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ABSTRACT. We revisit classical results of Serre, Frohlich and Saito in the theory of quadratic
forms. Given a neutral Tannakian category (7 ,w) over a field k of characteristic # 2, another
fiber functor 7 over a k-scheme X and an orthogonal object (M, q) in T, we show formulas
relating the torsor Isom® (w, n) to Hasse-Witt invariants of the quadratic space w(M, q) and
the symmetric bundle (M, g). We apply this result to various neutral Tannakian categories
arising in different contexts. We first consider Nori’s Tannakian category of essentially finite
bundles over a reduced proper k-scheme X with a rational point, in order to formulate an
analogue of the Serre-Frohlich embedding problem for Nori’s fundamental group scheme,
and to decide whether or not this problem has a solution in terms of Hasse-Witt invariants.
Then we consider Fontaine’s Tannakian categories of B-admissible representations, in order
to obtain a generalization of both the classical Serre-Frohlich formula and Saito’s analogous
result for Hodge-Tate p-adic representations. Finally we consider Nori’s category of mixed
motives over a number field. These last two examples yield formulas relating the torsor of
periods of an orthogonal motive to Hasse-Witt invariants of the associated Betti and de Rham
quadratic forms and to Stiefel-Withney invariants of the associated local l-adic orthogonal
representations. We give some computations for Artin motives and for the motive of a smooth
hypersurface.

1. INTRODUCTION

Let k be a field of characteristic # 2, let (7, w) be a k-linear neutralized Tannakian category,
and let 17 be another fiber functor with values in the category of vector bundles over a k-scheme
X. We denote by G, := Aut®(w) the Tannaka dual and by T, , := Isom®(w,n) the G,-
torsor over X of isomorphisms of tensor functors. An orthogonal object (M, q) in T is an object
M endowed with a symmetric map M ®M — 1 inducing an isomorphism M = MV, where 1 is
the unit object and MV the dual of M. Such an orthogonal object yields a quadratic k-vector
space (w(M),q.) and a symmetric bundle (n(M),qy,) over X. An orthogonal object (M,q)
may be seen as an orthogonal representation G,, — O(q,). Composing with the determinant
map O(q,) — Z/2Z we obtain a map 6, : Tors(X,G,) — H'(Xe,Z/2Z). Similarly, the
Pin-extension (see [13] Appendix I and [20] Appendix)

(1) 1 — 7/27 —s O(qy,) — O(qu) — 1

induces a map 0 : Tors(X, G,) — H?*(Xet, Z/2Z). Here Tors(X,G,) denotes the pointed set
of G,,-torsors over X, and 5; and 63 are cohomological invariants of degree 1 and 2 respectively.
It is easily checked that the twist (in the sense of [8]) of ¢, by the G.-torsor T, , is isometric
to ¢,. Applying the method of ([8] Section 6.3), we obtain the following result.

Theorem 1.1. For any orthogonal object (M, q) in T, we have the following identities in the
étale cohomology ring H*(Xet, Z/27):

5;(wa,n) = w1(qw) + wi(qy);
1
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Og (Tuox ) = wa(qw) + w1(qw) - w1(qw) + wi(gw) - wilgy) + w2(gy)-

In Section 4, we apply Theorem 1.1 to the Tannakian category giving rise to Nori’s funda-
mental group scheme. Let X be an integral proper k-scheme with a rational point = € X (k).
Then 7 (X/k,z) is defined as the Tannakian dual of a certain category of essentially finite
bundles. Recall that there is a 1-1 correspondence between the set of maps m (X/k,z) — G
and the set of triples (7, G, t), where G is a finite flat k-group scheme, T" a G-torsor over X and
t € T(k) is a point lying over x. Let 7V (X /k,2) = G = Spec(A) be a finite flat quotient. For
any generator 6 of the integrals of A, there is a "unit" quadratic form xg : AP x AP — k and
an orthogonal representation G — O(kg). The map 7 (X/k,x) - G — O(ky) corresponds
to an essentially finite symmetric bundle (V,gp) over X. Pulling back (1) along G — O(kg),
we obtain a central extension

(2) 1 — 227 — Gy =% G —> 1.

