
ON THE KERNEL OF THE BRAUER-MANIN PAIRING

THOMAS H. GEISSER AND BAPTISTE MORIN

Abstract. Let X be a regular scheme, flat and proper over the ring of integers
of a p-adic field, with generic fiber X and special fiber Xs. We study the left
kernel Br(X ) of the Brauer-Manin pairing Br(X)×CH0(X)→ Q/Z. Our main
result is that the kernel of the reduction map Br(X )→ Br(Xs) is the direct sum
of (Q/Z[ 1p ])s⊕ (Q/Z)t and a finite p-group, where s+ t = ρXs

−ρX − I+ 1, for

ρXs and ρX the Picard numbers of Xs and X, and I the number of irreducible
components of Xs. Moreover, we show that t > 0 implies s > 0.

1. Introduction

The Brauer group plays an important role in arithmetic geometry. Over a finite
field, Artin conjectured that the Brauer group of any proper scheme is finite [7,
Rem. 2.5c)]; this was proved by Grothendieck for curves [7, Rem. 2.5b)]. If X is
smooth and proper, then the finiteness of Br(X) is equivalent to Tate’s conjecture
on the surjectivity of the cycle map for divisors on X, and for a normal crossing
scheme the finiteness follows from Tate’s conjecture for all (smooth) intersections
of the components. The next interesting case are varieties over a p-adic field K.
It is a classical result of Hasse that the Brauer group Br(K) is isomorphic to Q/Z.
Lichtenbaum [11] proved that if X is a curve, then the Brauer group Br(X) is
Pontrjagin dual to the Chow group of zero cycles CH0(X). In particular, it is the
direct sum of a finite group, of Q/Z, and of a divisible p-torsion group of corank
the genus of X times the degree of [K : Qp].

This result was generalized by Colliot-Thélène and Saito [3], and Saito and Sato
[16]. They show that if X has a proper and regular model X , then the Brauer-
Manin pairing between CH0(X) and Br(X) has left kernel Br(X ). Moreover, for
l 6= p, the l-part of Br(X)/ im(Br(X ) ⊕ Br(K)) is finite and vanishes for almost
all l. However, not much is known about Br(X ). We prove the following:

Theorem 1.1. Let X be a regular scheme, flat and proper over the ring of integers
of a p-adic field, and let Xs be the closed fiber. Then the kernel of the reduction
map Br(X ) → Br(Xs) is the direct sum of (Q/Z[1

p
])s ⊕ (Q/Z)t and a finite p-

group, where s+ t = r := ρXs − ρX − I + 1 for ρXs and ρX the Picard numbers of
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Xs and X, and I the number of irreducible components of Xs. Moreover, if t > 0
then s > 0.

Note that Br(Xs) is conjecturally finite. The statement on the l-corank follows
from the proper base change theorem, and the non-trivial part of the theorem is
that the p-corank is strictly smaller than the l-corank unless both vanish.

Corollary 1.2. 1) The kernel of Br(X )→ Br(Xs) is finite if and only if r = 0.
2) If r = 1, then the p-part of the kernel of Br(X )→ Br(Xs) is finite.

Our construction together with a theorem of Flach-Siebel gives a map b :
PicXs → H2(X,OX) which is related to the Chern class map. We show in
Theorem 6.2 that s is the dimension of the Qp-vector space spanned by image of
Pic(Xs) in H2(X,OX). In particular, H2(X,OX) = 0 implies that the kernel of
Br(X )→ Br(Xs) is finite. We use this to give some explicit calculations.

Theorem 1.3. Let X be a family of abelian or K3 surfaces over SpecZp. If
r = 0, then Br(X ) is finite. If r > 0, then

Br(X ) ∼= (Q/Z[1
p
])⊕ (Q/Z)r−1 ⊕ P,

where P is a finite p-group.

We give an explicit example of an abelian surface with

Br(X ) ∼= (Q/Z[1
p
])⊕ (Q/Z)2 ⊕ P.

Finally, we briefly discuss the intermediate groups

Br(X )→ lim Br(Xn)→ Br(Xs)
for Xn = X ×Z Z/pnZ.

Notation: Throughout the paper, K is a finite extension of Qp of degree f with
Galois group GK , and X is a smooth and proper scheme over K of dimension d.
We let h0,i = dimK H

i(X,OX), and ρX = rank NS(X) the Picard number.
We let OK be the ring of integers of K and assume that X has a proper regular

model X/OK , which we can (by Stein factorization) assume to have geometrically
connected fibers. Let i : Xs → X be the special fiber, ρXs = rank Pic(Xs) its
Picard number and I the number of irreducible components of Xs. The number

r = ρXs − ρX − I + 1

plays an important role in this paper.
The Brauer group Br(S) of a scheme S is the cohomological Brauer group, i.e.,

the group H2
et(S,Gm). By a theorem of Gabber [4], the Brauer group defined

using Azumaya algebras is isomorphic to Br(S)tor if S is projective over an affine
scheme.

For an abelian group A we let A∧l = limiA/l
i be the l-adic completion, mA

be the subgroup of m-torsion elements, Tl = limi liA the l-adic Tate module, and
Vl = Tl ⊗Zl

Ql.
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2. The Brauer group

We start by recalling some known facts on the cohomology of Gm. Recall that
f = [K : Qp].

Proposition 2.1. 1) We have H0
et(X ,Gm) ∼= O(X )×, a direct sum of a Zp-

module of rank f and a finite group, and H0
et(X,Gm) ∼= O(X)× ∼= O(X )× × Z.

