it stops when x1 and x4 moved together

again, x4 − x1 = 1.
2.) Corollary 2.7 is sometimes good for proving the existence of a square, if the curve

is piecewise C1 but has cusps (points in which the tangent vector changes the direction).

This however does not work in a large generality as the previous example shows.

3.) The whole Section 2.4 deals with the curve intrinsically, since the only datum of γ

we used is the distances between points on γ. If we define a square in a metric space (X, d)

to be a 4-tuple (x0, . . . , x3) ∈ X4 such that d(x0, x1) = d(x1, x2) = d(x2, x3) = d(x3, x0)
and d(x0, x2) = d(x1, x3), then the whole section also works for curves γ : S

1 → X. More
generally, X does not need to fulfill the triangle inequality. In other words, we do not need

an embedded curve but a distance defining function d : S1 × S1 → R that is continuous,

symmetric, non-negative, and zero exactly on the diagonal.

4.) The condition on curves γ of having no inscribed special trapezoid of size ε is an

open condition in the following sense. Any embedding γ : S1 ↪→ R
2 without an inscribed

special trapezoid of size ε has a neighborhood in (R2)S
1
with respect to the compact-open

topology with the same property. This shows that Theorem 2.5 is strictly stronger than

Stromquist’s criterion [Str89].
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2.5 Squares on curves in an annulus

In this section we prove the first results on the square peg problem for an open set of

continuous curves that inscribe a square whose size is bounded from below.

Theorem 2.9. Let A denote the annulus {x ∈ R2 | 1 ≤ ||x || ≤ 1 +
√
2}. Suppose that

γ : S1 → A is a continuous closed curve in A that represents a generator of π1(A) = Z.
Then γ inscribes a square of side length at least

√
2.

Figure 2.1: Example for Theorem 2.9.

Figure 2.1 shows an example. This theorem does not contain all previous known classes

of curves for which the square peg problem is proved. It might be an Ansatz to prove the

full square peg problem.

Here are two more versions, whose proofs are very similar; Figures 2.10 and 2.11 show

examples.

Theorem 2.10. Let S denote the set {x ∈ R2 | 1 ≤ ||x ||∞ ≤ 3} = [0, 3]2\(1, 2)2. Suppose
that γ : S1 → S is a continuous closed curve in S that represents a generator of π1(S) = Z.
Then γ inscribes a square of side length at least

√
2.

Figure 2.2: Example for Theorem 2.10.

Theorem 2.11. Let ∆ be an equilateral triangle in R2 whose center point is the origin. Let

T be the closure of ((1+
√
3) ·∆)\∆. Suppose that γ : S1 → T is a continuous closed curve

in T that represents a generator of π1(T ) = Z. Then γ inscribes a square of side length at

least 2
√
3− 3.

It seems to be desirable to extend this method for much more general shapes in order

to possibly prove the square peg problem for all curves. The proofs of Theorems 2.9, 2.10,

and 2.11 follow from the following lemma.
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Figure 2.3: Example for Theorem 2.11.

Lemma 2.12. Let A be a subset of R2. Let SA be the set of 4-tuples (P1, . . . , P4) ∈ A4
that form the vertices of a possibly degenerate square in counter-clockwise order. Let C

be a connected component of an ε-neighborhood of SA that does not contain degenerate

squares, that is, points of the form (P, P, P, P ). Let γ̃ : S1 → A be a generic curve that
contains an odd number of squares in C. Then every continuous curve γ : S1 → A that is
homotopic to γ̃ in A contains a square in C as well.

Here, by a generic curve γ̃ we mean a curve such that the corresponding test map that

measures squares in C hits the test-space smoothly and transversally.

The proof of Lemma 2.12 is a simple bordism argument.

Proof of Theorem 2.9. We may assume that γ is actually a curve in the interior of A. The

other cases follow by a limit argument, for which we use that on each approximating curve

we can find a square of size at least
√
2. Some subsequence of this sequence of squares will

then converge to a non-degenerate square of the given curve.

By compactness γ is a curve in A′ := Uε(A) for some ε > 0. Now we can apply Lemma

2.12, where we choose γ̃ to being an ellipse in A′.

The proofs of Theorems 2.10, and 2.11 are analogous.

2.6 Squares and rectangles on immersed curves

Toeplitz’ conjecture concerns inscribed squares on simple closed curves in the plane. There

are plenty ways to generalize this problem. One possible way is to omit the requirement

that γ has to be injective. Then there are several kinds of degenerate squares, which we

have to deal with in that case. How should one define an inscribed square if the image of

γ is a segment or a tree? To keep things simple, we will only consider smooth curves and

transversal intersections, and we will not count degenerate squares.

In this section we will prove a simple mod-2 formula for the number of squares and

rectangles that are inscribed in an immersed circle (or union of circles).

Squares on immersed curves. Let γ be a “generic” immersion of a finite union of circles

in the plane.

