
HOPF ALGEBRAS AND QUADRATIC FORMS

PH. CASSOU-NOGUÈS, T. CHINBURG*, B. MORIN, AND M. J. TAYLOR

1. Introduction

Let Y denote a scheme in which 2 is invertible. Recall that a symmetric bundle (V, q) on
Y is an OY -vector bundle V endowed with a symmetric morphism of OY -modules

q : V ⊗OY V → OY
inducing an isomorphism between V and its dual V ∨. For any integer n we let (OnY , tn =
x2

1 + · · ·+ x2
n) denote the sum of squares form of rank n on Y .

An isometry of symmetric bundles u : (V, q) → (W, r) on Y is an isomorphism of vector
bundles u : V → W such that r(u(x), u(y)) = q(x, y) for any open affine subscheme U of Y
and any x and y in V (U). We denote by Isom(q, r) this set. The functor

Isom(q, r) : T → Isom(qT , rT )

is a sheaf of sets on Sch/Y , endowed with the fppf-topology. We let Yfl denote the category
of such sheaves. We define the orthogonal group of O(q) as the group Isom(q, q) of Yfl. We
set O(n) = O(tn). Suppose that q is of rank n, then Isom(tn, q) supports a right O(n)-action
which endows it with the structure of an O(n)-torsor. Let Quadn(Y ) be the category whose
objects are symmetric bundles of rank n over Y and whose morphisms are isometries, then
the canonical functor

(1) Quadn(Y )→ Tors(Yfl,O(n))

q → Isom(tn, q)

is an equivalence of categories.
For a group H of Yfl, we write BH for the topos of objects of Yfl endowed with a left

action of H. By a result due to Grothendieck and Giraud we know that for any topos over
Yfl, f : E → Yfl, there is a canonical equivalence

(2) HomtopYfl(E , BH) ' Tors(E , f∗(H))

where HomtopYfl(E , BH) denotes the category of morphisms of Yfl-topoi from E to BH and
where Tors(E , f∗(H)) is the category of f∗(H)-torsors of E . It follows from (1) and (2), in
the particular case where E = Yfl and H = O(n), that we have a canonical equivalence

(3) Quadn(Y )→ HomtopYfl(Yfl, BO(n))

q → {q}.
Suppose now that we are additionally given a finite flat group scheme G over Y together

with a homomorphism of Yfl-group schemes ρ : G → O(q). This then yields a map of topoi
B(ρ) : BG → BO(q). If X → Y is a G-torsor then by (2) applied to H = G and E = Yfl
we obtain a morphism Yfl → BG. Moreover, by observing that Isom(tn, q), endowed with
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the left action of O(q), is an O(n)-torsor of BO(q), we once again obtain via (2) a morphism
Tq : BO(q) → BO(n). The new form which corresponds via (3) to the composite

Yfl → BG → BO(q) → BO(n)

is referred to as the twist of q by the torsor X and is denoted qX (see [CCMT] for the precise
definitions). Using the above theoretical approach one can attach to any symmetric bundle q
Hasse-Witt invariants in the étale cohomology groups H i

et(Y,Z/2Z). In [CCMT], Section 4,
we describe a universal formula relating the Hasse-Witt invariants of q to those of the twist
qX .

The use of classifying topoi to study invariants of symmetric bundles provides us with tools
to produce results at a high level of generality. In this paper we focus on the affine case,
when Y = Spec(R) and G = Spec(A), where A carries the natural structure of a finite and
flat R-Hopf algebra. In this case the group scheme homomorphism ρ : G → O(q) may be
viewed as endowing V with the structure of a module over the Hopf dual of A. Our goal is
to understand the twist qX , constructed above, in terms of quadratic Hopf theory. Consider
now a G-torsor X = Spec(B), so that B may be viewed as a principal homogeneous space for
A. Under certain mild hypotheses on G, we will show that the inverse different D−1

B/R admits

a square root, D−1/2
B/R say, and that the twisted form qX may be realized as

((D
−1/2
B/R ⊗ V ), trB/R ⊗ q)G.

Finally suppose that G is a constant group scheme and suppose initially that R is a field;
in this case our results yield the well-known twisting formulas of Serre and Fröhlich, [Se1],
[F]. Twisting formulas for more general base rings R are given in [CNET] and again our
work enables us to recoup these results by appropriate specializations of the universal twisting
formula of [CCMT]

The article then concludes by considering some examples. In particular we study in detail
the twists of the underlying quadratic form of an orthogonal representation of a non-constant
group scheme which is generically of dihedral type.

2. Symmetric bundles and fixed points

The goal of this section is to describe how we can associate to any symmetric bundle,
equivariant under the action of a finite and flat Hopf algebra, a new symmetric bundle by
taking fixed points. Prior to describing this procedure in Proposition 2.8 of Subsection 2.2,
in the first subsection we have assembled the main notation of the paper together with some
elementary algebraic results on Hopf algebras that we will use later on.

2.1. Algebraic preliminaries. Let R be a commutative noetherian integral domain in which
2 is invertible, with field of fractions K. We consider a finite, locally free R-Hopf algebra A
and we denote by AD the dual algebra. We set AK = A ⊗R K, ADK = AD ⊗R K and we
identify ADK with the dual of AK . We let ∆, ε and S (resp. ∆D, εD and SD) be respectively
the comultiplication, the counit and the antipode of A (resp. AD). We assume that S2 = IA,
which implies that (SD)2 = IAD . This last condition is fulfilled when A is commutative or
cocommutative [C], Proposition 1.11. A right A-comodule M is a finitely generated, locally
free R-module, endowed with a structure map

αM : M →M ⊗R A
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m 7→
∑
(m)

m(0) ⊗m(1) .

Define the R-linear map
ψM : AD ⊗RM →M

g ⊗m 7→
∑
m

< g,m(1) > m(0) .

One can prove that ψM defines a left AD-module structure on M . Moreover, by Proposition
1.3 in [CEPT], the association (M,αM )→ (M,ψM ) gives a bijective correspondence between
the A-comodule and the AD-module structures on a R-module M . For any A-comodule M
we define the R-submodule

MA = {m ∈M | αM (m) = m⊗ 1} .

Lemma 2.1. For any A-comodule M , then

MA = {m ∈M | gm = g(1A)m ∀g ∈ AD} .

Proof. Let M ′ denote the right-hand side of above the equality. The inclusion MA ⊂ M ′ is
immediate. We now use the fact that the map

ϕ : A⊗R AD → HomR(A,A),

with ϕ(h⊗ f)(a) =< f, a > h, is an isomorphism. Therefore there exist elements {h1, ..., hn}
of A and {f1, ..., fn} of AD such that

Id =
∑

1≤i≤n
ϕ(hi ⊗ fi) .

This implies that for any m ∈M we have

αM (m) =
∑
i

fim⊗ hi .

The inclusion M ′ ⊂MA follows easily. �

Since any Hopf algebra is a left module over itself via the multiplication map, it also has a
right comodule structure on its dual. Therefore it follows from the lemma that we may define
the left integrals of A and AD by the following equalities:

I(A) = AA
D

= {x ∈ A | ax = ε(a)x,∀a ∈ A},
I(AD) = (AD)A = {f ∈ AD | uf = εD(u)f = u(1)f,∀u ∈ AD} .

We note that I(A) is not only an R-submodule of A but also a two-sided A-ideal. In a similar
way we may define the module of right integrals. A Hopf algebra is called unimodular if the
modules of left and right integrals coincide. A Hopf algebra is also endowed with a right
comodule structure induced by its comultiplication. Therefore it becomes a left module over
the dual algebra as explained previously. The description of a finite Hopf R-algebra as a
module over its dual holds in general. A theorem of Larson and Sweedler (see [Sw], Theorem
5.1.3) states that for any finite Hopf R-algebra the action of AD on A induces an isomorphism

A ' AD ⊗R I(A) .

This theorem implies that I(A) and I(AD) are rank one projective R-modules, [C], Corollary
3.4. In the particular case where I(A) is a free R-module with θ as a basis, then A is a free
AD-module on the left integral θ. This is always the case when R is a principal ideal domain.
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Lemma 2.2. The following properties are equivalent:
i) The module of left integrals of A is a free rank one R-module.
ii) The module of left integrals of AD is a free rank one R-module.
iii) There exists θ ∈ A and θD ∈ AD such that θDθ = 1A.

Proof. We show that i) implies ii). The rest of the proof is left to the reader. Let θ be a
basis of I = I(A). Since A is a free AD-module on θ there exists a unique θD in AD such that
1A = θDθ. For any u of AD we have the equalities:

(uθD)θ = u(θDθ) = u1A = εD(u)1A = (εD(u)θD)θ .

This implies that uθD = εD(u)θD and hence that θD is a left integral of AD. Let u be a non-
zero left integral of AD. Since AD is a projective R-module, it follows that ID is contained
in IDK = I(ADK), which is a K-vector space of dimension one. Therefore there exist non-zero
elements m and n of R such that mu = nθD. We set t = uθ. This is an element of A. We
observe that

mt = (mu)θ = n(θDθ) = n .