Theorem 1.2. Assume that the extension (2) is non-trivial. Then the following assertions
are equivalent.

(1) We have
wa(kg) + wi(kg) - wi(kg) + wi(kg) - wi(ge) + w2(ge) = 0.

(2) There exist a rational point o € G(k) and a commutative diagram
Gl
/ LSG
™N(X/k,z) — G =G

where v is faithfully flat and c, denotes the conjugation by o.

For GG étale, there is a canonical choice 6y for 6, and and the form xg, generalize the classical
unit form considered by Serre in [34]. In this case, the existence of a commutative diagram as
in Theorem 1.2(2) is analogous to the existence of a solution to Serre’s embedding problem
[34] in the context of classical Galois theory. Theorem 1.2 expresses the obstruction to the
existence of a solution in terms of Hasse-Witt invariants.

In Section 5, we apply Theorem 1.1 to Fontaine’s Tannakian categories of B-admissible
representations. Let k be a topological field, K/k an extension and B/k a filtered topological
algebra such that C' := Gr¥(B) is a t-Henselian field in the sense of ([14] Section 3 and [29]).
We assume that B is (k, G )-regular and that C*/C*? is trivial. Let (V,q) be a quadratic
k-vector space and let p : Gg — O(q)(k) be an orthogonal continuous representation which is
B-admissible. Then the Stiefel-Withney invariants swi(p), swa(p) and the spinor class sp2(p)
are well defined. We consider the twisted form induced by ¢ on (V @, B)%.

Theorem 1.3. We have the following identities in the Galois cohomology ring H* (G, Z/27):
(1) wi(gp) = wi(q) + swi(p).
(2) wa(gp) = wa(q) +wi(q) - swi(p) + swa2(p) + sp2(p)-

For k = K and B = k a separable closure endowed with the discrete topology and the
trivial filtration, we obtain the classical Serre-Frohlich Theorem [13]. For k a p-adic field, K/k
a finite extension and B = Bygr with its usual topology and filtration, we obtain a result of
T. Saito (see [31] Theorem 1).
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In Section 6, we apply Theorem 1.1 to the Tannakian category of Nori’s mixed motives over
a number field E with coefficients in E. Here the fiber functor w (respectively n) is given by
the Betti (respectively the de Rham) realization. For a motive M over E, we denote by Gy//p
its motivic Galois group and by P its torsor of formal periods in the sense of Kontsevich
[23]. Recall that there is a canonical evaluation map Bys — C whose image is the E-algebra
Pys of classical periods of M. An orthogonal motive (M, q) yields quadratic forms ¢p and
qqr on the Betti and the de Rham realizations, and a continuous orthogonal representation
px: G — O(gp)(E)) of the Galois group G on the A-adic cohomology, for any finite place
A of E. We also counsider their restrictions PAIGg, O the local Galois group Gg,. Similarly,
for a real prime A of E, complex conjugation on Betti cohomology gives a representation
PAGp, @ Gr = O(gp)(R). We shall consider the Hasse-Witt invariants w;(qp), w;i(q4r) €

H(Gg,7/27Z) and the local Stiefel-Withney invariants Swi(pAlcE/\) € H(Gg,,Z/2Z), as well

as the Global Stiefel-Withney invariant swi(py) := det(py) € H'(Gg,Z/27Z). Finally, an
orthogonal motive gives an orthogonal representation Gy;/p — O(gp) hence a central extension

1—2/22 — JM/E — Gu/p — 1.

Then 52 (*Bar) exactly computes the obstruction for the existence of a G M/ g-torsor lifting
Par. In particular, if (53 (Bam) # 0 then the canonical map G — Gyr/p does not factor through

GmyE, where G is the full motivic Galois group. On the other hand, 5;(‘13]\4) € E*/E*?
determines the periods of the determinant motive detg(M), in the sense that Pue, ) =

B (\/5:(Par)).

