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THE WEIL-ÉTALE FUNDAMENTAL GROUP
OF A NUMBER FIELD I

Baptiste MORIN

(Received 28 July 2010)

Abstract. Lichtenbaum has conjectured (Ann of Math. (2) 170(2) (2009), 657–683) the
existence of a Grothendieck topology for an arithmetic scheme X such that the Euler
characteristic of the cohomology groups of the constant sheaf Z with compact support at
infinity gives, up to sign, the leading term of the zeta function ζX(s) at s = 0. In this paper we
consider the category of sheaves X̄L on this conjectural site for X = Spec(OF ) the spectrum
of a number ring. We show that X̄L has, under natural topological assumptions, a well-
defined fundamental group whose abelianization is isomorphic, as a topological group, to
the Arakelov–Picard group of F . This leads us to give a list of topological properties that
should be satisfied by X̄L. These properties can be seen as a global version of the axioms
for the Weil group. Finally, we show that any topos satisfying these properties gives rise to
complexes of étale sheaves computing the expected Lichtenbaum cohomology.

1. Introduction

Lichtenbaum has conjectured in [10] the existence of a Grothendieck topology for an
arithmetic scheme X such that the Euler characteristic of the cohomology groups of the
constant sheaf Z with compact support at infinity gives, up to sign, the leading term of the
zeta function ζX(s) at s = 0. There should exist motivic complexes of sheaves Z(n) giving
the special value of ζX(s) at any non-positive integer s = n, and this formalism should extend
to motivic L-functions. In this paper, this conjectural cohomology theory will be called the
conjectural Lichtenbaum cohomology. This cohomology is well defined for schemes of finite
type over finite fields, by the work of Lichtenbaum [9] and Geisser [5]. But the situation for
flat schemes over Z is more difficult, and is far from being understood even in the most simple
case X = Spec(Z).

We denote by X̄ the Arakelov compactification of a number ring X = Spec(OF ). Using
the Weil groupWF , Lichtenbaum has defined a first candidate for his conjectural cohomology
of number rings, which he calls the Weil-étale cohomology. He has shown that the resulting
cohomology groups with compact support Hi

Wc(X, Z), assuming that they vanish for i ≥ 3,
are indeed miraculously related to the special value of the Dedekind zeta function ζF (s) at
s = 0. However, Flach has shown in [4] that the groups Hi

W(X̄, Z) (hence Hi
Wc(X, Z)) are

in fact infinitely generated for any i ≥ 4 even. This shows that Lichtenbaum’s definition is
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not yet the right one, as it is mentioned in [10]. Giving the correct (site of) definition for the
conjectural Lichtenbaum cohomology of number rings is a deep problem.

This problem cannot be attacked directly. We have first to figure out the basic properties
that need to be satisfied by Lichtenbaum’s conjectural site. This question only makes sense
if we consider the category of sheaves of sets on Lichtenbaum’s conjectural site, i.e. the
associated topos, since many non-equivalent sites can produce the same topos. In this paper,
this conjectural topos will be denoted by X̄L and will be called the conjectural Lichtenbaum
topos. The first goal of this paper is to figure out the basic topological properties that must
be satisfied by the conjectural Lichtenbaum topos of a number ring. To this aim, we give
in Section 5.2 a list of nine necessary properties for X̄L. Our properties globalize the usual
axioms for the Weil group. From now on, we refer to them as Properties (1)–(9). They are all
satisfied by the (naturally defined) Weil-étale topos of a smooth projective curve over a finite
field, and they are in agreement with the work of Deninger (see [3]).

In Sections 4 and 5, we show that Properties (1)–(9) must be satisfied by X̄L under
natural topological assumptions. Our argument is based on the following observation.
The cohomology of the topos X̄L associated to the arithmetic curve X̄ = Spec(OF ), with
coefficients in Z and R̃, must be the same as the one computed in [10] in degrees i ≤ 3 and
must vanish in degrees i ≥ 4. This is necessary in order to obtain the correct cohomological
interpretation (due to Lichtenbaum) of the analytic class number formula. Then we show that
such a topos has, under natural topological assumptions, a well-defined fundamental group
whose abelianization is isomorphic, as a topological group, to the Arakelov–Picard group
Pic(X̄) (see Theorem 4.3). In order to prove this result, we express Pontryagin duality in
terms of sheaves and we use the notion of topological fundamental groups (as a special case
of the fundamental group of a connected and locally connected topos over an arbitrary base
topos with a point). Moreover, this argument also applies to the case of an arbitrary connected
étale X̄-scheme Ū . Here we find that the abelian fundamental group of the slice topos X̄L/Ū

must be topologically isomorphic to the S-idèle class group canonically associated to Ū .
Properties (1)–(9) give a partial description of the conjectural Lichtenbaum topos. This

description, which can be seen as a global version of the axioms for the Weil group (see [16]),
is based on an interpretation of the S-idèle class groups in terms of topological fundamental
groups (see [17]). Section 6 is devoted to the proof of the following result.

THEOREM 1.1. (Lichtenbaum’s formalism) Assume that F is totally imaginary. Let γ :
X̄L→ X̄et be any topos satisfying Properties (1)–(9). We denote by ϕ :XL→ X̄L the natural
open embedding, and we set Hn

c (XL, R̃) :=Hn(X̄L, ϕ!R̃). The following are true.

• Hn(X̄et, τ≤2Rγ∗(ϕ!Z)) is finitely generated, zero for n≥ 4 and the canonical map

Hn(X̄et, τ≤2Rγ∗(ϕ!Z))⊗ R−→Hn
c (XL, R̃)

is an isomorphism for any n≥ 0.

• There exists a fundamental class θ ∈H 1(X̄L, R̃). The complex of finite-dimensional
vector spaces

· · · →Hn−1
c (XL, R̃)→Hn

c (XL, R̃)→Hn+1
c (XL, R̃)→ · · ·

defined by a cup product with θ , is acyclic.
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• Let Bn be a basis of Hn(Xet, τ≤2Rγ∗(ϕ!Z))/tors. The leading term coefficient ζ ∗F (0)
at s = 0 is given by the Lichtenbaum Euler characteristic

ζ ∗F (0)=±
∏
n≥0

|Hn(X̄et, τ≤2Rγ∗(ϕ!Z))tors|(−1)n/det(Hn
c (XL, R̃), θ, B∗).

In [14], we construct a topos (the Weil-étale topos) which satisfies Properties (1)–(9).

2. Preliminaries

2.1. Basic properties of geometric morphisms

Let S and S ′ be two Grothendieck topoi. A (geometric) morphism of topoi

f := (f ∗, f∗) : S ′ −→ S

is defined as a pair of functors (f ∗, f∗), where f ∗ : S→ S ′ is left adjoint to f∗ : S ′ → S
and f ∗ is left exact (i.e. f ∗ commutes with finite projective limits). We can also define such
a morphism as a left exact functor f ∗ : S→ S ′ commuting with arbitrary inductive limits.
Indeed, in this case f ∗ has a uniquely determined right adjoint f∗.

If X is an object of S, then the slice category S/X of objects of S over X is a topos as
well. The base change functor

S −→ S/X
Y �−→ Y ×X

is left exact and commutes with arbitrary inductive limits, since inductive limits are universal
in a topos. We obtain a morphism

S/X −→ S.

Such a morphism is said to be a localization morphism or a local homeomorphism (the
term local homeomorphism is inspired by the case where S is the topos of sheaves on some
topological space). For any morphism f : S ′ → S and any object X of S, there is a natural
morphism

f/X : S ′/f ∗X −→ S/X.

The functor f ∗/X is defined in the obvious way: f ∗/X(Y →X)= (f ∗Y → f ∗X). The direct
image functor f/X,∗ sends Z→ f ∗X to f∗Z ×f∗f ∗X X→X, where X→ f∗f ∗X is the
adjunction map. The morphism f/X is a pull-back of f , in the sense that the square

S ′/f ∗X
f/X

��

��

S/X

��
S ′

f
�� S

is commutative and 2-cartesian. In other words, the 2-fiber productS ′ ×S S/X can be defined
as the slice topos S ′/f ∗X.

A morphism f : S ′ → S is said to be connected if f ∗ is fully faithful. It is locally
connected if f ∗ has an S-indexed left adjoint f! (see [8, C3.3]). These definitions generalize
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the usual ones for topological spaces: if T is a topological space, consider the unique
morphism Sh(T )→ Sets, where Sh(T ) is the category of étale spaces over T . For example, a
localization morphism S/X→ S is always locally connected (here f!(Y →X)= Y ), but is
connected if and only if X is the final object of S.

A morphism f : S ′ → S is said to be an embedding when f∗ is fully faithful. It is an
open embedding if f factor through f : S ′ 
 S/X→ S, where X is a subobject of the final
object of S. Then the essential image U of the functor f∗ is said to be an open subtopos
of S. The closed complement F of U is the strictly full subcategory of S consisting of objects
Y such that Y ×X is the final object of U (i.e. f ∗Y is the final object of S ′). A closed
subtopos F of S is a strictly full subcategory which is the closed complement of an open
subtopos. A morphism of topoi i : E → S is said to be a closed embedding if i factors through
i : E 
 F → S, where F is a closed subtopos of S.

A subtopos of S is a strictly full subcategory S ′ of S such that the inclusion functor
i : S ′ ↪→ S is the direct image of a morphism of topoi (i.e. i has a left exact left adjoint).
A morphism f : S ′ → S is said to be surjective if f ∗ is faithful. Any morphism f : E → S
can be decomposed as a surjection E → Im(f ) followed by a an embedding Im(f )→ S,
where Im(f ) is a subtopos of S, which is called the image of f (see [7, IV. 9.1.7.2]).

2.2. The topos T of locally compact topological spaces

We denote by Top the category of locally compact Hausdorff topological spaces and
continuous maps. This category is endowed with the open cover topology Jop, which is
generated by the following pretopology: a family of morphisms (Xα →X)α∈A is in Cov(X)
if and only if (Xα →X)α∈A is an open cover in the usual sense. We denote by T the topos
of sheaves of sets on this left exact site:

T := ˜(Top, Jop).

The family of compact spaces is easily seen to be a topologically generating family for
the site (Top, Jop). Indeed, if X is a locally compact space, then any x ∈X has a compact
neighborhoodKx ⊆X, so (Kx ↪→ X)x∈X is a local section cover, hence a covering family for

Jop. In particular, if we denote by Topc the category of compact spaces, then T = ˜(Topc, Jop).
The Yoneda functor

y : Top −→ T
X �−→ y(X)= HomTop(−, X),

which sends a space X to the sheaf represented by X, is fully faithful (since Jop is
subcanonical) and commutes with arbitrary projective limits. Since the Yoneda functor is
left exact, any locally compact topological group G represents a group object of T . In what
follows we consider Top as a (left exact) full subcategory of T . For example, the sheaf of T
represented by a (locally compact Hausdorff) space Z is sometimes also denoted by Z.

In this paper, we consider topoi defined over the topos of locally compact spaces since
all sheaves, cohomology groups and fundamental groups that we use are defined by locally
compact spaces. In order to use non-locally compact coefficients, we can consider the topos

T ′ := ˜(Toph, Jop),
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where Toph is the category of Hausdorff spaces. Then for any topos E (connected and locally
connected) over T , we consider the base change E ×T T ′ to obtain a (connected and locally
connected) topos over T ′.

2.3. The classifying topos of a group object

For any topos S and any group object G in S, we denote by BG the category of (left)
G-objects in S. Then BG is a topos, as it follows from Giraud’s axioms, and BG is endowed
with a canonical morphism BG → S, whose inverse image functor sends an object F of S to
F with trivial G-action. If there is a risk of ambiguity, we denote the toposBG by BS (G). The
topos BG is said to be the classifying topos of G since it classifies G-torsors. More precisely,
for any topos f : E → S over S, the category HomtopS (E, BG) is equivalent to the category
of f ∗G-torsors in E (see [7, IV. Exercise 5.9]).