2) The group H1
et(X,Gm) ∼= Pic(X) is an extension of a finitely generated

group of rank ρX by a finitely generated Zp-module of rank f · h0,1, and there is
an exact sequence

(1) 0→ ZI−1 → Pic(X )→ Pic(X)→ 0,

where I is the number of irreducible components of Xs.
3) The groups Br(X ) and Br(X) are torsion groups with finite m-torsion for

every m. Moreover, Br(X) contains Br(X ) and Q/Z ∼= im Br(K) as subgroups
with trivial intersection, and Br(X)/(im Br(K) ⊕ Br(X )) is isomorphic to the
sum of a finite group and finitely many copies of Qp/Zp.

Proof. 1) This follows from O(X ) ∼= OK and O(X) ∼= K because of geometric
connectedness.

2) Consider the low degree terms of the Hochschild-Serre spectral sequence:

0→ Pic(X)→ Pic(X̄)GK
d2→ Br(K)→ Br(X).

Since Q/Z ∼= Br(K) → Br(X) has finite kernel (as one sees with a K ′-rational
point for K ′/K finite), the image of Br(K) in Br(X) is isomorphic to Q/Z and
Pic(X) and Pic(X̄)GK differ by a finite group.

We know that Pic(X̄)GK is an extension of the finitely generated Néron-Severi
group (of rank ρX) and the rational points of an abelian variety of dimension

h0,1, which has a subgroup of finite index isomorphic to Oh0,1K
∼= Zfh0,1p by Mat-

tuck’s theorem [13]. In view of H i
et(X ,Gm) ∼= CH1(X , 1− i) and H i

et(X,Gm) ∼=
CH1(X, 1−i) for i ≤ 1, the sequence is the localization sequence for higher Chow
groups

0→ O×K → K× → ZI → Pic(X )→ Pic(X)→ 0,

where we use the identification CH1(X , 1) = O×K , CH1(X, 1) = K×, as well as
CHd(Xs) ∼= ZI , the free abelian group on the irreducible components of Xs.

3) The Brauer groups are torsion because they are contained in the corre-
sponding cohomology groups of their function fields. To prove finiteness of the
m-torsion, it suffices to show finiteness of H2

et(X,µm), because this group surjects
onto m Br(X) and Br(X ) ⊆ Br(X). The finiteness of H2

et(X,µm) follows from the
Hochschild-Serre spectral sequence

Hs(K,H t
et(X̄, µm))⇒ Hs+t

et (X,µm)
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because the coefficients H t
et(X̄, µm) are finite, and Galois cohomology of a local

field of characteristic 0 of a finite module is finite.
The prime to p-part of the statement about Br(X)/(im Br(K) ⊕ Br(X )) is

proven in [3], see also [16, Prop. 5.2.1]. The p-part follows from the finiteness of
the p-torsion of Br(X). �

For later use we note the following facts about the cohomology of the special
fiber [14].

Proposition 2.2. The group of units H0
et(Xs,Gm) is a finite group, and the

Picard group H1
et(Xs,Gm) is finitely generated.

Estimates using l-adic cohomology. For any prime l (including l = p), we
have the short exact coefficient sequence

0→ Pic(X)∧l ⊗Zl
Ql → H2

et(X,Ql(1))→ Vl Br(X)→ 0.

The left Ql-vector space has dimension equal rank ρX if l 6= p, and equal to
ρX +fh0,1 for l = p by Proposition 2.1(2). Thus in order to understand Vl Br(X),
we calculate H2

et(X,Ql(1)). The spectral sequence

(2) Es,t
2 = Hs(K,H t

et(X̄,Ql(1)))⇒ Hs+t
et (X,Ql(1))

degenerates at Es,t
2 by [5]. Since H2(K,H0

et(X̄,Ql(1))) ∼= Vl Br(K) ∼= Ql, we
obtain

dimH2
et(X,Ql(1)) = 1 + dimH1(K,H1

et(X̄,Ql(1))) + dimH2
et(X̄,Ql(1))GK .

From the divisibility of Pic0(X̄) we obtain a short exact sequence

0→ NS(X̄)⊗Ql → H2
et(X̄,Ql(1))→ Vl Br(X̄)→ 0.

This sequence splits as a sequence of Galois-modules, hence NS(X)Ql
∼= NS(X̄)GK

Ql

implies

dimH2
et(X̄,Ql(1))GK = dim NS(X)Ql

+ dimVl Br(X̄)GK = ρX + dimVl Br(X̄)GK .

The remaining direct summand of H2
et(X,Ql(1)) is calculated in the following

proposition.

Proposition 2.3. The vector space H1(K,H1
et(X̄,Ql(1))) is zero-dimensional for

l 6= p and has dimension 2fh0,1 for l = p.

Proof. We have H1
et(X̄,Ql(1)) ∼= Vl Pic0(X̄) is a vector space of dimension 2h0,1

for any l. Using Euler-Poincaré characteristic,∑
i

(−1)i dimH i(K,V ) =

{
0, V a Ql-vector space;

−f dimV, V a Qp-vector space,
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it suffices to show that H1(X̄,Ql(1))GK and H2(K,H1
et(X̄,Ql(1))) vanish. To

show the vanishing of H1
et(X̄,Ql(1))GK , we note that Vl Pic(X) = 0 implies that

the two left groups in the short exact sequence arising from (2),

0→ H1(K,Ql(1))→ H1
et(X,Ql(1))→ H1

et(X̄,Ql(1))GK → 0

are both isomorphic to (K×)∧l ⊗Zl
Ql. By local duality

H2(K,H1
et(X̄,Ql(1))) ∼= H1

et(X̄,Ql)GK

and by Poincaré duality the right hand term is dual to H2d−1
et (X̄,Ql(d))GK , which,

by the hard Lefschetz theorem, is isomorphic to H1
et(X̄,Ql(1))GK = 0. �

Comparing the two expressions for H2
et(X,Ql(1)), we obtain

Theorem 2.4. We have

dimQl
Vl Br(X) =

{
1 + dimVl Br(X̄)GK for l 6= p;

1 + dimVp Br(X̄)GK + fh0,1 for l = p.