There is a chequerboard coloring of the complement of γ, see Figure 2.4. That is, we

color each component of R2\γ black or white such that adjacent components get different
colors. We may assume that the unbounded component is white. Let b(γ) be the number

of black components. We call a self-intersection of γ a crossing. We say that a crossing is
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fat if the black angles at this crossing are larger than 90◦. The fat crossings in Figure 2.4

are marked by a black dot. Let f (γ) be the number of fat crossings.

Figure 2.4: Chequerboard coloring associated to γ. Dots mark the fat crossings.

Theorem 2.13. Suppose that γ is a generic immersion of finitely many circles in the plane.

Then the number of non-degenerate squares inscribed in γ is congruent modulo 2 to b(γ)+

f (γ).

Proof. By genericity of the curve, no inscribed square will have a vertex at a crossing. We

smoothen the crossings of γ such that all white components become one big component.

The number of inscribed squares increases by f (γ) under this operation, see Figure 2.5.

The new curve consists of b(γ) separated simple closed curves. We can deform them by

an ambient isotopy such that they become b(γ) small ellipses and such that there is no

inscribed square that touches more than one component. Therefore the resulting union of

ellipses inscribes exactly b(γ) squares. Using a bordism argument, the parity of the number

of inscribes squares did not change during the isotopy. Since every ellipse inscribes exactly

one square, this finishes the proof.

vs.

Figure 2.5: When we smoothen a crossing then a new square appears if and only if we

opened the smaller angle.

Rectangles on immersed curves. The analogous theorem for rectangles of prescribed

aspect ratio 0 < r < 1 that are inscribed in immersed circles is slightly different. Let γ be

again a generic immersion of a finite union of circles in the plane, and consider again the

chequerboard coloring from above. Let 0 < α(r) < π/2 be the angle at the intersection

of the two diagonals of a rectangle with aspect ratio r . We call a self-intersection of γ

α-orthogonal if the angle at this crossing lies in the open interval (α, π − α). Let o(γ, r)
denote the number of α(r)-orthogonal crossings.

Theorem 2.14. Let 0 < r < 1. Suppose that γ is a generic immersion of finitely many

circles in the plane. Then the number of non-degenerate rectangles with aspect ratio r

inscribed in γ is congruent modulo 2 to o(γ, r).
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Proof. The proof is very similar to the one of Theorem 2.13. Again, in a small neighborhood

of a generic crossing we have no vertex of an inscribed rectangle with aspect ratio r . When

we smoothen the crossing, 0, 1, or 2 new rectangles will appear, depending on whether the

angle β that we smoothen satisfies β < α, α < β < π − α, or π − α < β; compare with
Figure 2.6.

α

Figure 2.6: Smoothening a crossing changes the number of inscribed rectangles modulo 2

if and only if the crossing is α-orthogonal.

The rest is analogous to the previous proof.

3 Rectangles on curves

In this section we deal with the smooth rectangular peg problem 1.2. It is very challenging

and from the author’s point of view the most beautiful open problem in this area of inscribing

and circumscribing problems.

H. B. Griffiths [Gri90] gave a proof for Conjecture 1.2; unfortunately however his com-

putations contain fatal errors concerning orientations. Hence the problem is still open for

all cases r 6= 1, the case r = 1 being the smooth square peg problem.
The rectangular peg problem is much more difficult than the smooth square peg problem

since the symmetry group of an oriented rectangle is Z2 instead of Z4. If one describes

the set of rectangles R of a given fixed ratio r as the preimage of some Z2-equivariant

test-map, it is easy to check that Z2 acts orientation-preserving on R. But it turns out the

number of such rectangles, counted with sign, is zero, which can be deduced from an ellipse.

Hence purely topological arguments will not work, any test-map in question will exist, even

when one uses the boundary conditions that come from the smoothness of the curve. Still,

topology gives some intuition, and here are two approaches.

3.1 Some intuition

Assuming that Conjecture 1.2 admitted a counter-example (γ, r), the following two lemmas

derive conclusions that seem to be unintuitive, but more geometric ideas are needed to yield

a contradiction.
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Lemma 3.1. Suppose there was a counter-example (γ, r). Then for all ε > 0, there is a

Z2-invariant one-parameter family S
1 → P4 of ε-close parallelograms with aspect ratio in

[r − ε, r + ε] and with an odd winding number, such that during the whole one-parameter
family one of the diagonals stays larger than the other one.

Sketch of proof. For more details, we refer to [Mat09]. We define a test map,

g : P4 −→Z2 R
2 ×R

[x1, x2, x3, x4] 7−→
(
(γ(x1) + γ(x3))− (γ(x2) + γ(x4)),
(||γ(x1)− γ(x2)||+ ||γ(x3)− γ(x4)||)−
r · (||γ(x2)− γ(x3)||+ ||γ(x4)− γ(x1)||)

)
.