It follows that n = mε(t), and so m divides n in R, and u is a multiple of θD. We conclude
that θD is a free generator of I(AD). �

Proposition 2.3. Assume that A is commutative, I(A) is free over R and AK is separable.
Then AD is unimodular, I(AD) is free over R and the restriction of SD (resp. S ) to the
module of integrals of AD (resp. A ) is the identity map.

Proof. We start by considering the restriction of S to I(AK). It follows from [Sw], Theorem
5.1.8, that AK = I(AK)⊕Ker(ε) as a direct sum of AK-ideals. Let x be a non-zero element
of I(AK). Then S(x) can be decomposed as a sum rx+ y with r ∈ K and y ∈ Ker(ε). Since
ε◦S = ε we deduce that r = 1. Therefore S(x)x = x2+yx. We observe that yx ∈ I(A)∩Ker(ε).
Thus yx = 0 and S(x)x = ε(x)x = ε(x)S(x). We conclude that x = S(x). Since I(A) is
contained in I(AK) we deduce that, as required, the restriction of S to I(A) is the identity
map. We now consider AD. It follows from Lemma 2.2, that I(AD) is R-free. Moreover,
since AK is separable, there exists a finite extension K ′/K such that AK′ = AK ⊗K K ′ is
the algebra Map(Γ,K ′), where Γ is a finite group, endowed with its natural structure of Hopf
algebra. The map

αK′ : AD ⊗R K ′ ' ADK′
f ⊗ λ→ fλ

is an isomorphism of K ′-vector spaces which respects the algebra and coalgebra structure of
both sides. Thus we may identify the Hopf algebras AD⊗RK ′ and K ′[Γ] and therefore I(AD)
with I(K ′[Γ]) ∩ AD. The unimodularity of AD follows from the unimodularity of K ′[Γ]. We
now want to prove that the restriction of SD to I(AD) is the identity map. Let θD ∈ AD and
θ ∈ A be such that θDθ = 1A. Let ∆(θ) =

∑
θ(0) ⊗ θ(1). We deduce from the definitions that

ε(θDθ) = 1R =
∑

ε(θ0) < θD, θ(1) >=< θD, θ >

and
ε(SD(θD)θ) =< θD, S(θ) >=< θD, θ > .

Because AD is unimodular we know that θD and SD(θD) both belong to I(AD). Since I(ADK)is
is of dimension 1 there exists λ ∈ K such that SD(θD) = λθD. Using that S2 = I we deduce
that λ ∈ {±1}. Since the characteristic of K is different from 2 we deduce from the previous
equalities that SD(θD) = θD. This completes the proof of the proposition. �
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Remark When K is of characteristic 0 and AK is commutative, it follows from a theorem
of Cartier that AK is separable. Therefore any finite, commutative and locally free R-Hopf
algebra, where R is a principal ideal domain of characteristic 0, satisfies the hypotheses of
Proposition 2.3. Nevertheless it is easy to construct Hopf algebras, which are not separable,
but which still satisfy these hypotheses. It suffices for instance to consider A = k[Γ] where k
is a field of characteristic p and Γ a finite group of order divisible by p, endowed with its usual
Hopf algebra structure. We know from Maschke’s Theorem that A is not separable. However,
we may easily check that I(A) = kω where ω =

∑
γ∈Γ γ. Since S(ω) = ω, then S restricts to

the identity map on I(A). When AK is not separable, I(Ak) is contained in Ker(ε) and thus
I(Ak)

2 = I(A)2 = {0}.
Let M be an A-comodule and let MA be the largest quotient of M on which AD acts

trivially, so that MA = M/ker(εD)M .

Lemma 2.4. Suppose that AD is unimodular and that I(AD) is free over R with θD as a
basis. Let M be a projective AD-module. Then

i) MA = θDM ,
ii) MA is a locally free R-module,
iii) The map m 7→ θDm induces an isomorphism of R-modules from MA onto MA.

Proof. We first observe that we can reduce to the case where M is AD-free and so is a direct
sum of copies of AD. Therefore, in order to prove the lemma, we may assume that M = AD.
In this case it follows from the very definition of the set of integrals that MA = (AD)A =
I(AD) = θDAD = θDR which proves i) and ii) of the lemma. Moreover, for g ∈ AD, the
equality θDg = 0 is equivalent to θDg(1) = 0 and thus to g(1) = 0 since AD is R-torsion free.
We then deduce that the kernel of the R-module homomorphism m 7→ θDm is the submodule
Ker(εD)M . Therefore it induces, as required, an isomorphism from MA onto MA. �

Let (M,αM ) and (N,αN ) be A-comodules. We shall define a comodule structure onM⊗N
by considering

αM,N : M ⊗N αM⊗αN−→ M ⊗A⊗N ⊗A 'M ⊗N ⊗A⊗A Id⊗mult−→ M ⊗N ⊗A .

The AD-module structure associated to this comodule structure is given by:

g(m⊗ n) =
∑
(g)

g(0)m⊗ g(1)n , ∀g ∈ AD,m ∈M,n ∈ N ,

where ∆D(g) =
∑

(g) g(0) ⊗ g(1). We say that M ⊗N is endowed with the diagonal action of
AD.

We conclude this subsection by proving a result which generalizes to a large family of Hopf
algebras a theorem well known when A = Map(Γ, R) and AD = R[Γ], [Mc] Corollary 3.3,
p.145 and p.196.

Proposition 2.5. Let A be a Hopf algebra over R. Let M and N be AD-modules. Assume
that M and N are both projective R-modules and that either M or N is projective as an AD-
module. Then M ⊗R N endowed with the diagonal action of AD is a projective AD-module.
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Proof. Observe that for any AD-modules M and N , then HomR(M,N) is endowed with the
structure of an AD-module by the rule:

< gϕ,m >=
∑
(g)

g(0) < ϕ,SD(g(1))m > ∀g ∈ AD

where ∆D(g) =
∑

(g) g(0) ⊗ g(1).

Lemma 2.6. For any AD-modules M and N , one has the equality:

HomAD(M,N) = HomR(M,N)A.

Proof. Let ϕ be an element of HomAD(M,N). Then, for all g ∈ AD, we have

< gϕ,m >=
∑
(g)

g(0) < ϕ,SD(g(1))m >=
∑
(g)

g(0)S
D(g(1)) < ϕ,m > .

Therefore
< gϕ,m >= εD(g) < ϕ,m > .

This implies that
HomAD(M,N) ⊂ HomR(M,N)A.

We want to prove that this inclusion is an equality. Let ϕ be an element of HomR(M,N)A.
Then, for any a ∈ AD and m ∈M , we observe that since

a =
∑

εD(a(0))a(1), with ∆D(a) =
∑
(a)

a(0) ⊗ a(1),

we may write
< ϕ, am >=

∑
(a)

εD(a(0)) < ϕ, a(1)m > .

Using that ϕ ∈ HomR(M,N)A we obtain that

< ϕ, am >=
∑
(a)

< a(0)ϕ, a(1)m > .

Hence we conclude that

< ϕ, am >=
∑
(a)

a(3) < ϕ,SD(a(4))a(1)m >

where (∆D ⊗ id) ◦∆D(a) =
∑
a(3) ⊗ a(4) ⊗ a(1).

We now observe that the map

AD ×AD ×AD → N

(a, b, c) 7→ a < ϕ, SD(b)cm) >

is trilinear and therefore induces

Θ : AD ⊗AD ⊗AD → N.

It follows from the coassociativity of AD that we have the equality in AD ⊗R AD ⊗R AD:
(id⊗∆D) ◦∆D(a) = (∆D ⊗ id) ◦∆D(a).

Denoting this element by b, then we can write

Θ(b) =< ϕ, am > .
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For any a(1) we set ∆D(a(1)) =
∑
a′(1) ⊗ a

′′
(1). It follows that

b = (id⊗∆D) ◦∆D(a) =
∑
(a)

a(0) ⊗ a′(1) ⊗ a
′′
(1).

Therefore we have the equality:

Θ(b) =
∑
(a)

a(0) < ϕ,SD(a′(1))a
′′
(1)m >,

which can be written

Θ(b) =
∑

a(0) < ϕ, (
∑

SD(a′(1))a
′′
(1))m > .

Since we know that εD(a(1)) =
∑
SD(a′(1))a

′′
(1) and belongs to R for any a(1), we deduce that

Θ(b) = (
∑
(a)

a(0)ε
D(a(1))) < ϕ,m >= a < ϕ,m > .

Comparing the two expressions for Θ(b) we deduce that

< ϕ, am >= a < ϕ,m >, ∀a ∈ AD and ∀m ∈M.

The required inclusion then follows. This completes the proof of the lemma. �

The proof of the proposition now follows closely the proof of Corollary 3.3 in Chapter V.3 of
[Mc]. We may assume for instance that M is a projective AD-module. We have to prove that
the functor P → HomAD(M ⊗R N,P ) from the category of AD-modules into the category of
R-modules is exact. By the adjoint property of Hom and ⊗ we know that for any R-module
P we have a natural isomorphism of R-modules

ψP : HomR(M ⊗R N,P ) ' HomR(M,HomR(N,P ))

f 7→ ψP (f) : m 7→ (n 7→ f(m⊗ n)).