Theorem 1.4. Let (M, q) be an orthogonal motive over E with E-coefficients. The following
identities take place in the ring H*(Gg,Z/2Z).
(1) We have

So(Bum) = walg) +wilgs) - wi(gs) + wi(gs) - wi(gar) + w2(qar)-
(2) Assume that either E = Q or that E is totally imaginary. Then one has

05(Rar) =D swalprap, ) + sp2(pajas, )
A
in H*(Gg,7Z/27) C @, H*(GE,,Z/27Z), where \ runs over the set of all places of E.
(3) Let V be a projective smooth variety over E of even dimension n. Then there exists
a unique orthogonal structure on M = h"™(V)(n/2) inducing the usual quadratic form
on Betti cohomology H™(V(C),Q(n/2)).
(4) For (M,q) = (h"(V)(n/2),q) and any finite place A, one has

3 (Fr) = swi(py).

In order to show that Poincaré duality is motivic, so that h?(V)(n/2) inherits an orthogonal
structure, we need to work out the Kunneth formula for Nori motives in Section 7. Taking
this for granted, the proof of Theorem 1.4 is a simple combination of Theorem 1.1, Theorem
1.3 and p-adic Hodge theory. Note also that it is conjectured that the group of connected
components of the full motivic Galois group Gg is the usual absolute Galois group Gg. This
would force detg(M) to be an orthogonal Artin motive, and the identity 6;(Bas) = sw1(px)
would immediately follow. One may avoid this conditional argument using the fact, due to T.
Saito, that swi(p;) is independent on [, which in turn relies on the Weil conjectures.
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Finally, we give in Section 6 examples and computations for certain orthogonal motives.
We treat in details the case of certain explicit Artin motives, and we compute some these
invariants for the orthogonal motives of the form A™(V')(n/2) where V is an hypersurface or
a complete intersection. For example, we have the following

Corollary 1.5. Let V' be a smooth hypersurface of even dimension n > 2 in P%H, defined
by an homogeneous polynomial of degree d, and let (M = h"™(V')(n/2),q) be the corresponding
orthogonal motive. Then we have

(—1)F" - disca(f) if d is odd
= ~discq(f) if d is even

s (Bur) = {

and

2L(—1,-1) if d is odd
52(‘131»1) = wa(qar)+4 (1 + 2)(—1,-1) if d is even and n =0 mod 4

(—1,disca(f)) + (2F2)(1 + $)(—1,-1) if d is even and n =2 mod 4
where discq(f) is the divided discriminant of f in the sense of [32].
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2. PRELIMINARIES

Throughout the paper k denotes a field of characteristic # 2. In this section we review
basic definitions on torsors and symmetric bundles over a scheme (see [8]). One should note
that a symmetric bundle over Spec(k) is given by a pair (V, q) where V is a k-vector space of
finite dimension and ¢ is a non degenerate quadratic form on V.

2.1. The classifying topos of a pro-group-scheme. Let S be a topos and let G be a
group-object in §. The topos Bg is the category of objects of S endowed with a left G-action.
We denote by Tors(S,G) the category of right G-torsors in S. Recall that Tors(S,G) is
a groupoid, i.e. any morphism of this category is an isomorphism. There is a canonical
morphism 7 : Bg — S whose inverse image functor sends a a sheaf F on S to the object of
Bg given by F with trivial G-action. In particular 7*G is the group-object of Bg given by G
with trivial left G-action. The topos Bg has a universal m*G-torsor Eg given by G on which
G acts both on the left and on the right by multiplication.

Theorem 2.1. The functor

Homtopg(S, Bg)? — Tors(S,G)
S —  [TEg

15 an equivalence of groupoids.

Here Homtopgs(S, Bi) denotes the category of morphisms of S-topoi from S to Bg (with
respect to Id : § — S and 7 : Bg — S), and (—) denotes the opposite category. Given a
G-torsor Y, we denote the corresponding morphism of topoi by the same symbol:

Y:S— Bg.
The morphism Y can be described as follows: For any sheaf F on Bg, one has
Y*F)=Y A F:=(Y x F)/G

where G acts on the product Y x F via the given right (respectively left) action on Y (re-
spectively on F). A morphism of group-objects f : G — G’ in S (i.e. a morphism of sheaves
of groups on §) induces a morphism of topoi By : Bq — Bgr.