The preimage P := (g|P ◦4 )
−1(0) is exactly the set of parallelograms on γ of aspect ratio

r . The action of Z2 preserves the orientation of P4, R
2 ×R and {0}. Hence Z2 preserves

the preimage orientation of P as well. Since on smooth curves γ (and on smooth isotopies)

the edge lengths of inscribed parallelograms of aspect ratio r are bounded from below, P

does not intersect some small neighborhood of ∂P4. Hence P defines an element in the

1-dimensional oriented bordism group [P/Z2] ∈ Ω1(P4/Z2) ∼= Z. From a circle we deduce
that this element is 1.

Remark 3.2. In Lemma 3.1, instead of looking at the set of parallelograms with aspect ratio

r , we might look as well on the set of parallelograms whose diagonals intersect in an angle

α, where α is the intersection angle of the diagonals in a rectangle of aspect ratio r . This

gives an analogous lemma, which might be easier to deal with geometrically.

Lemma 3.3. Suppose there was a counter-example (γ, r). Then for all ε > 0, there is a

Z4-invariant one-parameter family S
1 → P4 of ε-close rectangles.

Intuitively it seems that the conclusion of Lemma 3.3 can hold only for curves that are

“close” to convex.

Proof. Let f : P ◦4 −→Z4
R
4 ×R2 be the restricted map (2.1) from Section 2.3, measuring

the edges and diagonals.

First of all we make f Z4-equivariantly transversal to ∆R4 ×∆R2 by a small δ-homotopy,
and let Q := f −1(∆R4×∆R2) be the set of all squares (up to an δ-error, where δ is a function
that decreases sufficiently fast near the boundary of P ◦4 ). Then we make f Z4-equivariantly

transversal to the Z4-invariant subspace V := {(a, b, a, b, e, e) ∈ R4 × R2} by a small δ-
homotopy which leaves Q fixed, and let R := f −1(V ) be the set of all rectangles on γ (up

to an δ-error). If δ was chosen small enough, R consists only of ε-close rectangles.

Let RQ be the set of all components of R that contain a square. We may assume that

all these components are circles, otherwise a component would come arbitrary close to the

boundary of P4, so there would be an ε-close rectangle on it with aspect ratio r . If we could

do this for all ε, then a limit argument would give us a proper rectangle of aspect ratio r .

Hence if need be, we choose a smaller ε for which this does not happen.

R is a one-dimensional Z4-manifold, so Z4 acts on RQ as well. We decompose RQ =

R1 ]R2 ]R4, where R1 is the set of components with isotropy group 〈0〉, R2 with isotropy
group Z2 = 〈ε2〉 ⊂ Z4 and R4 with Z4. Now we only need to count the number of squares
on each Ri .



3. Rectangles on curves 43

◦ ]Q = 4 mod 8, since modulo Z4 it is odd (see Section 2.3).

◦ Every component C ∈ RQ contains an even number of squares, since while passing a
square the rectangle changes from fat to skinny or vice versa (this follows from the

bijectivity of the differential df at points in Q).

◦ 4 divides ]R1, and every component in R1 contains two squares. So the number of
squares on components of R1 is divisible by 8.

◦ 2 divides ]R2, and if a component in R2 contains a square S, then it contains also
ε2 ·S. When it goes through a square and changes from fat to skinny, then so it does
at ε2 · S. Hence it has to go through 4k squares, k ≥ 1. Thus the number of squares
on components of R2 is divisible by 8.

◦ If a component C of R4 goes through a square S and changes from fat to skinny, then
it also goes through ε · S and changes from skinny to fat. That is, in between it had
to go through an even number of squares, all of which of course belong to a different

Z4-orbit. Hence the number of square-orbits on C is odd, ](Q ∩ C) = 4 mod 8.

Putting this modulo 8 together, we get ]R4 = 1 mod 2, which is even a bit stronger

than what is stated in the lemma.

3.2 Inscribed rectangles with aspect ratio
√
3

Let us now come to rectangles of aspect ratio
√
3. We call a smooth positively oriented

plane curve γ : S1 ↪→ R
2 to have angular convexity at most α, if the signed curvature of

γ restricted to any arc is at least −α; see Figure 2.7.

> 60◦

Figure 2.7: Example of a curve that is not 60◦-angular convex.

Theorem 3.4. Let γ : S1 → R
2 be a C∞ curve whose angular convexity is at most 60◦.

Then γ inscribes a rectangle with aspect ratio
√
3.

Figure 2.8: Example for Theorem 3.4.

The proof uses a hidden symmetry that appears for r =
√
3, which is a geometric piece

of information.
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Proof. Let us leave all technical details concerning transversality to the subsequent subsec-

tion below the proof. Suppose we are given a smooth curve γ : S1 ↪→ R
2.

We define a map

f :(S1)4 −→G R
2 × S1

(x1, x2, y1, y2) 7−→ (v , α),

where v is again the difference between the midpoints of the diagonals in the quadrilateral

(γ(x1), γ(y1), γ(x2), γ(y2)) and α is the mod-180
◦ angle between these diagonals (we mea-

sure angles always in counter-clockwise sense). If one diagonal is degenerate to a point we

take the tangent of γ at this point to define α.