We assert that if P is an AD-module then the adjoint isomorphism restricts to an isomorphism
of R-modules

ψ′P : HomAD(M ⊗R N,P ) ' HomAD(M,HomR(N,P )).

Since the functors P → HomR(N,P ) and Q→ HomAD(M,Q) are exact, the result will then
follow.

We now prove the assertion. We start by proving that ψP is an isomorphism of AD-modules.
Let ϕ be an element of HomR(M ⊗R N,P ). Then for any for any a ∈ AD,m ∈M,n ∈ N on
the one hand we have

< ψP (aϕ)(m), n >=< aϕ,m⊗ n >=
∑
(a)

a(0) < ϕ,SD(a(3))m⊗ SD(a(2))n >

where (id⊗∆D) ◦∆D(a) =
∑
a(0) ⊗ a(1) ⊗ a(2). On the other hand

aψP (ϕ)(m) =
∑
(a)

a(0)ψP (ϕ)(SD(a(1))m)

and thus
< aψP (ϕ)(m), n >=

∑
(a)

a(3) < ψP (ϕ)(SD(a(1))m), SD(a(4)n >
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=
∑
(a)

a(3) < ϕ, (SD(a(1))m⊗ (SD(a(4))n >

where (∆D ⊗ id) ◦∆D(a) =
∑
a(3) ⊗ a(4) ⊗ a(1).

We now consider the map
AD ×AD ×AD → P

(x, y, z) 7→ x < ϕ, SD(z)m)⊗ SD(y)n > .

This is a trilinear R-map and it therefore induces

Φ : AD ⊗R AD ⊗R AD → P.

It follows once again from the coassociativity of AD that

(id⊗∆D) ◦∆D(a) = (∆D ⊗ id) ◦∆D(a).

Let us denote the above element by c. It follows from the previous equalities that

Φ(c) =< ψP (aϕ)(m), n >=< aψP (ϕ)(m), n > .

Hence we have proved, as desired, that

ψP (aϕ) = aψP (ϕ), ∀a ∈ AD and ϕ ∈ HomR(M ⊗R N,P ).

We complete the proof of the assertion. It is easily verified that since ψP is an AD-
isomorphism, it induces an isomorphism:

ψ′P : HomR(M ⊗R N,P )A ' HomR(M,HomR(N,P ))A.

It now follows from Lemma 2.6 that this is precisely the required isomorphism. �

2.2. Equivariant symmetric bundles. A symmetric bundle over R is a finitely generated,
locally free R-module M , equipped with a non-degenerate, bilinear, symmetric form

q : M ×M → R.

Let A be a finite and locally free Hopf algebra over R and let (M, q) be a symmetric bundle
over R. We shall say that (M, q) is A-equivariant if M is an A-comodule and if the following
is true:

q(gm, n) = q(m,SD(g)n), ∀m,n ∈M, ∀g ∈ AD .

If, moreover, M is a projective AD-module, we shall call (M, q) a projective A-equivariant
bundle. Note that when A = Map(Γ, R), with Γ a finite group and AD is the group algebra
R[Γ], an A-equivariant symmetric bundle is an R[Γ]-module endowed with a non-degenerate,
Γ-invariant, bilinear and symmetric form.

We observe that any A-equivariant symmetric bundle (M, q) defines, after scalar extension
by a commutative R-algebra T , an AT -equivariant symmetric bundle over T that we denote
by (MT , qT ).

We can attach to any R-symmetric bundle (M, q) its orthogonal group which we denote
by O(q). This is an affine group scheme over R. This group scheme is most easily defined in
terms of its associated functor of points. Suppose now that A is a commutative Hopf algebra.
Then we can associate to A the group scheme G = Spec(A). We will say that G is generically
étale when AK is a separable K-algebra. In this case the notion of A-equivariant symmetric
bundle has an interpretation in terms of orthogonal representations.
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Proposition 2.7. Let A be a commutative Hopf R-algebra and let G be the group scheme
defined by A. We assume that G is generically étale. Let (M, q) be an R-symmetric bundle.
Then the following properties are equivalent:
i) (M, q) is A-equivariant.
ii) There exists a morphism of group schemes:

ρ : G→ O(q).

Proof. For any R-algebras E and F we denote by HomR,alg(E,F ) the set of morphisms of
R-algebras f : E → F . We recall that for any R-algebra T we have the following isomorphism

G(T ) ' HomR,alg(A, T ) ' HomT,alg(AT , T ) .

Moreover, since A is a finitely generated projective R-module, we know that

HomT (AT , T ) ' HomR(A,R)⊗R T .

With a slight abuse of notation we write

G(T ) = HomT,alg(AT , T ) ⊂ HomR(A,R)⊗R T .

We assume i). For any R-algebra T , after scalar extension, MT becomes an ADT -module.
Therefore, for any g ∈ G(T ), we may define

ρT (g) : MT →MT , m 7→ gm .

One easily checks that ρT induces a group homomorphism from G(T ) to O(qT ), which proves
ii). We now suppose that ii) is satisfied. It follows from the hypothesis that there exists a
group homomorphism

ρA : G(A)→ Aut(MA),

(here of course MA = M ⊗ A and not the coinvariant module as defined in Lemma 2.4). For
the element Id we obtain an A-linear map ρA(Id) : M ⊗R A → M ⊗R A which determines
by restriction α : M → M ⊗R A. The map α endows M with a right A-comodule structure
(see [W], Chapter 3) and therefore with a left AD-module structure. Since there exists a finite
extension K ′/K such that ADK′ = K ′[Γ], any element g ∈ AD can be written g =

∑
γ∈Γ rγγ

with rγ ∈ K ′, ∀γ ∈ Γ. Since every γ belongs to G(K ′), then SD(γ) = γ−1. Since ρK′(γ)
belongs to O(qK′) for any γ ∈ Γ we can write the equalities:

q(gm, n) =
∑
γ∈Γ

rγq(γm, n) =
∑
γ∈Γ

rγq(m, γ
−1n) = q(m,SD(g)n),

for any m and n ∈ M and g ∈ AD. Hence we have proved as required that (M, q) is A-
equivariant. �

We call any morphism of group schemes ρ : G→ O(q) an orthogonal representation of G. In
this paper we shall frequently speak either of equivariant symmetric bundles or equivalently
orthogonal representations. Observe that, when G is generically constant, an orthogonal
representation, as defined above, induces by restriction to the generic fiber an orthogonal
representation in the usual sense.

Let (M, q) be a projective A-equivariant symmetric bundle. We assume that AD satisfies
the properties of Proposition 2.3. We fix an R-basis θD of I(AD). Under these assumptions
we use Lemma 2.4 to define a map

qA : MA ×MA → R
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by setting
qA(x, y) = q(m, y) = q(x, n)

wherem (resp. n) is any arbitrary element ofM such that x = θDm (resp. y = θDn). Observe
that if θDm = θDm′, then m−m′ belongs to Ker(εD)M . Since

q(gu, θDn) = q(u, SD(g)θDn) = q(u, εD(SD(g))θDn) = q(u, εD(g)θDn) = 0,

for any g ∈ KerεD, we deduce that qA is well defined. Moreover we note that

qA(x, y) = q(y,m) = q(θDn,m) = q(n, SD(θD)m) = q(n, θDm) = qA(y, x) .

Hence qA is a symmetric bilinear form on MA.
Remarks
1. For any x = θDm and y = θDn of MA it is easily verified that

q(x, y) = q(m,SD(θD)θDn) = q(m, εD(θD)y) = εD(θD)qA(x, y) .

If ADK is not separable, then we know that εD(x) = 0 for any x ∈ I(ADK), from Theorem 5.1.8
in [S]. Therefore this situation makes clear that qA is not in general the restriction of q toMA,
since qA is unimodular while the restriction of q to MA is zero.
2. It is important to note that the form qA depends upon the choice of a generator of I(AD).
Taking θ′D = λθD with λ ∈ R× as a new generator of I(AD) provides us with a new symmetric
form q′A = λqA on MA. If λ is a square of a unit of R, then the symmetric bundles (MA, qA)
and (MA, q′A) are isometric. As we will see, at the end of Section 2, our future constructions
will not depend upon this choice.

Proposition 2.8. Let A be a Hopf algebra and let (M, q) be a projective A-equivariant sym-
metric bundle. Suppose that AD is unimodular and that I(AD) is a free R-module, then
(MA, qA) is a symmetric R-bundle.

