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ON THE WEIL-ÉTALE COHOMOLOGY OF NUMBER FIELDS

BAPTISTE MORIN

Abstract. We give a direct description of the category of sheaves on Licht-
enbaum’s Weil-étale site of a number ring. Then we apply this result to define
a spectral sequence relating Weil-étale cohomology to Artin-Verdier étale co-
homology. Finally we construct complexes of étale sheaves computing the
expected Weil-étale cohomology.

1. Introduction

Stephen Lichtenbaum has conjectured in [6] the existence of a Weil-étale topol-
ogy for arithmetic schemes. The associated cohomology groups with coefficients
in motivic complexes of sheaves should be finitely generated and closely related
to special values of zeta functions. For example, Lichtenbaum predicts that the
Weil-étale cohomology groups with compact support Hi

Wc(Y ;Z) exist, are finitely
generated and vanish for i large, where Y is a scheme of finite type over SpecZ.
The order of annulation and the special value of the zeta function ζY (s) at s = 0
should be given by

ords=0 ζY (s) = χ′
c(Y,Z) and ζ∗Y (0) = ±χc(Y,Z),

where χc(Y,Z) and χ′
c(Y,Z) are the Euler characteristics defined in [6]. Licht-

enbaum has also defined a candidate for the Weil-étale cohomology when Y =
SpecOK , the spectrum of a number ring. Assuming that the groups Hi

W (Ȳ ;Z)
vanish for i ≥ 4, he has proven his conjecture in this case. However, Matthias
Flach has shown in [4] that the groups Hi

W (Ȳ ;Z) defined in [6] are in fact infinitely
generated for any even integer i ≥ 4. The aim of the present work is to study in more
detail Lichtenbaum’s definition and its relation to Artin-Verdier étale cohomology.

Let K be a number field and let Ȳ be the Arakelov compactification of SpecOK .
In the second section we define a topos F

L/K,S
, said to be flask, using the Weil group

WL/K,S associated to a finite Galois extension L/K and a finite set S of places of K
containing the archimedean ones and the places which ramify in L. We also define
a topos F

W,Ȳ
using the full Weil-group WK . The first main result of this paper

shows that the topos F
L/K,S

is canonically equivalent to the category of sheaves
on the Lichtenbaum Weil-étale site TL/K,S . This gives a simple description of the
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4878 BAPTISTE MORIN

categories of sheaves on those Weil-étale sites. In the spirit of [5], it is sometimes
easier to work directly with these flask topoi rather than with their generating sites
TL/K,S . Finally, this exhibits the somewhat unexpected behavior of these categories
of sheaves.

In the third section we compute the groups Hi
W (Ȳ ;Z) := lim−→Hi(F

L/K,S
,Z)

and Hi(F
W,Ȳ

,Z). Then we observe that the canonical map lim−→Hi(F
L/K,S

,Z) →
Hi(F

W,Ȳ
,Z) is not an isomorphism for i = 2, 3. This points out that the current

Weil-étale cohomology is not defined as the cohomology of a site (i.e. of a topos).
In the seventh section we study the relation between the flask topoi and the

Artin-Verdier étale topos. This is then applied to define a spectral sequence relating
Weil-étale cohomology to étale cohomology. The last section is devoted to the
construction of complexes of étale sheaves on Ȳ = SpecOK , where K is a totally
imaginary number field. The étale hypercohomology of these complexes yields the
expectedWeil-étale cohomology with and without compact support. This last result
was suggested by a question of Matthias Flach. The existence of these complexes
is a necessary condition for the existence of a Weil-étale topos (i.e. a topos whose
cohomology is the conjectural Weil-étale cohomology) over the Artin-Verdier étale
topos.

2. Notation

Let K be a number field and let K̄/K be an algebraic closure of K. We denote
by Y the spectrum of the ring of integers OK of K. Following Lichtenbaum’s
terminology, we call Ȳ = (Y ;Y∞) the set of all valuations of K, where Y∞ is the set
of archimedean valuations of K. This set Ȳ is endowed with the Zariski topology.
The trivial valuation v0 of K corresponds to the generic point of Y . We denote by
Ȳ 0 the set of closed points of Ȳ (i.e. the set of non-trivial valuations of K).

2.1. The global Weil group. Let K̄/L/K be a finite Galois extension of the
number field K. Let S be a finite set of places of K containing the archimedean
ones and the places which ramify in L. We denote by IL and CL the idèle group and
the idèle class group of L, respectively. Let UL,S be the sub-group of IL consisting of
those idèles which are 1 at valuations lying over S and units at valuations not lying
over S. It is well known that UL,S is a cohomologically trivial G(L/K)-module.
The natural map UL,S → CL is injective, and the S-idèle class group CL,S is defined
by CL,S = CL/UL,S , as a topological group. For any i ∈ Z, the map

Ĥi(G(L/K), CL) −→ Ĥi(G(L/K), CL,S)

is an isomorphism since UL,S is cohomologically trivial. By class field theory, there

exists a canonical class in Ĥ2(G(L/K), CL,S) which yields a group extension

0 → CL,S → WL/K,S → G(L/K) → 0.

If we assume that S is the set of all non-trivial valuations of K, then WL/K,S is
the relative Weil group WL/K . By [6], Lemma 3.1, the global Weil group is the
projective limit

WK = lim←− WL/K,S

over finite Galois K̄/L/K and finite S as above.
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ON THE WEIL-ÉTALE COHOMOLOGY OF NUMBER FIELDS 4879

2.2. Galois groups and Weil groups.

2.2.1. For any valuation v of K, we choose a valuation v̄ of K̄ lying over v and we
denote by Dv the associated decomposition group and by Iv the inertia group. We
set

Kh
v := K̄Dv , Ksh

v := K̄Iv and Gk(v) := Gal(Ksh
v /Kh

v ) = Dv/Iv.

If v ∈ Y , then k(v) is the residue field of the scheme Y at v. For any archimedean
valuation v, the Galois group Gk(v) = {1} is trivial since Dv = Iv. Note that for
the trivial valuation v = v0, one has Dv0 = GK and Iv0 = {1}, hence Gk(v0) = GK .

Let Kv be the completion of K with respect to the valuation v. Thus for v = v0
the trivial valuation, Kv0 is just K. The choice of the valuation v̄ of K̄ lying over
v induces an embedding

ov : Dv = GKv
−→ GK .

We choose a global Weil group αv0 : WK → GK . For any non-trivial valuation v,
we choose a local Weil group αKv

: WKv
→ GKv

and a Weil map θv : WKv
→ WK

so that the diagram

WKv

θv ��

αKv

��

WK

αv0

��
GKv

ov �� GK

is commutative. For any valuation v, let Wk(v) := WKv
/Iv be the Weil group of

the residue field at v. Note that Wk(v) is isomorphic to Z (respectively R) as a
topological group whenever v is ultrametric (respectively archimedean). We denote
by

qv : WKv
−→ Wk(v) and qv : GKv

−→ Gk(v)

the canonical continuous projections. One has Kv0 = K, Dv0 = GK , Iv0 = {1},
and Wk(v0) = WKv0

/Iv0 = WK . We set θv0 = qv0 = IdWK
and ov0 = qv0 = IdGK

.

2.2.2. Let v be a non-trivial valuation of K and let WKv
→ WK be a Weil map.

Consider the morphism

WKv
−→ WK −→ WL/K = WK/W c

L,

where L/K is a finite Galois extension. Here W c
L is the closure of the commutator

sub-group of WL. The valuation v̄ lying over v defines a valuation w of L, and
the morphism WKv

→ WL/K factors through WKv
/W c

Lw
= WLw/Kv

. We get the
following commutative diagram:

0 �� L×
w

��

��

WLw/Kv

��

�� G(Lw/Kv)

��

�� 0

0 �� C×
L

�� WL/K
�� G(L/K) �� 0

where the rows are both exact. The map WLw/Kv
→ WL/K is injective and the

image of WKv
in WL/K is isomorphic to WLw/Kv

. Let S be a finite set of places
of K containing the archimedean ones and the places which ramify in L. The
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4880 BAPTISTE MORIN

group UL,S injects in WL/K , and there is an isomorphism WL/K,S � WL/K/UL,S .
Hence the image of WKv

in WL/K,S is isomorphic to WLw/Kv
for v ∈ S. For v not

in S, the image of WKv
in WL/K,S is isomorphic to the quotient of WLw/Kv

by

O×
Lw

. The canonical map WKv
→ Wk(v) factors through WLw/Kv

, hence through

WLw/Kv
/O×

Lw
. We denote by W̃Kv

the image of WKv
in WL/K,S . For any trivial

valuation v of K, the Weil map WKv
→ WK and the quotient map WKv

→ Wk(v)

induce morphisms θv : W̃Kv
→ WL/K,S and qv : W̃Kv

→ Wk(v), respectively.

2.3. Left exact sites. Let C be a category and let J be a Grothendieck topology
on C. Recall that a category C has finite projective limits if and only if C has a final
object and fiber products.

Definition 2.1. The site (C;J ) is said to be left exact whenever C has finite
projective limits and J is sub-canonical.

Note that any Grothendieck topos is equivalent to the category of sheaves of sets
on a left exact site (see [5], IV, Théorème 1.2).

Definition 2.2. A family of morphisms {Xi → X; i ∈ I} of the category C is said
to be a covering family of X if the sieve of X generated by this family lies in J (X).

The covering families define a pretopology on C which generates the topology
J , since C is left exact. A morphism of left exact sites is a functor a : C → C′

preserving finite projective limits (i.e. a is left exact), which is continuous. This
means that the functor

Ĉ′ −→ Ĉ,
P �−→ P ◦ a

sends sheaves to sheaves, where Ĉ is the category of presheaves on C (contravariant

functors from C to the category of sets). We denote by (̃C,J ) the topos of sheaves
of sets on the site (C;J ). A morphism of left exact sites a : (C,J ) → (C′,J ′)
induces a morphism of topoi ã = (ã∗, ã∗) such that the square

(̃C,J )
ã∗

�� ˜(C′,J ′)

C

��

a �� C′

��

is commutative, where the vertical arrows are given by Yoneda embeddings (which
are fully faithful since the topologies are sub-canonical) and ã∗ is the inverse image
of ã. We denote by EtX the small étale site of a scheme X. The étale topos of X
(i.e. the category of sheaves of sets on EtX) is denoted by Xet. A morphism of
schemes u : X → Y gives rise to a morphism of left exact sites

u∗ : EtY −→ EtX ,
(U → Y ) �−→ (U ×Y X → X),

Licensed to Calif Inst of Tech. Prepared on Wed Apr 15 08:21:00 EDT 2015 for download from IP 131.215.225.9.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON THE WEIL-ÉTALE COHOMOLOGY OF NUMBER FIELDS 4881

hence to a morphism of topoi (u∗;u∗) : Xet → Yet. A diagram of topoi

S1

b

��

a �� S2

d

��
S3

c �� S4

is said to be commutative if there is a canonical isomorphism of morphisms of topoi
c ◦ b � d ◦ a, or in other words, an isomorphism in the category Homtop (S1;S4)
between the objects c ◦ b and d ◦ a. Strictly speaking, such a diagram is only
pseudo-commutative. In what follows, a topos is always a Grothendiek topos and
a morphism is a geometric morphism.

2.4. The classifying topos of a topological group. Let G be a topological
group. The small classifying topos Bsm

G is the category of sets on which G acts
continuously. If G is discrete or profinite (or more generally totally disconnected),
then the cohomology of the topos Bsm

G is precisely the cohomology of the group G.
For G any topological group, we denote by BTopG the category of G-topological

spaces (which are elements of a given universe) endowed with the local-section
topology Jls (see [6], section 1), and BG is the topos of sheaves of sets on this site.

Alternatively, let Top be the category of topological spaces (which are elements of
a given universe) endowed with the open cover topology Jopen. Recall that the open
cover topology is generated by the pre-topology for which a family of continuous
maps {Ui → U} is a cover when it is an open cover in the usual sense. By ([4],
Lemma 1), one has Jls = Jopen on the category Top. We denote by T the topos
of sheaves of sets on the site (Top,Jopen). Since the Yoneda embedding commutes
with projective limits, a topological group G defines a group-object y(G) of T . The
classifying topos BG of the topological group G is the topos of y(G)-objects of T .
Recall that the data of an object F of T is equivalent to the following. For any
topological space X, a sheaf FX on X (i.e. an étalé space over X), and for any
continuous map u : X ′ → X, a morphism ϕu : u∗FX → F ′

X satisfying the natural
transitivity condition for a composition v ◦ u : X ′′ → X ′ → X. Moreover, ϕu is
an isomorphism whenever u is an open immersion or more generally an étalement.
This gives a description of the topoi T and BG. By [4], Corollary 2, the two
preceding definitions of BG are equivalent. In other words, (BTopG;Jls) is a site
for the classifying topos BG.

2.5. Cohomology of the Weil group. Let E be a topos. There is a unique
morphism u : E → Set. The left exact functor ΓE := u∗ = HomE (eE ,−) is called
the global sections functor. Here eE denotes the final object of E . For any abelian
object A of E , one has

Hi(E ,A) := Ri(ΓE)(A).

For any topological group G and any abelian object of BG (in particular a topo-
logical G-module), the cohomology of G is defined by (see [4])

Hi(G,A) := Hi(BG,A).

The following result is due to Stephen Lichtenbaum for i ≤ 3 and to Matthias
Flach for i > 3. Denote by AD := Homcont(A,R/Z) the Pontryagin dual of a
locally compact abelian group A. The kernel of the absolute value map CK → R×

+

is denoted by C1
K .
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4882 BAPTISTE MORIN

Theorem 2.3. Let K be a totally imaginary number field and let Z be the discrete
WK-module with trivial action. Then

Hi(WK ;Z) = Z for i = 0

= (C1
K)D for i = 2

= 0 for i odd,

and Hi(WK ;Z) is an abelian group of infinite rank, in particular non-zero, for even
i ≥ 4.

3. The flask topoi associated to a number field

3.1. Definition of the flask topoi. Let L/K be an algebraic extension and let S
be a set of non-trivial valuations of the number field K containing all the valuations
of F which ramify in K and the archimedean ones. In what follows, either L/K is
a finite Galois extension and S is a finite set, or L = K̄/K is an algebraic closure

of K and S is the set of all non-trivial valuations of K. Recall that W̃Kv
denotes

the image of WKv
in WL/K,S . The chosen Weil map and the quotient map induce

continuous morphisms

θv : W̃Kv
→ WL/K,S and qv : W̃Kv

→ Wk(v),

for any valuation v of K. For the trivial valuation v0, the maps θv0 and qv0 are just
IdWL/K,S

.

Definition 3.1. We define a category F
L/K,S

as follows. The objects of this cate-

gory are of the form F = (Fv; fv)v∈Ȳ , where Fv is an object of BWk(v)
for v 
= v0

(respectively of BWL/K,S
for v = v0) and

fv : q∗v(Fv) −→ θ∗v(Fv0)

is a morphism of B
W̃Kv

so that fv0 = IdFv0
. A morphism φ from F = (Fv; fv)v∈Ȳ

to F ′ = (F ′
v; f

′
v)v∈Ȳ is a family of morphisms φv : Fv → F ′

v ∈ Fl(BWk(v)
) (and

φv0 ∈ Fl(BWL/K,S
)) so that

q∗v(Fv)

fv

��

q∗v(φv) �� q∗v(F
′
v)

f ′
v

��
θ∗v(Fv0)

θ∗
v(φv0

)
�� θ∗v(F

′
v0)

is a commutative diagram of B
W̃Kv

. In what follows, Fv (respectively φv) is called

the v-component of the object F (respectively of the morphism φ).
For L = K̄ and S the set of all non-trivial valuations of K, one has WL/K,S =

WK , W̃Kv
= WKv

, and we set

F
L/K,S

= F
W ;Ȳ

.

The aim of this section is to prove that the category F
L/K,S

is a Grothendieck
topos.

Proposition 3.2. Arbitrary inductive and finite projective limits exist in F
L/K,S

and are calculated componentwise.

Licensed to Calif Inst of Tech. Prepared on Wed Apr 15 08:21:00 EDT 2015 for download from IP 131.215.225.9.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON THE WEIL-ÉTALE COHOMOLOGY OF NUMBER FIELDS 4883

Proof. In order to simplify the notation we assume here that F
L/K,S

= F
W ;Ȳ

. Let
I be a small category and let G : I → F

W ;Ȳ
be an arbitrary functor. For any

valuation v of K, one has a canonical functor

i∗v : F
W ;Ȳ

−→ BWk(v)
,

F �−→ Fv.

For any valuation v, we set

Gv := i∗v ◦G : I → BWk(v)
.

The inductive limit
Lv := lim

−→I
Gv

exists in the topos BWk(v)
. A map i → j of the category I induces a map G(i) →

G(j) of the category F
W ;Ȳ

. Hence for any valuation v, one has a commutative
diagram of BWKv

:

q∗v ◦Gv(i)

��

�� q∗v ◦Gv(j)

��
θ∗v ◦Gv0(i)

�� θ∗v ◦Gv0(j)

By the universal property of inductive limits, one has an induced morphism

lim
−→I

q∗v ◦Gv −→ lim
−→I

θ∗v ◦Gv0 ,

where the limits are calculated in the topos BWKv
. We get a map

lv : q∗v(Lv)=q∗v(lim−→I
Gv)=lim

−→I
q∗v ◦Gv −→ lim

−→I
θ∗v ◦Gv0 =θ∗v(lim−→I

Gv0) = θ∗v(Lv0),

since q∗v and θ∗v commute with arbitrary inductive limits. This yields an object

lim
−→I

G = L := (Lv; lv)v∈Ȳ

of F
W ;Ȳ

. Now, one has to check that L is the inductive limit of the functor G. For
any object X of F

W ;Ȳ
, denote by kX : I → F

W ;Ȳ
the constant functor associated to

X . By construction, there is a natural transformation

a : G −→ kL

such that any other natural transformation

b : G −→ kX

factors through a. Indeed, the v-component of L is defined as the inductive limit of
Gv in BWk(v)

and the morphism lv is defined as the limit of the corresponding system
of compatible maps of BWKv

. The proof for finite projective limits is identical. �
Proposition 3.3. The category F

L/K,S
is a topos.