The map f is G := Z2 × Z2 = {0̄x , 1̄x} × {0̄y , 1̄y}-invariant, where G acts on (S1)4 by
1̄x · (x1, x2, y1, y2) = (x2, x1, y1, y2) and 1̄y · (x1, x2, y1, y2) = (x1, x2, y2, y1).
Let P := f −1(0, 60◦) be the set of parallelograms on γ having a 60◦-angle modulo 180◦

between their diagonals. We call them 60◦-parallelograms. We may assume that P is a

union of connected 1-dimensional submanifolds Ki of (S
1)4,

P = K1 ∪ . . . ∪Kn, Ki ∼= S1,

where the union is disjoint except that points (x1, x2, y1, y2) ∈ P of the form x1 = x2 or
y1 = y2 occur exactly twice (for all technicalities, see Section 3.2). This is because P might

contain parallelograms where one diagonal is degenerate to a point. These are exactly the

points of P on that G does not act freely. However G acts freely on the disjoint union

K1 ] . . . ] Kn. We denote (S1)4/G = M2 where M := (S1)2/Z2 is the Möbius strip. The
first factor M parameterizes x1 and x2 without their order and the second M parameterizes

y1 and y2. Let L1 ] . . . ] Lm ⊂ M2 be the quotient manifold (
⋃
Ki)/G, which has corners

at the points where it touches ∂M2. Then L represents an element in the 1-dimensional

unoriented bordism group N1(M
2) ∼= N1((S1)2) ∼= (Z2)2, since all embedded circles γ are

isotopic in the plane and G-homotopies of f change K1 ] . . . ]Kn by a G-bordism.
If γ is the unit circle then we see that P is the disjoint union of four circles that all get

identified by G. Their quotient L is one circle that represents (1̄, 1̄) ∈ N1(M2) ∼= (Z2)2,
where 1̄ ∈ Z2 is the generator.
P does not contain parallelograms that have an edge that is degenerate to a point.

Hence the x1 and x2-coordinates will always differ from the y1 and y2-coordinates at any

point (x1, x2, y1, y2) in P . Therefore the circles Li can only represent the elements (0̄, 0̄)

and (1̄, 1̄) of N1(M
2) ∼= (Z2)2.

Now we come to the “hidden symmetry”, that is, the geometric piece of information

that is the key in this proof. Let W := {(α, β, γ) ∈ (S1)3 | α + β + γ = 0◦ mod 180◦}.
We define a map

F :(S1)6 −→ (R2)3 ×W
(x1, x2, y1, y2, z1, z2) 7−→ (mx , my , mz , αxy , αyz , αzx),

where mx is the mid-point of the segment (γ(x1), γ(x2)), αxy is the mod-180
◦-angle be-

tween the segments (γ(x1), γ(x2)) and (γ(y1), γ(y2)), and analogously for the the other

coordinates. F is equivariant with respect to the natural actions of the wreath product
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K := (Z2)
3 o Z3. Let

S̃ := F−1(∆(R2)3 × {(60◦, 60◦, 60◦)}).

We may assume that S̃ is a 0-dimensional free K-manifold. We define S := S̃/K to be

the set of stars. See Figure 2.9 for an example. Every star s ∈ S contains three 60◦-
parallelograms on γ, namely Pxy , Pyz and Pzx . Modulo G they lie in some components Li ,

Lj and Lk (they are not necessarily pairwise distinct). We say that this star s relates Li , Lj
and Lk . Saying this is unique up to cyclic permutation of Li , Lj and Lk . So we can draw

a directed graph D whose nodes are the components of L, and we draw for each star a

directed triangle Li → Lj → Lk → Li .

γ(y2)

γ(y1)

γ(z1)γ(z2)

γ(x1)

γ(x2)

Figure 2.9: A star containing three 60◦-parallelograms; x1z1x2z2 is skinny, the other two

rectangles are fat.

Assume that γ does not contain a rectangle of aspect ratio
√
3. These are exactly the

rectangles whose diagonals cross in a 60◦-angle. Then all 60◦-parallelograms on γ are skinny

or fat in the sense that the x-diagonal is longer or shorter than the y -diagonal. By continuity

this does not change along the components of L. Hence we can call the Li ’s fat or skinny.

Recall that [Li ] ∈ N1(M2) is (0̄, 0̄) or (1̄, 1̄). Correspondingly, we say that the winding
number w(Li) of Li is 0̄ (even) or 1̄ (odd), respectively.

Let x, y : M2 → M be the projections to the first and to the second factor, respectively.
An arc Li → Lj in the graph D corresponds to an intersection of y(Li) and x(Lj). The
number of such intersections is

](y(Li) ∩ x(Lj)) = w(Li) · w(Lj) mod 2. (3.5)

We will derive a contradiction by double counting the number of stars ]S.

By (3.5), components of L with even winding number will have no influence on what

follows. Let s be the number of skinny components of L with odd winding number, and let

f be the number of fat components of L with odd winding number.