We shall use the following variant. Let G := ”l'&n” G; be a pro-group in S indexed by a
filtered small category I. Recall that, for another group H, we have

Homg,yp(s)(G, H) = lim Homg,p(s)(Gi, H)

where Grp(S) denotes the category of group-objects in S. The classifying topos of the pro-
group G is defined as an inverse limit in 2-category of topoi:

Bg :=lim Bg,.
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By definition of the inverse limit, the canonical functor
Homtopg(S, Bg) — lim Homtop(S, B, )

is an equivalence. It follows that Bg classifies G-protorsors. A G-protorsor is given by a
Gi-torsors T; for any ¢ € I and an isomorphism of Gj-torsors f, : T; NG G; ~ T; for any
« : 1 — jin I, such that the isomorphisms f, satisfy the obvious compatibility constraint for
composite maps in I. We denote by Tors(S, G) the groupoid of G-protorsors. Theorem 2.1
gives an equivalence

(3) Homtopg(S, Bg)” — Tors(S, G).

Let X be a scheme and let G := ”@1” G; be a pro-object in the category of X-group schemes

of finite type. The classifying topos Bg is defined as above by taking S to be the (big)
fppf-topos Xi,pe. Here G is of course seen as a group-object in Xp,,¢ by Yoneda.

2.2. Hasse-Witt invariants.

2.2.1. Let k®/k be a separable closure of k. We denote by Gy := Gal(k®/k) the absolute
Galois group of k. Suppose that g is a non degenerate quadratic form of rank n over k. We
choose a diagonal form < ay,a9,---,a, > of ¢ with a; € k¥, and consider the cohomology
classes

(a;) € k> /(E*)? ~ HY(G},, Z/27.).
For 1 < m < n, the m*" Hasse- Witt invariant of q is defined to be

(4) wn(@ = Y, (ay)--(ai,) € H™(Gy, Z/22)

1<y < <im<n
where (a;,) - - - (a;,,) is the cup product. Moreover we set wo(q) = 1 and wy,(¢) = 0 for m > n.
It can be shown that w,,(q) does not depend on the choice of the diagonal form of gq.

2.2.2. This definition can be generalized over more general base schemes as follows (see [8]
Section 4). Let X — Spec(Z[1/2]) be a Z[1/2]-scheme. A symmetric bundle over X is a
pair (V,q) where V is a locally free Ox-module of constant finite rank and ¢ : V ®p, V —
Ox is a symmetric map of Ox-modules inducing an isomorphism V' = V'V, where VV :=
Homy,  (V, Ox) is the dual of V. Given two symmetric bundles (V, ¢) and (W, r) of same rank
over X, we consider the sheaf Isom(q, r) on Xg,p¢ given by Isom(q,7)(Y') := Isom(qy, ry) for
any X-scheme Y, where Isom(qy,ry) is the set of isometries between the symmetric vector
bundles (Vy,qy) and (Wy,ry) over Y, obtained from (V,q) and (W, r) by base-change along
Y — X. We define the orthogonal group O(q) as the group Isom(q, q). Consider the standard
form (O%,t, = > x?) of rank n over X. We set O(n) := Isom(t,, t,,).

Let (V,q) be a symmetric bundle of rank n over X. The sheaf Isom(t,,q) on Xgpr is a
O(n)-torsor on Xg,pe, hence Theorem 2.1 provides us with a canonical map

(5) Isom(tn, q) : Xfppf — BO(n)
There is a canonical isomorphism of graded Z/2Z-algebras

where HW,, has degree m and A is the étale cohomology algebra H*(Xe,Z/27). The mt*
Hasse-Witt invariant of ¢ is defined to be the pull-back

(6) wim(q) = Isom(ty, q)" (HWy,) € HY (X,Z/27)
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of HW,, along (5). When X = Spec(k) the definitions (4) and (6) agree.