2.3.1. The classifying topos of a profinite group. Let G be a discrete group, i.e. a group
object of the final topos Sets. We denote the category of G-sets by

Bsm
G := BSets(G).

The topos Bsm
G is called the small classifying topos of the discrete group G.

If G is a profinite group, then the small classifying topos Bsm
G is defined as the category

of sets on which G acts continuously.

2.3.2. The classifying topos of a topological group. Let G be a locally compact (hence

Hausdorff) topological group. ThenG represents a group object of T , where T := ˜(Top, Jop)

is defined above. Then
BG := BT (G)

is the classifying topos of the locally compact topological group G. We can define the
classifying topos of an arbitrary topological group by enlarging the topos T .

2.3.3. Topological pro-groups. In this paper, a filtered category I is a non-empty small
category such that the following holds. For any objects i and j of I , there exists a third object
k and maps i← k→ j . For any pair of maps i ⇒ j there exists a map k→ i such that the
diagram k→ i ⇒ j is commutative. Let C be any category. A pro-object of C is a functor
X : I → C, where I is a filtered category. We can see a pro-object in C as a diagram in C. We
can define the category Pro(C) of pro-objects in C (see [7, I. 8.10]). The morphisms in this
category can be made explicit as follows. Let X : I → C and Y : J → C be two pro-objects
in C. Then we have

HomPro(C)(X, Y ) := lim←−j∈J lim−→i∈I Hom(Xi, Yj ).

A pro-object X : I → C is constant if it is a constant functor, and X : I → C is essentially
constant if X is isomorphic (in the category Pro(C)) to a constant pro-object.

Definition 2.1. A locally compact topological pro-group G is a pro-object in the category of
locally compact and Hausdorff topological groups. A locally compact topological pro-group
is said to be strict if any transition map Gj →Gi has local sections.
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If the category C is a topos, then a pro-object X : I → C in C is said to be strict when
the transition map Xi →Xj is an epimorphism in C for any i→ j ∈ F l(I). In particular,
a locally compact topological pro-group G : I → Gr(Top) pro-represents a strict pro-group
object in T :

y ◦G : I → Gr(Top)→ Gr(T ),

where Gr(Top) and Gr(T ) are the categories of group objects in Top and T respectively.
Indeed, a continuous map of locally compact spaces Xi →Xj has local sections if and only
if it induces an epimorphism y(Xi)→ y(Xj ) in T . Topos theory provides a natural way to
define the limit of a strict topological pro-group without any loss of information.

Definition 2.2. The classifying topos of a locally compact strict pro-group G : I → Gr(Top)
is defined as

BG := lim←−IBGi ,

where the projective limit is computed in the 2-category of topoi.

2.4. The Arakelov–Picard group

Let F be a number field and let X∞ be the set of archimedean places of F . We denote by
X̄ = (Spec OF , X∞) the Arakelov compactification of the ring of integers in F . We consider
the idèle group IF and the idèle class group CF of F . For any place v of F , we denote by
Fv the corresponding local field and by O×

Fv
the group of local units, i.e. the kernel of the

absolute value K×
v →R>0. Note that we have O×

Fv
= S1 for v complex and O×

Fv
= {±1} for

v real. The group O×
Fv

is always compact. The Arakelov–Picard group Pic(X̄) is defined as

the cokernel, endowed with the quotient topology, of the continuous map
∏

v O
×
Fv
→ CF . For

any place v, the map F×v → CF induces a continuous morphism

Wk(v) := F×v /O×
Fv
−→ Pic(X̄), (1)

where Wk(v) is the Weil group of the ‘residue field k(v)’ at v ∈ X̄. The absolute value CF →
R>0 factors through Pic(X̄). We obtain a canonical continuous morphism Pic(X̄)→R>0

endowed with a continuous section. The Arakelov class group Pic1(X̄) is the kernel of this
map. In other words, we have an exact sequence of topological groups

0→ Pic1(X̄)→ Pic(X̄)→R>0 → 0.

3. Pontryagin duality and topological fundamental groups

3.1. Pontryagin duality

Let X and Y be two objects in a topos E . There exists an internal Hom-object HomE (X, Y )
in E such that there is a functorial isomorphism

Hom(Z, HomE (X, Y ))
 Hom(Z ×X, Y )= HomE/Z (Z ×X, Z × Y ) (2)

for any object Z of E . Indeed, the (base change) functor Z→ Z ×X commutes with
(arbitrary) inductive limits since inductive limits are universal in the topos E . Therefore, the
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contravariant functor
E −→ Set
Z �−→ HomE (Z ×X, Y )

sends inductive limits in E to projective limits in Set. Hence this presheaf on E is a sheaf for
the canonical topology. Since the sheaves on a topos endowed with the canonical topology
are all representable, this functor is representable by an object HomE (X, Y ) of E . If G and A
are both group objects in E such that A is abelian, then we denote by HomE (G, A) the group
object of E given by

E −→ Ab
Z �−→ HomGr(E/Z)(Z ×G, Z ×A),

where Ab and Gr(E/Z) denote respectively the category of (discrete) abelian groups and the
category of group objects of the slice topos E/Z.

Let T be the topos of sheaves on the site (Top, Jop), where Top is the category Hausdorff
locally compact topological spaces and continuous maps endowed with the open cover
topology Jop. Recall that the Yoneda functor

y : Top −→ T
X �−→ y(X)= HomTop(−, X)

sending a topological space to the sheaf represented by this space is fully faithful and
commutes with arbitrary projective limits.

Let X and Y be two Hausdorff locally compact topological spaces. We denote by
HomTop(X, Y ) the set of continuous maps from X to Y endowed with the compact-open
topology. This topological space is Hausdorff and locally compact. Then the sheaf of T
represented by HomTop(X, Y ) is precisely the internal object HomT (y(X), y(Y )) defined
above, since HomTop(X, Y ) satisfies (2). Indeed, we have

HomTop(Z ×X, Y )= HomTop(Z, HomTop(X, Y ))

for any Hausdorff topological spaces Z. Hence the sheaf HomT (y(X), y(Y )) is represented
by HomTop(X, Y ), i.e. we have a canonical isomorphism in T :

HomT (y(X), y(Y ))= y(HomTop(X, Y )).

If G and A are two Hausdorff locally compact topological groups such that A is abelian
then the abelian group of continuous morphisms HomTop(G, A) is also endowed with the
compact-open topology, and we have

HomT (y(G), y(A))= y(HomTop(G, A)).

Note that y(G) and y(A) are two group objects in T since the Yoneda functor y commutes
with finite projective limits.

Definition 3.1. Let G be a group object of T . We denote by GD the internal Hom-group-
object of T :

GD := HomT (G, y(S1)),

where S1 is endowed with its standard topology. If A is an abelian object of T , then the
abelian object AD is said to be the dual of A.
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For any group object G of T , there is a canonical morphism

dG : G −→ GDD. (3)

The discussion above shows that if G = y(G) is represented by a locally compact abelian
topological group G, then y(G)D is represented by the usual Pontryagin dual GD :=
HomTop(G, S1) of G, endowed with the compact-open topology. Therefore, the following
result is given by Pontryagin duality for Hausdorff locally compact abelian groups.

THEOREM 3.2. Let A be an abelian object of T representable by an abelian Hausdorff
locally compact topological group. Then we have a canonical isomorphism

dA :A
ADD.

COROLLARY 3.3. If y(G) is a group of T represented by a Hausdorff locally compact
topological group G, then we have

y(G)DD 
 y(Gab),

where Gab is the maximal Hausdorff abelian quotient of G.

Proof. Using Theorem 3.2, the result follows from

y(G)D = y(GD)= y((Gab)D)= y(Gab)D

since Gab is Hausdorff and locally compact. �

3.2. Fundamental groups

Let S be a topos and let t : E → S be a connected and locally connected topos over S (i.e. t∗
is fully faithful and has an S-indexed left adjoint, see [8, C3.3]). An objectL of E is said to be
locally constant over S if there exists a covering morphism U → eE of the final object of E ,
an object S of S and an isomorphism L× U 
 f ∗S × U over U . The object U is then said
to split or trivialize L. Let LC(E) be the full subcategory of E consisting of locally constant
objects of E over S. We denote by SLC(E) the category of (internal) sums of locally constant
objects (see [2, Section 2] for an explicit definition). The category SLC(E) is a topos and we
have a canonical connected morphism

E → SLC(E), (4)

whose inverse image is the inclusion SLC(E) ↪→ E . The fact that this morphism is connected
means that its inverse image is fully faithful, which is obvious here. Note that this morphism
is defined over S.

Assume that the S-topos E has a point p, i.e. a section p : S→ E of the structure map
t : E → S. Composing p and the morphism (4), we obtain a point

p̃ : S→ E → SLC(E)

of the topos SLC(E) over S. The theory of the fundamental group in the context of topos
theory shows the following (see [11] and [2, Section 1]). There exists a ‘pro-discrete localic
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group’ G in S well defined up to a canonical isomorphism and an equivalence

BG 
 SLC(E),

where BG is the classifying topos of G, i.e. the topos of G-objects in S. Moreover, the
equivalence above identifies the inverse image of the point p̃ : S→ SLC(E)with the forgetful
functor BG→ S.

The topos E is said to be locally simply connected over S if there exists one covering
morphism U → eE trivializing all locally constant objects in E . In this case we have
SLC(E)= LC(E), and the pro-discrete localic group G is just a group object of S (see [1]
or [2, Section 1]). We denote this group object by π1(E, p). We get a connected morphism

E −→ LC(E)
 Bπ1(E,p) (5)

over S, i.e. a commutative diagram.

E ��

����
��

��
��

��
Bπ1(E,p)

��
S

The morphism (5) into the classifying topos Bπ1(E,p) corresponds to a torsor in E of group
π1(E, p), which is called the universal cover of E over S.

Definition 3.4. Let A be an abelian object of E . We define the cohomology of E with value in
S as

Hn
S(E,A)= Rn(t∗)A.

The fundamental group represents the first cohomology group over an arbitrary base
topos. More precisely, we have the following result.

PROPOSITION 3.5. Let E be a connected, locally connected and locally simply connected
topos over S endowed with a point p. For any abelian object A of S, t∗A is a constant
abelian object of E over S and we have

H 1
S (E, t

∗A)
 HomS(π1(E, p),A),

where the right-hand side is the internal Hom-group-object in S defined as above.

3.2.1. Examples. Let X be a Hausdorff topological space. We denote by Sh(X) the topos
of sheaves of sets on X. There exists a unique map

t : Sh(X)→ Set.

The topological space X is connected if and only if t is connected (i.e. if t∗ is fully faithful).
Let F be a sheaf on X (i.e. an étale space F̃ →X). If X is locally connected then F̃ is
locally connected and F̃ is the coproduct in Sh(X) of its connected components. The functor
F → π0(F̃ ) is left adjoint to t∗ hence t is a locally connected map of topoi. Conversely, if t
is a locally connected map then X is locally connected as a topological space. A sheaf F on
X is locally constant if and only if F̃ →X is an étale cover. Assume that X is locally simply
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connected and let {Ui ⊆X, i ∈ I } be an open covering such that Ui is simply connected.
Then any locally constant sheaf on X is trivialized by U :=∐ Ui →X. A point x ∈X yields
a morphism px : Set→ Sh(X) (and conversely). The inverse image of this morphism is the
stalk functor F → Fx . The category LC(Sh(X)) is precisely the category of étale covers of X
and the group π1(Sh(X), px) is the usual fundamental group π1(X, x). In this special case,
the equivalence of categories

LC(Sh(X)) −→ Bπ1(X, x)

F �−→ Fx

is the usual Galois theory for topological spaces. Here Bπ1(X, x) is the classifying topos of
the discrete group π1(X, x), i.e. the category of π1(X, x)-sets.

Let S be a topos and let G be a group of S. We denote by BG the topos of G-objects
in S. The canonical morphism

t : BG −→ S

is connected, locally connected and locally simply connected. Indeed, t is connected since
t∗ is obviously fully faithful. Moreover, t is locally connected since t∗ has a S-indexed left
adjoint given by the quotient functor

t!F = F/G := lim−→(G× F ⇒ F).