We know that [L] =
∑
i [Li ] = (1̄, 1̄), thus

s + f = 1 mod 2.

Note that no star relates three skinny or three fat 60◦-parallelograms with each other. Hence

every star gives exactly one arc from a skinny to a fat component of L. Modulo 2 and using

(3.5), the number of these arcs is congruent s · f = 0 mod 2. Therefore,

]S = 0 mod 2.
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On the other hand, every star relates three components, two of which are skinny or two

of which are fat. So every star gives exactly one arc between two skinny components or

between two fat components. Using (3.5), the number of arcs between skinny components

modulo two is

s2 = s mod 2,

and the number of arcs between fat components modulo two is

f 2 = f mod 2.

Together this gives,

]S = s + f = 1 mod 2.

This is a contradiction, which finishes the proof of Theorem 3.4.

Technical Details

In the previous section we assumed that the set of inscribed 60◦-parallelograms P is a 1-

dimensional manifold in the 4-manifold M2. Also the set of stars should be finite. At the

same time, when two parallelograms p1 and p2 have a common diagonal y(p1) = x(p2) they

form a star. Thus there should be another parallelogram p3 such that x(p1) = y(p3) and

y(p2) = x(p3). These triple intersection points come from the geometry, but they are in

some sense not generic. That is, we need to be careful on how to make the test maps f and

F simultaneously transversal in order to keep the geometric property of a star and without

violating the equivariance. We solve this issue by perturbing the following two maps.

Let

m : (S1)2 → R
2

be the map that sends (x1, x2) ∈ (S1)2 to the mid-point γ(x1)+γ(x2)2
. Let

α : (S1)2 → S1

be the map that sends (x1, x2) ∈ (S1)2 to the mod-180◦ angle of the line through γ(x1) and
γ(x2) and some fixed line in the plane. The maps f and F can written in terms of m and α,

f (x1, x2, y1, y2) = (m(y1, y2)−m(x1, x2), α(y1, y2)− α(x1, x2))

and similarly F .

Let ϕi : S
1 → [0, 1], i = 1 . . . k , be a partition of unity of S1 subordinate to a covering

of S1 with small ε-balls. We will perturb the maps m and α with two sets of parameters

Sm := ([−ε,+ε]2)(
k+1
2 ) and Sα := [−ε,+ε](

k+1
2 ) as follows:

m′ :Sm × (S1)2 −→ R
2

(sm, x1, x2) 7−→ m(x1, x2) +
∑
i≤j

(ϕi(x1)ϕj(x2) + ϕi(x2)ϕj(x1)) · (sm)i ,j ,

and

α′ :Sα × (S1)2 −→ S1

(sα, x1, x2) 7−→ α(x1, x2) +
∑
i≤j

(ϕi(x1)ϕj(x2) + ϕi(x2)ϕj(x1)) · (sα)i ,j ,
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This defined analogous functions f ′ : Sm × Sα × (S1)4 −→G R
2 × S1 and F ′ : Sm ×

Sα × (S1)6 −→K (R2)3 × W . Because of the additional parameter space f ′ and F ′ are
transversal to the respective test-spaces {(0, 60◦)} and ∆(R2)3 × {60◦, 60◦, 60◦}. By the
transversality theorem [GP74, p. 68], for almost all choices s := (sm, sα) (up to a zero set),

the perturbations f ′s := f
′(s, ) and F ′s := F

′(s, ) are transversal to the test-spaces as well.

Similarly one can show that for almost all s, y(Ki) intersects x(Kj) transversally for all i , j .

4 Crosspolytopes on spheres

In Klee & Wagon [KW96, Problem 11.5] is was asked whether every 3-dimensional convex

body circumscribes the vertices of a regular octahedron. Makeev [Mak03] proved this for

smooth convex bodies and Karasev [Kar09b] generalized the proof to smoothly embedded

spheres in higher dimensions as follows.

Theorem 4.1 (Makeev, Karasev). Let d be an odd prime power. Then every smooth

embedding Γ : Sd−1 → R
d contains the vertices of a regular d-dimensional crosspolytope.

H. Guggenheimer [Gug65] gave already in 1965 a proof for all d , however there is unfor-

tunately an error in his main lemma due to some connectivity arguments, which seems to

invalidate the proof. Recently, Akopyan and Karasev [AK11] proved by a non-trivial approxi-

mation argument that for d = 3, the smooth embedding Γ can be replaced by the boundary

of a simple polytope.

An interesting possible extension seems to be the following. Let M be a Riemann

manifold. By a crosspolytope P on M we mean a set of 2d vertices v εi , ε ∈ {+,−},
i ∈ {1, . . . , d}, on M. We call two vertices v εi and v δj opposite if i = j and ε = −δ. If any
pair of non-opposite vertices of P have the same distance in M then we call P a regular

crosspolytope.

Conjecture 4.2 (“Crosspolytopal peg problem for manifolds”). Let d be a positive integer.