Proof. Again, we assume that F
L/K,S

= F
W ;Ȳ

(i.e. L is an algebraic closure of K

and S is the set of non-trivial valuations of K). To see that it is a topos, we use
Giraud’s criterion (see [5], IV, Théorème 1.2). Axioms (G1), (G2) and (G3) follow
from Proposition 3.2 and the fact that q∗v and θ∗v commute with finite projective
limits and arbitrary inductive limits.

(G1) The category F
W ;Ȳ

has finite projective limits.

More explicitly, F
W ;Ȳ

has a final object (eWk(v)
; fv)v∈Ȳ . Here eWk(v)

is the final
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4884 BAPTISTE MORIN

object of BWk(v)
and fv is the unique map from the final object of BWKv

to itself.

Let φ : F → X and φ′ : F ′ → X be two maps of F
W ;Ȳ

with the same target

X = (Xv; ξv). The fiber product F×X F ′ is defined as the object (Fv×Xv
F ′
v; fv×ξv

f ′
v)v∈Ȳ , where the fiber products are calculated in the categories BWk(v)

and BWKv
,

respectively.

(G2) All (set-indexed) sums exist in F
W ;Ȳ

, and are disjoint and stable.

The initial object of F
W ;Ȳ

is (∅Wk(v)
; f ′

v)v∈Ȳ , where ∅Wk(v)
is the initial object of

BWk(v)
and f ′

v : ∅WKv
→ ∅WKv

is the trivial map. Moreover, fiber products are

computed componentwise in F
W ;Ȳ

, and an isomorphism φ from F = (Fv; fv)v∈Ȳ

to F ′ = (F ′
v; f

′
v)v∈Ȳ is a family of compatible isomorphisms φv : Fv → F ′

v ∈
Fl(BWk(v)

). Then one easily sees that (G2) is satisfied by F
W ;Ȳ

since it is satisfied
by BWk(v)

for any valuation v.

(G3) The equivalence relations are effective and universal.
Again this follows from the fact that arbitrary inductive limits exist and are com-
puted componentwise in F

W ;Ȳ
.

(G4) The category F
W ;Ȳ

has a small set of generators.

This axiom, however, requires some argument. Choose a small set {Xv;i; i ∈ Iv} of
generators of BWk(v)

, for any valuation v. Recall that the morphism of topological
groups θv : WKv

→ WK induces the sequence of three adjoint functors

θv ! ; θ∗v ; θv∗

between BWKv
and BWK

, since θ∗v commutes with arbitrary projective and inductive
limits (see [5], IV.4.5.1). The functors θ∗v and θv∗ are respectively the inverse image
and the direct image of the (essential) morphism Bθv : BWKv

→ BWK
. Denote by

y : Top → T the Yoneda embedding. The functor θv ! is defined by

θv ! : BWKv
−→ BWK

,

F �−→ y(WK)×y(WKv ) F := (y(WK)× F )/y(WKv
),

where y(WKv
) acts on the left on F and by right-translations on y(WK).

Let v 
= v0 be a non-trivial valuation and let i ∈ Iv. We define an object Xv;i of
F

W ;Ȳ
as follows:

Xv;i = (θv !(q
∗
v(Xv;i)) ; Xv;i ; (∅BWk(w)

)w �=v0;v ; (ξw)w∈Ȳ ).

Here the map

ξv : q∗v(Xv;i) −→ θ∗v ◦ θv !(q∗v(Xv;i))

is given by adjunction, and ξw is the trivial map for any w 
= v, v0. For the trivial
valuation v0 and for any i ∈ Iv0 , we set

Xv0;i := (Xv0;i ; (∅BWk(w)
)w �=v0).

The family {Xv;i; v ∈ Ȳ ; i ∈ Iv} is set indexed. We claim that it is a generating
family of F

W ;Ȳ
. Let F = (Fv; fv)v be an object of F

W ;Ȳ
, let v be a valuation of K

and let tv : Xv;i → Fv be a morphism in BWk(v)
. One needs to show that there

exists a canonical morphism

t : Xv;i −→ F
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ON THE WEIL-ÉTALE COHOMOLOGY OF NUMBER FIELDS 4885

so that the v-component of t is tv. It is obvious for the trivial valuation v = v0.
Let v 
= v0 be a non-trivial valuation. Consider the morphism

fv ◦ q∗v(tv) : q∗v(Xv;i) −→ q∗v(Fv) −→ θ∗v(Fv0).

By adjunction, there is an identification

(1) HomBWK
(θv !(q

∗
v(Xv;i));Fv0) = HomBWKv

(q∗v(Xv;i); θ
∗
v(Fv0)).

Hence there exists a unique morphism

t0 : θv !(q
∗
v(Xv;i)) −→ Fv0

of BWK
corresponding to fv ◦ q∗v(tv) via (1) so that the diagram

q∗v(Xv;i)

ξv

��

q∗v(tv) �� q∗v(Fv)

fv

��
θ∗vθv!(q

∗
vXi;v)

θ∗
v(t0) �� θ∗vFv0

is commutative. We get a morphism t : Xv;i → F of the category F
W ;Ȳ

.
Now, consider two parallel arrows φ, ϕ : F → E so that, for any arrow t : Xv;i →

F , one has φ ◦ t = ϕ ◦ t. The family {Xv;i; i ∈ Iv} is a family of generators of
BWk(v)

, and each morphism tv : Xv;i → Fv induces a morphism t : Xv;i → F . It
follows that

φv = ϕv ∈ Fl(BWk(v)
),

for any v ∈ Ȳ . By definition of the morphisms in the category F
W ;Ȳ

, the functor

(i∗v)v∈Ȳ : F
W ;Ȳ

−→
∐
v∈Ȳ

BWk(v)

is faithful. It follows that φ = ϕ. This shows that the family {Xv;i; v ∈ Ȳ ; i ∈
Iv} is a small collection of generators of F

W ;Ȳ
. Therefore the category F

W ;Ȳ
is a

topos. �

A topos is said to be compact if any cover of the final object by sub-objects
has a finite sub-cover. A first consequence of this artificial construction is the fact
that this property is not satisfied by these flask topoi, as it is shown below. As
a consequence, the global sections functor (and a fortiori cohomology) does not
commute with filtered inductive limits (not even with direct sums).

Proposition 3.4. The topos F
L/K,S

is not compact.

Proof. For any non-trivial valuation v of K, let Ev be the object of F
L/K,S

defined

as follows. The w-component of Ev is the initial object ∅ of BWk(w)
for w 
= v, v0 and

the final object for w = v, v0 (i.e. the sheaf represented by the one point space with
trivial action). Let e be the final object of F

L/K,S
. The unique map Ev → e is mono,

hence Ev is a sub-object of the final object of F
L/K,S

. The family {Ev → e, v 
= v0}
is epimorphic. It is therefore a covering family of e by sub-objects. However, any
finite sub-family is not a covering family. �
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3.2. The morphisms associated to the valuations. A valuation v of the num-
ber field K can be seen as a morphism v → Ȳ inducing in turn a morphism of
topoi.

Proposition 3.5. For any non-trivial valuation v, there is a closed embedding:

iv := i
L,S,v

: BWk(v)
−→ F

L/K,S
.

Proof. For any valuation v 
= v0, the functor

i∗v : F
L/K,S

−→ BWk(v)
,

F �−→ Fv

commutes with arbitrary inductive limits and finite projective limits, since these
limits are computed componentwise in the topos F

L/K,S
. Hence i∗v is the pull-back of

a morphism of topoi iv : BWk(v)
→ F

L/K,S
. The same argument shows that there is

a morphism j
L/K,S

: BWL/K,S
→ F

L/K,S
. Moreover, one easily sees that the functor

iv∗ : BWk(v)
−→ F

L/K,S
,

Fv �−→ (eWK
; Fv; (eWk(w)

)w �=v;v0)

is right adjoint to i∗v, where eWk(w)
is the final object of BWk(w)

. Since the adjunction
transformation Id → i∗v ◦ iv∗ is obviously an isomorphism, the morphism iv is
an embedding (see [5], IV, Définition 9.1.1). Consider the sub-terminal object
U := ((eWk(w)

)w �=v; ∅Wk(v)
) of F

L/K,S
. It defines an open sub-topos

jv : U := (F
L/K,S

)
/U

−→ F
L/K,S

.

The image of iv∗ is exactly the strictly full sub-category of F
L/K,S

defined by the

objects X such that j∗v (X) is the final object of U . Hence the image of iv is the
closed complement of the open sub-topos U (see [5], IV, Proposition 9.3.4). �

The following corollary follows from the fact that iv∗ is a closed embedding (see
[5], IV.14).

Corollary 3.6. The functor induced by iv∗ between the categories of abelian sheaves
is exact.

More precisely, the functor iv∗ (between abelian categories) has a left adjoint i∗v
and a right adjoint i!v (in fact one has six adjoint functors). This last functor is
defined as follows:

i!v : Ab (F
L/K,S

) −→ Ab (BWk(v)
),

(Fw, fw)w∈Ȳ �−→ Ker(fv).

A morphism of topos j = (j∗, j∗) is said to be essential if the inverse image j∗

has a left adjoint j!.

Proposition 3.7. There is an essential morphism j := j
L/K,S

: BWL/K,S
−→

F
L/K,S

.

Proof. The functor
j∗ : F

L/K,S
, −→ BWL/K,S

,
F �−→ Fv0

commutes with arbitrary inductive limits and finite projective limits. Therefore j∗

has a right adjoint j∗ and thus is the pull-back of a morphism of topoi. We define

j! : BWL/K,S
−→ F

L/K,S
,

L �−→ (Fv, fv)v∈Ȳ ,
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where Fv0 = L and Fv = ∅ is the initial object of BWk(v)
for any v 
= v0. The map

fv is the unique map from the initial object of B
W̃Kv

to θ∗vL. Clearly, j! is left

adjoint to j∗. �

Proposition 3.8. The direct image functor j∗ is given by

j∗ : BWL/K,S
−→ F

L/K,S
,

L �−→ (qv∗θ
∗
vL, lv)v∈Ȳ ,

where the map
lv : q∗vqv∗θ

∗
vL −→ θ∗vqv0∗θ

∗
v0L = θ∗vL

is induced by the natural transformation q∗vqv∗ → Id, for any valuation v.

Proof. One has to show that j∗ is right adjoint to j∗. Let L be an object of
BWL/K,S

and let F = (Fv; fv)v∈Ȳ be an object of F
L/K,S

. For any map φ0 : F0 → L
of BWL/K,S

and any non-trivial valuation v, consider the map

θ∗v(φ0) ◦ fv : q∗vFv → θ∗vF0 → θ∗vL.
Since q∗v is left adjoint to qv∗, there exists a unique map φv : Fv → qv∗θ

∗
vL such

that the diagram

q∗vFv

q∗vφv��

fv

��

q∗vqv∗θ
∗
vL

lv

��
θ∗vF0

θ∗
v(φ0) �� θ∗vL

is commutative. We obtain a functorial isomorphism

HomBWL/K,S
(j∗F ,L) � HomF

L/K,S
(F , j∗L). �

Corollary 3.9. The morphism j : BWL/K,S
→ F

L/K,S
is an embedding.

Proof. Indeed for any object L of BWL/K,S
, the natural map j∗j∗L → L is just the

identity of L. �

If there is no risk of ambiguity, we denote W̃k(v) = Wk(v) for v 
= v0, W̃k(v0) =
WL/K,S and j = iv0 .

Proposition 3.10. The family of functors

{i∗v : F
L/K,S

→ B
W̃k(v)

, v ∈ Ȳ }

is conservative.

Proof. This follows immediately from the definitions. �

Proposition 3.11. The family of functors

{i∗v : F
L/K,S

−→ BWk(v)
; v ∈ Ȳ 0}

is not conservative.

Proof. In order to simplify the notation, we assume here that F
L/K,S

= F
W ;Ȳ

Let

∅ be the initial object of F
W ;Ȳ

and let G be the object whose v0-component is the
final object of BWK

while its v-component is the initial object of BWk(v)
for any

v 
= v0. Consider the morphism φ : ∅ → G. Then φ is not an isomorphism, while
i∗v(φ) : ∅Wk(v)

→ ∅Wk(v)
is an isomorphism for any closed point v. �
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3.3. The transition maps. Let (L/K, S) and (L′/K, S′) be as above. If L ⊂ L′

in K̄ and S ⊂ S′, then there is a canonical morphism

p : WL′/K,S′ −→ WL/K,S .

Proposition 3.12. There is an induced morphism of topoi

t : F
L′/K,S′ −→ F

L/K,S
.

For L′′/L′/L and S ⊂ S′ ⊂ S′′, the diagram

F
L′′/K,S′′

��

����
��

��
��

�
F

L′/K,S′

��
F

L/K,S

is commutative.

In the following proof, for any non-trivial valuation v we denote by WKv,L,S the

image of WKv
in WL/K,S (this group is denoted by W̃Kv

in the rest of the paper).
Let θv,L,S : WKv,L,S → WL/K,S and qv,L,S : WKv,L,S → Wk(v) be the induced
morphisms. One has a continuous map pv : WKv,L′,S′ → WKv,L,S .

Proof. Let F = (Fv; fv)v∈Ȳ be an object of F
L/K,S

. Then,

t∗F = (p∗Fv0 , Fv, p
∗
vfv)

does define an object of F
L′/K,S′ . Indeed, p

∗
vfv gives a map

q∗v,L′,S′Fv = p∗vq
∗
v,L,SFv −→ p∗vθ

∗
v,L,SF0 = θ∗v,L′,S′p∗F0,

since the diagram of topological groups

WL′/K,S′

p

��

WKv,L′,S′
θv,L′,S′��

qv,L′,S′

����
���

���
��

pv

��
WL/K,S WKv,L,S

θv,L,S�� qv,L,S �� Wk(v)

is commutative. This yields a functor

t∗ : F
L/K,S

−→ F
L′/K,S′ ,

which commutes with finite projective limits and arbitrary inductive limits by
Proposition 3.2. Hence t∗ is the pull-back of a morphism of topoi t. The dia-
gram of the proposition is easily seen to be commutative, using the commutativity
of the following triangles:

WL′′/K,S′′ ��

����
���

���
��

WL′/K,S′

��

and WKv,L′′,S′′ ��

����
���

���
���

WKv,L′,S′

��
WL/K,S WKv,L,S

�

Remark 3.13. The family (F
L/K,S

)
L/K,S

is a projective system of topoi. Indeed,

consider the filtered set I/K consisting of pairs (L/K, S), where L/K is a finite
Galois sub-extension of K̄/K and S is a finite set of places of K containing the
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archimedean ones and the places ramified in L/K. There is an arrow (L′/K, S′) →
(L/K, S) if and only if L ⊆ L′ ⊆ K̄ and S ⊆ S′. The previous proposition shows
that one has a pseudo-functor

F• : I/K −→ Topos,
(L/K, S) �−→ F

L/K,S
.

Proposition 3.14. The diagrams

BWL′/K,S′

��

�� F
L′/K,S′

��

BWk(v)

���
��

��
��

��
�� F

L′/K,S′

��
BWL/K,S

�� F
L/K,S

F
L/K,S

are both commutative for any non-trivial valuation v.

Proof. This follows immediately from the definition of t. �

For any v ∈ Ȳ , there is a canonical morphism of topological groups

lv : Wk(v) → R.

For the trivial valuation v = v0, the map lv0 is defined as follows:

lv0 : Wk(v0) = WK −→ W ab
K � CK −→ R>0 −→ R.

The first map is the projection from WK to its maximal abelian Hausdorff quotient.
The second map is given by the absolute value map from the idèle class group CK

to R>0. The third map is the logarithm.
Let Pic(Ȳ ) be the topological group obtained by dividing the idèle class group

CK by the unit idèles. This group is known as the Arakelov Picard group. The map
CK → R defined as above induces a map Pic(Ȳ ) → R. One also has a continuous
morphism Wk(v) → Pic(Ȳ ), for any non-trivial valuation v. This yields the map

lv : Wk(v) → Pic(Ȳ ) → R.

Note that if v is ultrametric, then lv sends the canonical generator of Wk(v) to
log(N(v)) ∈ R, where N(v) = |k(v)| is the norm of the closed point v of the scheme
Y . Finally, the map lv0 induces a morphism lL,S : WL/K,S → R. We have an
induced morphism of classifying topoi:

BlL,S
: BWL/K,S

−→ BR.

Proposition 3.15. There is a morphism

f
L/K,S

: F
L/K,S

−→ BR

so that f
L/K,S

◦ iv is isomorphic to Blv for any closed point v of Ȳ .

Proof. In order to simplify the notation, we assume that F
L/K,S

= F
W ;Ȳ

. The

functor (B∗
lv
)
v
: BR →

∐
v BWk(v)

factors through F
W ;Ȳ

. Indeed, for any object F
of BR, define

f∗(F) := (B∗
lv
(F) ; IdB∗

Lv
(F))v∈Ȳ .