Note that the inductive limit or coequalizer lim−→(G× F ⇒ F), where the maps are given by
multiplication and projection, always exists in the topos S. Finally, EG→ {∗} trivializes
any object, hence t is locally simply connected. There is a canonical point p : S→ BG,
whose inverse image is the forgetful functor. In this case, the inclusion LC(BG) ↪→ BG is
an equivalence (in fact an isomorphism) and the fundamental group π1(BG, p) is G.

3.2.2. Topological fundamental groups. Let t : E → T be a connected and locally
connected topos over T endowed with a T -valued point p. The fundamental group π1(E, p)
will be called the topological fundamental group of E .

COROLLARY 3.6. Let t : E → T be a connected, locally connected and locally simply
connected topos over T endowed with a T -valued point p. Let yS1 be the sheaf of T
represented by the standard topological group S1, and define S̃1 := t∗yS1. We have

H 1
T (E, S̃1)
 π1(E, p)D.

If π1(E, p) is represented by a locally compact group, then H 1
T (E, S̃1) is represented by the

usual Pontryagin dual π1(E, p)D and we have

H 1
T (E, S̃1)D 
 π1(E, p)DD = π1(E, p)ab,

where π1(E, p)ab is the maximal abelian Hausdorff quotient of π1(E, p).

Proof. This follows from Proposition 3.5, Definition 3.1 and Corollary 3.3. �
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4. Application to the arithmetic fundamental group

Let X̄ = (Spec OF , X∞) be the Arakelov compactification of the ring of integers in a number
field F . Following the computations of Lichtenbaum (see [10]), we are looking for a topos
X̄L defined over T whose cohomology is related the Dedekind zeta function ζF (s). This
conjectural topos X̄L will be called the conjectural Lichtenbaum topos. The topos X̄L should
be defined over T , since the coefficients for this conjectural cohomology theory should
contain the category of locally compact abelian topological groups. If we denote by

t : X̄L −→ T

the structure map, then we define the sheaf of continuous real valued functions R̃ to be
t∗(yR), where yR is the abelian object of T represented by the standard topological group R.

Following the computations of Lichtenbaum, the cohomology of X̄L must satisfy

Hi(X̄L, Z)= Z, 0, Pic1(X̄)D for i = 0, 1, 2 respectively, (6)

and
Hi(X̄L, R̃)= R,R, 0 for i = 0, 1, 2 respectively. (7)

Recall that for any (Grothendieck) topos E , there is a unique morphism e : E → Set. The
cohomology of the topos E with coefficients in A is defined by

Hn(E,A) := Rn(e∗)A.

Since the base topos of the topos X̄L is T instead of Set, it is natural to consider the
cohomology of X̄W with value in T . More precisely, the category T is thought of as a universe
of sets, and we define

Hn
T (X̄L,A) := Rn(t∗)A

for any abelian object A of X̄L. The unique morphism T → Sets is strongly acyclic (i.e. its
direct image is exact) and this point of view is inoffensive. We should have

Hi
T (X̄L, Z)= Z, 0, Pic1(X̄)D for i = 0, 1, 2 respectively, (8)

where Z and Pic1(X̄)D are the sheaves of T represented by the discrete abelian groups Z and
Pic1(X̄)D . Respectively, the T -cohomology of X̄L with value in R̃ should be given by

Hi
T (X̄L, R̃)= y(R), y(R), 0 for i = 0, 1, 2 respectively, (9)

where y(R) is the abelian object of T represented by the standard topological group R.

Hypothesis 4.1. The topos X̄L is connected, locally connected, locally simply connected over
T , and endowed with a point p : T → X̄L.

It is natural to expect that X̄L is connected and locally connected over T . A point
p : T → X̄L should be given by any valuation of the number field F . However, it is not
clear that X̄L should be locally simply connected over T (for example, X̄et is not locally
simply connected over Sets in general). But this assumption can be avoided using the more
advanced notion of localic groups (or pro-groups). We make this assumption to simplify the
following computations.

Hypothesis 4.2. The cohomology of X̄L with value in T satisfies (8) and (9).
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4.1. The abelian arithmetic fundamental group

THEOREM 4.3. Let X̄L be a topos over T satisfying Hypotheses 4.1 and 4.2. Then we have
an isomorphism of topological groups

π1(X̄L, p)
DD 
 Pic(X̄),

where Pic(X̄) denotes the Arakelov–Picard group of the number field F . In particular,
if π1(X̄L, p) is represented by a locally compact topological group, then we have an
isomorphism of topological groups

π1(X̄L, p)
ab 
 Pic(X̄).

Proof. By Hypothesis 4.1 and Section 3.2, the fundamental group π1(X̄L, p) is well defined
as a group object of T . The basic idea is to use Corollary 3.6 to recover the abelian
fundamental group. We have

H 1
T (X̄L,A)= HomT (π1(X̄L, p),A)

for any abelian object A of T . The exact sequence of topological groups

0→ Z→ R→ S1 → 0

induces an exact sequence
0→ Z→ R̃→ S̃1 → 0

of abelian sheaves in X̄L, where S̃1 denotes t∗(y(S1)). Consider the induced long exact
sequence of T -cohomology

0=H 1
T (X̄L, Z)→H 1

T (X̄L, R̃)→H 1
T (X̄L, S̃1)→H 2

T (X̄L, Z)→H 2
T (X̄L, R̃)= 0.

We obtain an exact sequence in T :

0→ R→H 1
T (X̄L, S̃1)→ Pic1(X̄)D → 0.

It follows that

H 1
T (X̄L, S̃1)= HomT (π1(X̄L, p), y(S1))= π1(X̄L, p)

D

is representable by an abelian Hausdorff locally compact topological group. Indeed,
H 1
T (X̄L, S̃1) is representable locally on Pic1(X̄)D . But Pic1(X̄)D is discrete (recall that

Pic1(X̄) is compact) and the Yoneda embedding y : Top→ T commutes with coproducts
(see [4, Corollary 1]), hence the sheaf H 1

T (X̄L, S̃1) is representable by a topological space T .
The functor y : Top→ T is fully faithful and commutes with finite projective limits. Hence
the space T is endowed with a structure of an abelian topological group since y(T )=
H 1
T (X̄L, S̃1) is an abelian object of T . The connected component of the identity in T is

isomorphic to R, since Pic1(X̄)D is discrete. Hence T is Hausdorff and locally compact.
Therefore π1(X̄L, p)

DD = y(T D) is representable by an abelian Hausdorff locally compact
topological group as well.

By Pontryagin duality, we obtain the exact sequence in T ,

0→ Pic1(X̄)→ π1(X̄L, p)
DD → R→ 0. (10)
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LEMMA 4.4. We have Hn(BR, Pic1(X̄))= 0 for any n≥ 2.

Proof. Let r1 and r2 be the sets of real and complex places of the number field F , respectively.
We have the exact sequence of topological groups (with trivial R-action)

0→ Rr1+r2−1/log(O×
F /μF )→ Pic1(X̄)→ Cl(F )→ 0,

where log(O×
F /μF ) denotes the image of the logarithmic embedding of the units modulo

torsion O×
F /μF in the kernel Rr1+r2−1 of the sum map � : Rr1+r2 → R. The class group

Cl(F ) is finite hence we have Hn(BR, Cl(F ))= 0 for any n≥ 1 (see [4, Proposition 9.6]).
Hence we have

Hn(BR, Rr1+r2−1/log(O×
F /μF ))
Hn(BR, Pic1(X̄))

for any n≥ 1. Now consider the exact sequence

0→O×
F /μF → Rr1+r2−1 → Rr1+r2−1/log(O×

F /μF )→ 0.

We have Hn(BR,O×
F /μF )= 0 for any n≥ 1, since O×

F /μF is discrete (see [4,
Proposition 9.6]). We obtain

Hn(BR, Pic1(X̄))=Hn(BR, Rr1+r2−1/log(O×
F /μF ))=Hn(BR, Rr1+r2−1)= 0

for any n≥ 2 (again, see [4, Proposition 9.6]). �

In particular H 2(BR, Pic1(X̄))= 0, hence (see [6, VIII Proposition 8.2]) the
extension (10) of abelian groups in T is isomorphic to the exact sequence

0→ Pic1(X̄)→ Pic(X̄)→ R→ 0,

where Pic(X̄)→ R is the canonical continuous morphism. In particular there is an
isomorphism π1(X̄L, p)

DD 
 Pic(X̄) in T . This shows that π1(X̄L, p)
DD and Pic(X̄) are

isomorphic as topological groups, since y : Top→ T is fully faithful. The last claim of the
theorem then follows from Corollary 3.3. �

4.2. The morphism flow and the fundamental class

COROLLARY 4.5. Let X̄L be a topos over T satisfying Hypotheses 4.1 and 4.2. Then there
is a canonical morphism over T ,

π : X̄L −→ BPic(X̄). (11)

In particular, there is a canonical morphism

f : X̄L −→ BR. (12)

Proof. There is a morphism X̄L→ Bπ1(X̄L,p)
over T (the universal cover defined by the point

p). Composing with the morphism of the classifying topos induced by the map (see (3))

π1(X̄L, p)−→ π1(X̄L, p)
DD 
 Pic(X̄),

we get the morphism π . Note that (11) does not depend on p since π1(X̄L, p)
DD is abelian.

The morphism f is then given by the canonical morphism of topological groups

Pic(X̄)−→R,
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or (more directly) by the Pontryagin dual of the map

R=H 1
T (X̄L, R̃)−→H 1

T (X̄L, S̃1)= π1(X̄L, p)
D. �

COROLLARY 4.6. Let X̄L be a topos over T satisfying Hypotheses 4.1 and 4.2. Then there
is a fundamental class θ ∈H 1(XL, R̃). If the fundamental group π1(X̄L, p) is representable
by a locally compact group, then

θ ∈H 1(XL, R̃)= Homcont(Pic(X̄), R)

is the canonical continuous morphism θ : Pic(X̄)→ R.

Proof. The canonical map π : X̄L→ BPic(X̄) induces a map

π∗ :H 1(BPic(X̄), R̃)−→H 1(X̄L, R̃).

The direct image of the unique map T → Sets is exact, hence we have

H 1(BPic(X̄), R̃)=H 0(T , H 1
T (BPic(X̄), R̃))= HomTop(Pic(X̄), R).

Therefore, the usual continuous morphism α : Pic(X̄)→ R is a distinguished element
α ∈H 1(BPic(X̄), R̃). We define the fundamental class as

θ := π∗(α) ∈H 1(X̄L, R̃).

Note that the fundamental class ϕ can also be defined by

θ := f∗(IdR) ∈H 1(X̄L, R̃),

where IdR is the distinguished non-zero element of H 1(BR, R̃)= HomTop(R,R).
Finally, if the fundamental group π1(X̄L, p) is representable by a locally compact group,

then the map
π∗ :H 1(BPic(X̄), R̃)−→H 1(X̄L, R̃)

is an isomorphism, and θ can be identified with α. Indeed, Theorem 4.3 yields in this case
that

H 1(X̄L, R̃)= Homcont(π1(X̄L, p), R)

= Homcont(π1(X̄L, p)
ab, R)

= Homcont(Pic(X̄), R). �

4.3. The fundamental group and unramified class field theory

There exist complexes RW(ϕ!Z) and RW(Z) of sheaves on the Artin–Verdier étale topos
whose hypercohomology is the conjectural Lichtenbaum cohomology with and without
compact support respectively (see [13]). This suggests the existence of a canonical morphism
of topoi

γ : X̄L −→ X̄et

such that Rγ∗Z= RW(Z), where X̄et denotes the Artin–Verdier étale topos of X. On the one
hand, the complex RW(Z) yields a canonical map

Hn(X̄et, Z)−→Hn
L(X̄, Z)
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for any n≥ 0. In degree n= 2, this map

Pic(X)D = (π1(X̄et)
ab)D =H 2(X̄et, Z)−→H 2

L(X̄, Z) := Pic1(X̄)D (13)

is the dual map of the canonical morphism Pic1(X̄)→ Pic(X)= Cl(F ). On the other hand,
the morphism γ would induce a morphism of abelian fundamental groups

π1(X̄L, p)
DD −→ π1(X̄et, q)

DD 
 π1(X̄et)
ab, (14)

where q is a geometric point of X̄ such that the following diagram commutes.