Then every smooth embedding Γ : Sd−1 → M into a Riemann manifold contains the vertices
of a regular d-dimensional crosspolytope.

The aim of this section is to show that the conjecture in general is probably very difficult.

The topological counter-example

A solution of the conjecture would involve deeper geometric reasoning, since there is the

following “topological counter-example” for d = 3. Suppose we are given a smooth embed-

ding Γ : S2 → M. Let G ∼= (Z2)3 o S3 be the symmetry group of the regular octahedron
and Gor ⊂ G be the subgroup of orientation preserving symmetries. G acts on (S2)6 by
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permuting the coordinates in the same way as it permutes the vertices of the regular octa-

hedron. Let G act on R12 by permuting the coordinates in the same way as it permutes the

edges of the regular octahedron. The subrepresentation (∆R12)
⊥ ⊂ R12 is denoted by Y .

Let ∆f at(S2)6 be the space of all 6-tuples in (S
2)6 that contain at least two equal elements, that

is, the fat diagonal. Let B be a small ε-neighborhood of ∆f at(S2)6, where ε depends only on

an isotopy of Γ to some nice embedding, that we will describe later. Then the complement

X := (S2)6\B is a free compact G-manifold with boundary and

X 'G {(x1, . . . , x6) ∈ (S2)6 | xi are pairwise distinct} = (S2)6\∆f at(S2)6.

Then Γ gives us a test map

t : X −→G Y,

which measures the edges of the parameterized octahedra modulo 1 = (1, . . . , 1). This

map depends only on the distance function d : M ×M → R on M. Since ε was chosen

small, t|∂X is mapping uniquely up G-homotopy to Y \{0}, if we change d by a homotopy
relative to a small neighborhood of the diagonal ∆M2 of M

2. We will use this fact later to

assume that Γ is actually some nice embedding of Sd−1 into Rd . The solution set S of

regular octahedra on Γ is S := t−1(0). The subset Sor ⊂ S of positively oriented octahedra
is a part of the preimage t−1(0), and t induces an isomorphism of Gor -vector bundles over

Sor ,

TSor ⊕ (iSor )∗(X × Y ) ∼= (iSor )∗(TX),

where iSor denotes the inclusion Sor ↪→ X. Thus Sor gives us together with this normal data
an element [Sor ] in the equivariant normal bordism group (see Koschorke [Kos81, Chap. 2])

ΩGor1 (X,X × Y − TX) = Ω1(X/Gor , X ×Gor Y − T (X/Gor )),

which is well-defined, since Z2-homotopies of d relative to a small neighborhood of ∆M2

change S only by a normal bordism that stays away from the ∂X if ε was chosen small

enough, and components of octahedra of different orientation are always separated from

each other. In Koschorke’s notation, [Sor ] is the obstruction

ω̃1(R∼, X ×Gor Y, (id∂X, t|∂X)/Gor ),

where R∼ is the trivial line bundle.

Theorem 4.3. The above defined [Sor ] is zero. Hence

[S] ∈ ΩG1 (X,X × Y − TX)

is zero as well. In particular, the test map t can be deformed G-equivariantly relative to ∂X

to a map t ′, such that 0 6∈ t ′(X).

The existence of the test-map t ′ that fulfills the boundary conditions is what I call a

topological counter-example.
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Sketch of Proof. To construct a nice representative for [Sor ] we take the standard 2-sphere

and scale it down linearly along the z-axis of R3. This is our Γ and we let t and S be the

corresponding test map and solution set, respectively. S is a disjoint union of 16 = 1
3
· ]G

circles. One octahedron on the scaled sphere looks as follows (one looks along the z-axis):

If we rotate it around the z-axis then we get up to symmetry all octahedra on Γ . The

G-bundles X × Y and TX are G-orientable. Therefore the relevant part of Koschorke’s
exact sequence [Kos81, Thm. 9.3] becomes

H2(X/Gor ;Z)→ Z2 → Ω1(X/Gor ,X ×Gor Y − T (X/Gor ))
→ H1(X/Gor ;Z)→ 0.

It is not difficult to see that the image of [Sor ] in H1(X/Gor ;Z) = H1(Gor ;Z) is zero. This

is because the 120 degree rotation of a regular octahedron around an the line connecting

the midpoints of two opposite triangles is an element of the commutator of Gor . It requires

more visualization to see that [Sor ] is in fact the image of the generator of Z2. The hard part

is to show that Z2 unfortunately lies in the image of H2(X/Gor ;Z), which I could manage to

do only with a very long computer program. It finds that H2(X/Gor ;Z)
∼= Z4× (Z2)3, where

one can choose the generators such that the first three map to zero and the last one to the

generator of Z2.

The Gor -null-bordism of Sor can be extended to a G-null-bordism of S. By Theorem 3.1

of U. Koschorke [Kos81], we can extend the section as stated.