Proof. From Lemma 2.4 we know that MA is a locally free R-module. It remains to prove
that the adjoint map

ϕqA : MA → Hom(MA, R)

is an R-module isomorphism. This result, when A = Map(Γ, R) and Γ is a finite group, was
proved in Proposition 2.2 of [CNET] . This proof can be used mutatis mutandis in this more
general situation if, as in the situation considered in [CNET], the quotient M/MA is torsion
free. This is easily checked. We note that it suffices to prove the result when M = AD. Let
f ∈ AD and d ∈ R, d 66= 0 such that df ∈ (AD)A. It follows from the definition of (AD)A that
for any g ∈ AD then g(df) = εD(g)(df). Since AD is a projective R-module it is torsion free
and thus gf = εD(g)f , which proves that f ∈ (AD)A. �

3. Twists of symmetric bundles

Recall that R is an integral domain with field of fractions K and that A is a Hopf R-order
in the Hopf algebra AK . The aim of this section is to define the algebraic twist of an A-
equivariant symmetric bundle by a principal homogeneous space for A. As a first step we
show, under certain assumptions on A, how to associate to a principal homogeneous space
for A an A- equivariant projective symmetric bundle. The trace form is the key-tool of this
construction.
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We let A be a commutative Hopf algebra which is finite and flat over R. Let B be a
commutative finite flat R-algebra, endowed with the structure of an A-comodule algebra

αB : B → B ⊗R A .

We suppose that BA = R. We shall say that B is a principal homogeneous space for A over
R, abbreviated to PHS, when

(Id ⊗ 1, αB) : B ⊗R B ' B ⊗R A
is an isomorphism of B-algebras and left AD-modules. We observe that A, endowed with the
comultiplication map, provides an example of such a space.

Lemma 3.1. Let AK be a separable commutative Hopf K-algebra and let BK be a principal
homogeneous space for AK . Let Tr denote the trace form on BK . Then (BK , T r) is a projective
AK-equivariant symmetric bundle.

Proof. Since BK is a principal homogeneous space for AK , we know that BK is a projective
ADK-module. Using the fact that BK becomes isomorphic to AK after a faithful base change, it
follows by descent theory that BK is separable and therefore that the trace is non-degenerate.
Let q denote the trace form on BK . We now want to show that q is an AK-equivariant form.
As in Proposition 2.3 we fix a finite extension K ′/K such that ADK′ is isomorphic to K ′[Γ],
where Γ is a finite group. In this case ADK′ , as a K ′-vector space, has a basis {γ, γ ∈ Γ}
consisting of group like elements. Since BK′ is an ADK′-module algebra, one easily checks that
every γ defines an automorphism of K ′-algebras of BK′ whose inverse is SD(γ). Therefore the
trace form qK′ of BK′ is invariant under each γ ∈ Γ. Thus the AK-equivariance of q follows
from the A′K-equivariance of qK′ . �

We now wish to generalize the above construction when working with the ring R in place
of the field K. A key-role in this case is played by the codifferent of B.

3.1. The square root of the codifferent. The codifferent of B/R is defined by

D−1(B/R) = {x ∈ BK | Tr(xb) ∈ R ∀b ∈ B} .
For reason of simplicity D−1(B/R) will be abbreviated by D−1(B). In the case where R is a
field then D−1(B) = B. It follows from the AK-invariance of the trace form proved in Lemma
3.1 that D−1(B) is an AD-module. We start by studying the codifferent of A.

Proposition 3.2. Let A be a commutative Hopf algebra and assume that AK is separable.
Let I be the set of integrals of A. Then

i) There exists a unique primitive idempotent e of AK and a fractional ideal Λ of R such
that

IK = Ke, and I = Λe .

ii) We have the equality:
D−1(A) = Λ−1A.

Proof. We know from [SW], Corollary 5.1.6., that IK is a one dimensional K-vector space.
Moreover, since AK is a separable algebra, we deduce from [SW], Theorem 5.1.8. that AK =
IK ⊕ Ker(ε). Let u be a basis of IK . Since it is an integral, it follows that u2 = ε(u)u.
Therefore, replacing u by u/ε(u), we obtain a new basis of IK which is a non-trivial idempotent.
We denote this idempotent by e. Since R is an integral domain, it follows that ε(f) = 1 for
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any idempotent f of IK . We conclude that e is the unique idempotent of IK . Let Λ be the
fractional ideal of R consisting of elements x ∈ K such that xe belongs to A. Then we have

I = IK ∩A = Λe .

We consider the left ADK-module structure on ADK defined by

< f ∗ g, x >=< g, SD(f)x > ∀x ∈ AK .

Since AK is separable, the trace form is non-degenerate and induces an isomorphism of K-
vector spaces

Ψ : AK → ADK = Hom(AK ,K) .

We note that

< Ψ(fa), x >= Tr(fax) = Tr(aSD(f)x) =< Ψ(a), SD(f)x >=< f ∗Ψ(a), x >

for all a, x ∈ AK , f ∈ ADK . Therefore Ψ is an isomorphism of ADK-modules. It follows from
the definition of the codifferent that D−1(A) = Ψ−1(AD). We now consider Ψ(A). Since Ψ
is an isomorphism of ADK-modules and since A = ADI we obtain that Ψ(A) = Ψ(ADΛe) =
ΛADΨ(e). Therefore we are reduced to determining Ψ(e). Let x be an element of AK . From
the direct sum decomposition of AK , it follows that x can be written as a sum λe + x′ with
x′ ∈ Ker(ε) and λ ∈ K. Hence we have

< Ψ(e), x >= Tr(ex) = Tr(eλ+ ex′) .

We note that ex′ = 0. Moreover, since e is a non-trivial idempotent whose K-span has
dimension one, its trace is 1. Therefore we have proved that < Ψ(e), x >= λ = ε(x) for all
x ∈ AK . We conclude that Ψ(e) = ε which is the unit element of ADK . Therefore we have
proved that Ψ(A) = ΛAD and thus D−1(A) = Λ−1A as required. �

Remark Observe that Λ is the R-ideal defined by

Λ = ε(I) .

Corollary 3.3. Assume that I(A) is a free R-module. Then:
i) I(AD) = Λ−1t, where t is the unique element of ADK such that te = 1AK .
ii) Tr(x) = tx for any x ∈ BK .
iii) D−1(B) = Λ−1B.

Proof. Let λ ∈ Λ be such that θ = λe is a basis of I(A). We note that λ−1t is the unique
element θD ∈ ADK such that θDθ = 1. Since there exists such an element in AD, we may
conclude that θD ∈ AD. It follows from Lemma 2.2 that θD is an R-basis of I(AD) and thus
i) is proved. We now fix an extension K ′/K as in Proposition 2.3 and we identify on the one
hand the algebras AK′ and Map(Γ,K ′) and on the other hand the algebras ADK′ and K

′[Γ].
Since AK is contained in AK′ we observe that e is the unique idempotent in Map(Γ,K ′) such
that IK′ = K ′e. Therefore, as an element of Map(Γ,K ′), e is defined by e(γ) = 1 if γ = 1 and
0 otherwise. Let ωΓ =

∑
γ∈Γ γ. One can easily check that ωΓ is the unique element in K ′[Γ]

such that ωΓe = 1AK′ . Therefore we deduce that t = ωΓ. We now have

TrBK/K(x) = TrBK′/K′(x) = ωΓx = tx, ∀x ∈ BK
as required.
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Recall that we have the commutative diagram

B ⊗R B
ϕ //

��

B ⊗R A

��
BK ⊗K BK

ϕK // BK ⊗K AK

where ϕ (resp. ϕK) is an isomorphism of B (resp. BK)-algebra and the vertical arrows are
injections. Let λ be a generator of Λ. We have the equalities

D−1((B ⊗B)/B)) = B ⊗D−1(B/R)

and
D−1((B ⊗A)/B) = B ⊗D−1(A/R) = B ⊗ λ−1A.

Therefore
ϕK(B ⊗ λD−1(B/R)) = ϕK(B ⊗B) = B ⊗A

and so B ⊗ λD−1(B/R) = B ⊗B. Since B/R is faithfuly flat we conclude that D−1(B/R) =
λ−1B as required.

�

Corollary 3.4. We assume that AK is separable of K-rank n and that I(A) is R-free. Let θ
(resp θD) denote an integral of A (resp. AD) such that θDθ = 1. Then ε(θ)εD(θD) = n. In
particular if Λ = ε(I) and ΛD = εD(ID) then ΛΛD = nR.

Proof. Let Tr denote the trace form on AK . First observe that Tr(θDθ) = n. Moreover, since
the trace is equivariant, it follows that

n = Tr(θDθ) = Tr(θ.SD(θD)1A) = εD(θD)Tr(θ) .

Under our hypothesis, it follows from Proposition 3.2 that there exists λ ∈ R such that

Λ = λR and θ = λe .

It follows from the direct sum decomposition of AK that Tr(e) = 1. Since ε(e) = 1, we
deduce from the previous equality that Tr(θ) = λ = ε(θ) and so that εD(θD)ε(θ) = n and
ΛDΛ = nR. �

Remark. It can be shown that D(A) is the Fitting ideal of the module of differentials Ω1
A/R.

It therefore follows from the lemma that, if n is a unit of R, then the module Ω1
A/R is trivial.

In this case the cover of schemes (Spec(B)→ Spec(R)) is étale for any principal homogeneous
space B.