X̄L

γ
�� X̄et

T
eT ��

p

��

Sets

q

��

Note that q is uniquely determined by p since the unique map eT : T → Sets has a canonical
section s (see [7, IV. 4.10]). Indeed, we have eT ◦ s = Id hence

q 
 q ◦ eT ◦ s 
 γ ◦ p ◦ s. (15)

The map (14) needs to be compatible with the canonical map (13). In other words, the
following morphism should be the reciprocity map of class field theory:

Pic(X̄)
 π1(X̄L, p)
DD −→ π1(X̄et)

ab. (16)

More precisely, the diagram

Pic(X̄) ��

��

Pic(X)= Cl(F )

��

π1(X̄L, p)
DD

(14)
�� π1(X̄et)

ab

should be commutative, where Pic(X̄)→ Pic(X)= Cl(F ) is the canonical map, Cl(F )→
π1(X̄et)

ab is the isomorphism of unramified class field theory and Pic(X̄)→ π1(X̄L, p)
DD is

the isomorphism defined in Theorem 4.3.

4.4. The fundamental group and the closed embedding iv

For any closed point v of X̄, i.e. any non-trivial valuation of the number field F , we denote
by Wk(v) := F×v /O×

Fv
the Weil group of the residue field k(v) at v, where O×

Fv
is the kernel

of the valuation F×v → R×.
Let U ⊆X be an open sub-scheme. The conjectural Lichtenbaum cohomology with

compact support is defined as (see the Introduction of [10]):

H ∗
c (U,A) :=H ∗(X̄L, ϕ!A),

where
ϕ : UL := X̄L/γ

∗U −→ X̄L
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is the canonical open embedding. Consider the exact sequence

0→ ϕ!ϕ∗A→A→ i∗i∗A→ 0, (17)

where i : F→ X̄L is the embedding of the closed complement of the open subtopos
ϕ : UL→ X̄L. The morphism i is a closed embedding so that i∗ is exact. We obtain

Hn(F, i∗A)=Hn(X̄L, i∗i∗A). (18)

Using (17) and (18), we see that the conjectural Lichtenbaum cohomology with and without
compact support determines the cohomology of the closed sub-topos F (with coefficients in
Z and R̃), and we find

H ∗(F, i∗A)=H ∗(F,A)=H ∗
( ∐
v∈X̄−U

BWk(v)
,A
)

for A= Z and A= R̃. This suggests the existence of an equivalence

F 

∐

v∈X̄−U
BWk(v)

. (19)

The equivalence (19) is indeed satisfied (see [12, Chapter 7]) by the Weil-étale topos in
characteristic p (which is the correct Lichtenbaum topos in this case). Moreover, (19) is also
predicted by Deninger’s program (see [12, Chapter 9]). Hence the equivalence (19) should
hold. Using [7, IV. Corollary 9.4.3], [13, Proposition 6.2] and the universal property of sums
of topoi, we can prove that (19) is equivalent to the existence of a pull-back diagram of topoi:

BWk(v)

iv

��

�� Bsm
Gk(v)

uv

��

X̄L

γ
�� X̄et

for any v not in U . For an ultrametric place v, the morphism

uv : Bsm
Gk(v)


 Spec(k(v))et −→ X̄et

is defined by the scheme map v→ X̄ (see [13, Proposition 6.2]) and by a geometric point
of X̄ over v. If v is archimedean, Gk(v) = {1} and uv : Sets→ X̄et is the point of the étale
topos corresponding to v ∈ X̄. In particular, for any closed point v of X̄, we have a closed
embedding of topoi

iv : BWk(v)
−→ X̄L, (20)

where BWk(v)
is the classifying topos of Wk(v). For any closed point v of X̄, the composition

BWk(v)
−→ X̄L −→ BPic(X̄)

should be the morphism of classifying topoi BWk(v)
→ BPic(X̄) induced by the canonical

morphism of topological groups (see (1))

Wk(v) −→ Pic(X̄).
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Finally, the existence of the morphism (20) is also suggested by the following argument.
For an ultrametric place v, BWk(v)

is the Lichtenbaum topos of Spec(k(v)). Hence the
existence of the morphism (20) follows from the fact that the map

X̄ � X̄L,

sending a (regular) arithmetic scheme to the topos of sheaves on the Grothendieck site
conjectured in [10], should be a pseudo-functor from the category of (regular) arithmetic
schemes to the 2-category of topoi.

5. Expected properties of the conjectural Lichtenbaum topos

The conjectural Lichtenbaum cohomology is in fact known for any étale X̄-scheme Ū , and
the arguments of the previous section give the value of the abelian arithmetic fundamental
group of Ū . More precisely, we should have

π1(ŪL, pŪ )
DD 
 CŪ ,

where CŪ is the S-idèle class group naturally associated to Ū (see (21) below). Moreover, the
study of the complexes RW(Z) and RW(R̃) defined in [13] yields the functorial behavior of
these isomorphisms. The relation between the arithmetic fundamental group and the étale
fundamental group is given by the natural maps between étale cohomology groups and
conjectural Lichtenbaum cohomology groups (see Section 4.3). Finally, the structure of the
conjectural Lichtenbaum topos at the closed points is dictated by the conjectural Lichtenbaum
cohomology with compact support (see Section 4.4). Putting those facts together, we obtain a
(partial) description of the conjectural Lichtenbaum topos. This description is also suggested
by our previous study of the Weil-étale topos in characteristic p (see [12, Chapter 8]) and by
the work of Deninger (see [12, Chapter 9]).

5.1. Notation

We refer to [13] for the definition of the Artin–Verdier étale site of X̄ = Spec(OF ). The
Artin–Verdier étale topos X̄et is the category of sheaves of sets on the Artin–Verdier étale
site. Let Ū = (Spec OK,S0, U∞) be a connected étale X̄-scheme then we consider the S-idèle
class group of K endowed with the quotient topology:

CŪ := CK,S = coker

(∏
w∈Ū

O×
Kw
→ CK

)
. (21)

Here S is the set of places of K not corresponding to a point of Ū , Kw is the completion of K
at the place w and O×

Kw
is the kernel of the valuation K×

w →R×. Note that CŪ is a Hausdorff

locally compact group canonically associated to Ū .
We define the Weil group Wk(w) of the ‘residue field k(w)’ at any closed point w of Ū as

Wk(w) :=K×
w /O×

Kw
.

For any closed point w ∈ Ū , the map K×
w → CK induces a continuous morphism

Wk(w) :=K×
w /O×

Kw
−→ CŪ . (22)
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Note that we have Wk(w) 
 Z for w ultrametric and Wk(w) 
 R×+ for w archimedean. We
denote by Gk(w) :=Dw/Iw the Galois group of the residue field k(w), where Dw and Iw are,
respectively, the decomposition and the inertia subgroups of GK at w. Hence Gk(w) is the
trivial group for w archimedean. There is a canonical morphism

Wk(w) −→Gk(w) (23)

for any closed point w ∈ Ū . We consider the big classifying topos BWk(w)
and the small

classifying topos Bsm
Gk(w)

, i.e. the category of continuous Gk(w)-sets. In particular, Bsm
Gk(w)

is
just the final topos Sets for w archimedean. The map (23) induces a morphism of toposes:

αv : BWk(w)
−→ Bsm

Gk(w)
.

We denote by T the topos of sheaves on the site (Top, Jop), where Top is the category
of Hausdorff locally compact spaces endowed with the open cover topology. If we need
to use constant sheaves represented by non-locally compact spaces, then we can define
T ′ := (Toph, Jop), where Toph is the category of Hausdorff spaces, and consider the base
change

X̄L ×T T ′

to obtain a connected and locally connected topos over T ′.
Finally, if G is a strict pro-group object of T given by a covariant functor G : I → Gr(T )

where Gr(T ) denotes the category of groups in T and I is a small filtered category. We
consider the pro-abelian group object GDD of T defined as the composite functor

(−)DD ◦ G : I −→ Gr(T )−→ Ab(T ).

Let t : E → T be a connected and locally connected topos over T , i.e. t is a connected
and locally connected morphism. In particular, t∗ has a left adjoint t!. An objectX of E is said
to be connected over T if t!X is the final object of T . A T -point of E is a section s : T → E
of the structure map t , i.e. t ◦ s is isomorphic to IdT .

5.2. Expected properties

(1) The conjectural Lichtenbaum topos X̄L should be naturally associated to X̄. There
should be a canonical connected morphism from X̄L to the Artin–Verdier étale topos:

γ : X̄L −→ X̄et.

(2) The conjectural Lichtenbaum topos X̄L should be defined over T . The structure map

t : X̄L −→ T

should be connected and locally connected, and X̄L should have a T -point p. For any
connected étale X̄-scheme Ū , the object γ ∗Ū of X̄L should be connected over T .
It follows that the slice topos

ŪL := X̄L/γ
∗Ū −→ X̄L −→ T

is connected and locally connected over T , for any connected étale X̄-scheme Ū , and
has a T -point

pŪ : T −→ ŪL.
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Then the fundamental group π1(ŪL, pŪ ) is well defined as a prodiscrete localic group
in T . Moreover, π1(ŪL, pŪ ) should be pro-representable by a locally compact strict
pro-group, and we consider this fundamental group as a locally compact pro-group. By
Corollary 3.3, we have

π1(ŪL, pŪ )
DD = π1(ŪL, pŪ )

ab = π1(ŪL)
ab.

We have a canonical connected morphism

ŪL := X̄L/γ
∗Ū −→ X̄et/Ū = Ūet

inducing a morphism

ϕŪ : π1(ŪL, pŪ )−→ π1(Ūet, qŪ ),

where qŪ is defined by pŪ as in (15). We obtain a morphism

ϕDD
Ū
: π1(ŪL)

ab = π1(ŪL, pŪ )
DD −→ π1(Ūet, pŪ )

DD = π1(Ūet)
ab.

(3) We should have a canonical isomorphism

rŪ : CŪ 
 π1(ŪL)
ab

such that the composition

ϕDD
Ū
◦ rŪ : CŪ 
 π1(ŪL)

ab −→ π1(Ūet)
ab

is the reciprocity law of class field theory. This reciprocity morphism is defined by the
topological class formation

(π1(Ūet, qŪ ), lim−→ CV̄ ),

where V̄ runs over the filtered system of pointed étale cover of (Ū , qŪ ) (see [15,
Proposition 8.3.8] and [15, Theorem 8.3.12]).

(4) The isomorphism rŪ should be covariantly functorial for any map f : V̄ → Ū of
connected étale X̄-schemes. More precisely, such a map induces a morphism of
toposes:

fL : V̄L := X̄L/V̄ −→ ŪL := X̄L/Ū

hence a morphism of abelian pro-groups in T ,

f̃L : π1(V̄L)
ab −→ π1(ŪL)

ab.

Then the following diagram should be commutative:

π1(V̄L)
ab

rV̄ ��

f̃L
��

CV̄

N

��
π1(ŪL)

ab
rŪ �� CŪ

where N is induced by the norm map.
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(5) For any Galois étale cover V̄ → Ū (of étale X̄-schemes), the conjugation action on
π1(V̄L)

ab should correspond to the Galois action on CV̄ . In other words, the following
diagram should be commutative:

π1(ŪL, pŪ )× π1(V̄L)
ab

(ϕŪ ,rV̄ ) ��

��

π1(Ūet, qŪ )× CV̄

��
π1(V̄L)

ab
rV̄ �� CV̄

where the vertical arrows are the conjugation action of π1(ŪL, pŪ ) on π1(V̄L)
ab and

the natural action of π1(Ūet, pŪ ) on CV̄ .
(6) The isomorphism rŪ should be contravariantly functorial for an étale cover. More

precisely, let V̄ → Ū be a finite étale map. Then the following diagram should be
commutative:

π1(V̄L)
ab

rV̄ �� CV̄

π1(ŪL)
ab

rŪ ��

tr

��

CŪ

��

where the map CŪ → CV̄ is the inclusion, and tr is the transfer map defined in
Proposition 5.6 below.