Remarks to the algorithm

An economical S6-CW-complex structure on (S
2)6 is based on an S6-cell decomposition of

R
2 of V. A. Vassiliev [Vas94], which has few high dimensional cells. ∆f at(S2)6 is a subcomplex,

so one can compute H2(X/Gor )
∼= H10((S2)6/Gor , (∆f at(S2)6)/Gor ). The Smith normal form

is used to compute this cellular cohomology and the LLL-algorithm to choose economical

generators. The image in Z2 is determined by computing second Stiefel-Whitney classes,

which I implemented as obstruction classes.
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Appendix A

Two classes of interesting polytopes

The following topics of my coauthor’s and my work do not fit thematically to the previous

chapters. This small chapter summarizes the main results.

A1 5-spindles and their width

Definition A1.1. A d-spindle is a d-dimensional polytope P with two distinguished vertices

t and b such that each facet contains at least one of them. The width of P is the distance

of t and b in the graph of P .

That is, the width counts the number of steps that one needs to walk from t to b

along edges of P , where every edge has length one. 2-dimensional spindles are triangles

and trapezoids, and their width is 2. Any 3-spindle has width at most 3 (exercise). Santos

and independently Stephen & Thomas showed that also any 4-spindle has width at most 4

[SST11].

The recent interest in spindles with width larger than their dimension comes from the

fact that they form the basis for the first counter-example to the Hirsch conjecture, which

was found by Francisco Santos in 2010 [San10].

Theorem A1.2 (Santos 2010). If P is a d-spindle of with n facets and width w , then there

is a (d +1)-spindle Q with n+1 facets and width w +1. Repeating this step n− 2d times,
one arrives at a (n − d)-spindle with 2n − 2d facets and width n − 2d + w . If the starting
d-spindle has width w > d then the resulting polytope is a counter-example to the Hirsch

conjecture.

With Santos we constructed a family of 5-spindles whose width grow in the square root

of the number of facets, or more precisely:

Theorem A1.3 (M, Santos, Weibel 2011). Let d ≥ 3, q ≥ 2 and m := dq. Then there
exists a 5-prismatoid of width 4 + q/2 with m(m − d + 2) facets in each base vertex.

The same paper [MSW11] contains work of Christophe Weibel and Francisco Santos

(without me) in which they find smaller counter-examples to the Hirsch conjecture, the

smallest of which lives in dimension 20 and which has the advantages that it is has explicit

coordinates and that it fits into a computer.
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A2 Product-simplicial neighborly polytopes

Definition A2.1 (Product-simplicial neighborly polytopes). Let n1, . . . , nr ≥ 0, r ≥ 1, and
k ≥ 0. A polytope P is called k-product-simplicial neighborly (or k-psn) with respect to
the given data (n1, . . . , nr) if its k-skeleton is combinatorially equivalent to the k-skeleton

of the product of simplices ∆n1 × . . .× ∆nr .

This definition interpolates between simplicial neighborly polytopes and cubically neigh-

borly polytopes: A k-psn polytope with r = 1 is known as a simplicial (k + 1)-neighborly

polytope on n1 + 1 vertices, and a k-psn polytope with n1 = . . . = nr = 1 is known as a

cubically k-neighborly polytope on 2r vertices.

As for simplicially and cubically neighborly polytopes it seems interesting to ask: What is

the smallest dimension in which there exists k-psn polytopes to the given data (n1, . . . , nr).

The main result of my paper [MPP11] with Julian Pfeifle and Vincent Pilaud is the following

theorem.

Theorem A2.2 (M–Pfeifle–Pilaud 2009). Let r ≥ 1, n1, . . . , nr ≥ 1, and k ≥ 0. Then there
is a k-psn polytope to this data already in dimension (at most) 2k + r + 1.

The proof is constructive up to finding a sufficiently small ε > 0. A very general con-

struction method is to project a polytope that is combinatorially equivalent to ∆n1× . . .×∆nr
to Rd in such a way that the k-skeleton survives. We found also new obstructions for this

projection method using topological methods extending the one of Rörig and Sanyal [RS09].

It might be interesting to generalize the notion of product-simplicial neighborlyness to

embedded manifolds by extending the notion of k-neighborly embedded manifolds from

Perles [Per82] (see also Vassiliev [Vas98] and Kalai & Wigderson [KW08]) to the product-

simplicial setting. We could call an embedding of a product of manifolds e : M1×. . .×Mr →
R
d k-product-simplicial neighborly, if for any chosen subsets Pi ⊂ Mi whose cardinalities sum
up to at most k + r there exists a hyperplane in Rd that supports e(M) at precisely the

points e(Pi× . . .×Pr). One can now ask: Given a product of manifolds M = M1× . . .×Mr ,
what is the smallest dimension d such that there exists a k-psn embedding of M into Rd?