3.2. Twists of a form by a principal homogeneous space. The role played by the trace
form and by the set of integrals leads us to consider Hopf algebras satisfying the following
properties:
Definition 1 A finite and flat R-Hopf algebra A satifies hypothesis H when AK is a commu-
tative separable K-algebra and the image under ε of the set of integrals of A is the square of
a principal ideal of R.
When A satisfies H we denote by Λ1/2 a principal ideal of R such that

(Λ1/2)2 = Λ = ε(I(A)) .
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Then, for any principal homogeneous space B of A, it follows from Corollary 3.3 that

D−1/2(B) = Λ−1/2B

is a square root of D−1(B) and that (D−1/2(B), T r) is a projective and A-equivariant sym-
metric bundle on R. Let us denote by λ1/2 a generator of Λ1/2, let θ be the generator λe
of I(A) and let θD be the unique element of AD such that θDθ = 1A. Then, following the
construction of Section 2.2, for any A-equivariant symmetric bundle (M, q) and any principal
homogeneous space B of A, we can define the twist of (M, q) by B (associated to θD).
Definition 2 Let A be a Hopf R-algebra satisfying H, let (M, q) be an A-equivariant symmetric
bundle and let B be a principal homogeneous space of A. Define the algebraic twist of (M, q)
by B as the R-symmetric bundle

(M̃B, q̃B) = (D−1/2(B)⊗RM,Tr ⊗ q)A .

Remarks
1.We observe that, since θ is defined up to the square of a unit of R, the same holds for θD.
Therefore, as observed in Remark of Section 2, the definition of (M̃B, q̃B) is independent, up
to isometry, of the choice of θ.
2. It follows from Proposition 2.7 that under hypothesis H we can attach to (M, q) an
orthogonal representation ρ : G = Spec(A) → O(q). Following the general definition of
[CCMT], Definition 6.4, we shall often refer to the twist of (M, q) by B as the twist of (M, q)
by ρ and X = Spec(B). We will denote this twist as (Mρ,X , qρ,X).
3. Suppose that R = K is a field and that L/K is a Galois extension with Galois group Γ.
Let (M, q) be the underlying symmetric bundle of an orthogonal representation ρ : Γ→ O(q).
This is a situation where we can apply our previous construction. Let A = Map(Γ,K) be
the Hopf algebra defining the constant group scheme associated to Γ. Since L is a principal
homogeneous space for A, we can consider the twist of (M, q) by L

(M̃L, q̃L) = (L⊗K M,Tr ⊗ q)A

as introduced in Definition 2. It follows from [F], Theorem 1 and [CNET], Proposition 2.5,
that this new quadratic form coincides with the one introduced by Fröhlich in [F], Section 2.

4. Twists of a form and flat cohomology

Let S be the scheme Spec(R) and let G be the S-group scheme defined by the spectrum of
an R-Hopf algebra A. To any R-linear map

αB : B → B ⊗R A,

which endows B with the structure of a comodule algebra over A, there corresponds a mor-
phism of S-schemes

X ×S G→ X .

In this correspondence the notion of PHS corresponds to the notion of a torsor for G over S.
Following Milne [M], III, Section 4, we may associate to any flat covering U = (Ui → S)i∈I

a set of cohomology classes Ȟ1(U , G); this is a set with a distinguished element. We define
Ȟ1(S,G) to be the direct limit over all coverings U of Ȟ1(U , G). From Theorem 4.3 and
Proposition 4.6 in [M], it follows that there exists a one to one correspondence, [X]→ c(X),
between the isomorphism classes ofG-torsors over S, that we denote byH1(S,G), and elements
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of Ȟ1(S,G) under which the class of the trivial torsor (the class of A) corresponds to the
distinguished element of Ȟ1(S,G).

Let (M, q) denote anA-equivariant symmetric bundle and assume thatA satisfies hypothesis
H. As per Proposition 2.7 we can associate to (M, q) a morphism of group schemes ρ :
G → O(q). It is routine to check that ρ transforms 1-cocycles on G into 1-cocycles on
O(q) and thereby induces a map ρ∗ from Ȟ1(S,G) in Ȟ1(S,O(q)). The set Ȟ1(S,O(q))
classifies the set of isomorphism classes of twisted forms of (M, q) ([D-G], III, Section 5,
n.2). Therefore the class ρ∗(c(X)) defines, up to isometry, a unique symmetric bundle which
we denote by (Mρ(X), qρ(X)). We now have at our disposal on the one hand the symmetric
bundle (Mρ(X), qρ(X))), which has an abstract definition in terms of class of a cocycle in a
flat cohomology set, and on the other hand the algebraic twist (Mρ,X , qρ,X) given by a simple
explicit formula (see Definition 2 in Section 3.2). The main goal of this section is to prove
that the two bundles coincide.

Theorem 4.1. There exists an isometry of symmetric bundles

(Mρ,X , qρ,X) ' (Mρ(X), qρ(X)) .

We keep the notation and the hypotheses of Section 3. We assume that A satisfies hypothesis
H, and in particular that the image under ε of the set of integrals of A is the square of a
principal ideal of R. We fix a generator λ1/2 of this ideal. Since AK is separable there exists
a finite extension K ′/K and a finite group Γ such that AK′ = Map(Γ,K ′) and ADK′ = K ′[Γ].
For the sake of notational simplicity we shall assume that K ′ = K; the general case can follow
similarly. We let e be the element of AK defined by e(γ) = 1 if γ = 1 and 0 otherwise and we
denote by ω the element

∑
γ∈Γ γ in K[Γ]. We have seen that θ = λe (resp. θD = λ−1ω) is an

R-basis of I(A) (resp. I(AD)) and that we have the equalities

θDθ = 1A, θθ
D = 1AD , A = ADθ, AD = AθD .

4.1. Representative of a torsor. Let B be a PHS of A and again let X = Spec(B) be the
associated G-torsor. It follows from the definition that the flat cover U = (X → S) trivializes
X. More precisely the isomorphism

ϕ = (Id⊗ 1, αB) : B ⊗R B → B ⊗R A,

induces an isomorphism of S-schemes with G-action

Φ = Spec(ϕ) : X ×S G→ X ×X X .

Let p1 (resp. p2) denote the first (resp. second) projection map X ×S X → X. For 1 ≤ i ≤ 2
the base change of Φ by pi defines an isomorphism of schemes with G-action

Φi : (X ×S X)×S G→ (X ×S X)×S X .

We know from p.134 in [M] that Φ−1
1 ◦ Φ2 is a 1-cocycle representing c(X). We wish to

understand Φ−1
1 ◦ Φ2 in terms of B ⊗R B-valued points of G.

Let q1 (resp. q2) denote the morphism of algebras B → B⊗RB, defined by (q1 : x→ x⊗1)
(resp. q2 : x → 1 ⊗ x). Extending scalars by qi for 1 ≤ i ≤ 2, the map ϕ induces an
isomorphism

ϕi : (B ⊗R B)⊗R B → (B ⊗R B)⊗R A
of B ⊗R B-algebras and AD-modules. It is clear that Φ−1

1 ◦ Φ2 = Spec(ϕ2 ◦ ϕ−1
1 ).
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Let C be the algebra B ⊗R B. We recall the identifications of Section 2.2:

G(C) = Homalg,R(A,C) = Homalg,C(AC , C) .

We note that AC is of course a C-algebra and an AC-comodule. We write Aut(AC) the group
of its automorphisms. We observe that ϕ = ϕ2 ◦ ϕ−1

1 is an element of this group. For any
element ψ of Aut(AC) and f ∈ G(C) we obtain a element of G(C) by considering f ◦ ψ.

Lemma 4.2. The map

θ : Aut(AC)→ G(C)

ψ → ε ◦ ψ

is a group isomorphism.

Proof. Since any ψ ∈ Aut(AC) is a morphism of comodules, it satisfies the equality

(ψ ⊗ Id) ◦∆ = ∆ ◦ ψ.

This implies that for all x ∈ AC ,

∆(ψ(x)) =
∑
(x)

ψ(x0)⊗ x1

where ∆(x) =
∑

(x) x0 ⊗ x1 and so ψ(x) =
∑

(x)(θ(ψ)(x0)x1. Using this last equality, it
is easily verified that θ is a group homomorphism and is injective. Let us now consider an
element α ∈ G(C). The C-endomorphism of AC defined by

ψ(x) =
∑
(x)

α(x0)x1

is a morphism of C-algebras and AC-comodules such that θ(ψ) = α. This shows that θ is onto
and completes the proof of the lemma. �

We deduce from this lemma that the map Ψ = Spec(ψ)→ ε◦ψ is an isomorphism of groups
from Aut(Spec(C) ⊗S G) onto G(C). We identify these groups via this isomorphism. Under
this identification, we conclude that g = ε ◦ϕ, where ϕ = ϕ2 ◦ϕ−1

1 is the element of Aut(AC)
introduced previously, is a 1-cocycle representative of c(X) in G(C).
Remark As we have seen previously, for any x ∈ AC , with ∆(x) =

∑
(x) x(0) ⊗ x(1) we have

the equality:

ϕ(x) =
∑

(ε ◦ ϕ)(x(0))x(1) .