(7) For any closed point v of X̄, we should have pull-back of topoi.

BWk(v)

iv

��

αv �� Bsm
Gk(v)

uv

��

X̄L

γ
�� X̄et

Here the morphism
uv : Bsm

Gk(v)

 Spec(k(v))et −→ X̄et

is defined by a geometric point of X̄ over v and by the scheme map v→ X̄. The map
αv is induced by the canonical morphism Wk(v)→Gk(v). It follows that the morphism
iv is a closed embedding.
On the one hand, the pull-back above induces a closed embedding

iw : BWk(w)
−→ ŪL

for any Ū étale over X̄ and any closed point w of Ū . On the other hand we have a
canonical morphism

ŪL→ Bπ1(ŪL,pŪ )
→ Bπ1(ŪL)ab 
 BCŪ .

(8) For any closed point w of a connected étale X̄-scheme Ū , the composition

BWk(w)
−→ ŪL −→ BCŪ
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should be the morphism of classifying topoi induced by the canonical morphism of
topological groups Wk(w)→ CŪ .
Define the sheaf of continuous real valued functions on X̄L as R̃ := t∗yR, where yR is
the sheaf of T represented by the standard topological group R.

(9) For any étale X̄-scheme Ū , we should have Hn(ŪL, R̃)= 0 for any n≥ 2.
The following result shows that the properties listed above are consistent. A proof is

given in [14].

THEOREM 5.1. There exists a topos satisfying Properties (1)–(9) listed above.

Note that the isomorphism rŪ : CŪ 
 π1(ŪL)
ab can be understood in two different ways.

On the one hand, we can consider π1(ŪL)
ab as a usual topological group defined as the

projective limit of the topological pro-group π1(ŪL)
DD. Then rŪ is just an isomorphism of

topological groups. On the other hand, we can consider π1(ŪL)
ab and CŪ as topological

pro-groups (see Section 5.3.1 below) and assume that rŪ is an isomorphism of topological
pro-groups. The second point of view is stronger than the first.

5.3. Explanations

In this section, we define the morphisms used in the previous description. First of all, the
fundamental group π1(ŪL, pŪ ) is assumed to be pro-representable by a locally compact
strict pro-group. In other words, we assume that there exist a locally compact strict pro-
group G indexed over a small filtered category (in the usual sense, see Definition 2.1) and an
equivalence SLCT (ŪL)
 BG compatible with the point pŪ , where SLCT (ŪL) and BG are
defined as in [2, Section 2] and as in Definition 2.2, respectively.

The fact that the fundamental groups π1(ŪL, pŪ ) and π1(Ūet, qŪ ) should be defined
as topological pro-groups and the previous description of the Lichtenbaum topos suggests
that the groups CŪ are in fact topological pro-groups and that all the maps between these
topological pro-groups are compatible with this additional structure. We show below that it is
indeed the case. This detail can be ignored if we consider the limit of those topological pro-
groups computed in the category of topological groups, and the morphisms between these
pro-groups as usual continuous morphisms.

5.3.1. The S-idèle class group as a pro-group. Let Ū = (Spec OK,S0, U∞) be a connected
étale X̄-scheme. We denote by S∞ the set of archimedean places of K not corresponding to
a point of U∞, i.e. U∞

∐
S∞ is the set of archimedean places of K . If we set S = (S0 ∪ S∞)

then we have
Ū = Spec OK − S

and CŪ = CK,S is the S-idèle class group of K . Assume for simplicity that S∞ �= ∅. Then
there is an exact sequence of topological groups

0→
∏
w∈S0

O×
Kw
→ CK,S → CK,S∞ → 0, (24)

where CK,S∞ is the following extension of the finite group Cl(K):

0→
( ∏
w∈S∞

K×
w

∏
w∈U∞

R×+
)/

O×
K → CK,S∞ → Cl(K)→ 0.
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Note that CK,S∞ has a finite filtration such that the quotients of the form Filn/Filn+1 are
either finite or connected. Recall that, for w ultrametric, O×

Kw
is given with the filtration

O×
Kw
= U0

w ⊇ U1
w ⊇ U2

w ⊇ · · ·
so that O×

Kw
is the profinite group

O×
Kw
= lim←− U0

w/U
n
w.

Hence the exact sequence (24) providesCŪ with a structure of a topological pro-group. More
precisely, we have

CK,S = lim←− CK,S/	,

where 	 runs over the system of open subgroups of
∏

w∈S0
O×
Kw

.

Definition 5.2. We define CŪ as the topological pro-group

CŪ := {CK,S/	, for 	 open in
∏

w∈S0
O×
Kw
}.

The pro-groupCŪ can also be seen as the locally compact group CK,S endowed with the
filtration

CK,S ⊇
∏
w∈S0

O×
Kw
⊇
∏
w∈S0

U1
w ⊇

∏
w∈S0

U2
w ⊇ · · · . (25)

Indeed the sequence {	n :=∏w∈S0
Un
w, for n≥ 0} is cofinal in the system of open 	⊆∏

w∈S0
O×
Kw

. Hence the pro-group CŪ can be defined as follows:

CŪ := {CK,S/	n for n≥ 0}.
PROPOSITION 5.3. For any map V̄ → Ū of connected étale X̄-schemes, the map N : CV̄ →
CŪ , induced by the usual norm map, is compatible with the pro-group structures of CV̄
and CŪ .

For any Galois étale cover V̄ → Ū , the usual Galois action of Gal(V̄ /Ū) on CV̄ is
compatible with the pro-group structure of CV̄ .

For any finite étale map V̄ → Ū , the natural morphismCŪ → CV̄ is compatible with the
pro-group structures of CV̄ and CŪ .

For any connected étale X̄-schemes Ū , the reciprocity morphism

rŪ : CŪ −→ π1(Ūet)
ab

is a morphism of topological pro-groups.

Proof. Concerning the first three statements, we just have to remark that those morphisms are
all compatible with the filtration (25), which is clear. The reciprocity morphism rŪ is defined
by the topological class formation (π1(Ūet, qŪ ), lim−→ CV̄ ), where V̄ runs over the filtered

system of pointed étale covers of (Ū , qŪ ) (see [15, Proposition 8.3.8 and Theorem 8.3.12]).
Recall that the groupUn

v is mapped, by class field theory, onto the nth-ramification subgroup

(Gn
v)

ab ⊂Gab
Kv
⊂Gab

K,S = π1(Ūet, qŪ )
ab.

Hence rŪ is a morphism of topological pro-groups. �



The Weil-étale fundamental group of a number field I 123

5.3.2. The morphism ϕŪ has dense image. By Property (1), the map γ : X̄L→ X̄et is
connected, i.e. γ ∗ is fully faithful. It follows immediately that the morphism

γŪ : ŪL := X̄L/γ
∗Ū −→ X̄et/U = Ūet

is connected as well. Chose a T -point pŪ of ŪL and let qŪ be the geometric point of Ū
defined by pŪ as in Section 4.3. We have a commutative square

ŪL

γŪ ��

��

Ūet

��
Bπ1(ŪL,pŪ )

Bϕ
Ū �� Bsm

π1(Ūet,qŪ )

where the vertical maps are both connected. Indeed, the inverse image of the morphism
ŪL→ Bπ1(ŪL,pŪ )

(respectively of the morphism Ūet → Bsm
π1(Ūet,qŪ )

) is the inclusion of

the full subcategory of sums of locally constant objects SLCT (ŪL) ↪→ ŪL (respectively
SLC(Ūet) ↪→ Ūet). Hence the previous diagram shows that

BϕŪ : Bπ1(ŪL,pŪ )
−→ Bsm

π1(Ūet,qŪ )

is connected as well. This morphism is induced by the morphism of strict topological
pro-groups:

ϕŪ : π1(ŪL, pŪ )−→ π1(Ūet, qŪ ).

Consider π1(ŪL, pŪ ) as a projective system of locally compact groups (Wα)α∈A and
π1(Ūet, qŪ ) as a projective system of finite groups (Gβ)β∈B . Then ϕŪ is given by a family,
indexed over B, of compatible morphisms Wα →Gβ . More precisely, we have

ϕŪ ∈ Hom((Wα)α∈A, (Gβ)β∈B) := lim←−β∈B lim−→α∈A Homc(Wα, Gβ).

Definition 5.4. We say that ϕŪ has dense image if all those maps Wα →Gβ are surjective.

The fact that the morphism BϕŪ is connected implies that ϕŪ has dense image in that
sense. Indeed, assume that one of the maps Wα →Gβ is not surjective. Then the functor
ϕ∗ : Bsm

Gβ
→ BWα , sending a Gβ -set E to the (sheaf represented by the) discrete Wα-space E

on which Wα acts via Wα →Gβ , is not fully faithful. But we have the commutative diagram
of categories

Bπ1(ŪL,pŪ )
Bsm
π1(Ūet,qŪ )

B∗ϕ
Ū��

BWα

��

Bsm
Gβ

��

ϕ∗
��

where the vertical arrows are fully faithful functors. Hence the fact that ϕ∗ is not fully faithful
implies that B∗ϕŪ is not fully faithful. We have obtained the following result.

PROPOSITION 5.5. Let X̄L be a topos satisfying Properties (1)–(9). Then for any connected
étale X̄-scheme Ū the morphism of topological pro-groups ϕŪ has dense image.
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Let V̄ → Ū be a finite Galois étale cover of étale X̄-schemes with Gal(V̄ /Ū)=G, and
consider the injective morphism of the topological pro-group

π1(V̄L, pV̄ ) ↪→ π1(ŪL, pŪ ).

In other words, if we see the fundamental groups of V̄L and of ŪL as projective systems of
topological groups (W ′

α)α∈A and (Wα)α∈A (indexed over the same filtered category A), the
previous map is given by a family of compatible injective morphisms of topological groups
W ′
α →Wα . We can consider the quotient pro-object of T :

π1(ŪL, pŪ )/π1(V̄L, pV̄ ) := (yWα/yW ′
α)α∈A.

Then this projective system is in fact an essentially constant pro-group and we have an
isomorphism in T :

π1(ŪL, pŪ )/π1(V̄L, pV̄ )
 y(G).

More generally, for any finite étale map V̄ → Ū of étale X̄-schemes the pro-object of T ,

π1(ŪL, pŪ )/π1(V̄L, pV̄ ),

is essentially constant, endowed with an action of the pro-group object π1(ŪL, pŪ ), and we
have an isomorphism of finite π1(ŪL, pŪ )-sets:

π1(ŪL, pŪ )/π1(V̄L, pV̄ )
 π1(Ūet, qŪ )/π1(V̄et, qV̄ ).

Therefore, for any finite étale map V̄ → Ū , the induced morphism

π1(V̄L, pV̄ )−→ π1(ŪL, pŪ )

is given by a compatible family of closed topological subgroups of finite index W ′
α ↪→Wα .

Moreover, we can choose an index α0 ∈A such that for any map α→ α0 in A, the map
Wα/W

′
α →Wα0/W

′
α0

is a bijective map of finite sets. It follows that the usual transfer maps

trα :W ab
α −→W ′ab

α

are well defined and that they make the following square commutative.

W ′ab
α

��

W ab
α

��

trα��

W ′ab
α0

W ab
α0

trα0��

We obtain a morphism of locally compact topological pro-groups

tr : π1(ŪL, pŪ )
ab −→ π1(V̄L, pV̄ )

ab.