Here

IdB∗
Lv

(F) : q
∗
vB

∗
lv (F) = B∗

Lv
(F) −→ B∗

Lv
(F) = θ∗vB

∗
lv0

(F)
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is the identity of the object B∗
Lv

(F) of the category BWKv
, where Lv : WKv

→ R
is the canonical morphism. This is well defined since the square

WKv

θv

��

qv �� Wk(v)

lv

��
WK

lv0 �� R

is commutative and Lv := lv0 ◦ θv = lv ◦ qv. This yields a functor

f∗ : BR −→ F
W ;Ȳ

,

which commutes with finite projective limits and arbitrary inductive limits by
Proposition 3.2. Hence f∗ is the pull-back of a morphism of topoi f such that
there is an isomorphism of functors i∗v ◦ f∗ � B∗

lv
. For finite L/K and finite S, the

same construction is valid by replacing WK with WL/K,S and WKv
with W̃Kv

. �

Proposition 3.16. The following diagram is commutative for any K̄/L′/L/K and
S ⊂ S′:

F
L′/K,S′

����
���

���
�

�� F
L/K,S

��
BR

The proof is left to the reader.

Proposition 3.17. Let L be an object of T with trivial y(WL/K,S)-action. We
also denote by L the object of BR defined by L with trivial y(R)-action. There is
an isomorphism

j
L/K,S∗L � f∗

L/K,S
L.

Proof. On the one hand, one has f∗
L/K,S

L = (Fv, fv)v∈Ȳ , where Fv is defined by the

trivial action on L, for any valuation v. The map fv is given by the identity of L.
On the other hand, one has j

L/K,S∗L = (qv∗θ
∗
vL, lv). Let v be a non-trivial

valuation of K. The object θ∗vL is L with trivial y(W̃Kv
)-action. The map L →

qv∗q
∗
vL given by adjunction is an isomorphism. It follows that qv∗L is L with trivial

y(Wk(v))-action. �

Remark 3.18. In particular the following assertions hold. Let Z be the constant

object of T . Then j
L/K,S∗Z is the constant object of F

L/K,S
associated to Z. Let R̃

be the object of T represented by the topological group R. Then j
L/K,S∗R̃ is the

constant object of F
L/K,S

(over T ) associated to R̃. In other words, the v-component

of j
L/K,S∗R̃ is R̃ for any valuation v with IdR̃ as specialization maps.

4. Cohomology

In order to use the results of [4], we assume in this section that K is a totally
imaginary number field. We compute the cohomology of the total flask topos and
the Lichtenbaum Weil-étale cohomology of any open subset of Ȳ . The Lichtenbaum
Weil-étale cohomology is defined as a direct limit and requires some precautions to
be computed rigorously.
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4.1. Preliminaries. Recall that θv0 = qv0 = IdWL/K,S
. In particular the direct

image of the induced morphism of topoi qv0∗ : BWL/K,S
→ BWL/K,S

is the identity

functor. Hence Rn(qv0∗) = 0 for n ≥ 1.

Proposition 4.1. Let A be an abelian object of BWL/K,S
. For any n ≥ 0, one has

Rn(jL,S∗)(A) = (Rn(qv∗)θ
∗
vA, tv).

Here the map tv is the trivial map

tv : q∗vR
n(qv∗)θ

∗
vA −→ θ∗vR

n(qv0∗)θ
∗
v0A = 0,

for n ≥ 1.

Proof. In this proof, we denote the morphism j
L,S

simply by j. For any n ≥ 1, one
has

(2) j∗Rn(j∗)A = Rn(j∗j∗)A = Rn(Id)A = 0.

Indeed, the functor j∗ is exact and j∗ preserves injective objects. Hence the spectral
sequence

Rp(j∗)Rq(j∗)(A) ⇒ Rp+q(j∗j∗)(A)

degenerates and (2) follows. Let v be a non-trivial valuation. One has i∗vj∗A =
qv∗θ

∗
vA; hence

i∗vR
n(j∗)A = Rn(i∗vj∗)A = Rn(qv∗θ

∗
v)A,

since i∗v is exact. By ([5], IV.5.8), θv is a localization morphism, since y(W̃Kv
) is

a sub-group of y(WL/K,S) in T . It follows that θ∗v is exact and preserves injective
objects. The associated spectral sequence yields

Rn(qv∗θ
∗
v)A = Rn(qv∗)θ

∗
vA.

The proposition follows. �

Recall that one has a projective system of topoi (see Remark 3.13)

F• : I/K −→ Topos,
(L/K, S) �−→ F

L/K,S
.

The total topos Top (F•) is defined as follows (see [5], VI.7.4). An object of Top (F•)
is given by a family of objects F

L/K,S
of F

L/K,S
for (L/K, S) ∈ I/K , endowed with

a system of compatible maps ft : t
∗F

L/K,S
→ F

L′/K,S′ . Here t : F
L′/K,S′ → F

L/K,S

is the morphism of topoi induced by the map (L′/K, S′) → (L/K, S) in I/K . The
maps ft are compatible in the following sense. For any pair of transition maps

t ◦ t′ : F
L′′/K,S′′ −→ F

L′/K,S′ −→ F
L/K,S

,

one has

ft′ ◦ t′∗(ft) = ft◦t′ : t
′∗t∗F

L/K,S
→ t′∗F

L′/K,S′ → F
L′′/K,S′′ .

The arrows of the category Top (F•) are the obvious ones.

Example 4.2. Denote by tL,S : F
W,Ȳ

−→ F
L/K,S

the canonical morphism. Let F
be an object of F

W,Ȳ
and let FL,S := tL,S,∗F . One has FL,S = t∗FL′,S′ , where

t : F
L′/K,S′ → F

L/K,S
is the transition map. By adjunction, we have a map

ft : t
∗FL,S = t∗t∗FL′,S′ −→ FL′,S′ .

These maps ft are compatible; hence (FL,S , ft) is an object of Top (F•).
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Consider a discrete abelian group A. For any transition map t : F
L′/K,S′ →

F
L/K,S

we have t∗A = A, since the morphism from F
L′/K,S′ to the final topos Set is

unique. Therefore any discrete abelian group defines an abelian object of Top (F•)
(which is the constant abelian object of the topos Top (F•) associated to A).

More generally, Proposition 3.16 provides us with a morphism Top (F•) → BR

whose inverse image functor is given by

BR −→ Top (F•),
F �−→ (f∗

L/K,S
F)

L/K,S
.

Therefore, any abelian object A of BR defines an abelian object (f∗
L/K,S

A) of

Top (F•). We denote this abelian object of Top (F•) by A also.

Proposition 4.3. Let (L/K, S) be an element of I/K . There is an essential mor-
phism

(δ!, δ
∗, δ∗) : FL/K,S

−→ Top (F•),

whose inverse image is the functor

δ∗ : Top (F•) −→ F
L/K,S

,

(FL,S )(L,S)∈I/K
�−→ FL,S .

Furthermore, δ! is exact; hence δ∗ preserves injective objects.

Proof. This is ([5], VI, Lemme 7.4.12). �
Definition 4.4. Let A = (A

L/K,S
, ft)L/K,S

be an abelian object of the total topos

Top (F•). Lichtenbaum’s Weil-étale cohomology with coefficients in A is defined as
the inductive limit

H−→
i(F

L/K,S
,A) := lim−→L/K,S

Hi(F
L/K,S

,A
L/K,S

),

where (L/K, S) runs over the set of finite Galois extensions and finite S.

We denote by pL,S : WK → WL/K,S the canonical map and also by pL,S :
BWK

→ BWL/K,S
the induced morphism of classifying topoi.

Lemma 4.5. Let A be an abelian object of BWK
and define AL,S := pL,S,∗A. The

family (Rq(jL,S∗)AL,S) defines an abelian object R−→
qj∗A of the total topos Top (F•).

Proof. The diagram of the topoi

BWL′/K,S′

j
L′,S′ ��

p

��

F
L′/K,S′

t

��
BWL/K,S

j
L,S �� F

L/K,S

is commutative. In other words, there is an isomorphism j
L,S,∗p∗ � t∗jL′,S′,∗ . We

get a transformation

t∗jL,S,∗p∗ � t∗t∗jL′,S′,∗ −→ j
L′,S′,∗ ,

which is given by adjunction t∗t∗ → Id. There is an induced transformation

(3) t∗Rn(jL,S,∗p∗) = Rn(t∗jL,S,∗p∗) −→ Rn(j
L′,S′,∗),

where the identity comes from the exactness of t∗. Now, the Leray spectral sequence

Ri(j
L,S,∗)R

j(p∗) ⇒ Ri+j(j
L,S,∗p∗)
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yields a natural transformation

(4) Rn(jL,S,∗)p∗ −→ Rn(jL,S,∗p∗).

Composing (3) and (4), we get a transformation

t∗Rn(jL,S,∗)p∗ −→ Rn(j
L′,S′,∗).

On the other hand one has p∗AL′,S′ = AL,S , since the diagram

BWK

����
���

���
��

�� BWL′/K,S′

��
BWL/K,S

is commutative. Hence there is a canonical map

ft : t
∗Rn(j

L,S,∗)AL,S = t∗Rn(j
L,S,∗)p∗AL′,S′ −→ Rn(j

L′,S′,∗)AL′,S′ .

This yields a system of compatible maps; hence an abelian object of Top (F•). �

Consider for example a topological WK-module A. Let A be the abelian object
of BWK

represented by A. Then AL,S is the object of BWL/K,S
represented by

ANL,S , where NL,S is the kernel of the map pL,S : WK → WL/K,S . The map ft is

induced by the inclusion ANL,S ↪→ ANL′,S′ .

Proposition 4.6. Let A be an abelian object of BWK
. There is a spectral sequence

H−→
p(F

L/K,S
, R−→

qj∗A) ⇒ lim−→Hp+q(BWL/K,S
,AL,S).

If A is represented by a continuous discrete WK-module A or by the topological
group R with trivial action, then we have a spectral sequence

H−→
p(F

L/K,S
, R−→

qj∗A) ⇒ Hp+q(BWK
, A).

Proof. The composition BL/K,S → F
L/K,S

→ Set yields a Leray spectral sequence

Hp(F
L/K,S

, Rq(j
L,S,∗)AL,S) ⇒ Hp+q(BWL/K,S

,AL,S).

Passing to the limit (which is valid thanks to the previous lemma), we get the first
spectral sequence of the proposition. By [4], Lemma 10, one has

lim−→L,S
Hp(BWL/K,S

, ANL,S ) = Hp(BWK
, A)

for A = R or A a continuous discrete WK-module. This yields the second spectral
sequence of the proposition. �

4.2. Computation of the Weil-étale cohomology. In what follows, we consider
a non-trivial valuation v of K.

Notation 4.7. We denote by W 1
Kv

the maximal compact sub-group of WKv
. Hence

W 1
Kv

= Iv is the inertia sub-group for ultrametric v and W 1
Kv

� S1 for complex v.

Let W̃ 1
Kv

be the image of W 1
Kv

in WL/K,S .
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Consider the commutative square

B
W̃Kv

/
(W̃Kv/W̃

1
Kv

)
��

a

��

BWk(v)
/EWk(v)

b

��
B

W̃Kv

qv �� BWk(v)

The first horizontal arrow is just (see [5], IV.5.8)

e
W̃ 1

Kv

: B
W̃ 1

Kv

� B
W̃Kv

/
(W̃Kv/W̃

1
Kv

)
−→ BWk(v)

/EWk(v)
� T .

The morphisms a and b are the localization morphisms, and this square is a pull-
back (see [5], IV.5.8). It follows that the natural transformation

b∗ ◦ qv∗ → e
W̃ 1

Kv
∗ ◦ a

∗

is an isomorphism. The localization functors a∗ and b∗ are both exact and preserve
injective objects. We get

b∗ ◦Rn(qv∗) � Rn(e
W̃ 1

Kv
∗) ◦ a

∗.

In other words, Rn(qv∗)A is the group object Rn(e
W̃ 1

Kv
∗) of T endowed with its

natural action of y(Wk(v)), since the functor b∗ : BWk(v)
→ T is the forgetful

functor (sending an object F endowed with an action of y(Wk(v)) to F). Following

the notation of [4], we denote by Hn(W̃ 1
Kv

,A) the object Rn(qv∗)A of BWk(v)
. We

have

Rq(j
L,S,∗)A = (iv∗)v �=v0(H

q(W̃ 1
Kv

,A)v �=v0),

for any abelian object A of BWL/K,S
and any q ≥ 1, as it follows from Proposition

4.1 and from the discussion above. But the direct image functor

(iv∗)v �=v0 :
∐
v �=v0

BWk(v)
−→ F

L/K,S

is exact (as it follows from its explicit description) and preserves injective objects.
Therefore one has

Hp(F
L/K,S

, Rq(j
L,S,∗)A) = Hp(

∐
v �=v0

BWk(v)
, Hq(W̃ 1

Kv
,A)v �=v0)

=
∏
v �=v0

Hp(BWk(v)
, Hq(W̃ 1

Kv
,A)).

If v is not in S, then W̃ 1
Kv

= 0 (see [6], Lemma 3.7). We get Hq(W̃ 1
Kv

,A)) = 0 for
v not in S. The next result follows.

Proposition 4.8. For any abelian object A of BWL/K,S
and any q ≥ 1, we have

Hp(F
L/K,S

, Rq(j
L,S,∗)A) =

∏
v∈S

Hp(BWk(v)
, Hq(W̃ 1

Kv
,A)).
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By [4], Proposition 9.2, the sheaf Hq(W̃ 1
Kv

,Z) is represented by the discrete

Wk(v)-module Hq(W̃ 1
Kv

,Z). Using [4], Proposition 8.1, we get

H−→
p(F

L/K,S
, R−→

qj∗Z) = lim−→L,S

∑
v∈S

Hp(Wk(v), H
q(W̃ 1

Kv
,Z))

=
∑
v �=v0

Hp(Wk(v), H
q(W 1

Kv
,Z)),

where the (L/K, S) runs over the set of finite Galois extensions and finite S. We
have obtained the next corollary.

Corollary 4.9. For any q ≥ 1, we have the following identifications:

Hp(F
W ;Ȳ

, Rq(j∗)Z) =
∏
v �=v0

Hp(Wk(v), H
q(W 1

Kv
,Z)),

H−→
p(F

L/K,S
, R−→

qj∗Z) =
∑
v �=v0

Hp(Wk(v), H
q(W 1

Kv
,Z)).

Let Pic(Ȳ ) be the Arakelov Picard group of K. This is the group obtained by
taking the idèle group of K and dividing it by the principal idèles and the unit
idèles. We denote by Pic(Y ) the class group of K. Let Pic1(Ȳ ) be the kernel of
the absolute value map from Pic(Ȳ ) to R>0. One has an exact sequence of abelian
compact groups

0 → Rr1+r2−1/log(UK/μK) → Pic1(Ȳ ) → Pic(Y ) → 0,

where log(UK/μK) denotes the image of the logarithmic embedding of the units
modulo torsion UK/μK in the kernel Rr1+r2−1 of the sum map Σ : Rr1+r2 → R.
By Pontryagin duality, we obtain an exact sequence of discrete abelian groups (see
also [6], Proposition 6.4):

(5) 0 → Pic(Y )D → Pic1(Ȳ )D → Hom(UK ,Z) → 0.

Theorem 4.10. One has

H−→
n(F

L/K,S
,Z) = Z for n = 0

= 0 for n = 1

= Pic1(Ȳ )D for n = 2

= μD
K for n = 3.

The group H−→
n(F

L/K,S
,Z) is of infinite rank for even n ≥ 4 and vanishes for odd

n ≥ 5.

Proof. The cohomology of W 1
Kv

is given by class field theory for v ultrametric. For

a complex valuation v, we have Hq(W 1
Kv

,Z) = Hq(S1,Z), which is Z for q even and
0 for q odd (this follows from [4], Prop. 5.2 and from the fact that the classifying
space of S1 is CP∞). Moreover, one has Hp(BR,Z) = 0 for any q ≥ 1 (see [4],
Proposition 9.6). Therefore, Corollary 4.9 yields

H−→
p(F

L/K,S
, Rq(j∗)Z) =

∑
v �=v0, v�∞

(O×
Kv

)D ⊕
∑
v|∞

Z for p = 0 and q = 2

=
∑
v|∞

Z for p = 0 and q ≥ 4 even

= 0 otherwise.
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Now the second spectral sequence of Proposition 4.6 for A = Z gives

H−→
1(F

L/K,S
,Z) = H1(WK ,Z) = 0.

Next, we obtain the exact sequence

0 → H−→
2(F

L/K,S
,Z) → H2(WK ,Z) →

∑
v�∞

(O×
Kv

)D ⊕
∑
v|∞

Z → H−→
3(F

L/K,S
,Z) → 0.

This is the Pontryagin dual of

0 → H−→
3(F

L/K,S
,Z)D →

∏
v�∞

O×
Kv

×
∏
v|∞

S1 → C1
K → H−→

2(F
L/K,S

,Z)D → 0.

The result for n ≤ 3 follows. Furthermore, the spectral sequence provides us with
the exact sequence

0 → H−→
n(F

L/K,S
,Z)D → Hn(WK ,Z) →

⊕
v|∞

Z → H−→
n+1(F

L/K,S
,Z) → 0,

for even n ≥ 4. Therefore, the result for n ≥ 4 follows from the fact that the map
Hn(WK ,Z) →

⊕
v|∞ Z is surjective (see [4], proof of Corollary 9). �

Theorem 4.11. For n ≤ 1 and n ≥ 4, the canonical map

H−→
n(F

L/K,S
,Z) −→ Hn(F

W,Ȳ
,Z)

is an isomorphism. Furthermore, there is an exact sequence

0 → H2(F
W,Ȳ

,Z) → (C1
K)D →

∏
v�∞

(O×
Kv

)D ×
∏
v|∞

Z → H3(F
W,Ȳ

,Z) → 0.