In the case where ∆(x) is invariant under the twist map (which is the map induced by c⊗d→
d⊗ c), this last equality can be written

ϕ(x) = (ε ◦ ϕ)x,

where AC is endowed with its structure of left ADC -module and where ε ◦ϕ is considered as an
element of ADC via the inclusion G(C) ⊂ ADC .
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4.2. Proof of Theorem 4.1. Let (M, q) be an A-equivariant symmetric bundle and let B
be a PHS of A. We consider the twist of (M, q) by B defined by

(Mρ,X , qρ,X) = (M̃B, q̃B) = (λ−1/2B ⊗RM,Tr ⊗ q)A .

The strategy for the proof of the theorem is to show that the flat covering U = (X → S),
which trivializes X as a G-torsor, likewise trivializes the symmetric bundle (Mρ,X , qρ,X). With
this in view we now construct an isometry of symmetric bundles

(4) (MB, qB) ' (B ⊗R M̃B, q̃B,B),

where (q̃B,B) denotes the form q̃B extended to B ⊗R M̃B. This construction will be achieved
via the next two lemmas. The results of Section 4.1 provide us with a representative of X in
Ȟ1(U , G). We will use the previous isometry to show that the image under ρ∗ of this cocycle
is a representative of the class of (Mρ,X , qρ,X).

Lemma 4.3. Let T be a finite flat R-algebra. Then
i) For any f ∈ ADT and m ∈MT one has

θD(fθ ⊗m) = θD(θ ⊗ SD(f)m) .

ii) The map m 7→ θD(λ−1/2θ ⊗ m) induces an isometry νT of symmetric bundles from
(T⊗RM, qT ) onto (T⊗RM̃A, q̃A,T ) where (M̃A, q̃A) is the symmetric bundle (λ−1/2A⊗R
M,Tr ⊗ q)A.

Proof. We first observe that it suffices to prove the lemma when T = R. The general case
will follow by extension of scalars. Let f be an element of AD. Since AD is contained in
ADK = K[Γ] we write f =

∑
γ∈Γ xγγ with xγ ∈ K. Since AD acts diagonally over A ⊗R M

and since θDγ = θD, we obtain that for any m ∈M and γ ∈ Γ

θD(fθ ⊗m) =
∑
γ∈Γ

θD(xγγθ ⊗m) =
∑
γ∈Γ

θDγ(θ ⊗ xγγ−1m) = θD(θ ⊗ SD(f)m),

as required.
Let ν : M → M̃A be the R-linear map defined bym 7→ θD(λ−1/2θ⊗m). We start by proving

that ν is surjective. Let y be an element of MA. We deduce from Lemma 2.4 the existence of
a finite set of elements xi of A and mi of M such that y =

∑
i θ
D(λ−1/2xi ⊗mi). Since θ is

an AD-basis of A, for an integer i, there exists an element fi of AD such that xi = fiθ. Using
i) we deduce that

y =
∑
i

θD(fiλ
−1/2θ ⊗mi) =

∑
i

θD(λ−1/2θ ⊗ SD(fi)mi) = θD(λ−1/2θ ⊗ x),

with x =
∑

i S
D(fi)mi. So we have found x ∈M such that y = ν(x).

Let us now consider ε̃ : AK⊗KMK →MK defined by a⊗m 7→< ε, a > m. Since the action
of ADK is diagonal, for any m ∈ AK we have

ε̃(θD(θ ⊗m)) = (α)m ,

where ∆D(θD) =
∑
θD(0) ⊗ θD(1) and α =

∑
< ε, θD(0)θ) > θD(1). We first observe that

< ε, θD(0)θ) >=< θD(0), θ >. Moreover, since A is commutative, we know that AD is cocommu-
tative. It follows from these facts that

α =
∑

< θ(0), θ > θD(1) =
∑

< θD(1), θ > θD(0) = θθD .
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Since, as recalled at the beginning of this section, we know that θθD = 1AD , then we have
proved that

ε̃(θD(θ ⊗m)) = m, ∀m ∈MK .

We conclude that ν is an isomorphism whose inverse is given by µ : x 7→ λ1/2ε̃(x). In order
to complete the proof of the lemma we must show that ν is an isometry. The proof consists
of a verification by hand of the equality:

q̃A(θD(λ−1/2θ ⊗m), θD(λ−1/2θ ⊗m)′) = q(m,m′), ∀m,m′ ∈M .

�

Remark As a consequence of the lemma, we observe that there is an isometry

(M, q) ' (M̃A, q̃A)

which proves Theorem 4.1 in the case when X is the trivial torsor.
We now return to the isomorphism ϕ : B ⊗R B → B ⊗R A introduced at the beginning of

this section. This morphism induces an isomorphism

ϕ̃ = (ϕ⊗ Id) : B ⊗R (λ−1/2B ⊗RM)→ B ⊗R (λ−1/2A⊗RM)

of B and AD-modules. Recall that AD acts on the left-hand side (resp. the right-hand side)
via its diagonal action on (λ−1/2B ⊗R M) (resp. (λ−1/2A ⊗R M)). Therefore, taking fixed
points by AD, we see that ϕ̃ induces an isomorphism of B-modules

ϕ̃ : B ⊗R M̃B → B ⊗R M̃A .

Lemma 4.4. The isomorphism ϕ̃ induces an isometry of symmetric bundles

(B ⊗R M̃B, q̃B,B) ' (B ⊗R M̃A, q̃A,B).

Proof. This is an easy verification that we leave to the reader. �

We can now complete the proof of the theorem. It follows from Lemmas 4.3 and 4.4 that

ϕ̃−1 ◦ νB : (B ⊗RM, qB)→ (B ⊗R M̃B, q̃B,B)

is an isometry. Let C = B⊗RB and let qi : B → C, 1 ≤ i ≤ 2 be the morphisms as considered
prior to Lemma 4.2 at the beginning of this section. For 1 ≤ i ≤ 2 the map ϕ̃−1 ◦ νB induces,
by scalar extension, an isometry:

ϕ̃−1
i ◦ νC : (C ⊗RM, qC)→ (C ⊗R M̃B, q̃B,C) .

This implies that σ = (ϕ̃−1
1 ◦νC)−1◦(ϕ̃−1

2 ◦νC) = ν−1
C ◦(ϕ̃1◦ϕ̃−1

2 )ν̃C is a 1-cocycle representative
of (Mρ,X , qρ,X). Our goal is now to describe this map.

Let c (resp. m) be an element of C (resp. M). Since ϕ̃1 ◦ ϕ̃−1
2 commutes with action of

AD, it follows from the definitions that

(ϕ̃1 ◦ ϕ̃−1
2 ) ◦ νC(c⊗m) = θD((ϕ1 ◦ ϕ−1

2 )(λ−1/2θ)⊗ (c⊗m)) .

It is easily checked that that ∆(θ) = λ∆(e) is invariant under the twist map. We then deduce
from Remark, Section 4.2 that (ϕ1◦ϕ−1

2 )(λ−1/2θ) = λ−1/2(g−1θ), where g is the representative
of c(X) we constructed previously in Subsection 4.1. It now follows from Lemma 4.3 that

θD((ϕ1 ◦ ϕ−1
2 )(λ−1/2θ)⊗ (c⊗m)) = θD(λ−1/2(g−1θ)⊗ (c⊗m)) = θD(λ−1/2θ ⊗ g(c⊗m)) .

This implies that σ(c⊗m) = ν−1
C (θD(λ−1/2θ⊗ g(c⊗m))) = g(c⊗m). This tells us that ρ(g)

is a representative of (Mρ,X , qρ,X) and so completes the proof of the theorem.
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5. Examples

5.1. The unit form. Let A be a commutative, finite and flat Hopf algebra over a principal
ideal domain R. Let θ denote a generator of the module of integrals of A. We define the form
κ on AD ×AD by the equality:

κ(u, v) =< SD(u)v, θ >

for all u, v ∈ AD.

Proposition 5.1. The following properties hold.
i) The pair (AD, κ) is an A-equivariant symmetric bundle.
ii) If A satifies hypothesis H, then, for any principal homogeneous space B of A, the twist

of (AD, κ) by B coincides with the symmetric bundle (D−1/2(B), T r).

Proof. The form κ is non-degenerate, ([C], Corollary 3.5). Moreover, since we know from
Proposition 2.3 that S(θ) = θ, we note that for all u, v ∈ AD

κ(u, v) =< SD(u)v, θ >=< SD(u)v, S(θ) >=< SD(v)u, θ >= κ(v, u)

so that the form is indeed symmetric. Finally we observe that

κ(tu, v) =< SD(tu)v, θ >=< SD(u)SD(t)v, θ >= κ(u, SD(t)v) .