Note that in general dimQp H
2
et(X̄,Qp(1))GK ≤ dimQl

H2
et(X̄,Ql(1))GK , or equiv-

alently, dimQp Vp Br(X̄)GK ≤ dimQl
Vl Br(X̄)GK for l 6= p, so that it is not clear

which of dimQl
Vl Br(X) and dimQp Vp Br(X) is larger.

If X is a regular proper model, then by Proposition 2.1(3) and the proper base
change theorem, we have

dimQl
Vl Br(X) = 1 + dimQl

Vl Br(X ) = 1 + r + dimQl
Vl Br(Xs)

for l 6= p, hence

dimVl Br(X̄)GK = r + dimQl
Vl Br(Xs)

In particular, r is independent of the model if we assume Artin’s conjecture on
the finiteness of Br(Xs).

3. Completions

We give some facts about completions needed below; the reader familiar with
completions can skip this section. For a complex A of abelian groups and integer
m, A⊗L Z/m is represented by the total complex of the double complex A

m→ A
concentrated in (cohomological) degrees −1 and 0. The canonical map A→ A⊗L

Z/m is induced by mapping A to the component in degree 0. The cohomology
of A⊗L Z/m can be calculated by the exact sequence

(3) 0→ H i(A)/m→ H i(A⊗L Z/m)→ mH
i+1(A)→ 0.

For a prime number p, the p-completion of A∧ is the pro-system {A ⊗L Z/pj}j,
where the transition maps in the system are multiplication by p in degree −1 and
the identity in degree 0. We define continuous cohomology H i

cont(A
∧) to be the

cohomology of R limA∧. We have a short exact sequence

0→ lim1
j H

i−1(A⊗L Z/pj)→ H i
cont(A

∧)→ limj H
i(A⊗L Z/pj)→ 0.
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With the inverse limit of the sequence (3) and using lim1
j H

i(A ⊗L Z/pj) ∼=
lim1

j pjH
i+1(A) we obtain a diagram with exact rows and columns

0y
H i(A)

di−−−→ limj H
i(A)/pj

ci

y y
0 −−−→ lim1

j pjH
i(A) −−−→ H i

cont(A
∧)

ei−−−→ limj H
i(A⊗L Z/pj) −−−→ 0y

TpH
i+1(A)y
0

.

If pjH
i(A) is finite for one (or, equivalently, for all) j, then lim1

j pjH
i(A) vanishes

and ker ci = ker di. The kernel of di consists of the p-divisible elements of H i(A)
but we are interested in the (smaller) kernel of ci. For an abelian group G let
(G, p) be the inverse system with constant group G and multiplication by p as
transition maps.

Proposition 3.1. The kernel of ci : H i(A) → H i
cont(A

∧) is the maximal p-
divisible subgroup of H i(A). The cokernel of ci is an extension of TpH

i+1(A) by
the uniquely p-divisible group lim1(H i(A), p). In particular, it is p-torsion free.

We will discuss lim1Ai for finitely generated Ai of constant rank r in Theorem
7.5.

Proof. The diagram gives an exact sequence

(4) 0→ ker ci → ker di → lim1
j pjH

i(A)→ coker ci → coker eici → 0.

For any abelian group G we have a sequence of inverse systems

0 −−−→ pj+1G −−−→ G
pj+1

−−−→ pj+1G −−−→ 0y p

y y
0 −−−→ pjG −−−→ G

pj−−−→ pjG −−−→ 0

and taking the 6-term exact derived lim sequence we get

(5) 0→ TpG→ lim(G, p)
ξ→ lim pjG→ lim1

pjG→ lim1(G, p)→ lim1 pjG→ 0.
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Applying this to G = H i(A) and comparing to (4) we see that lim pjH i(A) =⋂
j p

jH i(A) = ker di implies ker ci ∼= im ξ, which is the maximal p-divisible group

of G by [8, Lemma 4.3a)].
By definition, the cone of the completion map c of complexes is isomorphic to

the cohomology of R lim(A, p), where the system is the complex A with transition
map multiplication by p. We obtain a diagram

0 −−−→ lim1(H i(A), p) −−−→ H i(cone(c)) −−−→ lim(H i+1(A), p) −−−→ 0y ∥∥∥ ξ

y
0 −−−→ coker ci −−−→ H i(cone(c)) −−−→ ker ci+1 −−−→ 0

By (5), the kernel of the right map is TpH
i+1(A) and we see by the snake Lemma

that coker ci is an extension of TpH
i+1(A) by lim1(H i(A), p). �

Corollary 3.2. If H i(A) is a Z(p)-module, then coker ci is the direct sum of

TpH
i+1(A) and the uniquely divisible group lim1(H i(A), p).

A similar discussion applies to a bounded complex of sheaves B on X by ap-
plying the above to A = RΓet(X,B). Since RΓet(X,B⊗LZ/m) ∼= RΓet(X,B)⊗L

Z/m, we define H i
cont(X,B

∧) as the cohomology of R limj(RΓet(X,B) ⊗L Z/pj)
and obtain the sequence

(6) 0→ H i
et(X,B)∧p → H i

cont(X,B
∧)→ TpH

i+1
et (X,B)→ 0

if H i−1
et (X,B ⊗L Z/p) is finite.