If V̄ → Ū is a Galois étale cover, then W ′
α is normal in Wα for any α ∈ A, hence Wα acts

on W ′ab
α by conjugation. This action is certainly functorial in α hence π1(ŪL, pŪ ) acts on

π1(V̄L, pV̄ )
ab by conjugation. More precisely, we consider the topological pro-group

π1(ŪL, pŪ )× π1(V̄L, pV̄ )
ab : A −→ Gr(T )

α �−→ Wα ×W ′ab
α .
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Then we have a morphism of topological pro-groups:

π1(ŪL, pŪ )× π1(V̄L, pV̄ )
ab −→ π1(V̄L, pV̄ )

ab.

We have shown the following result.

PROPOSITION 5.6. Let V̄ → Ū be a finite étale map of étale X̄-schemes. We have a
morphism of abelian topological pro-groups

tr : π1(ŪL, pŪ )
ab −→ π1(V̄L, pV̄ )

ab.

If V̄ → Ū is Galois, then π1(ŪL, pŪ ) acts on π1(V̄L, pV̄ )
ab by conjugation:

π1(ŪL, pŪ )× π1(V̄L, pV̄ )
ab −→ π1(V̄L, pV̄ )

ab.

5.4. The Weil-étale topos in characteristic p

Let Y be a smooth projective curve over a finite field k. Assume that Y is geometrically
connected. The Weil-étale topos YW is defined as the category ofWk-equivariant étale sheaves
on the geometric curve Y ×k k̄. Then we can prove that YW satisfies all the properties (1)–
(9) above (replacing T with Sets). Moreover, YW is universal for these properties, i.e. it
is the smallest topos satisfying those properties. In other words, if S is a topos satisfying
properties (1)–(9), then there exists an essentially unique morphism S→ YW compatible
with this structure (i.e. making all the diagrams commutative).

We give below a sketch of the proof of these facts. By [12, Theorem 8.5] we have a
canonical equivalence

YW 
 Yet ×BGk
BWk , (26)

where Yet denotes the étale topos of Y , i.e. the category of sheaves of sets on the étale site of
Y . Consider the first projection

γ : YW 
 Yet ×BGk
BWk −→ Yet.

For any étale Y -scheme U , we thus have

YW/γ
∗yU 
 (Yet/yU)×BGk

BWk 
 Uet ×BGk
BWk 
 UW. (27)

If U is connected étale over Y , then Uet and UW are both connected and locally connected
over Sets. Any geometric point pU of U yields a Sets-valued point of Uet and of UW , and we
have an isomorphism of pro-discrete groups

π1(UW , p)
 π1(Uet, p)×Gk Wk. (28)

The group π1(Uet, p)×Gk Wk is often called the Weil group of U . For any closed point y of
Y we have a closed embedding

BGk(y)

 Spec(k(y))et −→ Yet.

The inverse image of this closed subtopos under γ is given by the fiber product

YW ×Yet BGk(y)

 BWk ×BGk

Yet ×Yet BGk(y)

 BWk ×BGk

BGk(y)

 BWk(y)

. (29)
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Then properties (1)–(9) and the fact that YW is universal for those properties follow
from (26)–(29) and class field theory for function fields. Note that Weil’s interpretation of
class field theory for function fields can be restated as follows: the reciprocity morphism
gives an isomorphism between the S-idèle class group and the abelian Weil-étale fundamental
group. Finally, note that the canonical morphism

YW −→ BWk

gives rise to the Frobenius-equivariant l-adic cohomology (see [12, Chapter 8, Section 4.3]).

5.5. The Lichtenbaum topos and Deninger’s dynamical system

Property (3) of section 5.2 yields a canonical morphism flow

f : X̄L −→ BPic(X̄) −→ BR.

A topos is Grothendieck’s generalization of a space, hence X̄L can be seen as a generalized
space. Then the morphism of topoi f can be interpreted as follows. The topos X̄L is a
generalized space endowed with an action of the topological group R.

Properties (7) and (8) above give a closed embedding iv : BWk(v)
→ X̄L such that the

composition
iv : BWk(v)

−→ X̄L −→ BR

is the morphism induced by the canonical morphism lv :Wk(v)→R. For an ultrametric place
v of F , the morphism lv sends the canonical generator of Wk(v) to −log N(v). The closed
embedding iv should be thought of as a closed orbit of the flow of length log N(v). For
an archimedean place v, the composite morphism f ◦ iv : BWk(v)

→ BR is an isomorphism
of topoi, and iv should be thought of as a (closed) inclusion of a fixed point of the flow.
Thus the morphism f encodes all the numbers log N(v). This suggests that the morphism
f, or more precisely the derived functor Rf∗, could yield a geometric cohomology theory
(i.e. a cohomology allowing a cohomological interpretation of the zeta function itself). In
other words, we can dream that the conjectural Lichtenbaum topos of X̄ (if it exists) will
play the role of Deninger’s dynamical system (see [3], for example). In any case, the correct
conjectural Lichtenbaum topos is far from being constructed. We refer to [12, Chapter 9]
for some details concerning the analogy between the conjectural Lichtenbaum topos and
Deninger’s dynamical system.

5.6. The base topos BR and the field with one element F1

Let Y be a smooth scheme of finite type over Fq . Assume for simplicity that Y is
geometrically connected. The Weil-étale topos YW is given with a canonical morphism

fY : YW −→ Bsm
WFq

over the small classifying topos Bsm
WFq

. The Weil-étale topos of Y is thought of as a space

endowed with an action of the group WFq . Indeed, YW is the étale topos associated to

the Frobenius-equivariant geometric scheme Y := Y ⊗Fq Fq . The étale topos Y et of the
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geometric scheme Y is obtained as the localization

Y et = YW ×Bsm
WFq

Set = YW/f
∗
Y EWFq ,

where Set→ Bsm
WFq

is the canonical point of Bsm
WFq

. We denote the geometric topos by

Ygeo := YW/f
∗
Y EWFq .

We have an exact sequence of fundamental groups

1→ π1(Ygeo, p)→ π1(YW , p)→WFq → 1. (30)

Over Spec(Z), the role of BWFq is played by BR×+ = BR. Let X̄ be the compactification
of Spec(OF ). We have a canonical morphism

f : X̄L −→ BPic(X̄) −→ BR×+ .

We can imagine that the base toposBR×+ is the classifying topos of the Weil groupWF1 = R×+
of some arithmetic object F1. Then the localized topos

X̄geo := X̄L ×BWF1
T = X̄L/f

∗EWF1,

where T → BR is the canonical point of BR, would play the role of the geometric étale topos
Ygeo := Y et. Intuitively, X̄geo corresponds to Deninger’s space without the R-action. We have
an exact sequence of fundamental groups

1→ π1(X̄geo, p)→ π1(X̄L, p)→WF1 → 1.

This exact sequence is analogous to (30).

6. Cohomology

In this section we consider the curve X̄ = Spec(OF ), where the number field F is totally
imaginary. Let γ : X̄L→ X̄et be any topos satisfying Properties (1)–(9) given in Section 5.2.
We show that these properties yield a natural proof of the fact that the complex of étale
sheaves τ≤2Rγ∗(ϕ!Z) produces the special value of ζF (s) at s = 0 up to sign.

6.1. The base change from the Weil-étale cohomology to the étale cohomology

Recall that we denote by CŪ = CK,S the S-idèle class group canonically associated to Ū . We
consider the sheaves on ŪL defined by R̃ := t ∗̄

U
(yR) and S̃1 := t ∗̄

U
(yS1), where yS1 and yR

are the sheaves on T represented by the topological groups S1 and R, and tŪ : ŪL→ T is the
canonical map (defined for Property (2)).

PROPOSITION 6.1. For any connected étale X̄-scheme Ū , we have

Hn(ŪL, R̃)=

⎧⎪⎪⎨⎪⎪⎩
R for n= 0

Homc(CŪ , R) for n= 1

0 for n≥ 2.



128 B. Morin

Proof. The result for n= 0 follows from the connectedness of ŪL→ T given by
Property (2). Indeed, we have

H 0(ŪW , t
∗R̃) := (eT ∗ ◦ t∗) t∗R̃= eT ∗R̃= R,

where eT denotes the unique map eT : T → Sets. By Property (3), the result for n= 1 follows
from

H 1(ŪL, R̃)= Homc(π1(ŪL), R)

:= lim−→ Homc(π1(ŪL), R)

= lim−→ Homc(π1(ŪL)
ab, R)

= Homc(CŪ , R).

The result for n≥ 2 is given by Property (9). �

The maximal compact subgroup of CŪ , i.e. the kernel of the absolute value map
CŪ → R>0, is denoted by C1

Ū
. Thus we have an exact sequence of topological groups

1→ C1
Ū
→ CŪ →R>0 → 1.

The Pontraygin dual (C1
Ū
)D is discrete since C1

Ū
is compact.

PROPOSITION 6.2. For any connected étale X̄-scheme Ū , we have canonically

Hn(ŪL, Z)=

⎧⎪⎪⎨⎪⎪⎩
Z for n= 0

0 for n= 1

(C1
Ū
)D for n= 2.

Proof. As above, the result for n= 0 follows from the connectedness of ŪL→ T given by
Property (2). By Property (3), the result for n= 1 follows from

H 1(ŪL, Z)= Homc(π1(ŪL)
ab, Z)= 0.

By Property (3) we have canonical isomorphisms

H 1(ŪL, S̃1)= Homc(π1(ŪL)
ab, S1)

:= lim−→Homc(π1(ŪL)
ab, S1)

= Homc(lim←− π1(ŪL)
ab, S1)

= Homc(CŪ , S1)= CD
Ū
.

The exact sequence of topological groups

0→ Z→ R→ S1 → 0

induces an exact sequence
0→ Z→ R̃→ S̃1 → 0
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of abelian sheaves on ŪL. The induced long exact sequence

0=H 1(ŪL, Z)→H 1(ŪL, R̃)→H 1(ŪL, S̃1)→H 2(ŪL, Z)→H 2(ŪL, R̃)= 0

is canonically identified with

0→ Homc(CŪ , R)→ Homc(CŪ , S1)→H 2(ŪL, Z)→ 0

and we obtain H 2(ŪL, Z)= (C1
Ū
)D . �

Recall that we have a canonical morphism γ : X̄L→ X̄et. We consider the truncated
functor τ≤2Rγ∗ of the total derived functor Rγ∗.

COROLLARY 6.3. We have γ∗Z= Z, R1(γ∗)Z= 0 and R2(γ∗)Z is the étale sheaf
associated to the abelian presheaf

P2γ∗Z : EtX̄ −→ Ab
Ū �−→ (C1

Ū
)D.

Proof. The sheaf Rn(γ∗)Z is the sheaf associated to the presheaf Ū �→Hn(X̄L/γ
∗Ū , Z).

Hence the corollary follows immediately from Proposition 6.2. Note that it follows from
Property (4) that the restriction map

P2γ∗Z(Ū )= (C1
Ū
)D → P2γ∗Z(V̄ )= (C1

V̄
)D

is the Pontryagin dual of the canonical morphism C1
V̄
→ C1

Ū
(induced by the norm map), for

any V̄ → Ū in EtX̄. �

The cohomology of sheaf R2γ∗Z associated to P2γ∗Z is computed in Section 6.3. The
étale sheaf R2γ∗Z is acyclic for the global sections functor on X̄et. More precisely, we have

Hn(X̄et; R2γ∗Z)=
{

Hom(O×
F , Q) for n= 0,

0 for n≥ 1.

Recall that Pic(X̄)= CX̄ is the Arakelov–Picard group of F , and that μF is the group of
roots of unity in F . We compute below the hypercohomology of the complex of abelian étale
sheaves τ≤2Rγ∗Z.

THEOREM 6.4. We have

Hn(X̄et, τ≤2Rγ∗Z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z for n= 0

0 for n= 1

Pic1(X̄)D for n= 2

μDF for n= 3

0 for n≥ 4.