2.3. Twists of quadratic forms. Let X — Spec(Z[1/2]) be a Z[1/2]-scheme, let G be a pro-
group-scheme over X, let (V| q) be a symmetric bundle over X of rank n, let p : G — O(q) be
an orthogonal representation and let T' be a G-protorsor over X. The equivalence (3) yields

the morphism of topoi
B

Xippt — Ba —2 Boyy)
where B, is induced by p. By Theorem 2.1 (again), this morphism corresponds to an O(q)-
torsor. Any such O(g)-torsor is of the form Isom(q,r) for an essentially unique symmetric
bundle (W, r) of rank n, which we denote by T'AY q. Then T AY q is called the twist of q by
the G-protorsor T.

3. TANNAKIAN TWISTS OF QUADRATIC FORMS

For Y a scheme over the field k, we denote by VB(Y) the category of vector bundles over Y,
i.e. the category of locally free finitely generated Oy-modules. We consider a k-linear neutral
Tannakian category T endowed with a fiber functor w : T — Vecg, where Vecy, is the category
of finite dimensional k-vector spaces. We denote by G, := Aut®(w) its Tannaka dual. Recall
that G, is defined via its functor of points: For any k-scheme Y, the group

Go(Y) = Aut®(w)(Y) := Aut®(wy)
is the group of automorphisms of the tensor functor
wy : T == Vec, — VB(Y)

where the second functor is induced by pull-back along the structure map ¥ — Spec(k). Then
G., is an affine k-group scheme (|6] Theorem 2.11). In fact G, is most natarally defined as a
pro-algebraic group. Indeed, let {7; C T,i € I} be a partially ordered set of sub-Tannakian
categories, such that 7 = (J;c; 7; and 7; is generated as a Tannakian category by a single
object X; € T;. We denote by w; : T; = T — Vec; the fiber functor induced by w. Then

Gu, = Aut®(w;) is an affine algebraic group over k (i.e. an affine k-group scheme of finite
type), and one has G, = l'&ngwi. We consider G, as the pro-object
G = "1im" G,

in the category of affine algebraic groups over k.

3.1. The protorsor T, ,. Let (7T,w) be a k-linear neutral Tannakian category as above and
let X be a k-scheme. We denote by

wx : T = Vecy EAR VB(X)

the fiber functor over X induced by w, where f : X — Spec(k) is the structure map. Let
n : T — VB(X) be another fiber functor over X. We also denote by w; x : 7; = VB(X)
and n; : T, — VB(X) the fiber functors induced by wx and 7 respectively. We consider the
pro-X-scheme

Isom®(

wx,n) = "lim” Isom® (w; x, ;)
#(

of isomorphisms of tensor functors from wyx to 7. Here Isom®(w; x,7n;) is defined via its

functor of points. More precisely, for any X-scheme Y,
(

Isom®(w; x,n:)(Y) = Isom®(w; vy, miy)
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is the set of morphisms of tensor functors w; y — 7,y where w; y and 7; y are the fiber functors
over Y induced by w; and n; respectively. Note that any morphism w;y — 71;y necessarily
is an isomorphism (see [6] Proposition 1.13 for the affine case). Then Isom®(wx,n) is a
projective system of faithfully flat affine X-schemes of finite type. Similarly, one has

G, (Y) = Aut® (wiy)

for any k-scheme Y, hence there is a right action of G, on Isom®(wx,n) over X which is
defined by composition. This action turns Isom®(wx,n) into a G,-protorsor over X (see

[6] Theorem 3.2). We denote by T, := Isom®(w; x,7;) the G,,-torsor and by Toxm =
2(

“(

i, X515

Isom®(wy,n) the G,-protorsor just defined, and also by

Twi,Xvni : Xpppt — ngi and To,y 1+ Xeppt — Bg,, = @BQ%
the corresponding morphisms of topoi.

3.2. Orthogonal objects. We denote by 1 the unit object of 7. For an object M € T we
denote by MY = Hom(M, 1) its dual.

Definition 3.1. An orthogonal object (M,q) of T is an object M € T endowed with a
symmetric map q : M @ M — 1 such that the induced map M — M is an isomorphism.