4. The p-adic completion of X

We have an exact sequence of etale sheaves on X ,

(7) 0→ K → Gm,X → i∗Gm,Xs → 0.

Since µm = ker(Gm
×m→ Gm) is locally constant on X for m prime to p, the proper

base change theorem implies that the cohomology of K is uniquely l-divisible for
any l 6= p, i.e., it consists of Z(p)-modules.

As the map O(X )× → O(Xs)× is surjective with p-adically complete kernel
H0(X ,K), we obtain a long exact sequence

(8) 0→ H1
et(X ,K)→ Pic(X )→ Pic(Xs)→ H2

et(X ,K)→ Br(X )→ Br(Xs).

The group Pic(Xs) is finitely generated [14], and we let N ⊆ H2
et(X ,K) be the

cokernel of the map Pic(X )→ Pic(Xs).

Proposition 4.1. The group N is finitely generated of rank r = ρXs−ρX−I+1,
and H1

et(X ,K) is a finitely generated Zp-module of rank fh0,1.
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Proof. Since N is finitely generated it suffices to calculate N ⊗ Ql/Zl for l 6= p.
We have a short exact sequence

0→ Pic(X )⊗Ql/Zl → Pic(Xs)⊗Ql/Zl → N ⊗Ql/Zl → 0,

where the left map is injective by the proper base change theorem. The Lemma
follows from Proposition 2.1(2) by counting coranks.

The same short exact sequence shows that the subgroup ZI−1 ⊆ Pic(X ) injects
into Pic(Xs). Hence H1

et(X ,K) can be viewed a subgroup of Pic(X). Since it is
uniquely l-divisible, it maps to zero in NS(X)/l for all l 6= p, hence it has trivial
image in the finitely generated group NS(X). Thus H1

et(X ,K) can be viewed as
a subgroup of Pic0(X). Since the quotient is finitely generated, we conclude that
it is a finitely generated Zp-module of the same rank fh0,1. �

The Z(p)-module H2
et(X ,K) has finite p-torsion because N is finitely generated

and Br(X ) has finite p-torsion. Since Br(X ) is torsion, NQ ∼= H2
et(X ,K)Q has

dimension r.

Consider the formal completion of X at p, i.e., the direct system of the reduc-
tions Xn = X ×O O/pn, of X modulo pn. We obtain a short exact sequence of
pro-sheaves on the topological space Xs,
(9) 0→ Kn → i∗nGm,Xn → Gm,Xs → 0,

where in : Xs → Xn is the closed embedding. LetH i
cont(Xs,Gm,•) andH i

cont(Xs,K•)
be the continuous cohomology of the pro-sheaves (i∗nGm,Xn)n and (Kn)n on Xs,
respectively.

Since in is a universal homeomorphism, the cohomology can be calculated with
the short exact sequence

(10) 0→ lim1H i−1
et (Xn,Gm,Xn)→ H i

cont(Xs,Gm,•)→ limH i
et(Xn,Gm,Xn)→ 0.

If i = 1, then the left term vanishes because the groups H0
et(Xn,Gm,Xn) are finite

by properness of Xn. Moreover, the natural map Pic(X ) → lim Pic(Xn) is an
isomorphism by Grothendiecks formal existence theorem [6, Cor. 5.1.6, Scholie
5.1.7], so that we have an isomorphism

(11) Pic(X ) ∼= H1
cont(Xs,Gm,•).

This implies that the long exact cohomology sequence associated to the short
exact sequence (9) takes the form

(12) 0→ H1
cont(Xs,K•)→ Pic(X )→ Pic(Xs)

→ H2
cont(Xs,K•)→ H2

cont(Xs,Gm,•)→ H2
et(Xs,Gm).

Let H i
cont(X ,K∧) be the cohomology of the p-adic completion K∧ of K as in

Section 3.

Proposition 4.2. We have H i
cont(Xs,K•) ∼= H i

cont(X ,K∧) for all i.
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To prove the proposition, we compare both sides to the p-completion (K∧n)n,
i.e., the double inverse system i∗nKn⊗LZ/pt, and show that we have isomorphisms

H i
cont(X ,K∧)

∼−→ H i
cont(Xs, i∗K∧)

∼−→ H i
cont(Xs,K∧• )

∼←− H i
cont(Xs,K•).

The first isomorphism follows from the proper base change becauseH i(OK ,F)
∼−→

H i(s, i∗F) for any etale sheaf F on SpecOK . The third and second isomorphism
follow from the following Proposition.

Proposition 4.3. 1) For fixed t, we have an isomorphism of pro-sheaves on Xs
i∗K ⊗L Z/pt ∼→ {i∗nKn ⊗L Z/pt}n.

2) For fixed n, we have an isomorphism of pro-sheaves on Xn,

Kn
∼→ {Kn ⊗L Z/pt}t.

Proof. 1) This is proven in [2, Lemma 2].

2) The pro-system {Kn⊗LZ/pt}t is quasi-isomorphic to the pro-complex {Kn
pt→

Kn}t, where the transition maps in the left system are multiplication by p. It
suffices to show that the left-system is Artin-Rees zero. For this we fix s such
that ps ≥ n and show that the (n + s)-fold transition map in the system is the
zero map.

The stalks of Kn are sections over strictly local Z/pn-algebras, and every section
of Kn over a local Z/pn-algebra A can be written as 1+x with x ∈ pA. It suffices

to show that (1 + x)p
n+s

= 1 for all x ∈ pA. The monomials
(
pn+s

j

)
xj vanish for

j ≥ ps ≥ n because x ∈ pA and pn = 0 in A, and they vanish for 0 < j < ps by
the following lemma. �

Lemma 4.4. For fixed s we have vp(
(
pn+s

u

)
) > n for all 0 < u < ps.