In particular, the canonical map

H−→
n(F

L/K,S
,Z) −→ Hn(F

W,Ȳ
,Z)

is not an isomorphism for n = 2, 3.

Proof. The morphism of topoi F
W,Ȳ

→ F
L/K,S

yields a map Hn(F
L/K,S

,Z) →
Hn(F

W,Ȳ
,Z). By the universal property of the inductive limit we get a morphism

H−→
n(F

L/K,S
,Z) −→ Hn(F

W,Ȳ
,Z).

Using Proposition 3.14 (with L′ = K̄) and passing to the limit, we obtain a mor-
phism of spectral sequences

[H−→
p(F

L/K,S
, R−→

qj∗Z) ⇒ Hp(BWK
,Z)] −→ [Hp(F

W,Ȳ
, Rq(j∗)Z) ⇒ Hp(BWK

,Z)].

Comparing these spectral sequences and using the previous proof, we deduce the
result. �

Let V̄ = (V, V∞) be an open sub-scheme of Ȳ . It defines a sub-object of the final
object of F

L/K,S
. The open sub-topos

F
L/K,S

/V̄ −→ F
L/K,S

is the full sub-category of F
L/K,S

whose objects are of the form F = (Fv; fv)v∈V̄

(i.e. Fv = ∅ for v ∈ Ȳ − V̄ ).

Definition 4.12. We denote by Hn(F
L/K,S

, V̄ ,−) := Hn(F
L/K,S

/V̄ ,−) the coho-

mology of the open sub-topos F
L/K,S

/V̄ . Then we set

H−→
n(F

L/K,S
, V̄ ,Z) = lim−→Hn(F

L/K,S
, V̄ ,Z).
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Let L/K be a finite extension of K. For any place v of L, we denote by ULv
the

maximal compact sub-group of L×
v . Hence ULv

= O×
Lv

for a finite place v, ULv
= S1

for v complex and ULv
= Z/2Z for a real place v.

Definition 4.13. Let V̄ = (V, V∞) be a connected étale Ȳ -scheme and let L =
K(V̄ ) be the number field corresponding to the generic point of V̄ . We define the
class group CV̄ associated to V̄ by the exact sequence of topological groups

0 →
∏
v∈V̄

ULv
−→ CL → CV̄ → 0.

We denote by C1
V̄

the topological sub-group of CV̄ defined by the kernel of the
canonical continuous morphism CV̄ → R>0.

Note that CV̄ is just the S-idèle class group of the number field K(V̄ ), where S
is the set of valuations of K(V̄ ) not corresponding to a point of V̄ . The group C1

V̄
is compact.

Proposition 4.14. Let V̄ � Ȳ be a proper open sub-scheme of Ȳ . Then one has

H−→
n(F

L/K,S
, V̄ ,Z) = Z for n = 0

= 0 for n odd

= (C1
V̄ )

D for n = 2.

For even n ≥ 4, we have an exact sequence

0 −→ H−→
n(F

L/K,S
, V̄ ,Z) −→ Hn(WK ,Z) −→

∑
v∈V∞

Z −→ 0.

Proof. We again use the Leray spectral sequence induced by the inclusion of the
generic point. We get H−→

1(F
L/K,S

, V̄ ,Z) = H1(WK ,Z) = 0 and the exact sequence

0 → H−→
2(F

L/K,S
, V̄ ,Z) → (C1

K)D →
∐
v∈V

(O×
Kv

)D ⊕
∐

v∈V∞

Z → H−→
3(F

L/K,S
, V̄ ,Z) → 0.

Moreover the map ∏
v∈V̄

UKv
=

∏
v∈V

O×
Kv

×
∏

v∈V∞

S1 −→ C1
K

is injective, since V̄ � Ȳ . By Pontryagin duality, we obtain H−→
3(F

L/K,S
, V̄ ,Z) = 0

and

H−→
2(F

L/K,S
, V̄ ,Z) = Ker[(C1

K)D →
∐
v∈V̄

UD
Kv

] = (C1
V̄ )

D.

Next we obtain an exact sequence

0 → H−→
n(F

L/K,S
, V̄ ,Z) → Hn(WK ,Z) →

∑
v∈V∞

Z

→ H−→
n+1(F

L/K,S
, V̄ ,Z) → Hn+1(WK ,Z) = 0

for even n ≥ 4. This ends the proof since the map Hn(WK ,Z) →
∑

v∈V∞
Z is

surjective for even n ≥ 4 (see [4], proof of Corollary 9). �

Proposition 4.15. For any open sub-scheme V̄ ⊆ Ȳ , one has

H−→
n(F

L/K,S
, V̄ , R̃) = R for n = 0, 1 and H−→

n(F
L/K,S

, V̄ , R̃) = 0 for n ≥ 2.
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Proof. Arguing as above and using the fact that Hn(W 1
Kv

, R̃) = 0 for n ≥ 1 and

any non-trivial valuation v since W 1
Kv

is compact (see [4], Corollary 8), we obtain

Hn(F
L/K,S

, V̄ , R̃) = Hn(WL/K,S, R̃) for any V̄ ⊆ Ȳ and any pair (L, S). Now the

product decomposition WL/K,S = W 1
L/K,S × R and the compactness of W 1

L/K,S

show (see [4], Proposition 9.6):

Hn(WL/K,S , R̃) = Hn(R, R̃) = R for n = 0, 1 and 0 for n ≥ 2.

Passing to the limit over (L, S), we obtain the result. �

4.3. Cohomology with compact support. The open sub-topos φ : F
L/K,S

/Y →
F

L/K,S
associated to the inclusion Y → Ȳ gives rise to three adjoint functors

φL,S,!, φ
∗
L,S , φL,S,∗. The functor φL,S,! is the usual extension by 0. IfA=(Av; fv)v∈Y

is an abelian object of F
L/K,S

/Y , then φL,S,! A is the abelian object of F
L/K,S

whose
v-component is Av for v ∈ Y and 0 for v ∈ Y∞. If there is no risk of ambiguity, we
denote by φ!, φ

∗, φ∗ the functors defined above.
For any abelian object A = (Av; fv)v∈Ȳ of F

L/K,S
we have an exact sequence

(6) 0 → φ!φ
∗A → A →

∏
Y∞

iv,∗Av → 0.

Moreover, iv,∗ is exact and preserves injectives; hence one has

(7) Hn(F
L/K,S

,
∏
Y∞

iv,∗Av) = Hn(
∐
Y∞

BR,
∏
Y∞

iv,∗Av) =
∏
Y∞

Hn(BR, Av).

Notation 4.16. We denote by φ!Z (respectively φ!R̃) the abelian object of Top (F•)

defined by the family of sheaves φL,S,!Z (respectively φL,S,!R̃) with the obvious
transition maps.

Using the exact sequence of sheaves (6), equation (7) and passing to the limit
we get the following long exact sequences for any open sub-scheme V̄ ⊆ Ȳ :

... → H−→
n(F

L/K,S
, V̄ , φ!Z) → H−→

n(F
L/K,S

, V̄ ,Z) →
∏
V∞

Hn(BR,Z) → ...,(8)

... → H−→
n(F

L/K,S
, V̄ , φ!R̃) → H−→

n(F
L/K,S

, V̄ , R̃) →
∏
V∞

Hn(BR, R̃) → ....(9)

By ([4], Proposition 9.6), we have Hn(BR,Z) = 0 for any n ≥ 1, Hn(BR, R̃) = R
for n = 0, 1 and Hn(BR, R̃) = 0 for n ≥ 2. This is enough to compute the groups

H−→
n(F

L/K,S
, V̄ , φ!Z) and H−→

n(F
L/K,S

, V̄ , φ!R̃) for any open V̄ ⊆ Ȳ . In particular, we

recover the result ([6], Theorem 6.3) for V̄ = Ȳ and n ≤ 3.

5. The category of sheaves on Lichtenbaum’s Weil-étale site

In this section we show that the topos F
L/K,S

is equivalent to the category of
sheaves on Lichtenbaum’s Weil-étale site TL/K,S .

5.1. The local section site. The Weil-étale site (TL/K,S ,Jls) is defined in [6]
using the groups WL/K;S , where L/K is a finite Galois extension and S a finite set
of primes of K containing the archimedean ones and the primes ramified in L/K.
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Definition 5.1. An object of the category TL/K,S is a collection X = (Xv; fv)v∈Ȳ ,
where Xv is a Wk(v)-topological space and fv : Xv → Xv0 is a morphism of WKv

-
spaces for any v 
= v0 (the topological group WKv

acts continuously on Xv and Xv0

via the morphisms θv : WKv
→ WK and qv : WKv

→ Wk(v) respectively). If v = v0
we require that the action of WK on Xv0 factors through WL/K,S .

The morphisms in this category are defined in the obvious way. The topology
Jls on the category TL/K,S is generated by the pre-topology for which a cover is a
family of morphisms {Xi → X} such that {Xi;v → Xv} is a local section cover, for
any valuation v.

M. Flach has shown in [4] that the definition of Hi(WK ;A) as the direct limit
lim−→ Hi(WL/K;S;A) coincides with the topological group cohomology of WK . Here,

A is a discrete abelian group or the usual topological group R with trivialWK-action
(see [4], Lemma 10). This suggests the following definition.

Definition 5.2. The local section site (TW ;Ȳ ;Jls) is defined as above, but the
action of WK on the generic component Xv0 of an object X of TW ;Ȳ is not supposed
to factor through WL/K,S .

For any topological group G, we denote by BTopG the category of topological

spaces (in a given universe) on which G acts continuously. The functor BTopW̃Kv
→

BTopWKv
induced by the surjective map WKv

→ W̃Kv
is fully faithful. Therefore,

an object of the category TL/K,S is given by a collection X = (Xv; fv)v∈Ȳ , where

fv is a map of W̃Kv
-topological spaces.

The category TW ;Ȳ (respectively TL/K,S) has finite projective limits. Indeed, the
final object is given by the trivial action of Wk(v) on the one point space Xv := {∗}
for any v and by the trivial map fv : Xv → Xv0 . Let

φ : U = (Uv; fv) −→ X = (Xv; ξv) and φ′ : U ′ = (U ′
v; f

′
v) → X = (Xv; ξv)

be two morphisms in TW ;Ȳ (respectively in TL/K,S). The object (Uv×Xv
U ′
v; fv×ξv

f ′
v)v∈Y does define a fiber product U ×X U ′ in the category TW ;Ȳ (respectively
TL/K,S).

5.2. The local section site is a site for the flask topos.

Notation 5.3. In order to simplify the notation, we assume in this subsection that
L = K̄/K is an algebraic closure of K and S is the set of all places of K. However,
everything here remains valid for any suitable pair (L/K, S).

Let v be a valuation of K. The Yoneda embedding yields fully faithful functors

εv : BTopWk(v) → BWk(v)
and εKv

: BTopWKv
→ BWKv

.

Recall that θ∗v : BWK
→ BWKv

and q∗v : BWk(v)
→ BWKv

denote the pull-backs of
the morphisms of classifying topoi induced by the Weil map θv : WKv

→ WK and
by the projection qv : WKv

→ Wk(v). In the following proof, we also denote by

tθ∗v : BTopWK → BTopWKv
and tq∗v : BTopWk(v) → BTopWKv

the functors induced by θv and qv. One has

(10) q∗v ◦ εv = εKv
◦ tq∗v and θ∗v ◦ εv0 = εKv

◦ tθ∗v .
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Proposition 5.4. There is a fully faithful functor

y : TW ;Ȳ −→ F
W ;Ȳ

,

X = (Xv; fv) �−→ y(X ) = (εv(Xv); εKv
(fv)).

Proof. If X = (Xv; fv) is an object of TW ;Ȳ , then fv : tq∗v(Xv) → tθ∗v(Xv0) is a map
of BTopWKv

, for any valuation v. By (10), the map

εKv
(fv) : q

∗
v ◦ εv(Xv) = εKv

◦ tq∗v(Xv) −→ εKv
◦ tθ∗v(Xv0) = θ∗v ◦ εv(Xv0)

is a morphism of BWKv
. Hence y(X ) = (εv(Xv); εKv

(fv)) is an object of F
W ;Ȳ

and

y is a functor. Let X = (Xv ; fv)v and X ′ = (X ′
v ; f ′

v)v be two objects of TW ;Ȳ .
Denote by

y(X ;X ′) : HomTW ;Ȳ
((Xv ; fv); (X

′
v ; f ′

v))

−→ HomF
W ;Ȳ

((εvXv ; εKv
fv); (εvXv ; εKv

fv))

the map defined by the functor y. One has to show that y(X ;X ′) is a bijection, for
any objects X and X ′. Let

φ′ = (φ′
v)v, φ = (φv)v : (Xv ; fv) ⇒ (X ′

v ; f ′
v)

be two morphisms in TW ;Ȳ such that y(X ;X ′)(φ
′) = y(X ;X ′)(φ). One has εv(φ

′
v) =

εv(φv) for any v ∈ Ȳ . Since εv is fully faithful, we get φ′
v = φv; hence the map

y(X ;X ′) is injective. Let

ϕ = (ϕv)v : (εvXv ; εKv
fv) → (εvX

′
v ; εKv

f ′
v)

be a morphism in F
W ;Ȳ

. For any v ∈ Ȳ , there exists a unique morphism φv : Xv →
X ′

v such that εv(φv) = ϕv (since εv is fully faithful). The square

q∗v(εvXv)

εKv (fv)

��

q∗v(εv(φv))�� q∗v(εvX
′
v)

εKv (f
′
v)

��
θ∗v(εv0Xv0)θ∗

v(εv0 (φv0
))
�� θ∗v(εv0X

′
v0)

is commutative. By (10), the following diagram commutes as well:

εKv
(tq∗v(Xv))

εKv (fv)

��

εKv (
tq∗v(φv))�� εKv

(tq∗v(X
′
v))

εKv (f
′
v)

��
εKv

(tθ∗v(Xv0))
εKv (

tθ∗
v(φv0

))

�� εKv
(tθ∗v(X

′
v0))

Finally, the square

tq∗v(Xv)

fv

��

tq∗v(φv) �� tq∗v(X
′
v)

f ′
v

��
tθ∗v(Xv0) tθ∗

v(φv0
)

�� tθ∗v(X
′
v0)

is commutative, since εKv
is fully faithful. Hence φ = (φv)v : X → X ′ is a morphism

of TW ;Ȳ such that

y(X ;X ′)(φ) = y(X ;X ′)((φv)v) = (εvφv)v = (ϕv)v = ϕ.
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The functor y is fully faithful, since the map y(X ;X ′) is bijective for any objects X
and X ′ of TW ;Ȳ . �

For the notion of induced topology we refer to ([5], III.3.1).

Proposition 5.5. The local section topology Jls on TW ;Ȳ is the topology induced
by the canonical topology of F

W ;Ȳ
via the functor y.

Proof. Recall that the coproduct of a family of topoi is, as a category, the product
of the underlying categories. Then consider the following commutative diagram:

F
W ;Ȳ

(i∗v)v �� ∐
v∈Ȳ BWk(v)

TW ;Ȳ
��

y

��

∏
v∈Ȳ BTopWk(v)

��

The local section topology on TW ;Ȳ is (by definition) the topology induced by the
local section topology on

∏
v∈Ȳ BTopWk(v) (see [5], III.3.4). By [4], Proposition 4.1,

the local section topology on BTopWk(v) is the topology induced by the canonical
topology of BWk(v)

. Hence the local section topology on
∏

BTopWk(v) is the topol-

ogy induced by the canonical topology of
∐

BWk(v)
. Since the previous diagram is

commutative, the local section topology on TW ;Ȳ is the topology induced by the
canonical topology of

∐
BWk(v)

via the functor

(i∗v)v ◦ y : TW ;Ȳ −→ F
W ;Ȳ

−→
∐
v∈Ȳ

BWk(v)
.

Hence, it remains to show that the canonical topology of F
W ;Ȳ

is induced by the

canonical topology of
∐

BWk(v)
.

The functor (i∗v)v : F
W ;Ȳ

→
∐

BWk(v)
is the pull-back of the morphism of topoi

(iv)v :
∐

BWk(v)
→ F

W ;Ȳ
. Then (i∗v)v is a continuous morphism of left exact sites,

when F
W ;Ȳ

and
∐

BWk(v)
are viewed as categories endowed with their canonical

topologies. This shows that the topology Jind on F
W ;Ȳ

induced by the canonical

topology of
∐

BWk(v)
is finer than the canonical topology of F

W ;Ȳ
, by definition of

the induced topology.
We need to show that any representable presheaf is a sheaf on the site

(F
W ;Ȳ

;Jind). Let F = (Fv; fv)v be an object of F
W ;Ȳ

, and let

{ui : Xi = (Xi;v; ξi;v) −→ X = (Xv; ξv)}i∈I

be a covering family of the site (F
W ;Ȳ

;Jind). The functor

(F
W ;Ȳ

;Jind) −→ (
∐
v∈Ȳ

BWk(v)
;Jcan) −→ (BWk(v)

;Jcan)

is continuous. Therefore (see [5], III.1.6) the family

{ui;v : Xi;v −→ Xv}i∈I

is a covering family of (BWk(v)
;Jcan) for any valuation v. Since the covering families

for the canonical topology of a topos are precisely the epimorphic families, the
family {Xi;v → Xv} is epimorphic. Moreover, the pull-back q∗v of the morphism
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qv : BWKv
→ BWk(v)

preserves (as any pull-back) epimorphic families. Hence the
family

{q∗v(ui;v) : q∗v(Xi;v) −→ q∗v(Xv)}i∈I

is epimorphic in the category BWKv
. Consider the diagram D:

Hom((Xv)v; (Fv)v)
b �� ∏Hom((Xi;v)v; (Fv)v) ⇒

∏
Hom((Xi;v ×Xv Xj;v)v; (Fv)v)

Hom(X ;F)

a

��

c �� ∏Hom(Xi;F) ⇒

d

��

∏
Hom(Xi ×X Xj ;F).