Recall that the Artin–Verdier étale cohomology of Z is given by

Hi(X̄et, Z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z for i = 0

0 for i = 1

Cl(F )D for i = 2

Hom(O∗
F , Q/Z) for i = 3

0 for i ≥ 4.
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Proof. The hypercohomology spectral sequence

Hi(X̄et, H
j (τ≤2Rγ∗Z))⇒Hi+j (X̄et, τ≤2Rγ∗Z)

first gives H0(X̄0, τ≤2Rγ∗Z)= Z and H1(X̄et, τ≤2Rγ∗Z)= 0. On the other hand we have

Hn(X̄et, τ≤2Rγ∗Z)=Hn(X̄et, Rγ∗Z)=Hn(X̄L, Z)

for any n≤ 2. In particular, we have

H2(X̄et, τ≤2Rγ∗Z)=H 2(X̄L, Z)= Pic1(X̄)D.

Therefore, the spectral sequence above yields an exact sequence

0→ Cl(F )D

→ Pic1(X̄)D → Hom(O∗
F , Q)→Hom(O∗

F ,Q/Z)→H3(X̄L, τ≤2Rγ∗Z)→ 0.

Here the maps Cl(F )D → Pic1(X̄)D →Hom(O∗
F , Q) are explicitly given. The first is

induced by the morphism from the Weil-étale fundamental group to the étale fundamental
group

π1(X̄L)
ab −→ π1(X̄et)

ab

given by Property (3), and the second is induced by the canonical morphism P2γ∗Z→
R2(γ∗)Z (the map from a presheaf to its associated sheaf). It follows that the cokernel of
the map

Pic1(X̄)D → Hom(O∗
F , Q)

is
Hom(O∗

F , Q)/Hom(O∗
F , Z)
 Hom(O∗

F /μF , Q/Z).

We obtain an exact sequence

0→ Hom(O∗
F /μF , Q/Z)→Hom(O∗

F , Q/Z)→H3(X̄et, τ≤2Rγ∗Z)→ 0. (31)

Let us denote by α : Hom(O∗
F /μF , Q/Z)→Hom(O∗

F , Q/Z) the first map of the exact
sequence (31). We need to show that α is the canonical map. There is a decomposition

Hom(O∗
F , Q/Z)= Hom(O∗

F /μF , Q/Z)× μDF

and the composition (where p is the projection)

p ◦ α : Hom(O∗
F /μF ,Q/Z)→Hom(O∗

F , Q/Z)→ μDF

must be 0 since Hom(O∗
F /μF , Q/Z) is divisible and μDF finite. It follows that the image of α

is contained in the subgroup

Hom(O∗
F /μF , Q/Z)⊂ Hom(O∗

F , Q/Z)

hence α induces an injective morphism

α̃ : Hom(O∗
F /μF , Q/Z) ↪→ Hom(O∗

F /μF , Q/Z).

Since those two groups are both finite sums of Q/Z, this map α̃ needs to be an isomorphism.
Indeed, the n-torsion subgroups are both finite of the same cardinality for any n, hence an
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injective map must be bijective. Hence α has the same image as the canonical map, i.e. the
image of the map induced by the quotient mapO∗

F →O∗
F /μF . Hence the exact sequence (31)

yields a canonical identification

H3(X̄et, τ≤2Rγ∗Z)= μDF .

Finally, we have

Hn(X̄et, τ≤2Rγ∗Z)= 0 for n≥ 4

since the diagonals of the hypercohomology spectral sequence are all trivial for n≥ 4. �

Let ϕ :XL→ X̄L be the open embedding. By Property (7), we have an open/closed
decomposition

ϕ :XL→ X̄L←
∐
v∈X∞

BWk(v)
: i∞.

In particular, we have adjoint functors ϕ!, ϕ∗, ϕ∗. If we consider the induced functors on
abelian sheaves, we have adjoint functors i∗∞, i∞∗, i !∞, showing that i∞∗ is exact (on abelian
objects). We obtain an exact sequence of sheaves

0→ ϕ!ϕ∗A→A→
∏
v|∞

iv∗i∗vA→ 0 (32)

for any abelian object A of X̄L.

THEOREM 6.5. We have canonically

Hn(X̄et, τ≤2Rγ∗(ϕ!Z))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for n= 0(∏
X∞

Z
)/

Z for n= 1

Pic1(X̄)D for n= 2

μDF for n= 3

0 for n≥ 4.

Proof. Let v ∈X∞. By Property (7), we have γ ◦ iv = uv ◦ αv , where αv : BWk(v)
→ Sets is

the unique map. The morphisms iv and uv are both closed embeddings so that iv∗ and uv∗ are
both exact, hence we have

R(γ∗)iv∗Z= uv∗R(αv∗)Z.

This complex is concentrated in degree 0 since Rn(αv∗)Z=Hn(BWk(v)
, Z)= 0 for any

n≥ 1, and we haveR0(γ∗)iv∗Z= uv∗Z. Hence the theorem follows from Theorem 6.4, exact
sequence (32), and H ∗(X̄et, uv∗Z)=H ∗(Sets, Z). �

Remark 6.6. A complex quasi-isomorphic to τ≤2Rγ∗(ϕ!Z) was constructed in [13] using a
more complicated method.

6.2. Dedekind zeta functions at s = 0

We denote by (
⊕

v|∞ Wk(v))
1 the kernel of the canonical morphism

⊕
v|∞ Wk(v)→R>0.



132 B. Morin

THEOREM 6.7. We have canonical isomorphisms

Hn(X̄L, ϕ!R̃)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∏
v|∞

R
)/

R for n= 1

Homc((
⊕

v|∞ Wk(v))
1, R) for n= 2

0 for n �= 1, 2.

Proof. The direct image iv∗ is exact hence the group Hn(X̄L,
∏

v|∞ iv∗R̃) is canonically
isomorphic to

∏
v|∞

Hn(BWk(v)
R̃)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
v|∞

R n= 0

Homc

(∑
v|∞

Wk(v), R
)

n= 1

0 n≥ 2.

Using the exact sequence (32), the result for n≥ 3 follows from Property (9). By (32) we
have the exact sequence

0→H 0(X̄L, ϕ!R̃)→H 0(X̄W , R̃)= R→
∏
v|∞

Hn(BWk(v)
R̃)

=
∏
v|∞

R→H 1(X̄L, ϕ!R̃)→ 0,

where the central map is the diagonal embedding. The result follows for n= 0, 1. For n= 2,
we have the exact sequence

Homc(Pic(X̄),R)→ Homc

(∑
v|∞

Wk(v), R
)
→H 2(X̄L, ϕ!R̃)→ 1,

where, by Property (8), the first map is induced by the canonical morphism
∑

v|∞ Wk(v)→
Pic(X̄). We obtain a canonical isomorphism

H 1(X̄L, ϕ!R̃)= Homc

((∑
v|∞

Wk(v)

)1

, R
)
. �

Definition 6.8. We define the fundamental class θ ∈H 1(X̄L, R̃) as the canonical morphism

θ ∈H 1(X̄L, R̃)= Homc(Pic(X̄), R).

Recall that, for any closed point v ∈ X̄, we have Hn(BWk(v)
, R̃)= R, Homc(Wk(v), R)

and 0 for n= 0, 1 and n≥ 2 respectively.

Definition 6.9. For any closed point v ∈ X̄, the v-fundamental class is the canonical
morphism θv :Wk(v)→R:

θv ∈H 1(BWk(v)
, R̃)= Homc(Wk(v), R).

The morphism obtained by cup product with θv is the canonical isomorphism

∪θv : H 0(BWk(v)
, R̃)= R −→ H 1(BWk(v)

, R̃)= Homc(Wk(v), R)
1 �−→ θv.
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THEOREM 6.10. The morphism ∪θ obtained by cup product with the fundamental class θ is
the canonical isomorphism

∪θ : H 1(X̄L, ϕ!R̃)= (
∏

v|∞ R)/R −→ H 2(X̄L, ϕ!R̃)= Homc((
∑

v|∞ Wk(v))
1, R)

v �−→ θv ◦ pv,
where pv : (∑w|∞ Wk(w))

1 →Wk(v) is given by the projection.

Proof. By Property (8), the morphism

H 1(BPic(X̄), R̃)=H 1(X̄L, R̃) −→ H 1(
∐

v∈X∞ BWk(v)
, R̃)=∏v|∞ H 1(BWk(v)

, R̃)
θ �−→ (θv)v|∞,

which is induced by
∐

v∈X∞ BWk(v)
→ X̄L→ BPic(X̄), sends fundamental class to

fundamental class. Hence the cup-product morphism ∪θ is induced by

(∪θv)v|∞ :H 0(X̄L, i∞∗R̃)=
∏
v|∞

R−→H 1(X̄L, i∞∗R̃)=
∏
v|∞

Homc(BWk(v)
, R̃)

and the result follows. Note that ∪θ is well defined, since ∪θ(∑v|∞ v)=∑v|∞ θv is the

canonical map
∑

v|∞ Wk(v)→R, which vanishes on (
∑

v|∞ Wk(v))
1. �

THEOREM 6.11. For any n≥ 1, the morphism

Rn :Hn(X̄et, τ≤2Rγ∗(ϕ!Z))⊗ R−→Hn(X̄L, ϕ!R̃),

induced by the morphism of sheaves ϕ!Z→ ϕ!R̃, is an isomorphism.

Proof. We denote by

κn :Hn(X̄et, τ≤2Rγ∗(ϕ!Z))−→H 1(X̄L, ϕ!R̃)

the morphism induced by ϕ!Z→ ϕ!R̃. The result is obvious for n �= 1, 2. The result is also
clear for n= 1, since κ1 is canonically identified with

H 0
( ∐
v∈X∞

BWk(v)
, Z
)/

H 0(X̄L, Z)→H 0
( ∐
v∈X∞

BWk(v)
, R̃
)/

H 0(X̄L, R̃),

hence R1 is the identity. Assume that n= 2. On the one hand, we have canonically

H2(X̄et, τ≤2Rγ∗(ϕ!Z))=H 2(X̄L, Z)=H 1(X̄L, S̃1)/H 1(X̄L, R̃).

On the other hand, we have

H 2(X̄L, ϕ!R̃)=H 1
(∐
v|∞

BWk(v)
, R̃
)/

H 1(X̄L, R̃)=H 1
(∐
v|∞

BWk(v)
, S̃1
)/

H 1(X̄L, R̃)

and the map R2 is induced by

H 1(X̄L, S̃1)= Homc(Pic(X̄), S1)−→H 1
(∐
v|∞

BWk(v)
, S̃1
)
= Homc

(∑
v|∞

Wk(v), S1
)

which is in turn induced by the canonical morphism
∑

v|∞ Wk(v)→ Pic(X̄), as it follows
from Property (8). We have the exact sequence

Homc(Pic(X̄), R)→ Homc(Pic(X̄), S1)→Homc(Pic1(X̄), S1)→ 0,
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hence κ2 is the morphism

κ2 : Homc(Pic1(X̄), S1)−→Hom((⊕v|∞Wk(v))
1, S1)= Hom((⊕v|∞Wk(v))

1, R),

where the first map is the Pontryagin dual of (⊕v|∞Wk(v))
1 → Pic1(X̄). Recall that we have

the exact sequence of topological groups

0→ (⊕v|∞Wk(v))
1/(O×

F /μF )→ Pic1(X̄)→ Cl(F )→ 0.

Then it is straightforward to check that there is a canonical identification

H2(X̄et, τ≤2Rγ∗(ϕ!Z))⊗ R= Hom(O×
F , R)

and that the map R2 is the morphism

R2 : Hom(O×
F , R)−→ Homc((⊕v|∞Wk(v))

1, R)

which is the inverse of the isomorphism induced by the natural map O×
F → (⊕v|∞Wk(v))

1.
In other words

R−1
2 : Homc((⊕v|∞Wk(v))

1, R)−→ Hom(O×
F , R)

is induced by the natural map O×
F → (⊕v|∞Wk(v))

1. �

The morphisms∪θ ,R1 andR2 have been made explicit during the proof of Theorem 6.10
and in Theorem 6.11. The result of Corollary 6.12 follows.

COROLLARY 6.12. We have a commutative diagram

(
∑

v|∞ R)/R
D ��

R1

��

Hom(O×
F , R)

R2

��
(
∑

v|∞ R)/R
∪θ �� Homc((⊕v|∞Wk(v))

1, R)

where D is the transpose of the usual regulator map

O×
F ⊗ R−→

(∑
v|∞

R
)+
.