Proof. From Legendre’s formula we get

vp(

(
z

u

)
) =

∞∑
i=1

( ⌊ z
pi

⌋
−
⌊
u

pi

⌋
−
⌊
z − u
pi

⌋ )
,

where for a real number x, bxc denotes the largest integer which is not larger
than x. For real numbers x and y we have bx+ yc−bxc−byc ≥ 0, and bx+ yc−
bxc − byc = 1, if x+ y is an integer but x, y are not. If z = pn+s and 0 < u < ps,
then z

pi
is an integer but u

pi
is not for i = s, . . . , n+ s, and the Lemma follows. �

5. Comparison of sequences

The natural maps i∗Gm,X → i∗nGm,Xn induce mapsH i
et(X ,Gm)→ H i

cont(Xs,Gm,•)
and H i

et(X ,K)→ H i
cont(Xs,K•), hence a map between the sequences (8) and (12).
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By Proposition 4.2 we obtain a diagram

0 −−−→ H1
et(X ,K) −−−→ Pic(X ) −−−→ Pic(Xs) −−−→ H2

et(X ,K) −−−→y ∥∥∥ ∥∥∥ a

y
0 −−−→ H1

cont(X ,K∧) −−−→ Pic(X ) −−−→ Pic(Xs) −−−→ H2
cont(X ,K∧) −−−→

(13)

−−−→ Br(X ) −−−→ H2
et(Xs,Gm)

u−−−→ H3
et(X ,K)

b

y ∥∥∥ c

y
−−−→ H2

cont(Xs,Gm,•) −−−→ H2
et(Xs,Gm)

v−−−→ H3
cont(X ,K∧).

Thus H1
et(X ,K) ∼= H1

cont(X ,K∧), we have an isomorphism ker a ∼= ker b, and a
sequence

0→ coker a→ coker b→ ker c ∩ imu→ 0.

Lemma 5.1. We have TpH
2
et(X ,K) = 0, and the composition

N → H2
et(X ,K)→ limH2

et(X ,K)/pr

is injective.

Proof. Since prH
i
et(X ,K) is finite for i ≤ 2, we obtain a short exact sequence

0→ limH i
et(X ,K)/pr → H i

cont(X ,K∧)→ TpH
i+1
et (X ,K)→ 0.

For i = 1, H1
et(X ,K) ∼= H1

cont(X ,K∧) implies that this group is p-adically com-
plete and that TpH

2
et(X ,K) vanishes. For i = 2, the sequence implies that

limH2
et(X ,K)/pr ⊆ H2

cont(X ,K∧), and that the map from N to the latter group
is injective by diagram (13). �

Proposition 5.2. The torsion subgroup TorH2
et(X ,K) is a finite p-group, and

H2
et(X ,K)/tor is an extension of Qt by Zs(p) with s+ t = r.

Proof. Since C = H2
et(X ,K) is a Z(p)-module, Ctor consists of p-power torsion.

But every torsion group contains a basic subgroup [15, Thm. 10.36], i.e., C has
a pure subgroup B which is a direct sum of cyclic groups and such that C/B
is divisible. Since TpC vanishes, we have C = B, and then the finiteness of pC
implies finiteness of Ctor.

Now C̄ = C/Ctor is a Z(p)-submodule of CQ ∼= NQ ∼= Qr because Br(X ) is
torsion. It thus suffices to prove the following lemma.

Lemma 5.3. Every Z(p)-submodule M of Qr with MQ ∼= Qr is an extension of
Qt by Zs(p) with s+ t = r.

Proof. We proceed by induction on r. If r = 1, then M is a Z(p)- submodule of
Q. Every element of M can be written as apu, where a ∈ Z×(p) and u ∈ Z. If

there exist elements with arbitrary large negative u, then M = Q, and if not,
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M = p−vZ(p) for some v, hence M is isomorphic to Z(p). If r > 1, let π : Qr → Q
be a non-trivial homomorphism with kernel Qr−1, and consider the diagram

0 −−−→ M ∩Qr−1 −−−→ M −−−→ π(M) −−−→ 0y y y
0 −−−→ Qr−1 −−−→ Qr −−−→ Q −−−→ 0.

By induction hypothesis M ∩ Qr−1 has a free Z(p)-submodule with uniquely di-
visible quotient, and π(M) is either isomorphic to Z(p) or to Q. In the former
case, we have M ∼= M ∩ Qr−1 ⊕ Z(p), and in the latter case, M still has a free
Z(p)-submodule with uniquely divisible quotient. �

Corollary 5.4. We have

ker (Br(X )→ Br(Xs)) ∼= (Q/Z′)s ⊕ (Q/Z)t ⊕ P

with s + t = r, P a finite p-group, and Q/Z′ = Q/Z[1
p
]. Moreover s = 0 is

equivalent to r = 0.

Note that Artin’s conjecture states that Br(Xs) is finite.