��

The sets of homomorphisms in the first line correspond to the category
∐

BWk(v)
,

and the set of homomorphisms of the second line correspond to the category F
W ;Ȳ

.

The vertical arrows are given by the faithful functor (i∗v)v. Hence those vertical
maps are all injective. In particular, a and d are both injective.

The functor (i∗v)v sends covering families of F
W ;Ȳ

to covering families of
∐

BWk(v)
,

since (i∗v)v is continuous. Moreover, any representable presheaf of
∐

BWk(v)
is a

sheaf for the canonical topology. This shows that the first line of D is exact. Hence,
the maps a and b are both injective, which shows that c is injective.

Now, let (ϕi)i be an element of the kernel of
∏

Hom(Xi;F) ⇒
∏

Hom(Xi ×X Xj ;F).

The square on the right hand side is commutative; hence d((ϕi)i) is in the kernel
of ∏

Hom((Xi;v)v; (Fv)v) ⇒
∏

Hom((Xi;v ×Xv
Xj;v)v; (Fv)v).

Then we get an element φ ∈ Hom((Xv)v; (Fv)v) which goes to d((ϕi)i), since the
first line is exact. More precisely, one has b(φ) = d((ϕi)i). Let v be a non-trivial
valuation. For any i ∈ I, consider the diagram

q∗v(Xi;v)

ξi;v

��

q∗v(ui;v) �� q∗v(Xv)

ξv

��

q∗v(φv) �� q∗v(Fv)

fv

��
θ∗v(Xi;v0)

ui;v �� θ∗v(Xv0) θ∗
v(φv0

)
�� θ∗v(Fv0)

Here, the total square and the left hand side square are both commutative. Indeed,

ui ∈ HomF
W ;Ȳ

(Xi;X ) and φ ◦ ui = ϕi ∈ HomF
W ;Ȳ

(Xi;F).

It follows that the elements

θ∗v(φv0) ◦ ξv and fv ◦ q∗v(φv)

of the set HomBWKv
(q∗v(Xv); θ

∗
v(Fv0)) have the same image under the morphism

HomBWKv
(q∗v(Xv); θ

∗
v(Fv0)) −→ HomBWKv

(q∗v(Xi;v); θ
∗
v(Fv0)),

for any i ∈ I. Hence, θ∗v(φv0) ◦ ξv and fv ◦ q∗v(φv) have the same image under the
morphism

(11) HomBWKv
(q∗v(Xv); θ

∗
v(Fv0)) −→ HomBWKv

(
∐
i∈I

q∗v(Xi;v); θ
∗
v(Fv0)).
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Furthermore, the morphism (11) is injective, since the family {q∗v(Xi;v) → q∗v(Xv)}
is epimorphic. The equality

θ∗v(φv0) ◦ ξv = fv ◦ q∗v(φv)

follows. For any valuation v ∈ Ȳ , the square

q∗v(Xv)

ξv

��

q∗v(φv) �� q∗v(Fv)

fv

��
θ∗v(Xv0) θ∗

v(φv0
)
�� θ∗v(Fv0)

is commutative. In other words, the element φ ∈ Hom∐
BWk(v)

((Xv)v; (Fv)v) lies

in

HomF
W ;Ȳ

(X ;F) ⊆ Hom∐
BWk(v)

((Xv)v; (Fv)v).

Hence there exists a unique ϕ ∈ HomF
W ;Ȳ

(X ;F) such that a(ϕ) = φ. We get

b ◦ a(ϕ) = b(φ) = d((ϕi)i) = d ◦ c(ϕ)
and

c(ϕ) = (ϕi)i,

since d is injective. This shows that the second line of D is exact.
We have shown that the sequence

HomF
W ;Ȳ

(X ;F) →
∏
i

HomF
W ;Ȳ

(Xi;F) ⇒
∏
i;j

HomF
W ;Ȳ

(Xi ×X Xj ;F)

is exact and that the first arrow is injective for any object F of F
W ;Ȳ

and any

covering family {Xi → X}i∈I of the site (F
W ;Ȳ

;Jind). Hence any representable
presheaf of the category F

W ;Ȳ
is a sheaf for the topology Jind. In other words, the

topology Jind is sub-canonical, that is, coarser than the canonical topology. Since
Jind is also finer than the canonical topology, it is the canonical topology. �

Corollary 5.6. The functor y is continuous.

Proof. By definition of the induced topology, Jls is the finest topology on TW ;Ȳ

such that y is continuous (see [5], III.3.1). �

Corollary 5.7. The local section topology Jls on TW ;Ȳ is sub-canonical.

Proof. Let X be an object of TW ;Ȳ . The presheaf ỹ(X ) of F
W ;Ȳ

represented by

y(X ) is a sheaf, since F
W ;Ȳ

is endowed with the canonical topology. The restriction

of ỹ(X ) to the sub-category TW ;Ȳ via the functor y is a sheaf for the local section
topology Jls, since y is continuous. But this sheaf is canonically isomorphic to

the presheaf X̃ of TW ;Ȳ represented by X , since y is fully faithful. Hence X̃ is a
sheaf. �

We denote by y : Top → T the Yoneda embedding. In order to simplify the
notation in the following proof, we also denote by y : BTopG → BG the induced
functor, for any topological group G. By [4], Corollary 3, the full sub-category of
BWk(v)

defined by the family of objects

{y(Wk(v) × Z);Z ∈ Ob(Top)}
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is a generating sub-category, for any valuation v. Here y(Wk(v)) acts on

y(Wk(v) × Z) = y(Wk(v))× y(Z)

on the first factor. Consider the sequence adjoint functors between BWKv
and BWK

,

θv ! ; θ∗v ; θv∗,

induced by the morphism of topological groups θv : WKv
→ WK . Recall that the

functor θv ! is defined by

θv !(F) = y(WK)×y(WKv ) F := (y(WK)×F)/y(WKv
),

where y(WKv
) acts on the left on F and by right-translations on y(WK). For any

v ∈ Ȳ 0 and any Z ∈ Ob(Top), we define

GZ;v = ((θv!(q
∗
v(y(Wk(v) × Z))) ; y(Wk(v) × Z) ; (∅BWk(w)

)w �=v0;v) ; (gZ;v)),

where the morphism

gZ;v : q∗v(y(Wk(v) × Z)) −→ θ∗v ◦ θv !(q∗v(y(Wk(v) × Z)))

is given by adjunction. For the trivial valuation v0 and for any Z ∈ Ob(Top), we
define

GZ;v0 := (y(WK × Z) ; (∅BWk(v)
)v �=v0).

Note that TW ;Ȳ is equivalent to a full sub-category of F
W ;Ȳ

, by Proposition 5.4.

Proposition 5.8. The category TW ;Ȳ is a generating sub-category of F
W ;Ȳ

.

Proof. It is shown in the proof of Proposition 3.3 that the family

{GZ;v; Z ∈ Ob(Top); v ∈ Y }

is a generating family of F
W ;Ȳ

. Hence it remains to show that GZ;v lies in TW ;Ȳ ,

for any Z ∈ Ob(Top) and any v ∈ Ȳ . It is obvious for the trivial valuation v = v0.
Take a non-trivial valuation v 
= v0. One has
(12)

θv !(q
∗
v(y(Wk(v)× Z))) := y(WK)×y(WKv )y(Wk(v)× Z) = y(WK×WKv (Wk(v)× Z)),

as it is shown in the proof of ([4], Lemma 13). Note that WKv
acts on the right

on WK and by left translation on the first factor on (Wk(v) × Z). This defines the

quotient space (WK×WKv (Wk(v)× Z)). Then WK acts on (WK×WKv (Wk(v)× Z))
by left translations on the first factor. We obtain

GZ;v = (θv !(q
∗
v(y(Wk(v) × Z))); y(Wk(v) × Z); (∅BWk(w)

)w �=v0;v; gZ;v)(13)

= y (WK ×WKv (Wk(v) × Z); (Wk(v) × Z); (∅Top)w �=v0;v; g̃Z;v ) ,(14)

where

g̃Z;v : (Wk(v) × Z) −→ WK ×WKv (Wk(v) × Z)

is the unique map of WKv
-topological spaces such that y(g̃Z;v) = gZ;v (recall that

the Yoneda embedding y : BTopWKv
→ BWKv

is fully faithful). Hence GZ;v is an

object of TW ;Ȳ for any Z ∈ Ob(Top) and any v ∈ Ȳ . �
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Theorem 5.9. The canonical morphism

F
W ;Ȳ

−→ ˜(TW ;Ȳ ;Jls)

is an equivalence of topoi, where ˜(TW ;Ȳ ;Jls) is the category of sheaves on the local
section site. More generally, the canonical map

F
L/K,S

−→ ˜(TL/K,S ;Jls)

is an equivalence.

Proof. The functor y : TW ;Ȳ → F
W ;Ȳ

is fully faithful, the topology Jls is induced
by the canonical topology of F

W ;Ȳ
and TW ;Ȳ is a generating sub-category of F

W ;Ȳ
.

The first claim of the theorem follows from [5], IV.1.2.1. More generally, the proofs
of (5.4), (5.5) and (5.8) remain valid for F

L/K,S
, where L/K and S are both finite,

by replacing WK and WKv
with WL/K,S and W̃Kv

respectively. �

Corollary 5.10. The canonical map

lim−→L/K,S
Hn(TL/K,S ,Z) → Hn(TW,Ȳ ,Z)

is not an isomorphism for n = 2, 3.

Proof. The cohomology of the site TL/K,S (respectively TW ;Ȳ ) is by definition the

cohomology of the topos ˜(TL/K,S;Jls) (respectively ˜(TW ;Ȳ ;Jls)), which is in turn
equivalent to F

L/K,S
(respectively F

W ;Ȳ
) by Theorem 5.9. Therefore this corollary

is just a reformulation of Theorem 4.11. �

Remark 5.11. This corollary points out that Lichtenbaum’s Weil-étale cohomology
is not defined as the cohomology of a site (i.e. of a topos).

6. The Artin-Verdier étale topos

The Artin-Verdier étale site associated to a number field takes the (ramification
at the) archimedean primes into account (see [9] and [2]). This refinement of the
étale site is necessary if one wants to naturally obtain the vanishing of the coho-
mology in degrees greater than three. Recall that Ȳ is the set of valuations of a
number field K.

6.1. The Artin-Verdier étale site of Ȳ . Here, all schemes are separated and of
finite type over Spec(Z). A connected Ȳ -scheme is a pair X̄ = (X;X∞), where X is
a connected Y -scheme in the usual sense. When X is empty, X∞ has to be (empty
or) a single point over Y∞. If X is not empty, X∞ is a connected open subset of
X(C)/ ∼. Here, X(C)/ ∼ is the quotient of the set of complex valued points of X
under the equivalence relation defined by complex conjugation, endowed with the
quotient topology. A Ȳ -scheme is a finite sum of connected Ȳ -schemes.

A connected étale Ȳ -scheme is a connected Ȳ -scheme (X;X∞), where X/Y is
étale of finite presentation and X∞/Y∞ is unramified in the sense that if y ∈ Y∞
is real, so is any point x of X∞ lying over y. An étale Ȳ -scheme X̄ is a finite sum
of connected étale Ȳ -schemes, called the connected components of X̄. A morphism
φ̄ : (U ;U∞) → (V ;V∞) of étale Ȳ -schemes is given by a morphism φ : U → V of
étale Y -schemes which induces a map φ∞ : U∞ → V∞ over Y∞. Fiber products
Ū ×X̄ V̄ := (U ×X V ;U∞ ×X∞ V∞) exist in the category EtȲ of étale Ȳ -schemes.
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Definition 6.1. The Artin-Verdier étale site of Ȳ is defined by the category EtȲ
of étale Ȳ -schemes endowed with the topology Jet generated by the pre-topology
for which the coverings are the surjective families.

6.2. The specialization maps. Let v be a valuation of K corresponding to a
point of Y . We denote by k(v) and k(v) the residue field at v and its algebraic
closure. The henselization and the strict henselization of Ȳ at v are defined as the
projective limits

Spec(Oh
Ȳ ;v) := lim←− Ū and Spec(Osh

Ȳ ;v) := lim←− Ū ,

where Ū runs over the filtered system of étale neighborhoods of v in Ȳ and the
filtered system of étale neighborhoods of v̄ in Ȳ respectively. Here an étale neigh-
borhood of v in Ȳ (respectively of v̄ in Ȳ ) is given by an étale Ȳ -scheme Ū en-
dowed with a morphism (Spec(k(v)); ∅) → Ū over Ȳ (respectively endowed with

a morphism (Spec(k(v)); ∅) → Ū over Ȳ ). Then, for v ultrametric, the local ring

Oh
Ȳ ;v

:= ODv

K̄
is henselian with fraction field Kh

v and with residue field k(v). Re-

spectively, the local ring Osh
Ȳ ;v

:= OIv
K̄

is strictly henselian with fraction field Ksh
v

and with residue field k(v). For an archimedean valuation v, one has

(Spec(Ksh
v ); v) = (Spec(Kh

v ); v) = lim←− Ū ,

where Ū runs over the filtered system of Ȳ -morphisms (∅; v) → Ū . The choice of
the valuation v̄ of K̄ lying over v induces an embedding

Ksh
v = K̄Iv −→ K̄.

For any ultrametric valuation v, we get a specialization map over Ȳ :

(15) Spec(K̄) = (Spec(K̄); ∅) −→ (Spec(Osh
Ȳ ;v); ∅) =: Ȳ sh

v .

Such a specialization map over Ȳ is also defined for an archimedean valuation v:

(16) Spec(K̄) = (Spec(K̄); ∅) −→ (Spec(Ksh
v ); v) =: Ȳ sh

v .

In what follows, Ȳ sh
v denotes the Ȳ -schemes (Spec(OȲ ;v); ∅), (Spec(Ksh

v ); v) and

Spec(K̄) = (Spec(K̄); ∅) for v ultrametric, archimedean and the trivial valuation
respectively.

6.3. The étale topos of Ȳ . The Artin-Verdier étale topos Ȳet associated to the
Arakelov compactification of Spec(OK) is the category of sheaves of sets on the site
(EtȲ ;Jet). We denote by Yet the usual étale topos of the scheme Y .

Proposition 6.2. There is an open embedding

ϕ : Yet −→ Ȳet

corresponding to the open inclusion Y := (Y ; ∅) → Ȳ . For any closed point v of Ȳ ,
there is a closed embedding (see [5], IV, Proposition 9.3.4)

uv : Bsm
Gk(v)

−→ Ȳet.

The closed complement of Yet in Ȳet is the image of the closed embedding

u := (uv)v∈Y∞ :
∐

v∈Y∞

Set −→ Ȳet.

Licensed to Calif Inst of Tech. Prepared on Wed Apr 15 08:21:00 EDT 2015 for download from IP 131.215.225.9.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Proof. The map Y := (Y ; ∅) → Ȳ is a monomorphism in EtȲ , hence the Yoneda
embedding defines a sub-object ε(Y ) of the final object of Ȳet. Thus the localization
morphism

(17) Ȳet/ε(Y ) −→ Ȳet

is an open embedding. The category (EtȲ )/Y is isomorphic to the usual category
EtY of étale Y -schemes. Under this identification, the usual étale topology Jet on
EtY is the topology Jind induced by the forgetful functor

(EtȲ )/Y
→ EtȲ ,

where EtȲ is endowed with the Artin-Verdier étale topology. Moreover, one has an
equivalence (see [5], III.5.4)

(18) ˜(EtY ;Jet) � ˜((EtȲ )/Y ;Jind) � Ȳet/ε(Y ).

The first claim of the proposition follows from (17) and (18).
Assume that v corresponds to an ultrametric valuation and denote by v → Ȳ

the morphism (Spec(k(v)); ∅) → Ȳ . The functor

u∗
v : EtȲ −→ Etk(v) � T f

Gk(v)
,

(X̄ → Ȳ ) �−→ (X̄ ×Ȳ v → Spec(k(v)))

is a morphism of left exact sites, where T f
Gk(v)

denotes the category of finite Gk(v)-

sets endowed with the canonical topology. We denote by

uv : Bsm
Gk(v)

−→ Ȳet

the induced morphism of topoi. The adjunction transformation u∗
v ◦uv∗ → Id is an

isomorphism (i.e. uv is an embedding).
Now assume that v is an archimedean valuation and denote by v → Ȳ the

morphism (∅; v) → Ȳ . Again, the functor

u∗
v : EtȲ −→ Setf = T f

Gk(v)
,

X̄ → Ȳ �−→ X̄ ×Ȳ v → (∅; v)

is a morphism of left exact sites, where Setf is the category of finite sets, endowed
with the canonical topology. We get an embedding of topoi

uv : Set −→ Ȳet.