We define the category of orthogonal objects of 7 in the obvious way: for two orthogonal
objects (M,q) and (M’,q'), a morphism f : (M,q) = (M',q¢')isamap f: M — M in T
such that the diagram

M®Mq—>1

lf@f lld

MeoM 1
commutes. If (M,q) is an orthogonal object of T, then

G s (M) ® w(M) =~ w(M @ M) “Y (1) ~ &
is a non-degenerate symmetric bilinear form. By Tannaka duality, an object M € T can be
seen as a finite dimensional representation of G,, of the form
o Gy — GL(w(M))
where GL(w(M)) is seen as a k-group scheme. If M admits an orthogonal structure (M, q),
then we have a factorization
Gw — O(quw) — GL(w(M))

hence an orthogonal representation

Pq - Guw — O(Qw)7

where O(q,) denotes the orthogonal k-group scheme associated with q,,.

The category of orthogonal k-linear representations of G, is the category of orthogonal
objects of the Tannakian category Repy(G,) of k-linear representations of G,,. The fact that
the functor

T — Repy(Gu)

M — PM
is an equivalence of rigid tensor k-linear categories ([6] Theorem 2.11) immediately gives the
following
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Proposition 3.2. The functor (M, q) — p, is an equivalence from the category of orthogonal
objects of T to the category orthogonal k-linear representations of G, .

3.3. The maps (5; and 53. Let (M, q) be an orthogonal object of T, and let X be a k-scheme.
The orthogonal representation
Pq: Gw — O(qw)

yields canonical maps ' ‘

0q  Tors(X,Gy) — H'(Xet, Z/27)
for i = 1,2. Here Tors(X,G,,) is the set of isomorphism classes of G,-pro-torsors in the topos
Xippt- The maps 5; and 52 are defined as follows. The map

5y : Tors(X, Gu) — H'(Xet, Z/27).

is induced by the composite map

de
G — Olqw) “ 24 7/22.

Indeed, a G,,-pro-torsor T"in Xg,pr gives a map 1" : Xg,pr — Bg,,, hence a map X, — Bg,, —
By /27, hence a class

50(T) € H'(Xtppf, Z/2Z) ~ H' (Xet, Z/2Z).
The map 6 is defined using the canonical central extension (see [13] Appendix I and [20]
Appendix)
(7) 1 — Z/27 — O(q,) — O(qw) — 1.

Indeed, (7) gives a class [Cy] € H?(Bo(qy,), Z/2Z). For a G,-pro-torsor T, the class 62(T) is
defined as the pull-back of [Cy] along the morphism of topoi

T
Xfppf — ng — BO(qw)'

Another way to define 5§(T) is the following. The representation p, factors through G,, —
O(qy) for any 7; containing M. Pulling back (7) along G, — O(q,) gives a central extension
of affine group-schemes
(8) 1 — Z)2Z — G, — G, — 1.

and an exact sequence of pointed sets (see [16]IV.4.2.10)

- 52
(9) oo — HY (Xippt, Gus) — H (Xippt Gun) — H*(Xtppt, Z/27) — ..
in which 53 appears as a boundary map.

3.4. Comparison formulas. Let (7,w) be a k-linear neutral Tannakian category as above,
let X be a k-scheme, let n : T — VB(X) be a fiber functor over X, and let (M,q) be an
orthogonal object of T.

We consider the quadratic form g, over k and the following symmetric vector bundle over
X:

(
@y : 1(M) @oy n(M) = (M & M) " 5(1) = Ox.
Cup-product turns H*(Xet,Z/27Z) into a commutative Z/27Z-algebra, and the structure map
f:+ X — Spec(k) induces a ring homorphism
H*(Spec(k)et, 2/27) — H*(Xet, Z/27)

so that we may consider w;(q.) € H*(Spec(k)et, Z/27Z) as an element of H* (X, Z/27).
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Theorem 3.3. For any orthogonal object (M, q) of T, we have identities in H*(Xey, Z/27):
5;(waﬂ7) = w1(qw) + w1(qy);
5§(wa,n) = w2(Q¢u) + wq (Qw) ! (Qw) + wy (Qu}) s w1 (Qn) + w?(‘]n)-