Proof. The kernel of Br(X ) → Br(Xs) is isomorphic to H2
et(X ,K)/N . Let A be

the kernel of the composition N ↪→ H2
et(X ,K) → Qt of Proposition 5.2, and let

B be its image. By Proposition 5.2 we obtain a diagram

0 −−−→ A −−−→ N −−−→ B −−−→ 0y y y
0 −−−→ (Z(p))

s ⊕ F −−−→ H2
et(X ,K) −−−→ Qt −−−→ 0

where F is a finite p-group and all vertical maps are injective. Tensoring with Q
we see that A is finitely generated of rank s and B is finitely generated of rank
t. We obtain a short exact sequence of cokernels

0→ (Q/Z′)s ⊕ F ′ → H2
et(X ,K)/N → (Q/Z)t → 0,

where F ′ is a quotient of F . Because (Q/Z′)s is injective, H2
et(X ,K)/N is an

extension of (Q/Z)t⊕(Q/Z′)s by F ′, and this is isomorphic to (Q/Z)t⊕(Q/Z′)s⊕F̃
with F̃ a quotient of F ′ by the following Lemma. �

Lemma 5.5. Let E be an extension of a divisible group D by a finite group F .
Then E ∼= D ⊕ F ′ for F ′ a quotient of F .

Proof. Let E ′ be the maximal divisible subgroup of E, and let K and D′ be the
kernel and image of the composition E ′ → E → D, respectively, so that we
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obtain a diagram with vertical inclusions

0 −−−→ K −−−→ E ′ −−−→ D′ −−−→ 0y y y
0 −−−→ F −−−→ E −−−→ D −−−→ 0.

Finiteness of F implies finiteness of K, which implies that the divisible groups
E ′, D′, and D all have the same l-corank for all l. Hence the injection D′ → D
is an isomorphism, and E = E ′ ⊕ F/K. �

6. Relationship to the Chern class map, examples

We have the following theorem of Flach-Siebel [2, Lemma 1].

Theorem 6.1. We have H i(X,OX) ∼= H i
cont(X ,K∧)⊗Zp Qp.

The Theorem together with the sequence (12) and Proposition 4.2 induces an
injection

β : NQ → H2
cont(Xs,K•)Q ∼= H2(X,OX)

which we can extend to a map

βQp : N ⊗Qp → H2(X,OX).

Theorem 6.2. We have s = dimQp im βQp and t = dimQp ker βQp.

In other words, s is the dimension of the Qp-vector space spanned by the
abelian group N of rank r.

Proof. Consider the following commutative diagram.

0 0 0 0y y y y
0 −−−→ H1

cont(Xs,K•) −−−→ PicX ∧p f−−−→ PicX ∧ps
g−−−→ H2

cont(Xs,K•)∥∥∥ y y ∥∥∥
0 −−−→ H1

cont(Xs,K•) −−−→ H2
et(X ,Zp(1)) −−−→ H2

et(Xs,Zp(1)) −−−→ H2
cont(Xs,K•)y y y y

0 −−−→ Tp BrX α′
−−−→ Tp BrXs −−−→ 0y y

0 0
The upper (non-exact) row is obtained by completing the cohomology groups in
(12), the exact middle row is obtained by p-completing the coefficients in (9).
The columns are exact coefficient sequences. The middle left horizontal map is
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injective because H1
et(X ,Zp(1)) → H1

et(Xs,Zp(1)) is surjective, hence so is the
upper left horizontal map. A diagram chase shows that ker g/ im f ∼= kerα′

(which has rank t by Theorem 1.1). On the other hand, the diagram

PicX ⊗ Zp −−−→ PicXs ⊗ Zp −−−→ N ⊗ Zp −−−→ 0y ∥∥∥ ∥∥∥
PicX ∧p f−−−→ PicX ∧ps −−−→ N∧p −−−→ 0

shows that PicX ∧ps / im f ∼= N ⊗ Zp, a Zp-module of rank r, and that (im g)⊗Zp

Qp = im βQp . Combining this with the canonical short exact sequence

0→ ker g/ im f → PicX ∧s / im f → PicX ∧s / ker g → 0

we see that PicX ∧ps / ker g ∼= im g has rank s. �

If W denotes the Witt vectors of the residue field, then in the good reduction
case we have a commutative diagram of Berthelot-Ogus [1, Cor. 3.7],

PicX cdR−−−→ H2(X,F 1Ω•X) −−−→ H2(X,Ω•X) −−−→ H2(X,OX)y ∥∥∥
PicXs

ccris−−−→ H2
crys(Xs/W )F=p −−−→ H2

crys(Xs/W )⊗W K,

and we obtain β as the composition from the southwest to the northeast corner,
which vanishes on PicX because the upper row is the zero-map.

Examples: Abelian and K3 surfaces. We calculate Br(X ) for X an abelian
scheme or a family of K3 surfaces over Zp.

Theorem 6.3. Let X be an abelian scheme or a family of K3 surfaces over Zp.
If r = 0, then Br(X ) is finite. If r > 0, then

Br(X ) ∼= (Q/Z′)⊕ (Q/Z)r−1 ⊕ (finite).

Proof. Since Tate’s conjecture is known for abelian varieties [17] and K3 surfaces
over a finite field [12], [10], we know that Br(Xs) is finite. Then r = 0 implies
that Br(X ) is finite. If r > 0, then since H2(X ,OX ) ∼= O we obtain that s ≤ 1
by Theorem 6.2, but since s = 0 implies r = s+ t = 0 we must have s = 1. �

We give an example of an abelian surface with r > 1, showing that Br(X )
contains a divisible p-group.

Proposition 6.4. If Xs is a simple abelian surface over Fp, then rank Pic(Xs) =
2. If Xs is the product of two elliptic curves E1 and E2 over Fp, then rank Pic(Xs) =
4 if E1 are E2 are isogenous, and rank Pic(Xs) = 2 if they are not.