For any v ∈ Ȳ 0, let (Ȳ − v) → Ȳ be the open complement of the closed point
v. Again, ε(Ȳ − v) is a sub-object of the final object of Ȳet which yields an open
embedding j : Ȳet/ε(Ȳ−v) −→ Ȳet. The strictly full sub-category of Ȳet defined

by the objects X such that j∗(X) is the final object of Ȳet/ε(Ȳv) is exactly the
essential image of uv∗. In other words, the image of uv is the closed complement of
j. Hence, uv is a closed embedding. The last claim of the proposition follows from
[5], IV.9.4.6. �

Corollary 6.3. The family of functors

{u∗
v : Ȳet → Bsm

Gk(v)
; v ∈ Ȳ 0}

is conservative.
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Proof. By [5], VIII.3.13, the family of functors

{u∗
v : Yet → Bsm

Gk(v)
; v ∈ Y 0}

is conservative. By [5], IV 9.4.1.c, the result follows from Proposition 6.2. �

Let F be an object of Yet and let Fv0 ∈ Ob(Bsm
GK

) be its generic stalk. For any
archimedean valuation v one has

(19) u∗
v ◦ ϕ∗(F) � FIv

v0 .

Let u :
∐

v∈Y∞
Set → Ȳet be the morphism given by the family (uv)v∈Y∞ . Consider

the functor

ρ := u∗ϕ∗ : Yet −→
∐

v∈Y∞
Set,

F �−→ (FIv
v0 )v∈Y∞ .

Let us consider the category (
∐

v∈Y∞
Set , Yet, ρ) defined in [5], IV.9.5.1.

Corollary 6.4. The category Ȳet is equivalent to (
∐

v∈Y∞
Set , Yet, ρ).

Proof. There is a functor

Φ : Ȳet −→ (
∐

v∈Y∞
Set , Yet, ρ),

F �−→ (ϕ∗F , u∗F , f),

where f : u∗F → u∗ϕ∗ϕ
∗F is given by adjunction. By [5], IV.9.5.4.a and Proposi-

tion 6.2, the functor Φ is an equivalence of categories. �

In particular, we have the usual sequences of adjoint functors

ϕ!, ϕ
∗, ϕ∗ and u∗, u∗, u

!

between the categories of abelian sheaves on Ȳet, Yet and Y∞ respectively. It follows
that u∗ is exact and ϕ∗ preserves injective objects since ϕ! is exact. For any abelian
sheaf A on Ȳet, one has the exact sequence

(20) 0 → ϕ!ϕ
∗A → A → u∗u

∗A → 0,

where the morphisms are given by adjunction. If A is a sheaf on Yet, the étale
cohomology with compact support is defined by Hn

c (Yet,A) := Hn(Ȳet, ϕ!A). To
compute the étale cohomology with compact support, we use (20) and observe that
the cohomology of the sheaf u∗u

∗A is trivial in degrees n ≥ 1 since u∗ is exact. For
example, one has
(21)

Hn
c (Yet,Z) = 0, (

∏
Y∞

Z)/Z for n = 0, 1 and Hn
c (Yet,Z) = Hn(Ȳet,Z) for n ≥ 2.

Now consider the constant étale sheaf associated to the discrete abelian group R.
By Proposition 6.5 below, one has

(22) H1
c (Yet,R) = (

∏
Y∞

R)/R and Hn
c (Yet,R) = 0 for n 
= 1.
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6.4. Artin-Verdier étale cohomology. Here we compute the Artin-Verdier étale
cohomology with Z-coefficients. Let j : Spec(K) → Y → Ȳ be the inclusion of the
generic point of Ȳ .

Proposition 6.5. For any uniquely divisible GK-module Q, the sheaf j∗Q on Ȳet

is acyclic for the global sections functor, i.e. Hq(Ȳet, j∗Q) = 0 for any q ≥ 1. More
generally, if Q is a GK-module such that Hn(GK , Q) = Hn(Iv, Q) = 0 for any
n ≥ 1 and any valuation v of K, then the sheaf j∗Q on Ȳet is acyclic for the global
sections functor.

Proof. Assume that Q is uniquely divisible. The more general case follows from
the same argument. For any v ∈ Ȳ 0, one has (see (19))

u∗
v R

q(j∗)Q = Rq(u∗
vj∗)Q = Hq(Iv;Q).

The groups Iv are all profinite (or finite) and Q is uniquely divisible. We obtain

u∗
v R

q(j∗)Q = 0

for any q ≥ 1. By Corollary 6.3, we get Rq(j∗)(Q) = 0 for any q ≥ 1. Then the
Leray spectral sequence

Hp(Ȳet;R
q(j∗)Q) =⇒ Hp+q(GK ;Q)

yields
Hn(Ȳet; j∗Q) � Hn(GK ;Q) = 0

for any n ≥ 1, since Galois cohomology is torsion. �
Let Pic(Y ) and UK be the class-group and the unit group of K respectively.

Let r1 be the number of real primes of K. We denote by AD = Hom(A;Q/Z) the
dual of a finitely generated abelian group (or a profinite group) A. We consider
the idèle class group CK of K and the connected component DK of 1 ∈ CK . The
cohomology of the global Galois group GK with coefficients in Z is trivial in odd
degrees, and we have Hq(GK ;Z) = Z, (CK/DK)D, (Z/2Z)r1 for r = 0, r = 2 and
r ≥ 4 even, respectively (see [7], I, Corollary 4.6).

Proposition 6.6. The cohomology of the Artin-Verdier étale topos with coefficients
in Z is given by

Hq(Ȳet;Z) = Z for q = 0

= 0 for q = 1

= Pic(Y )D for q = 2

= UD
K for q = 3

= 0 for q ≥ 4.

Proof. As in the proof of Proposition 6.5, we get

u∗
v(R

q(j∗)L) = Rq(u∗
vj∗)L = Hq(Iv;L) ∈ Ob(Bsm

Gk(v)
)

for any L ∈ Ob(Bsm
GK

) and any v ∈ Ȳ (recall that Iv0 is trivial). In particular, one
has j∗Z = Z and

j∗Rq(j∗) = Rq(j∗j∗) = Rq(Id) = 0

for any q ≥ 1, since j is an embedding. Moreover, the map

Rq(j∗)L →
∏

v∈Ȳ 0

uv∗u
∗
vR

q(j∗)L
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given by adjunction factors through
∑

v∈Ȳ 0 uv∗H
q(Iv;L), since a cohomology class

in Hq(GK ,L) is unramified almost everywhere. The induced map

Rq(j∗)L −→
∑
v∈Ȳ 0

uv∗H
q(Iv;L)

is an isomorphism using Corollary 6.3 and the fact that u∗
v commutes with sums.

We obtain Rq(j∗)Z = 0 for q odd. By local class field theory, we have

R2(j∗)Z =
∑
v∈Y 0

uv∗(O×
Kv

)D
∑

v∈K(R)

uv∗(Z/2Z)D

and Rq(j∗)Z =
∑

v∈K(R) uv∗(Z/2Z)D for q ≥ 4 even. The Leray spectral sequence

Hp(Ȳet, R
q(j∗)Z) =⇒ Hp+q(GK ,Z)

yields the exact sequence

0 → H2(Ȳet,Z) → (CK/DK)D →
∑
v�∞

(O×
Kv

)D
∑

v∈K(R)

(Z/2Z)D

→ H3(Ȳet,Z) → H3(GK ,Z) = 0,

where the central map is the Pontryagin dual of the canonical morphism∏
v�∞

(O×
Kv

)
∏

v∈K(R)

Z/2Z −→ (CK/DK).

The result follows for q ≤ 3. Next the Leray spectral sequence yields

0→Hq(Ȳet,Z)→Hq(GK ,Z)→
∑

v∈K(R)

Z/2Z→Hq+1(Ȳet,Z)→Hq+1(GK ,Z) = 0

for any even q ≥ 4. This ends the proof since the map Hq(GK ,Z) →
∑

v∈K(R) Z/2Z
is an isomorphism. �

The cohomology groups Hn(Ȳet,Z) for n = 0, 1, 2 can also be deduced from
unramified class field theory (i.e. π1(Ȳet)

ab � Cl(K)) using Proposition 6.5.

7. The morphism from the flask topos to the étale topos

In this section we describe the relation between the flask topos and the étale
topos. There is a morphism of topoi from the full flask topos F

W ;Ȳ
to Ȳet. However,

this morphism does not factor through F
L/K,S

, and we have to decompose the étale
topos as a projective limit in order to understand the relation between the projective
system of topoi F• and Ȳet.

7.1. The morphism from the étale site to the local section site. By Corol-
lary 5.7, the local section topology Jls on the category TW ;Ȳ is sub-canonical. Since
TW ;Ȳ has finite projective limits, (TW ;Ȳ ;Jls) is what we call a left exact site.

Proposition 7.1. There exists a morphism of left exact sites

ζ∗ : (EtȲ ;Jet) −→ (TW ;Ȳ ; ;Jls),
X̄ �−→ X .
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Proof. Let X̄ be an étale Ȳ -scheme. For any valuation v, we define

Xv := HomȲ (Ȳ
sh

v ; X̄).

Note that, for any ultrametric valuation v, the set

Xv = HomȲ (Ȳ
sh

v ; X̄) = HomȲ (Spec(k(v)); X̄)

carries an action of Gk(v). For any archimedean valuation v,

Xv = HomȲ (Ȳ
sh

v ; X̄) = HomȲ ((∅; v̄); X̄)

is just a set. For the trivial valuation v = v0,

Xv0 = HomȲ (Ȳ
sh

v0 ; X̄) = HomȲ (Spec(K̄); X̄)

is a GK-set. For any valuation v, Xv is viewed as a Wk(v)-topological space. The
morphisms (15) and (16) yield maps of WKv

-spaces fv : Xv → Xv0 , for any v.
So we get an object ζ∗(X̄) = X of TW ;Ȳ . Clearly, ζ∗ is a functor. It preserves
final objects and fiber products by the universal property of fiber products in the
category EtȲ . Hence ζ∗ is left exact. Furthermore, an étale cover {X̄i → X̄; i ∈ I}
yields a surjective family of finite Gk(v)-sets {Xi,v → Xv; i ∈ I} for any valuation
v, hence a local section cover. It follows that ζ∗ is continuous and left exact. �

This morphism of left exact sites induces a morphism of topoi. Hence the next
result follows from Theorem 5.9.

Corollary 7.2. There is a morphism of topoi ζ : F
W ;Ȳ

→ Ȳet.

The next proposition is an application of (Grothendieck) Galois Theory. This
result will not be used in the remaining part of this paper. A proof can be found
in [8].

Proposition 7.3. The functor ζ∗ is fully faithful. The essential image of ζ∗ is
defined by the objects X of TW ;Ȳ such that Xv0 is a finite set, fv is injective for
any v and bijective for almost all v (i.e. except for a finite number of non-trivial
valuations). Finally, the étale topology Jet on EtȲ is induced via ζ∗ by the local
section topology Jls on TW ;Ȳ .

Remark 7.4. Proposition 7.3 suggests that we define the “Weil-étale topology”
as the full sub-category of TW ;Ȳ consisting of objects (Xv, fv) such that fv is a
topological immersion for every valuation v and a homeomorphism for almost all
valuations. Then we endow this full sub-category of TW ;Ȳ with the topology induced
by the local section topology via the inclusion functor.

7.2. Direct definition of the morphism ζ. For any valuation v of K, the spe-
cialization map Ȳ sh

v → Ȳ induces the co-specialization map

(23) fv : Fv̄ −→ Fv̄0 ,

for any étale sheaf F on Ȳ . Here Fv̄ and Fv̄0 denote the stalks of the sheaf F
at the geometric points v̄ → Ȳ and v̄0 → Ȳ . The map (23) is GKv

-equivariant
and functorial in F . More precisely, denote by qv : GKv

→ Gk(v) the canonical
projection and by ov : GKv

→ GK the morphism induced by the choice of the
valuation v̄ of K̄ lying over v. One has u∗

v(F) ∈ Ob(Bsm
Gk(v)

) and u∗
v0(F) ∈ Ob(Bsm

GK
).

Then

fv : q∗v(u
∗
vF) −→ o∗v(u

∗
v0F)
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is a map of Bsm
GKv

, where we denote a morphism of topological groups and the

induced morphism of classifying topoi by the same symbol. Since the squares

WKv

αKv

��

qv �� Wk(v)

αv

��

WKv

αKv

��

θv �� WK

αv0

��
GKv

qv �� Gk(v) GKv

ov �� GK

are both commutative, we get a morphism of BWKv
:

α∗
Kv

fv : q∗v(α
∗
v ◦ u∗

vF) = α∗
Kv

◦ q∗v(u∗
vF) −→ α∗

Kv
◦ o∗v(u∗

v0F) = θ∗v(α
∗
v0 ◦ u

∗
v0F).

We obtain an object

ζ∗(F) := (α∗
v ◦ u∗

vF ; α∗
Kv

fv)v∈Ȳ

of the category F
W ;Ȳ

. This yields a functor

ζ∗ : Ȳet −→ F
W ;Ȳ

,

F �−→ (α∗
v ◦ u∗

vF ; α∗
Kv

fv)v∈Ȳ .

Here the equivariant map of GKv
-sets

fv : q∗v(u
∗
vF) −→ o∗v(u

∗
v0F)

is induced by the usual co-specialization map between the stalks of the étale sheaf
F .

Proposition 7.5. The functor ζ∗ : Ȳet −→ F
W ;Ȳ

is the inverse image of a mor-
phism of topoi

ζ : F
W ;Ȳ

−→ Ȳet.

Proof. Since the functors α∗
v ◦ u∗

v and α∗
Kv

commute with finite projective limits
and arbitrary inductive limits, so does the functor ζ∗, by Proposition 3.2. Since the
functor ζ∗ is left exact and has a right adjoint, it is the pull-back of a morphism of
topoi ζ : F

W ;Ȳ
−→ Ȳet. �

7.3. Equivalence of the two definitions. Here we denote by

z : (EtȲ ;Jet) −→ (TW ;Ȳ ; ;Jls)

the morphism of left exact sites defined in Proposition 7.1. We have a commutative
square

F
W ;Ȳ

Ȳet
ζ∗

��

TW ;Ȳ

y

��

EtȲ

ε

��

z��

where ζ∗ is defined in Proposition 7.5, y is defined in Proposition 5.4 and ε : EtȲ →
Ȳet is the Yoneda embedding. By [5], IV, Proposition 4.9.4, the morphism of topoi
induced by the morphism of left exact sites z is isomorphic to the morphism of
topoi ζ : F

W ;Ȳ
→ Ȳet of Proposition 7.5.

Proposition 7.6. The morphism ζ : F
W ;Ȳ

→ Ȳet is not connected (i.e. the inverse

image functor ζ∗ is not fully faithful).
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The second definition of the morphism ζ : F
W ;Ȳ

→ Ȳet yields a description of its

inverse image functor ζ∗. This can be used to prove the proposition above (see [8],
Corollary 4.67).

7.4. The morphisms ζL,S. Let L/K be a finite Galois sub-extension of K/K.
We denote by EtL/K the full sub-category of EtȲ consisting of étale Ȳ -schemes X̄
such that the action of GK on the finite set

Xv0 = HomȲ (Spec(K); X̄)

factors through GL/K = Gal(L/K). This category is endowed with the topology
(again denoted by Jet) induced by the étale topology on EtȲ via the inclusion
functor EtL/K → EtȲ . This functor yields a morphism of left exact sites

(EtL/K ,Jet) −→ (EtȲ ,Jet)

and a morphism of topoi. These morphisms are compatible, hence they induce a

morphism from Ȳet to the projective limit topos lim←−
˜(EtL/K ,Jet), where the limit

is taken over all the finite Galois sub-extensions of K/K.

Proposition 7.7. The canonical morphism

Ȳet −→ lim←−
˜(EtL/K ,Jet)

is an equivalence.

Proof. The morphism of left exact sites

(EtL/K ,Jet) −→ (EtL′/K ,Jet)

is given by the inclusion functor, for K̄/L′/L/K. By [5], VI, 8.2.3, the direct limit
site

lim−→(EtL/K ,Jet) := (lim−→(EtL/K),J )

is a site for the inverse limit topos lim←−
˜(EtL/K ,Jet). The direct limit category

lim−→(EtL/K) (see [1], III.3) is canonically equivalent to EtȲ . The topology J is the

coarsest topology which makes all the functors

(EtL/K ,Jet) −→ (EtȲ ,J )

continuous. In other words, J is the coarsest topology on EtȲ such that any
covering family of (EtL/K ,Jet) is a covering family of EtȲ , for all L/K. Hence J
is just the étale topology, and (EtȲ ,Jet) is a site for the inverse limit topos. �

Proposition 7.8. There is a morphism of topoi ζL,S : F
L/K,S

→ ˜(EtL/K ,Jet).
Moreover, the diagram

F
L′/K,S′

ζL′,S′��

��

˜(EtL′/K ,Jet)

��

F
L/K,S

ζL,S �� ˜(EtL/K ,Jet)

is commutative for L′/L/K and S ⊂ S′.
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Proof. The functor
ζ∗L,S : EtL/K −→ TL/K,S

induced by ζ∗ : EtȲ −→ TW,Ȳ yields a morphism of left exact sites; hence the first
claim of the proposition follows from Theorem 5.9. The diagram of the proposition
is commutative since the corresponding diagram of sites is commutative. �
Proposition 7.9. Let V̄ be a connected étale Ȳ -scheme lying in the category EtL/K

(i.e. GL/K acts transitively on Vv0). One has an equivalence

F
L/K,S

/V̄ � F
L/K(V ),S̃

/V̄ ,

where K(V ) is the function field of V̄ and S̃ is the set of places of K(V ) lying over
S.