We therefore conclude that the form is A-equivariant.
In order to prove (ii) we shall now assume that A satisfies H. In this case we can provide

a new description of (AD, κ). From now on we use the notation of Section 3 and Corollary
3.3. We let θ (resp. θD) be the generator λe (resp. λ−1t) of I(A) (resp. ID(A)) , where λ
is an R-basis of ε(I(A)). We consider the map ϕ : u 7→ λ−1/2uθ from AD onto D−1/2(A).
We wish to show that this isomorphism of AD-modules induces an isometry from (AD, κ) into
(D−1/2(A), T r). Hence we need to show that for all u, v ∈ AD

κ(u, v) = Tr((λ−1/2uθ)(λ−1/2vθ)).

It follows from the definitions that

< SD(u)v, θ >= λ < SD(u)v, e >

while Tr((λ−1/2uθ)(λ−1/2vθ)) = λt((ue)(ve). Writing u =
∑

γ∈Γ uγγ and v =
∑

δ∈Γ vδδ, we
easily check that

< SD(u)v, e >= t((ue)(ve) =
∑
γ∈Γ

uγvγ ,

which is the required equality. Let B be a PHS for A. We wish to describe the twist of
(AD, κ) by B. From the very definition of the twist and from our previous observations we
obtain that

(ÃDB , κ̃B) ' (D−1/2(B)⊗AD, T r ⊗ κ)A ' (D−1/2(B)⊗R D−1/2(A), T r ⊗R Tr)A .

We now deduce from Lemma 4.3 ii) that

(D−1/2(B)⊗R D−1/2(A), T r ⊗R Tr)A ' (D−1/2(B), T r) .

This proves that (D−1/2(B), T r) is the twist of (AD, κ) by B. �
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Remarks
1. If A satisfies H, then the integral θ used in the proof of the proposition has been chosen
according to the stipulations of Section 3. It follows that (AD, κ) is independent of this choice,
up to isometry. We refer to (AD, κ) as the unit form of AD.
2. The Hopf algebra A = Map(Γ, R), with Γ a finite group, obviously satisfies H. In this
situation we choose for θ the integral of A defined by θ(g) = 1 if g is the identity and 0
otherwise. We observe that AD is the group algebra R[Γ] and that the form κ is given on
elements of Γ by

κ(γ, γ′) =< γ−1γ′, θ >= δγ,γ′ .

It follows from these equalities that {γ ∈ Γ} is an orthonormal basis for κ. Therefore the
symmetric bundle (AD, κ) is the usual unit form of Γ.
3. When G is generically constant, of odd order, (AK = Map(Γ,K), with Γ of odd order), we
know from [BL], that after scalar extension to K, the forms become Γ-isometric. Therefore
we have the following isometries of equivariant symmetric bundles:

(D−1/2(B), T r)⊗R K ' (K[Γ], κK) ' (AD, κ)K .

This result leads us naturally to compare (D−1/2(B), T r) and (AD, κ) both as R-symmetric
bundles and also as A-equivariant symmetric bundles in the general situation.

5.2. An orthogonal representation of µn. Consider the R-algebra A = (R[T ]/(Tn−1)) =
R[t] with the following additional structure: a comultiplication ∆ : A → A ⊗R A induced by
t 7→ t⊗ t, a counit ε induced by t 7→ 1 and an antipode S : A→ A induced by t 7→ t−1 = tn−1.
This is then a Hopf R-algebra which represents the Spec(R)-group scheme µn of n-th roots
of unity. Its dual AD = HomR(R[t], R) represents the constant group scheme Z/nZ over
Spec(R).

We consider the symmetric bundle (V, q) consisting of the R-free module V , of rank 2, with
basis {ε1, ε2} and the symmetric bilinear form q defined by

q(εk, εk) = 0 for 1 ≤ k ≤ 2 and q(ε1, ε2) = 1/2 .

We note that when R contains a square root of −1, then (V, q), is isometric to (R2, x2 + y2).
It is easy to check that the R-linear map defined by

α(ε1) = ε1 ⊗ t, α(ε2) = ε2 ⊗ tn−1

induces an A-comodule structure on V and that (V, q) is an A-equivariant symmetric bundle.
Note that the morphism of group schemes, ρ : µn → O(q) associated to this form is defined
for any R-algebra C by the group homomorphism ρC : µn(C)→ O(qC) where, for ξ ∈ µn(C),
ρC(ξ) is given on the basis {ε1, ε2} by

ρC(ξ)(ε1) = ξε1, ρC(ξ)(ε2) = ξ−1ε2 .

When R contains a square root of −1, this is a representation of µn into O(2).
Our goal is now to study the twists of this form by torsors. We now assume that R is

a discrete valuation ring of characteristic 0 and of residual characteristic p different from 2.
We take A = ((R[T ]/(T p − 1)) = R[t]). For any unit y ∈ R×, we let By be the R-algebra
R[X]/(Xp − y) = R[x]. The R-linear map α : By → By ⊗ A defined by α(xk) = xk ⊗ tk, 0 ≤
k ≤ p− 1, endows By with a structure of a A-comodule algebra. Let z be a p-th root of y in
an algebraic closure of the fraction field of R and let C be the algebra R[z]. The map T → zX
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induces an isomorphism of C-A comodule algebras from C⊗A onto C⊗By. This proves that
By is a PHS for A. Checking by hand we verify that

Λ = ε(I(A)) = pR .

We now assume that R contains a square root of p, denoted by p1/2 so that A satisfies hy-
pothesis H. For any unit y of R the twist of (V, q) by By is the R-symmetric bundle

(Vy, qy) = ((p−1/2R[x]⊗ V ))A, (Tr ⊗ q)A) .

Proposition 5.2. For any unit y ∈ R there exists an isometry of R-symmetric bundles:

(V, q) ' (Vy, qy) .

Proof. It suffices to check that the set

{ε′1,y = p−1/2xp−1 ⊗ ε1, ε
′
2,y = p−1/2x⊗ ε2}

is a R-basis of Vy and that the R-linear map given by (ε1 7→ ε′1,y) and (ε2 7→ y−1ε′2,y) induces
an isometry from (V, q) onto (Vy, qy).

�

5.3. A dihedral representation. We construct an example of an orthogonal representation
of a non-commutative group scheme which induces, by restriction to the generic fiber, a
dihedral representation as defined in [F].

5.3.1. The Hopf algebra. Let D denote a dihedral group of order 2n with n > 2 and with
generators and relations:

D =
〈
σ, τ | σn = 1 = τ2, τστ = σ−1

〉
.

R denotes an integral domain in which 2 is invertible. We let K denote the field of fractions
of R and we suppose that µn ⊂ R. We let HK denote the group algebra K [D] , endowed with
its structure of non-commutative Hopf algebra. For any character φ of 〈σ〉 we let eφ be the
idempotent n−1

∑
ς∈<σ> φ(ς)ς−1 of K 〈σ〉. We consider the split maximal R-orderM in the

group algebra K 〈σ〉
M = ⊕φR.eφ ⊃ R 〈σ〉

where φ ranges over the abelian K-valued characters of the cyclic group 〈σ〉 . Recall thatM
is an R-Hopf order in the group algebra K 〈σ〉 with

∆(eφ) =
∑

α,β|α.β=φ

eα ⊗ eβ.

We then let H denote the R-order in K [D] given by the twisted group ringM◦ 〈τ〉 ; so that
we may write

M◦ 〈τ〉 = R 〈τ〉 ⊕′φ R ◦φ 〈τ〉 if n is odd
and

M◦ 〈τ〉 = R 〈τ〉 ⊕R.eθ 〈τ〉 ⊕′φ R ◦φ 〈τ〉 if n is even,
where θ is the unique quadratic character of 〈σ〉 if n is even, where ⊕′φ denotes the sum over
the orbits of abelian characters φ of order greater than 2, modulo the action of the involution
σ → σ−1 and where we have set

R ◦φ 〈τ〉 = (Reφ +Reφ) ◦ 〈τ〉 with τeφ = eφτ .
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Lemma 5.3. H is an R-Hopf order in HK .

Proof. Basically we need to show that ∆ (H) ⊂ H ⊗H. Since H is generated over R by τ
and the various eφ, it will suffice to show that

∆(τ) ∈ H ⊗H, and ∆(eφ) ∈ H ⊗H.
The first follows from the definition of ∆ and the second from our previous equalities. �

Henceforth we identify HD
K = Map (D,K) ; so that Spec

(
HD
K

)
is the constant group scheme

over Spec (K) associated to D. We then define A to be the R-dual

A = HD = HomR (H,R) ;

then Spec (A) is a non-constant (but generically constant) group scheme over Spec (R). We
note that, since H is a finitely generated projective R-module, it follows that AD = (HD)D

is naturally isomorphic to H. We will identify these Hopf algebras.

Lemma 5.4. Since 2 is invertible in R, the modules of integrals for the Hopf orders H and
A are:

i) I(H) = 2R.eD = n−1R.
∑

d∈D d;
ii) I(A) = Rn.l0 where for d ∈ D, l0(d) = 1 if d = 1D and 0 otherwise.

Moreover, for any principal homogeneous space B for A, we have the equality:

DB = nB

Proof. It follows from Corollary 3.4 that i) and ii) are equivalent. We shall prove i). Let
φ0 be the trivial character of < σ >. We observe that ε(eφ0) = 1 while ε(eφ) = 0 ∀φ 66= φ0.
Therefore x ∈ I(H) if and only if

eφx = 0 ∀φ 66= φ0, eφ0x = x and τx = x .