Proof. This follows by considering Weil numbers. �

The Picard numbers of X can be calculated explicitly in many cases.
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Example 6.5. Let X/Zp be the Jacobian of the smooth projective curve of genus
two defined by the equation y2 = x5 − 1. The 5th roots of unity µ5 act on X in
the obvious way, so that Z[ζ5] acts on any factor of XK̄. By the classification
of endomorphism algebras of abelian varieties we see that XK̄ is simple and that
End(XK̄)Q = Q(ζ5). The rank of the Néron-Severi group of X is 1, because it is
a subgroup of End(X)Q which is Q by [18].

If p ≡ −1 (mod 5), then Xs has good reduction at p and Xs is isogenous to E2,
where E is an elliptic curve over Fp satisfying |E(Fp)| = p + 1. Hence the rank
of the Néron-Severi group of the special fiber is 4, r = 3, and we obtain

Br(X ) ∼= (Q/Z′)⊕ (Q/Z)2 ⊕ (finite).

7. The inverse system of Brauer groups

We discuss the maps in the diagram
(14)

Br(X ) −−−→ H2
et(Xs,Gm)

b

y x
0 −−−→ lim1 Pic(Xn) −−−→ H2

cont(Xs,Gm,•) −−−→ limH2
et(Xn,Gm) −−−→ 0,

where the lower sequence is (10) for i = 2. As a first result we have

Proposition 7.1. The kernel of limH2
et(Xn,Gm) → H2

et(Xs,Gm) is a finitely
generated Zp-module of rank at most f · h0,2.

Proof. From the exact sequences

(15) H2(Xs,OXs)→ H2
et(Xn,Gm)→ H2

et(Xn−1,Gm)→ H3(Xs,OXs)

we inductively see that the kernel Kn of H2
et(Xn,Gm) → H2

et(Xs,Gm) is a finite
p-group. Taking the limit we obtain

0→ limKn → limH2
et(Xn,Gm)→ H2

et(Xs,Gm).

This shows that the kernel is a pro-p group. But the finitely generated Zp-module
H2(X ,OX ) surjects onto the kernel of the composition

H2
cont(Xs,Gm,•)→ limH2

et(Xn,Gm)→ H2
et(Xs,Gm),

hence it surjects onto the kernel of the second map because the first map is
surjective. �

Theorem 7.2. The map Br(X )
b−→ H2

cont(Xs,Gm,•) is injective.

Grothendieck [7, Lemma 3.3] showed that the natural map Br(X )→ lim Br(Xn)
is injective if the system (Pic(Xn))n is Mittag-Leffler. But if (Pic(Xn))n is Mittag-
Leffler, then H2

cont(Xs,Gm,•) ∼= limH2
et(Xn,Gm), hence the Theorem is a general-

ization of [7, Lemma 3.3]. The theorem follows by diagram (13) from the following
proposition.
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Proposition 7.3. The map a : H2
et(X ,K) → H2

cont(X ,K∧) is injective, and its
cokernel is the finitely generated free Zp-module TpH

3
et(X ,K) if r = 0, and the

direct sum of TpH
3
et(X ,K) and an uncountable, uniquely divisible group if r > 0.

In particular, the cokernel of a is a torsion free Z(p)-module.

Proof. We showed that C = H2
et(X ,K) is a Z(p)-module with finite torsion and

C̄ = C/Ctor is an extension of Qt by Zs(p) with s+ t = r. Since Br(X ) is torsion,

ker a ∼= ker
(

Br(X )→ H2
cont(X•,Gm)

)
⊆ Ctor

is finite. Moreover, a factors as

a : C → C∧ → H2
cont(X ,K∧),

where the second map is injective with cokernel TpH
3
et(X ,K). We have a diagram

0 −−−→ Ctor −−−→ C −−−→ C̄ −−−→ 0∥∥∥ y y
0 −−−→ C∧tor −−−→ C∧ −−−→ C̄∧ −−−→ 0.

The lower row is exact on the left because C̄ is torsion free and on the right
because lim1Ctor/p

r = 0. The injectivity of Ctor
∼→ C∧tor → C∧ implies that a is

injective. By Corollary 3.1, the cokernel is the direct sum of TpH
3
et(X ,K) and

the uniquely divisible group lim1(H2
et(X ,K), p). By Proposition 5.2, and the fact

that lim(Z(p), p) = lim1(Qt, p) = 0, we have a sequence

0→ lim(H2
et(X ,K), p)→ Qt → lim1(Zs(p), p)→ lim1(H2

et(X ,K), p)→ 0.

Taking the long exact derived lim-sequence of the sequence of inverse systems

0→ (Zs(p), p)
(pn)→ (Zs(p), id)→ (Z/pn)s → 0

we obtain (Zp/Z(p))
s ∼= lim1(Zs(p), p), hence the result. �

Corollary 7.4. Assuming finiteness of Br(Xs), Br(X ) agrees with the torsion
subgroup of lim1 Pic(Xn) up to finite groups.

Proof. Finiteness of Br(Xs) implies finiteness of Br(Xn) by the sequence (15),
and this implies that limH2

et(Xn,Gm) is a pro-finite group. It follows that any
divisible group maps to zero in limH2

et(Xn,Gm), hence the divisible part of Br(X )
injects into lim1 Pic(Xn). On the other hand, the torsion free group coker a is a
subgroup of the cokernel of Br(X ) → H2

cont(X•,Gm) of finite index by (13) and
finiteness of Br(Xs). �

We are comparing our results to results about lim1 Pic(Xn). The groups
Pic(Xn) are finitely generated of constant rank, and as the derived limit of
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finite groups vanishes, we can consider the torsion free quotients Pic(Xn) in-
stead. Since Pic(Xn) → Pic(Xn−1) has finite kernel and cokernel, the maps

Pic(Xn) → Pic(Xn−1) are injective, hence the images T of Pic(X ) in each group
are isomorphic. We obtain an exact sequence of pro-systems

0→ T → Pic(Xn)→ Qn → 0,

hence lim1 Pic(Xn) ∼= lim1 Pic(Xn) ∼= lim1Qn, where each Qn is finitely generated
of rank r.