Proof. The choice of a point of Vv0 defines an isomorphism of WL/K,S-sets

Vv0 � GL/GK(V ) = WL/K,S/WL/K(V ),S̃ .

We get an isomorphism

BWL/K,S
/y(WL/K,S , Vv0) � BWL/K(V ),S̃

.

The same result is valid for any closed point of V̄ , and the proposition follows. �

8. The spectral sequence relating Weil-étale cohomology

to étale cohomology

8.1. Strongly compact topoi.

Definition 8.1. A topos T is said to be strongly compact if the functors Hn(T,−)
commute with filtered colimits of abelian sheaves.

Let (Ti, fji)i∈I be a filtered projective system of topoi, where the maps fji : Tj →
Ti are the transition maps. We denote by T∞ := lim←−Ti the limit topos computed

in the 2-category of topoi. We have canonical morphisms fi : T∞ → Ti. Suppose
we are given an abelian object Ai of Ti for any i ∈ I and a family of morphisms
αij : f

∗
jiAi → Aj such that the following condition holds:

αik = αjk ◦ f∗
kj(αij) : f

∗
kiAi = f∗

kjf
∗
jiAi −→ f∗

kjAj −→ Ak.

In what follows, the data (Ai, αij) is said to be a compatible system of abelian
sheaves on the projective system of topoi (Ti, fji)i∈I .

The morphisms f∗
j (αij) yield a filtered inductive system of abelian objects

(f∗
i Ai)i∈I in T∞, and we set

A∞ := lim−→f∗
i Ai.

Lemma 8.2. If the topos Ti are all strongly compact, then the canonical morphism

lim−→Hn(Ti, Ai) −→ Hn(T∞, A∞)

is an isomorphism for any integer n.

Proof. By [5], VI, Corollaire 8.7.7 the topos T∞ is strongly compact as well, and
one has

Hn(T∞, A∞) = lim−→Hn(T∞, f∗
i Ai) = lim−→i∈I

(lim−→j→iH
n(Tj , f

∗
jiAi)).

We easily check that the canonical map

lim−→i∈I
(lim−→j→i

Hn(Tj , f
∗
jiAi)) −→ lim−→i∈I

Hn(Ti, Ai)
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is an isomorphism. The result then follows from the fact that the natural map

lim−→i∈I (lim−→j→iH
n(Tj , f

∗
jiAi)) −→ Hn(T∞, A∞)

factors through lim−→i∈I
Hn(Ti, Ai). �

Now consider the more general case where the sheavesAi are replaced by bounded
below complexes of abelian sheaves C∗

i . Denote by Hq(Ti, C
∗
i ) the hypercohomol-

ogy of the complex of sheaves C∗
i . Suppose we are given a compatible family of

morphisms of (bounded below) complexes αij : f
∗
jiC

∗
i → C∗

j for each transition map
fji : Tj → Ti. We define

C∗
∞ := lim−→f∗

i C
∗
i .

Lemma 8.3. If the topos Ti are all strongly compact, then the canonical morphism

lim−→Hn(Ti, C
∗
i ) −→ Hn(T∞, C∗

∞)

is an isomorphism for any integer n.

Proof. We denote by Hq(C∗
i ) (respectively Hq(C∗

∞)) the cohomology sheaf of the
complex C∗

i (respectively C∗
∞) in degree q. The inverse image functor f∗

i is exact,
hence we have Hq(f∗

i C
∗
i ) = f∗

i H
q(C∗

i ). By exactness of filtered inductive limits,
we obtain

Hq(C∗
∞) = lim−→Hq(f∗

i Ci) = lim−→f∗
i H

q(Ci),

for any q ≥ 0. For any i ∈ I, we have a convergent spectral sequence

Hp(Ti, H
q(C∗

i )) =⇒ Hp+q(Ti, C
∗
i ).

The compatible morphisms of complexes αij : f∗
jiC

∗
i → C∗

j induce compatible
morphisms of spectral sequences, hence we have an inductive system of spectral
sequences. We obtain a morphism of spectral sequences from

lim−→Hp(Ti, H
q(C∗

i )) =⇒ lim−→Hp+q(Ti, C
∗
i )

to

Hp(T∞, Hq(C∗
∞)) =⇒ Hp+q(T∞, C∗

∞).

By the previous lemma, this morphism is an isomorphism at the E2-term. It
therefore induces isomorphisms on the abutments. The result follows. �

Let Ȳ be the set of valuations of the number field K, and let (C∗
L, αu) be a

compatible system of bounded below complexes of abelian sheaves on the sites
˜(EtL/K ,Jet)L (i.e. a bounded below complex of abelian objects in the total topos

Top ˜(EtL/K ,Jet)L). We denote by C∗
∞ the complex of sheaves on

Ȳet � lim←−
˜(EtL/K ,Jet)

defined as above.

Corollary 8.4. We have an isomorphism

lim−→Hn(EtL/K , C∗
L) � Hn(Ȳet, C

∗
∞),

where L runs over the finite Galois sub-extensions of K̄/K.

Proof. The topoi ˜(EtL/K ,Jet) are all coherent and hence strongly compact (see [5],
VI, Cor. 5.2). Thus the result follows from the previous lemma. �
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8.2. The spectral sequence.

Theorem 8.5. Let A = (AL,S, ft) be an abelian object of Top(F•). There exists a
bounded below complex RA of abelian sheaves on Ȳet and an isomorphism

H∗(Ȳet, RA) � H−→
∗(F

L/K,S
,A),

where the left hand side is the étale hypercohomology of the complex RA. In par-
ticular, one has a spectral sequence relating Lichtenbaum’s Weil-étale cohomology
to étale cohomology

Hp(Ȳet, R
qA) =⇒ H−→

p+q(F
L/K,S

,A),

where RqA is the cohomology sheaf of the complex RA in degree q. The complex
RA is well defined up to quasi-isomorphism and functorial in A.

Proof. Since Top (F•) is a topos, the abelian category Ab(Top (F•)) has enough
injectives. We choose an injective resolution

0 → A → I0• → I1• → ...

of the abelian objet A = (AL,S , ft). By Proposition 4.3, this resolution provides us
with an injective resolution

0 → AL,S → I0L,S → I1L,S → ...

of the abelian sheaf AL,S on FL,S , for any pair (L, S), and with a morphism of
complexes

t∗I∗L,S −→ I∗L′,S′ ,

for any transition map t. These morphisms of complexes are compatible in the
usual way.

For any map (L′, S′) → (L, S) in I/K , the following diagram commutes:

F
L′/K,S′

ζL′,S′��

t

��

˜(EtL′/K ,Jet)

u

��

F
L/K,S

ζL,S�� ˜(EtL/K ,Jet).

In particular, we have u∗ ◦ ζL′,S′,∗ � ζL,S,∗ ◦ t∗. By adjunction, we obtain a natural
(Beck-Chevalley) transformation

u∗ζL,S,∗ −→ u∗ζL,S,∗t∗t
∗ � u∗u∗ζL′,S′,∗t

∗ −→ ζL′,S′,∗t
∗.

This transformation induces a morphism of complexes

(24) u∗ζL,S,∗I
∗
L,S −→ ζL′,S′,∗t

∗I∗L,S −→ ζL′,S′,∗I
∗
L′,S′ ,

where the last arrow is given by the morphism t∗I∗L,S −→ I∗L′,S′ .

For any fixed Galois extension L/K, we have in particular a filtered inductive

system of complexes of sheaves (ζL,S,∗I
∗
L,S)S in the topos ˜(EtL/K ,Jet). We set

I∗L := lim−→S
ζL,S,∗I

∗
L,S .

For any transition map u, (24) induces a morphism of complexes u∗I∗L → I∗L′ , since
u∗ commutes with inductive limits. In other words, (I∗L)L defines a compatible
system of complexes of sheaves on the sites (EtL/K)L.
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By definition, the cohomology of the complex ζL,S,∗I
∗
L,S in degree n is the sheaf

Rn(ζL,S,∗)AL,S of the topos ˜(EtL/K ,Jet). By exactness of filtered inductive lim-
its, the cohomology of the complex I∗L := lim−→S

ζL,S,∗I
∗
L,S in degree n is the sheaf

lim−→S
Rn(ζL,S,∗)AL,S. We denote this sheaf by A(n)

L . Then we have

(25) Hn(I∗L) = lim−→S Hn(ζL,S,∗I
∗
L,S) = lim−→S Rn(ζL,S,∗)AL,S =: A(n)

L .

Since the inverse image functor u∗
L of the morphism uL : Ȳet → ˜(EtL/K ,Jet) is

exact, the cohomology of the complex u∗
L(I

∗
L) is given by the sheaves

Hn(u∗
L(I

∗
L)) = u∗

LH
n(I∗L) = u∗

LA
(n)
L .

Passing to the limit over L/K, we define the complex

RA := lim−→L/K
u∗
L(I

∗
L).

The cohomology sheaf of this complex in degree n is given by
(26)

RnA := Hn(RA) = lim−→L/K
Hn(u∗

LI
∗
L) = lim−→L/K

u∗
LH

n(I∗L) = lim−→L/K
u∗
LA

(n)
L .

Now consider a fixed Galois extension L/K. For any S, the Leray spectral
sequence associated to the composition

F
L/K,S

−→ ˜(EtL/K ,Jet) −→ Set

yields an isomorphism

Hp(EtL/K , ζL,S,∗I
∗
L,S) � Hp+q(F

L/K,S
,AL,S),

where the first term is the hypercohomology of the complex ζL,S,∗I
∗
L,S on the site

EtL/K .
The complexes (ζL,S,∗I

∗
L,S)S form an inductive system whose colimit is I∗L, when

S runs over the finite sets of valuations of K containing the archimedean ones and
those which ramify in L. Passing to the limit over S, we obtain an isomorphism

(27) Hn(EtL/K , I∗L) � lim−→S
Hn(EtL/K , ζL,S,∗I

∗
L,S) � lim−→S

Hn(F
L/K,S

,AL,S).

Here, the first isomorphism follows from Lemma 8.3 (taking Ti to be constantly
˜(EtL/K ,Jet)).
We have shown above that the family of complexes IL forms a compatible system

when L/K runs over the set of finite Galois sub-extensions of K/K. Passing to the
limit over L/K, we obtain

(28) Hn(Ȳet, RA) = Hn(Ȳet, lim−→L
u∗
L(I

∗
L)) � lim−→L

Hn(EtL/K , I∗L)

by Corollary 8.4. Therefore, isomorphisms (27) and (28) yield

Hn(Ȳet, RA)� lim−→LH
n(EtL/K , I∗L)� lim−→L lim−→SH

n(F
L/K,S

,AL,S)�H−→
n(F

L/K,S
,A),

for any n ≥ 0.
Let us now show that the complex of étale sheaves RA is well defined up to

quasi-isomorphism. This complex has been defined by an injective resolution I• of
A in F•. Let I∗• and J∗

• be two injective resolutions of A. Denote by RA(I•) and
RA(J•) the étale complexes defined as above. There is a morphism

q• : I∗• −→ J∗
•
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4918 BAPTISTE MORIN

of complexes of abelian objects in F• well defined up to homotopy. For any pair
(L, S), we have in particular a morphism

qL,S : I∗L,S −→ J∗
L,S

over IdAL,S
. Applying ζL,S,∗, the morphism qL,S induces a quasi-isomorphism

ζL,S,∗I
∗
L,S −→ ζL,S,∗J

∗
L,S ,

since
Rq(ζL,S,∗)AL,S := Hq(ζL,S,∗I

∗
L,S) � Hq(ζL,S,∗J

∗
L,S).

If L/K is fixed, the morphisms qL,S induce a morphism of complexes

qL : I∗L := lim−→S
ζL,S,∗I

∗
L,S −→ J∗

L := lim−→S
ζL,S,∗J

∗
L,S

which is a quasi-isomorphism by (25). Passing to the limit over L/K, the morphisms
qL induce a morphism

RA(I•) := lim−→L/K
u∗
L(I

∗
L) −→ lim−→L/K

u∗
L(J

∗
L) =: RA(J•).

This is a quasi-isomorphism by (26), hence RA is well defined up to a quasi-isomor-
phism. �

Let A = (AL,S, ft) be an abelian object of Top(F•) and let Ū be an étale Ȳ -
scheme. If L/K is large enough so that the GK-action on the finite set Uv0 factors
through G(L/K), then Ū defines an object ζ∗(Ū) of F

L/K,S
. We consider the

cohomology groups

H∗(F
L/K,S

, Ū ,AL,S) := H∗(F
L/K,S

/ζ∗(Ū),AL,S × ζ∗(Ū))

of the slice topos F
L/K,S

/ζ∗(Ū). For any étale Ȳ -scheme Ū , the direct limit

H−→
∗(F

L/K,S
, Ū ,A) := lim−→L,SH

∗(F
L/K,S

, Ū ,AL,S)

is well defined. It follows from Proposition 7.9 that the computation of these coho-
mology groups can be reduced to the case of an open sub-scheme Ū of Ȳ , as defined
in Definition 4.12. Therefore, one can apply Proposition 4.14 and Proposition 4.15
to obtain explicit computations.

Proposition 8.6. The sheaf RqA is the sheaf associated to the presheaf

PqA : EtȲ −→ Ab,
Ū �−→ H−→

q(F
L/K,S

, Ū ,A).

Proof. The sheaf Rq(ζL,S,∗)AL,S is the sheaf associated to the presheaf

Pq
L,S : EtL/K −→ Ab,

Ū �−→ Hq(F
L/K,S

, Ū ,AL,S).

It follows that the sheaf

A(q)
L := lim−→S

Rq(ζL,S,∗)AL,S

is the sheaf associated to the presheaf

Pq
L := lim−→S

Pq
L,S : EtL/K −→ Ab,

Ū �−→ lim−→S
Hq(F

L/K,S
, Ū ,AL,S).

Indeed, the associated sheaf functor commutes with inductive limit, since it is the
inverse image of a morphism of topoi. The morphism of left exact sites

u∗
L : (EtL/K ,Jet) −→ (EtȲ ,Jet)
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induces the following commutative diagram of topoi:

˜(EtȲ ,Jet)
(a,i) ��

uL

��

ÊtȲ

(up
L,uL,p)

��
˜(EtL/K ,Jet)

(aL,iL) �� ÊtL/K

where ÊtȲ (respectively ÊtL/K) denotes the category of presheaves on EtȲ (re-
spectively on EtL/K). To check the commutativity of this diagram, we observe the
direct images of these morphisms, for which the commutativity is obvious. There-
fore we have

a ◦ up
L � u∗

L ◦ aL,
where a and aL are the associated sheaf functors. We obtain

u∗
LA

(q)
L := u∗

L ◦ aL(Pq
L) = a ◦ up

L(P
q
L),

and finally

RqA := lim−→L u∗
LA

(q)
L = lim−→L a ◦ up

L(P
q
L) = a(lim−→Lu

p
L(P

q
L)),

where the last identification comes from the fact that a commutes with inductive
limits. In other words, RqA is the étale sheaf on Ȳ associated to the presheaf
lim−→Lu

p
L(P

q
L). This presheaf can be made explicit as follows. For any connected

étale Ȳ -scheme V̄ , one has

[lim−→L
up
L(P

q
L)](V̄ ) = lim−→L

[up
L(P

q
L)(V̄ )] = lim−→L

[lim−→V̄ →Ū
Pq
L(V̄ )],

where the second limit is taken over the category of arrows V̄ → Ū , for Ū running
through the class of objects of EtL/K . The first identification can be justified by
saying that the limits of presheaves are computed component-wise (i.e. “arguments
par arguments”).

If L/K is large enough so that V̄ is an object of EtL/K , then one has

lim−→V̄ →Ū
Pq
L(Ū) = Pq

L(V̄ ),

since IdV̄ is then the initial object of the category of arrows V̄ → Ū , for Ū in
EtL/K . We obtain the following identifications:

[lim−→Lu
p
L(P

q
L)](V̄ ) = lim−→L [lim−→V̄ →Ū

Pq
L(Ū)] = lim−→LP

q
L(V̄ )

= lim−→L
lim−→S

Hq(F
L/K,S

, V̄ ,AL/K,S).

Therefore, RqA is the étale sheaf on Ȳ associated to the presheaf

PqA : EtȲ −→ Ab,
V̄ �−→ lim−→L,S Hq(F

L/K,S
, V̄ ,AL/K,S) =: H−→

q(F
L/K,S

, V̄ ,A).
�

Below we consider the sheaves Z and R̃ of the total topos Top (F•) defined in

Example 4.2 and the sheaves φ!Z and φ!R̃ defined in section 4.3. Finally, we consider
the étale sheaves ϕ!Z and ϕ!R defined via the open inclusion ϕ : Yet → Ȳet, where
here R denotes the constant sheaf on Yet associated to the discrete abelian group
R. We assume below that K is totally imaginary.

Licensed to Calif Inst of Tech. Prepared on Wed Apr 15 08:21:00 EDT 2015 for download from IP 131.215.225.9.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4920 BAPTISTE MORIN

Corollary 8.7. One has the following results:

(1) R0(Z) = Z and Rq(Z) = 0 for q ≥ 1 odd.

(2) Rq(R̃) = R for q = 0, 1 and Rq(R̃) = 0 for q ≥ 2.
(3) R0(φ!Z) = ϕ!Z and Rq(φ!Z) = RqZ for q ≥ 1.