We deduce immediately from these equalities that x ∈ 2ReD as required. Let B be a PHS for
A. It follows from ii) and Corollary 3.3 that DB = nB. �

5.3.2. The equivariant symmetric bundle. We fix an abelian character χ of the cyclic group
〈σ〉 with order greater than 2, and we consider the quadratic R-module (M, q):

M = R 〈σ〉 ◦ 〈τ〉 .eχ = R.eχ +R.τeχ = R.eχ +R.eχτ

endowed with the quadratic form

q (x, y) =
1

2
tr (x.τ.y) ,

where tr : K [D]→ K denotes the usual trace map where for d ∈ D
tr (d) = 2n if d = 1D and 0 otherwise .

Lemma 5.5. (M, q) is an A-equivariant symmetric bundle.

Proof. It is immediate from the definition that M is an H = AD-module. Note that

q (dx, dy) =
1

2
tr
(
dx.τ.yd−1

)
=

1

2
tr (x.τ.y) = q (x, y)

so that q is indeed D-invariant. Of course we also have

q (eχ, eχ.τ) =
1

2
tr
(
eχτ

2eχ
)

=
1

2
tr (eχ) = 1
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q (eχ, eχ) = 0 = q (eχ.τ, eχ.τ) ;

and so q is an R-perfect pairing on M , and in fact is seen to have discriminant -1. �

5.3.3. Twists of the form. Let B be a PHS for A over R. The structure map

αB : B → B ⊗A
induces an isomorphism of B-algebras and H-modules

id ⊗ αB : B ⊗R B ' B ⊗R A
(recall that H acts on each side via the right-hand factors). We put C = 〈σ〉 and set E = BC .

Proposition 5.6. E is a PHS for AC and DAC/R = AC .

Proof. Because B and A are R-flat we have the isomorphism induced by taking the C-fixed
points:

β : B ⊗R E ' B ⊗R AC .
We know that B is finite and flat and hence faithfully flat over R. Moreover it follows from
the definitions that AC is a finite and free R-module. This implies that B ⊗R AC and thus
B⊗RE is flat over B and so that E is flat over R ([W], XIII, 1.3.3). We have therefore shown
that E is a commutative, finite and flat R-algebra.

Let q : D → 〈τ〉 be the quotient group homomorphism with kernel C. Because 2 is invertible
in R, we know that R 〈τ〉 is the unique maximal R-order in K 〈τ〉 ; and so in particular we see
that Spec (R 〈τ〉) is a closed subgroup scheme of Spec(H). We recall the inclusions

AC ⊂ A = HomR(H,R) ⊂ AK = HomK(K[D],K).

The group D acts on AK via the rule that for all f ∈ AK , and for all γ ∈ D
γf : α 7→ f(γ−1α).

It therefore follows that for any f ∈ A and for any character φ of C we have:
σf(eφ) = f(e

φσ−1 ) = φ(σ−1)f(eφ) and σf(eφτ) = φ(σ)f(eφτ) .

Therefore, by using the description of H above, we deduce that dually Map (〈τ〉 , R) identifies
as AC and so Spec

(
AC
)
identifies as a quotient group scheme of Spec (A).

We now observe that β induces an action map

γ : E ⊗R E → E ⊗R AC .
In order to show that γ is an isomorphism it suffices to prove that B is faithfully flat over E.
One checks easily that A is free over AC . Therefore B⊗RA is free over B⊗RAC and similarly
B⊗R B is free over B⊗R E. Using once again that B is faithfully flat over R we deduce that
B is flat over E. Since B is finite over E we conclude that it is faithfully flat over E and thus
that γ is an isomorphism. We have proved that E is a PHS for AC . Since by definition AC is
étale over R, then DAC/R = AC �

We recall thatM denotes the split maximal R-order in K[C]. If we let L denote the ring
of fractions of E then ME = E ⊗RM is the split maximal order in L[C]. We consider the
duals N = HomR (M, R) and NE = N ⊗R E = HomE (ME , E) ; by duality these are the
minimal Hopf orders in Map (C,K) and Map (C,L) respectively. Then we have

DN/R = nN and DNE/E = nNE .

Proposition 5.7. B is a PHS for NE over E.
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Proof. The inclusion map C ↪→ D induces dual maps

M ↪→ H
↓ ↓
KC ↪→ KD

A → N
↓ ↓

Map (D,K) → Map (C,K)

and the isomorphism Id⊗ αB induces a map

B ⊗R B → B ⊗R A→ B ⊗R N ∼= B ⊗E E ⊗R N ∼= B ⊗E NE ;

as M acts trivially on E, this map actually factors through B ⊗E B, and so in summary we
have produced the action map

B ⊗E B → B ⊗E NE .

In order to show that this injective map is in fact an isomorphism we shall show that their
discriminants coincide. By the tower formula we know that

DB/E = DB/RD−1
E/R = DB/R = nB;

here the second equality comes from Proposition 5.6 and the third equality comes from Lemma
5.4. Since we know that DNE/E = nNE we conclude that the map is indeed an isomorphism.

�

Next we consider the ring E over the maximal order R 〈τ〉 . By the above we may write E
as a direct sum of two rank one free R-modules E = E+ ⊕ E− where τ acts on E+ = R
trivially and on E− by −1. Choosing a generator δ for E− over R, we have an element of E
with the property that δ2 ∈ R; moreover, as E is a 〈τ〉-torsor, we know that in fact δ2 ∈ R×.

We now apply a somewhat similar analysis to B viewed initially as an ME-module. We
assume R to be a local ring. We may then write B = ⊕Bχ with χ ranging over the abelian
characters of 〈σ〉 , and with each Bχ a free rank one R-module, with generator tχ and with
tχtφ divisible by tχφ (see 2.e in [CEPT]); since B/E is an NE-torsor by Proposition 5.7 we
can write:

B = E[X]mod(Xn − αn)

for some αn ∈ E×, with a = α.τα ∈ R×.
We now assume that A satisfies H which reduces to requiring that nR is the square of a

principal ideal. For the sake of simplicity we shall assume that n is a square of R when it is
not a unit. We denote by n1/2 a square root of n. Moreover we choose χ as 〈σ〉-character of
α. These preparations being in place, we can now determine the twist of (M, q) by B which
is defined, according to Definition 2, by:

(M̃B, q̃B) = (cB ⊗RM,Tr ⊗ q)A,

where c = 1 (resp. n−1/2) if n is a unit (resp. otherwise).

Proposition 5.8. We have the following equalities:
i) M̃B = Rε1 ⊕Rε2, where we set

ε1 = cατ ⊗ eχ + cα⊗ eχ̄τ and ε2 = cδατ ⊗ eχ − cδ ⊗ eχ̄τ.
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ii)
q̃B(ε1, ε1) = 2a, q̃B(ε2, ε2) = −2aδ2, q̃B(ε1, ε2) = 0.

Proof. We recall from the definition that

M̃B = (cB ⊗RM)A = {z ∈ cB ⊗RM | uz = εD(u)z ∀u ∈ AD}.
One easily checks from the definition of AD = H that

(cB ⊗RM)A = (cB ⊗RM)D.

We now observe that Propositions 5.6 and 5.7 provide us with a free R-basis of B. Moreover,
we know the action ofD on the elements of this basis. Hence by a straightforward computation
we obtain the equality:

(cB ⊗RM)C = R(cατ ⊗ eχ) +R(cδατ ⊗ eχ) +R(cα⊗ eχ̄τ) +R(cδα⊗ eχ̄τ).

It now suffices to take the c-fixed points of the right-hand side of the equality above to obtain
i). In order to prove ii) we shall assume that n is not a unit; the easier case where n is a unit
is left to the reader. From the definitions we obtain that

(Tr ⊗ q)(ε1, ε1) = 2Tr(n−1αατ )q(eχ, eχ̄τ) = 4a, (Tr ⊗ q)(ε1, ε2) = 0

and
(Tr ⊗ q)(ε2, ε2) = −2Tr(n−1δ2αατ )q(eχ, eχ̄τ) = −4aδ2.

Finally we have to compare the forms Tr ⊗ q and (Tr ⊗ q)A on M̃B. Using Lemma 2.4 and
Lemma 5.4, we note that M̃B = θDMB, with θD = n−1

∑
u∈D u. Then, for any element m

and n in MB, we have:

(Tr ⊗ q)(θDm, θDn) = n−1
∑
u∈D

(Tr ⊗ q)(um, θDn)

= 2(Tr ⊗ q)(m, θDn) = 2(Tr ⊗ q)A(θDm, θDn).

We conclude that q̃B = 1
2(Tr ⊗ q) and so ii) follows from the previous equalities. �

Remark We observe that the discriminant of the form q̃B is equal to −δ2, up to a square.
Therefore, if −1 is a square of R, since we know that δ2 is not a square of R, we deduce that
the discriminant of q̃B is not a square and thus that the forms q and q̃B are not isometric.
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