By Jensen [9, Thms. 2.5, 2.7], if the groups Ai in a countable pro-system are
finitely generated, then lim1Ai ∼= Ext(M,Z), where M = colim Hom(Ai,Z) is a
countable torsion free group. Moreover, if lim1Ai does not vanish, then

(16) lim1Ai ∼= Qn0 ⊕
⊕
p

(Qp/Zp)np

where n0 is the cardinality of the continuum 2ℵ0 , and np is either 2ℵ0 or finite
(possibly zero). We give a more precise statement in a special situation.

Theorem 7.5. Let Ai be an inverse system of finitely generated groups of con-
stant rank r and transition maps with finite cokernel. If lim1Ai does not vanish,
then 0 ≤ np ≤ r in (16). If the cokernels of the maps in the system are finite
p-groups, then lim1Ai vanishes or np < nl for all l 6= p, and nl = nl′ for l, l′ 6= p.

Proof. We can assume that each group Ai is a free abelian group of rank r and
proceed by induction on r. If r = 1, we let M = colim Hom(Ai,Z). Choosing
any non-zero element of M identifies M ⊗ Q with Q, hence the inclusion M →
M ⊗Q ∼= Q identifies M with a subgroup of Q, which is of the form Z[{p−ep}p],
where p runs through the primes and ep is an integer or infinity. A different choice
of an element of M changes finitely many ep by a finite amount.

Lemma 7.6. Let M ∼= Z[{p−ep}p] ⊆ Q, where p runs through the primes and
ep is a non-negative integer or infinity. If all ei are finite and almost all vanish,
then M ∼= Z and Ext(M,Z) = 0. Otherwise

Ext(M,Z) ∼= Qn0 ⊕
⊕
p

(Qp/Zp)np ,

where n0 = 2ℵ0, np = 0 if ep is infinity, and np = 1 if ep is finite.

For example,

Tor Ext(M,Z) =


(Q/Z)′, M = Z[p−∞]

Qp/Zp, M = Z(p)

Q/Z, M = Z[p−1|infinitely many p]

Proof. The case M ∼= Z is easy, so that we assume M 6∼= Z. The long exact
Exti(−,Z) sequence associated to the short exact sequence 0 → Z → M →
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M/Z→ 0 together with Hom(M,Z) = 0 because M 6∼= Z gives

0→ Z→ Ext(M/Z,Z)→ Ext(M,Z)→ 0.

Let us first consider the torsion subgroup Tor Ext(M,Z). The six term se-
quence associated to derived tensor product − ⊗ Z/pr together with the fact
that Ext(M,Z) is divisible gives

(17) 0→ pr Ext(M/Z,Z)→ pr Ext(M,Z)→ Z/prZ→ Ext(M/Z,Z)/pr → 0.

Now M/Z ∼=
⊕

p Z/pep , where we set Z/pep = Qp/Zp if ep is infinity, and then

(18) Ext(M/Z,Z) ∼= Hom(M/Z,Q/Z) ∼=
∏
p

Zp/pep ,

where we set pep = 0 if ep is infinity. In particular, if ep is finite, then the
left and right groups in (17) have the same cardinality, so that pr Ext(M,Z) has
cardinality pr for all r, hence the p-primary torsion of Ext(M,Z) is Qp/Zp. On
the other hand, if ep is infinity, then the left group in (17) vanishes whereas the
right group is isomorphic to Zp/prZp, hence we obtain pr Ext(M,Z) = 0.

Finally, note that Ext(M/Z,Z), hence Ext(M,Z), has the same cardinality
as the continuum by our hypothesis on ep and the description in (18). Since
Ext(M,Z) is divisible and Tor Ext(M,Z) is countable, we get the statement of
the Proposition. �

We continue the proof of Theorem 7.5. The case r = 1 follows from the Lemma
because lim1Ai ∼= Ext(M,Z) for M = colim Hom(Ai,Z). If the transition maps
have p-groups as the cokernel, then M ∼= Z or M ∼= Z[p−∞] in which case we get
the claimed statement on the np.

For general r, we can, by performing elementary column operations (which
corresponds to changing the basis of the next group in the inverse system), assume

that the transition maps are given by matrices Mi =

ai 0 0
? ? ?
? ? ?

. Thus there is

a subsystem (A′i) consisting of free groups of rank r − 1 and a quotient system
(A′′i ) consisting of free groups of rank 1. By hypothesis ai 6= 0. If the ai are ±1
for almost all i, then limA′′i

∼= Z and lim1A′′i = 0, and we have a sequence

0→ limA′i → limAi → Z δ→ lim1A′i → lim1Ai → 0.

If δ has finite image, then the parameters np for (Ai) and (A′i) agree. If δ has
infinite image, then the parameters np of Ai are one larger than the parameters
for A′i. If ai is different from ±1 for infinitely many i, then limA′′i = 0 and we
obtain a sequence

0→ lim1A′i → lim1Ai → lim1A′′i → 0.
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In this case the parameters np of Ai are the sum of the parameters np of A′i and
of A′′i . �
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faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math. No. 11 (1961), 167 pp.
[7] Grothendieck, A. Le groupe de Brauer. III. Exemples et compléments. Dix exposés sur
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