(4) Rq(φ!R̃) = ϕ!R for q = 0, 1 and Rq(φ!R̃) = 0 for q ≥ 2.

Proof. Using Proposition 8.6 (and Proposition 7.9), this follows from Propositions
4.14 and 4.15, and equations (8) and (9). �

9. Étale complexes for the Weil-étale cohomology

In this section, we assume that the number field K is totally imaginary. In order
to obtain the relevant Weil-étale cohomology (i.e. the vanshing of the cohomology
in degrees i ≥ 4), we need to truncate the complex RZ. However, a non-trivial
preliminary condition has to be satisfied. Namely the sheaf R2Z, which fills the
gap between Weil-étale and étale cohomology, should be acyclic for the global sec-
tions functor on Ȳ . We study this sheaf below, and we show that it has the right
cohomology using an indirect argument. Then we define complexes of étale sheaves
computing the conjectural Weil-étale cohomology.

9.1. Cohomology of the sheaf R2Z. By Proposition 4.14 and Proposition 8.6,
the étale sheaf R2Z is the sheaf associated to the presheaf

P2Z : EtȲ −→ Ab,
V̄ �−→ H−→

2(F
L/K,S

, V̄ ,Z) = (C1
V̄
)D.

The compact group C1
V̄

is the kernel of the map CV̄ → R, where CV̄ is defined in

Definition 4.13. Recall that if V̄ is connected of function field K(V̄ ), then CV̄ is the
S-idèle class group of K(V̄ ), where S is the set of places of K(V̄ ) not corresponding
to a point of V̄ . Note that such a finite set S does not necessarily contain all the
archimedean places. The restriction maps of the presheaf P2Z are induced by the
canonical maps CŪ → CV̄ (well defined for any étale map Ū → V̄ of connected
étale Ȳ -schemes). By unramified class field theory, one has a covariantly functorial
exact sequence of compact topological groups

0 → D1
V̄ → C1

V̄ → πab
1 (V̄ ) → 0,

where πab
1 (V̄ ) is the abelian étale fundamental group of V̄ and D1

V̄
is the connected

component of 1 in C1
V̄
. Here πab

1 (V̄ ) is defined as the abelianization of the profinite

fundamental group of the Artin-Verdier étale topos Ȳet/V̄ � V̄et. If we denote the
function field of V̄ by K(V̄ ), then this group is just the Galois group of the maximal
abelian extension of K(V̄ ) unramified at every place of K(V̄ ) corresponding to a
point of V̄ .

By Pontryagin duality, we obtain a (contravariantly) functorial exact sequence
of discrete abelian groups

(29) 0 → πab
1 (V̄ )D → (C1

V̄ )
D → (D1

V̄ )
D → 0,

i.e. an exact sequence of abelian étale presheaves on Ȳ . On the one hand, the sheaf
associated to the presheaf

EtȲ −→ Ab,
V̄ �−→ πab

1 (V̄ )D = H2(V̄et,Z)
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vanishes, and the associated sheaf functor is exact on the other. Therefore, the
exact sequence (29) shows that R2Z is the sheaf associated to the presheaf

P : EtȲ −→ Ab,
V̄ �−→ (D1

V̄
)D.

The connected component D1
V̄
of the S-idèle class group C1

V̄
is not known in general,

as pointed out to the author by Alexander Schmidt. The computation of the sheaf
R2Z is a delicate problem. We shall compute the cohomology of R2Z using an
indirect argument.

Lemma 9.1. The canonical morphism

H−→
4(F

L/K,S
,Z) −→ H0(Ȳet, R

4Z) := R4Z(Ȳ )

is an isomorphism.

Proof. The canonical morphism H−→
4(F

L/K,S
,Z) → H0(Ȳet, R

4Z) is induced by the

morphism of presheaves P4Z → R4Z (see Proposition 8.6). Let

J : BWK
−→ Bsm

GK
−→ Ȳet

be the morphism induced by the continuous morphism WK → GK and by the
inclusion of the generic point of Ȳ . For any n ≥ 0, the étale sheaf Rn(J∗)Z is the
sheaf associated to the presheaf

Pn(J∗)Z : EtȲ −→ Ab,
U �−→ Hn(WK(U),Z),

where U is assumed to be connected. Here WK(U) is the Weil group of the number
field K(U). For any finite extension K ′/K, one has a surjective map (see [4], Proof
of Corollary 9)

(30) H4(WK′ ,Z) −→
∑

v∈Y ′
∞

H4(WK′
v
,Z) =

∑
v∈Y ′

∞

H4(S1,Z) =
∑

v∈Y ′
∞

Z,

where Y ′
∞ is the set of archimedean primes of K ′. We denote by

u :
∐
Y∞

Set −→ Ȳet

the closed embedding of topoi given by the map Y∞ → Ȳ . Then (30) induces a
surjective morphism of presheaves

P4(J∗)Z −→ u∗Z.

We obtain the following exact sequence of presheaves:

0 −→ P4Z −→ P4(J∗)Z −→ u∗Z −→ 0,

as it follows from Proposition 8.6 and Proposition 4.14. The associated sheaf functor
is exact, hence we have an exact sequence of sheaves

0 −→ R4Z −→ R4(J∗)Z −→ u∗Z −→ 0,

since u∗Z was already a sheaf. We get a long exact sequence

0 −→ R4Z(Ȳ ) −→ R4(J∗)Z(Ȳ ) −→
∑
Y∞

Z −→ ....
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Moreover, there is a morphism of exact sequences

0 �� H−→
4(F

L/K,S
,Z)

��

�� H4(WK ,Z)

ι

��

�� ∑
Y∞

Z

Id

��
0 �� R4Z(Ȳ ) �� R4(J∗)Z(Ȳ ) �� ∑

Y∞
Z

where the vertical maps are the natural ones. Lemma 9.3 shows that ι is an iso-
morphism, and the result follows. �

We denote byW 1
K the maximal compact sub-group of the Weil group WK . There

is a canonical isomorphism of topological groups WK � W 1
K×R. We denote by T lc,

Blc
WK

and Blc
W 1

K
the topoi obtained by replacing the category of topological spaces

Top with the category Toplc of locally compact topological spaces with countable
basis. In the following two lemmas, we consider the composite morphism

α : BWK

h−→ Blc
WK

αlc

−−→ Blc
W 1

K
,

where αlc is the morphism of classifying topoi induced by the projectionWK → W 1
K .

Lemma 9.2. For any n ≥ 1, one has Rn(α∗)Z = 0.

Proof. By [4], Prop. 9.1, the direct image h∗ of the morphism BWK

h−→ Blc
WK

is
exact. The Leray spectral sequence associated to the composite morphism α gives

Rn(α∗)Z � Rn(αlc
∗ )h∗Z = Rn(αlc

∗ )Z.

It is therefore enough to show that Rn(αlc
∗ )Z = 0 for any n ≥ 1. We consider the

pull-back

Blc
R

eR ��

f

��

T lc

l

��
Blc

WK

αlc
�� Blc

W 1
K

where the vertical arrows are the localization morphisms (one has for example
Blc

W 1
K
/E

W1
K

� T lc). This pull-back square induces an isomorphism

l∗Rn(αlc
∗ ) � Rn(eR∗)f

∗.

One the other hand, the object of T lc

Rn(eR∗)f
∗Z = Rn(eR∗)Z

is represented by the discrete abelian group Hn(Blc
R ,Z) (see [4], Prop. 9.2). This

group is trivial for any n ≥ 1, and we obtain l∗Rn(αlc
∗ )Z = 0. But l∗ is faithful,

hence Rn(αlc
∗ )Z = 0 for any n ≥ 1. The result follows. �

Lemma 9.3. The canonical map

H4(WK ,Z) −→ R4(J∗)Z(Ȳ )

is an isomorphism.
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Proof. We decompose the morphism J : BWK
→ Ȳet as follows:

J = β ◦ α : BWK
−→ Blc

W 1
K
−→ Ȳet.

The Leray spectral sequence associated to this composite map and the previous
lemma shows that the natural morphism of étale sheaves

Rn(β∗)Z = Rn(β∗)(α∗Z) −→ Rn(J∗)Z

is an isomorphism. It is therefore enough to show that the natural map

(31) H4(WK ,Z) � H4(W 1
K ,Z) −→ R4(β∗)Z(Ȳ )

is an isomorphism (where H4(WK ,Z) � H4(W 1
K ,Z) follows from Lemma 9.2). To

this aim, we decompose the morphism β as follows:

β = j ◦ p : Blc
W 1

K
−→ Bsm

GK
−→ Ȳet.

This provides us with the Leray spectral sequence

Ri(j∗) ◦Rj(p∗)Z =⇒ Ri+j(β∗)Z.

We denote by M j the GK-module Rj(p∗)Z. By [4], equation (21), and [4], Lemma
11, one has

M j = 0 for j odd.

For any GK-module M , the étale sheaf Ri(j∗)M is the sheaf associated to the
presheaf

U �→ Hi(Bsm
GK

, Uv0 ,M) = Hi(GK(U),M).

It is well known that a totally imaginary number field is of strict cohomological
dimension 2. Hence we have Ri(j∗)M = 0 for i ≥ 3. The proof of [4], Lemma 12
(b) shows that Hi(GK(U),M

2) = 0 for any i ≥ 1. Hence the group

Ri(j∗) ◦Rj(p∗)Z = Ri(j∗)M
j

is trivial for i ≥ 3, or if the index j is odd, or for (j = 2, i ≥ 1). The initial term of
the spectral sequence

Ri(j∗)M
j := Ri(j∗) ◦Rj(p∗)Z =⇒ Ri+j(β∗)Z

therefore looks as follows:

0 0 0 0 0 0
j∗M

4 R1j∗M
4 R2j∗M

4 0 0 0
0 0 0 0 0 0

j∗M
2 0 0 0 0 0

0 0 0 0 0 0
j∗M

0 R1j∗M
0 R2j∗M

0 0 0 0.

This yields a natural isomorphism

R4(β∗)Z � j∗M
4,

and we obtain the following identifications:

(32) R4(β∗)Z(Ȳ ) � j∗M
4(Ȳ ) = H0(GK ,M4) � H4(W 1

K ,Z).

Indeed, the last isomorphism in (32) is given by the spectral sequence

Hi(GK ,M j) =⇒ Hi+j(W 1
K ,Z),
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which is made explicit in [4], Lemma 12. Note that the isomorphisms in (32) are
given by the natural maps

H4(W 1
K ,Z) −→ R4(β∗)Z(Ȳ ) −→ H0(GK ,M4).

Hence (31) is an isomorphism, and the result follows. �

Recall that AD := Homc(A,R/Z) denotes the Pontryagin dual of a locally com-
pact abelian group A. If A is a discrete abelian group, we set AD := Hom(A,Q/Z).

Theorem 9.4. The étale sheaf R2Z is acyclic for the global section functor ΓȲ .
In other words, one has Hn(Ȳet, R

2Z) = 0 for any n ≥ 1.

Proof. By Corollary 8.7(1), the initial term of the spectral sequence

(33) Hp(Ȳ , RqZ) =⇒ H−→
p+q(FL/K,S ,Z)

looks as follows:

0 0 0 0 0 0

H0(Ȳ , R4Z) H1(Ȳ , R4Z) H2(Ȳ , R4Z) H3(Ȳ , R4Z) 0 0

0 0 0 0 0 0

H0(Ȳ , R2Z) H1(Ȳ , R2Z) H2(Ȳ , R2Z) H3(Ȳ , R2Z) 0 0

0 0 0 0 0 0

Z 0 Pic(Y )D UD
K 0 0.

We obtain the exact sequence
(34)
0 → Pic(Y )D → Pic1(Ȳ )D → H0(Ȳet, R

2Z) → UD
K → μD

K → H1(Ȳet, R
2Z) → 0.

The group H1(Ȳet, R
2Z) is trivial since the canonical map UD

K → μD
K is surjective.

Then, this spectral sequence gives the exact sequence

0 → H2(Ȳet, R
2Z) → H−→

4(FL/K,S ,Z) → H0(Ȳet, R
4Z)

→ H3(Ȳet, R
2Z) → H−→

5(FL/K,S ,Z) = 0,

where the central map is an isomorphism by Lemma 9.1. We get

H2(Ȳet, R
2Z) = H3(Ȳet, R

2Z) = 0.

Finally, the group Hn(Ȳet, R
2Z) is trivial for any n ≥ 4 since the étale site of Ȳ is

of strict cohomological dimension 3 (see [3]). �

In order to compute the group H0(Ȳet, R
2Z), one needs to study the sheaf R2Z

in more detail. There is a canonical map

Pic1(Ȳ )D −→ Hom(UK ,Z) −→ Hom(UK ,Q).

One can show that the morphism

Pic1(Ȳ )D � H−→
2(FL/K,S ,Z) −→ H0(Ȳet, R

2Z)
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factors through an injective map

(35) c : Hom(UK ,Q) −→ H0(Ȳet, R
2Z).

Then one can show that this gives a morphism of exact sequences

0 �� Pic(Y )D

Id

��

�� Pic1(Ȳ )D ��

�

��

Hom(UK ,Q)

c

��

�� UD
K

�

��

�� μD
K

�

��

�� 0

0 �� Pic(Y )D �� H−→
2(FL/K,S , Z) �� R2Z(Ȳ ) �� UD

K
�� H−→

3(FL/K,S , Z) �� 0

where the bottom row is the exact sequence given by the spectral sequence (33). It
follows that (35) is an isomorphism. But this fact will not be used in the remaining
part of this paper.

9.2. The complexes.

Theorem 9.5. There exists a complex RWZ of étales sheaves on Ȳet, well defined
up to quasi-ismorphism, whose hypercohomology is the expected Weil-étale cohomol-
ogy:

Hn(Ȳet;RWZ) = Z for n = 0

= 0 for n = 1

= Pic1(Ȳ )D for n = 2

= μD
K for n = 3

= 0 for n ≥ 4.

Proof. Consider the complex RZ. The truncated complex

RWZ = τ≤2RZ

is also well defined up to quasi-isomorphism. One has Hn(τ≤2RZ) = Hn(RZ) for
n ≤ 2 and Hn(τ≤2RZ) = 0 for n ≥ 3. By Corollary 8.7 and Theorem 9.4 the
E2-term of the spectral sequence

Hp(Ȳet, H
q(RWZ)) =⇒ Hp+q(Ȳet, RWZ)

therefore looks like:

0 0 0 0 0

H0(Ȳet, R
2Z) 0 0 0 0

0 0 0 0 0

Z 0 Pic(Y )D UD
K 0.

We immediately obtain H0(Ȳet, RWZ) = Z and H1(Ȳet, RWZ) = 0. Next the
spectral sequence yields the exact sequence

0 → Pic(Y )D → H2(Ȳet, RWZ) → H0(Ȳet, R
2Z)

→ Hom(UK ,Q/Z) → H3(Ȳet, RWZ) → 0.
(36)
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Note that it is already clear that RWZ has the expected hypercohomology. The
morphism of complexes RWZ → RZ induces a morphism of spectral sequences from

Hp(Ȳet, H
q(RWZ)) =⇒ Hp+q(Ȳet, RWZ)

to

Hp(Ȳet, H
q(RZ)) =⇒ H−→

p+q(F
L/K,S

,Z),

which in turn induces a morphism of exact sequences from (36) to (34). We obtain

Hn(Ȳet, RWZ) � H−→
n(F

L/K,S
,Z) for n = 2, 3.

The result for n = 2, 3 then follows from Theorem 4.10. Finally, the groups
Hn(Ȳet, RWZ) vanish for n ≥ 4, since the diagonals {p + q = n, n ≥ 4} of this
spectral sequence are trivial. �

Theorem 9.6. There exists a complex RW (φ!Z) of étales sheaves on Ȳet, well
defined up to quasi-ismorphism, whose hypercohomology is the expected Weil-étale
cohomology with compact support:

Hn(Ȳet;RW (φ!Z)) = 0 for n = 0

= (
∏
Y∞

Z)/Z for n = 1

= Pic1(Ȳ )D for n = 2

= μD
K for n = 3

= 0 for n ≥ 4.

Proof. The morphism φ!Z → Z in Top (F•) induces a morphism of étale complexes
Rφ!Z → RZ. We obtain a morphism of truncated complexes

RW (φ!Z) := τ≤2R(φ!Z) −→ RW (Z) := τ≤2RZ

inducing a morphism of spectral sequences. Using Corollary 8.7(3), we obtain

Hn(Ȳet;RW (φ!Z)) = Hn(Ȳet;RW (Z))

for n ≥ 2. Finally, the spectral sequence

Hp(Ȳet;H
q(RWφ!Z)) =⇒ Hp+q(Ȳet;RW (φ!Z))

yields Hn(Ȳet;RW (φ!Z)) = Hn(Ȳet;ϕ!Z) for n = 0, 1. The result follows from
(21). �

Theorem 9.7. The hypercohomology of the complex of étale sheaves R(φ!R̃) is
given by

Hn(Ȳet;R(φ!R̃)) = 0 for n = 0

= (
∏
Y∞

R)/R for n = 1, 2

= 0 for n ≥ 3.

Proof. The spectral sequence

Hp(Ȳet;R
q(φ!R̃)) =⇒ Hp+q(Ȳet;R(φ!R̃))

degenerates and yields

Hn(Ȳet;R(φ!R̃)) = H1(Ȳet, R
n−1(φ!R̃)) = H1(Ȳet, ϕ!R) for n = 1, 2
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and Hn(Ȳet;R(φ!R̃)) = 0 for n 
= 1, 2 (see Corollary 8.7(4)). Hence the result
follows from (22). �
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