The construction of Theorem A2.2 yields a k-psn embedding into R2k+r+1 if all Mi equal

R. First interesting special cases are Mi = S
1 and Mi = R

m for m ≥ 2.
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Summaries

B1 English summary

The first chapter of this thesis is on the colored Tverberg problem, which is joint work with

Pavle Blagojević and Günter Ziegler [BMZ09], [BMZ11a], [BMZ11b]. First we present a new

and tight colored version of Tverberg’s theorem that implies the Bárány–Larman conjecture

for primes minus one and asymptotically in general. This in turn improves the bounds in the

second selection lemma, which is used in computational complexity for example to bound the

number of halving sets of an n-set in Rd . Then we generalize our theorem to a transversal

version, a colored version of the Tverberg–Vrećica conjecture, which is a unifying theorem

in the sense that it implies the ham sandwich theorem and the center transversal theorem.

Finally we generalize our theorem to maps into manifolds. Two results of independent

interest are a new parameterized Borsuk–Ulam-type theorem for equivariant vector bundles

and the calculation of the Fadell–Husseini index of joins of chessboard complexes.

The second chapter is on inscribing squares and rectangles into closed curves in the

plane. The results are disjoint from the ones in [Mat08, Chap. III], and they will appear

in [Mat09] and [Mat11]. We present two new classes of Jordan curves that fulfill Toeplitz’

still unsolved square peg problem from 1911, that is, these curves inscribe squares. One of

them strictly contains all previously known classes; the other one is the first known open set

of such curves. Then we disprove Cantarella’s conjecture on the parity of inscribed squares

for immersed plane curves and give the right answer, also for inscribed rectangles. We give

another class of Jordan curves that inscribes rectangles of aspect ration
√
3, which is the

first known partial result for an aspect ratios other than 1.

The appendix summarizes two papers on polytopes. The first one is joint work with

Francisco Santos and Christophe Weibel [MSW11] on 5-spindles with large width, which

are a building block for new counter-examples of the Hirsch conjecture. The second is

joint work with Julian Pfeifle and Vincent Pilaud [MPP11] on productsimplicial-neighborly

polytopes, where we construct polytopes that interpolate between being neighborly and

cubically neighborly.

B2 Deutsche Zusammenfassung

Das erste Kapitel behandelt das farbige Tverbergproblem und ist in Zusammenarbeit mit

Pavle Blagojević und Günter Ziegler [BMZ09], [BMZ11a], [BMZ11b] entstanden. Zuerst
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zeigen wir eine neue und optimale farbige Version des Tverbergsatzes, welches die Bá-

rány–Larman-Vermutung für Primzahlen minus Eins und im Allgemeinen asymptotisch im-

pliziert. Das wiederum verbessert die Schranken im Second-Selection-Lemma, was z.B. in

der algorithmischen Komplexitätstheorie benutzt wird um die Anzahl der halbierenden Men-

gen in einer n-Menge im R
d nach oben abzuschätzen. Anschließend verallgemeinern wir

unseren Satz zu einer transversalen Variante, einer farbigen Version der Tverberg–Vreći-

ca-Vermutung, welche zudem das Ham-Sandwich-Theorem impliziert und allgemeiner das

Center-Transversal-Theorem. Im dritten Abschnitt verallgemeinern wir unseren Satz für

Abbildungen in beliebige Mannigfaltigkeiten. Zwei methodische Resultate sind ein neuer

parametrisierter Borsuk–Ulam-Satz für äquivariante Vektorbündel und die Berechnung des

Fadell–Husseini-Indexes von Joins von Schachbrettkomplexen.

Das zweite Kapitel beschäftigt sich mit in Kurven einbeschriebenen Quadraten und

Rechtecken. Die Ergebnisse sind disjunkt von denen in [Mat08, Chap. III], und sie werden in

[Mat09] und [Mat11] erscheinen. Wir zeigen für zwei neue Klassen von Jordankurven, dass

sie die Toeplitz-Vermutung erfüllen, d.h. jede dieser Kurven enthält die vier Punkte eines

Quadrats. Die erste Klasse enthält strikt alle bisher bekannten Klassen, und die andere ist

die erste bekannte offene Menge solcher Kurven. Dann widerlegen wir eine Vermutung von

Cantarella über die Parität der Anzahl von in immersierten planaren Kurven einbeschriebe-

nen Quadraten, und geben die richtige Anzahl an, auch für einbeschriebene Rechtecke. Im

zweiten Abschnitt geben wir eine Klasse von Jordankurven an, die Rechtecke des Seiten-

verhältnisses
√
3 einschreiben, welches das erste bekannte Teilergebnis für Seitenverhältnisse

ungleich 1 ist.

Der Anhang fasst zwei Papers über Polytope zusammen. Das erste ist eine Zusamme-

narbeit mit Francisco Santos und Christophe Weibel [MSW11] über breite 5-Spindeln, von

welchen neue Gegenbeispiele zur Hirschvermutung konstruiert werden können. Das zweite

ist eine Zusammenarbeit mit Julian Pfeifle und Vincent Pilaud [MPP11] über produktsim-

pliziale nachbarschaftliche Polytope, in der wir unter anderem Polytope konstruieren, die

zwischen nachbarschaftlichen und kubisch nachbarschaftlichen Polytopen interpolieren.
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