We denote by ϕ : XL→ X̄L the natural open embedding, and by Hn
c (XL,A) :=

Hn(X̄L, ϕ!A) the cohomology with compact support with coefficients in the abelian sheaf A.

THEOREM 6.13. (Lichtenbaum’s formalism) Assume that F is totally imaginary. Let X̄L be
any topos satisfying Properties (1)–(9) above. We denote by τ≤2Rγ∗ the truncated functor
of the total derived functor Rγ∗, where γ is the morphism given by Property (1). Then the
following are true.

• Hn(X̄et, τ≤2Rγ∗(ϕ!Z)) is finitely generated and zero for n≥ 4.

• The canonical map

Hn(X̄et, τ≤2Rγ∗(ϕ!Z))⊗ R−→Hn
c (XL, R̃)

is an isomorphism for any n≥ 0.
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• There exists a fundamental class θ ∈H 1(X̄L, R̃). The complex of finite-dimensional
vector spaces

· · · →Hn−1
c (XL, R̃)→Hn

c (XL, R̃)→Hn+1
c (XL, R̃)→ · · ·

defined by cup product with θ , is acyclic.

• The vanishing order of the Dedekind zeta function ζF (s) at s = 0 is given by

ords=0ζF (s)=
∑
n≥0

(−1)n n dimR H
n
c (XL, R̃).

• The leading term coefficient ζ ∗F (s) at s = 0 is given by the Lichtenbaum Euler
characteristic

ζ ∗F (s)=±
∏
n≥0

|Hn(X̄et, τ≤2Rγ∗(ϕ!Z))tors|(−1)n/det(Hn
c (XL, R̃), θ, B∗),

where Bn is a basis of Hn(X̄et, τ≤2Rγ∗(ϕ!Z))/tors.

In particular, those results hold for the Weil-étale topos X̄W defined in Section 6.

Proof. This follows from Theorems 6.5, 6.10, 6.11, Corollary 6.12 and from the analytic
class number formula. �

6.3. The sheaf R2γ∗Z

The étale sheaf R2γ∗Z is the sheaf associated to the presheaf

P2Z : EtX̄ −→ Ab
Ū �−→ (C1

Ū
)D.

Recall that if Ū is connected of function field K(Ū), then CŪ is the S-idèle class group of
K(Ū), where S is the set of places ofK(Ū) not corresponding to a point of Ū . In other words,
if we set K =K(U) then CŪ = CK,S is the S-idèle class group of K defined by the exact
sequence ∏

v∈U
O×
Kv
→ CK → CK,S → 0.

The compact group C1
Ū

is then defined as the kernel of the canonical map CŪ → R×. Note
that such a finite set S does not necessarily contain all the archimedean places. The restriction
maps of the presheaf P2Z are induced by the canonical mapsCV̄ → CŪ (well defined for any
étale map V̄ → Ū of connected étale X̄-schemes). By class field theory, we have a covariantly
functorial exact sequence of compact topological groups

0→D1
Ū
→ C1

Ū
→ π1(Ūet)

ab → 0,

where π1(Ūet)
ab is the abelian étale fundamental group of Ū and D1

Ū
is the connected

component of 1 in C1
Ū

. Here π1(Ū)
ab is defined as the abelianization of the profinite

fundamental group of the Artin–Verdier étale topos X̄et/yŪ 
 Ūet. If we denote the function
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field of Ū by K(Ū) then this group is just the Galois group of the maximal abelian extension
of K(Ū) unramified at every place of K(Ū) corresponding to a point of Ū .

By Pontryagin duality, we obtain a contravariantly functorial exact sequence of discrete
abelian groups

0→ πab
1 (Ūet)

D → (C1
Ū
)D → (D1

Ū
)D → 0, (33)

i.e. an exact sequence of abelian étale presheaves on X̄. On the one hand, the sheaf associated
to the presheaf

EtX̄ −→ Ab
Ū �−→ πab

1 (Ūet)
D =H 2(Ūet, Z)

vanishes and on the other hand the associated sheaf functor is exact. Therefore, the exact
sequence (33) shows that R2Z is the sheaf associated to the presheaf

P 2Z : EtX̄ −→ Ab
Ū �−→ (D1

Ū
)D.

The structure of the connected componentD1
Ū

of the S-idèle class group C1
Ū

is not known in
general.

We consider the following open subscheme of X̄:

Y := (X, X(R)).

Let Ū → Y be a connected étale Y -scheme with function field K :=K(Ū). Note that U∞
contains only real places. If v is a real place of K , then we denote by O×

Kv
=±1 the

kernel of the valuationKv
× → R>0. The Leray spectral sequence associated to the morphism

Spec(K)et → Ūet gives an exact sequence

0→H 2(Ūet, Z)→H 2(GK, Z)→
∑
v∈Ū0

H 2(Iv, Z)→H 3(Ūet, Z)→H 3(GK, Z)= 0,

(34)
which is functorial in Ū with respect to the natural morphisms between Galois groups. We
have the following canonical identifications:

H 2(Ūet, Z)= π1(Ūet)
D, H 2(GK, Z)=GD

K, H 2(Iv, Z)= IDv .

Then the central map of the exact sequence (34) is induced by the natural maps I ab
v →Gab

K ,
and the first map is given by the natural surjection Gab

K → π1(Ūet)
ab. Then global and local

class field theory give the exact sequence

0→ π1(Ūet)
D → (CK/DK)

D →
∑
v∈Ū0

(O×
Kv
)D →H 3(Ūet, Z)→ 0.

Here the functoriality is given by the norm maps, and (CK/DK)
D →∑

v∈Ū0(O×
Kv
)D is the

dual of the canonical map
ρŪ :

∏
v∈Ū0

O×
Kv
−→ CK/DK.

We obtain an isomorphism
H 3(Ūet, Z)
 Ker(ρŪ )

D,
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which is functorial with respect to the presheaf structure on H 3(−, Z) and with the norm
maps on the right-hand side. Note that

Ker(ρŪ )=
∏
v∈Ū0

O×
Kv
∩DK =

∏
v∈Ū0

O×
Kv
∩D1

K ⊂ CK.

For any connected étale scheme Ū over Y = (X, X(R)), we have a functorial exact
sequence of compact abelian topological groups

0→
∏
v∈Ū0

O×
K(Ū)v

∩D1
K(Ū)

→D1
K(Ū)

→D1
Ū
→ 0,

hence a contravariantly functorial exact sequence of discrete abelian groups

0→ (D1
Ū
)D → (D1

K(Ū)
)D →

(∏
v∈Ū0

O×
K(Ū)v

∩D1
K(Ū)

)D
=H 3(Ūet, Z)→ 0.

But the sheaf associated to the presheaf

EtY −→ Ab
Ū �−→ H 3(Ūet, Z)

vanishes. It follows that the sheaf R2γ∗Z restricted to Yet is the sheaf associated to the
presheaf

P : EtY −→ Ab
Ū �−→ (D1

K(Ū)
)D.

Let ξ : Spec(F )et → Yet be the morphism induced by the inclusion of the generic point.
Let F be the presheaf on EtSpec(F ) sending a finite extension K/F to (D1

K)
D . By Tate’s

theorem (see [15, Theorem 8.2.5]), we have a functorial isomorphism of compact groups

D1
K = (V⊗Z O×

K)×
( ∏
r2(K)

S1
)
,

where V=QD is the solenoid and r2(K) is the set of complex places of K . We obtain a
functorial isomorphism of abelian groups

(D1
K)

D 
 Hom(O×
K, Q)⊕

( ⊕
r2(K)

Z
)
.

It follows that (D1
K)

D satisfies Galois descent, hence F is a sheaf on the étale site of Spec(F )
and P = ξ∗F is a sheaf on EtY . We obtain the following description of R2γ∗Z|Y .

PROPOSITION 6.14. For any Ū connected étale over Y = (X, X(R)), we have

R2γ∗Z(Ū)= (D1
K(Ū)

)D 
 Hom(O×
K(Ū)

, Q)⊕
( ∑
r2(K(Ū))

Z
)
.

Let φ : Yet → X̄et be the open immersion. Consider the adjunction map

R2γ∗Z−→ φ∗φ∗R2γ∗Z. (35)
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For any Ū connected and étale over X̄, the map D1
K(Ū)

→D1
Ū

is surjective hence the induced
map

P 2Z(Ū)= (D1
Ū
)D −→ φ∗φ∗R2γ∗Z(Ū )= R2γ∗Z(Ū ×X̄ Y )= (D1

K(Ū)
)D

is injective. Applying the (exact) associated functor, we see that the adjunction map (35) is
also injective.

Recall that R2γ∗Z is the sheaf associated to the presheaf on EtX̄ defined by P2Z(Ū)=
(C1

Ū
)D , and consider the presheaf

φpφ
pP2Z : EtX̄ −→ Ab

Ū �−→ (C1
Ū×X̄Y

)D.

For any Ū connected and étale over X̄ and such that Ū does not contain all the places of
K(Ū), we have an exact sequence

0→
∏

U∞−U(R)
S1 → C1

Ū×X̄Y
→ C1

Ū
→ 0

inducing an exact sequence of discrete abelian groups

0→ (C1
Ū
)D → (C1

Ū×X̄Y
)D →

∏
U∞−U(R)

Z→ 0.

In other words, we have an exact sequence of presheaves on Et ′
X̄

:

0→ P2Z→ φpφ
pP2Z→

∏
v∈X̄−Y

uv∗Z→ 0,

where Et′
X̄

is the full subcategory of EtX̄ consisting of connected objects Ū such that Ū does

not contain all the places of K(Ū), and the adjoint functors φp and φp are functors between
categories of presheaves. But Et′

X̄
is a topologically generating full subcategory of the étale

site EtX̄. Applying the associated sheaf functor, we get an exact sequence of sheaves

0→ R2γ∗Z→ φ∗φ∗R2γ∗Z→
∏

v∈X̄−Y
uv∗Z→ 0 (36)

since the sheaf associated to φpφpP2Z is just φ∗φ∗R2γ∗Z. In order to check this last claim,
we consider the open–closed decomposition

φ : Yet −→ X̄et ←−
∐

v∈X̄−Y
Sets : u,

where the gluing functoru∗φ∗ sends a sheafF on Yet to the collection of the stalks (Fv)v∈X̄−Y
(here, Fv is the stalk of F at the geometric point v : Spec(C)→ Y ). It follows easily that
a(φpP ) = φ∗a(P ) for any presheaf P on Y , where a denotes the associated sheaf functor.
Hence we have

a(φpφ
pP2Z)
 φ∗a(φpP2Z)
 φ∗φ∗a(P2Z)
 φ∗φ∗R2γ∗Z.

In view of Proposition 6.14, we obtain the following result, where r2(K(Ū))− U∞ denotes
the set of complex places of K(Ū) which do not correspond to a point of Ū .
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THEOREM 6.15. For any connected étale X̄-scheme Ū , we have

R2γ∗Z(Ū)=
(
D1
K(Ū)

/ ∏
U∞−U(R)

S1
)D


 Hom(O×
K(Ū)

,Q)⊕
∑

r2(K(Ū))−U∞
Z.

COROLLARY 6.16. Assume that F is totally imaginary. Then the étale sheaf R2γ∗Z is
acyclic for the global sections functor.

Proof. In view of the exact sequence (36), it is enough to show that φ∗φ∗R2γ∗Z is acyclic for
the global sections functor. Here we denote by ξ : Spec(F )et → X̄et the morphism induced
by the inclusion of the generic point, and by F the presheaf on EtSpec(F ) sending a finite
extension K/F to (D1

K)
D . Then we have φ∗φ∗R2γ∗Z= ξ∗F . But for any finite Galois

extension K/F of group G, the G-module (D1
K)

D is the product of a Q-vector space
by an induced G-module. It follows that the sheaf ξ∗F is acyclic for the global sections
functor. �
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