Proof. We consider the twist T, , AN9ex q,, of the form ¢, « by the torsor Tj,, ,, that we simply
denote by T,y A9 q,, (see Section 2.3). By ([8] Corollary 6.5), Theorem 3.3 follows from the
following

Lemma 3.4. The twisted form T, , N9 q, is isometric to qn-

Proof. We simply denote by by p : G,y — O(quy ) the morphism of X-group schemes induced
by pg (by base change). The form T, , A9 q,, is determined by the map

Twy, B
(10) By oTuym  Xeppt = ngx — BO(‘wa)'
Let 7; € 7 be a Tannakian subcategory which is generated by a single object, and such that
M € 7T;. The following diagram commutes:

Bg,
y l R
Xfppf i i BQW@X B, BO(wa)

In particular we have an isometry
Twi,Xvni /\gwi qu = waﬂ? /\Qw qu

hence one may suppose that 7 = 7; is generated by a single object. In other words, we may
assume that G, is an algebraic group and that T, , is a G,-torsor in the usual sense.

In order to ease the notations, we set 1" := T, ;. So the form T A9 q,, is determined by the
morphism of topoi B, o T which is in turn determined by the O(q., )-torsor over X given by
(Bp o T)*(Eo(q.y))- Here Egq,,.) denotes the O(quy )-torsor of B, ) given by the object
O(quy ) on which O(gq,, ) acts both on the left and on the right by multiplication. Similarly,
the form ¢, is determined by the O(qy )-torsor Isom(qyy,q,). Hence T A9+ q,, is isometric
to gy if and only if (B, o T)*(Eoy(qy,,)) and Isom(quy ,qy) are isomorphic as O(quy )-torsors.
We have

(Byo T)" (Eog,.)) = T* 0 B}(Eo(q,.)) = Isom® (wy,n) A%x O(quy)

qwx)
where G, acts on the left on O(quy ) via pg : Guy — O(quy ) and on the right on Isom® (wy, n)
by composition.

Let us define a map
(

p o Isom® (wx, n) X O(quy ) — Isom(quy, qy)

on points as follows. For any X-scheme Y, we define

/J’(Y) : Isom®(wy,77y) X O(qu) — Isom(qu,qny)
(o, 0) — a(M)oo

where O(quwy ) := O(quy)(Y) and
Oé(M) : wY(M) ;> ny(M)
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is just given by evaluating the natural transformation « at the object M. In order to show
that p(Y') is well defined, we simply need to observe that a(M) is an isometry, i.e. respects the
quadratic forms g, and ¢y, . But g, and g,, are both induced by the pairing ¢ : MM — 1
in 7 and « is a morphism of tensor functors, so that we have a commutative diagram

~ w ( ) ~
wy (M) ®0, wy (M) —=> wy (M @ M) 22 0wy (1) == Oy
J{cx(M)@a(]V]) la(l\/l@M)

ia(l) lId
~ TIY(Q) ~
ny (M) ®oy ny (M) ——=ny (M @ M) —=ny (1) — Oy

where the left and the right hand side squares commute because « is a morphism of tensor
functors (see [6] Definition 1.12). The upper row (respectively the lower row) is the form g,
(respectively ¢y, ). Hence o(M) is an isometry, so that p(Y') is well defined, hence so is
(note that p(Y) is functorial in Y).

Moreover, u(Y) is invariant under the action of G, (Y) = Aut®(wy) on the set Isom® (wy-, ny) x
O(quy ). Indeed, an element g € G, (Y) takes (o, 0) € Isom®(wy,ny) X O(qu,) to (ao
g1, p(g9) 0 o), and one has

u(Y)(aog™ plg)oo)=a(M)op(g) " oplg)ooc=aoco=ulY)(e0).

Hence p is invariant under the action of G,,,. Equivalently, 1 induces a morphism

fi : Isom® (wx,n) A9x O(guy) :== (Isom®(wx,n) X O(quy))/Guwy — Isom®(qu, ¢)

in the topos Spec(k)fpr. The group O(quy) acts on Isom®(wx,n) A%x O(quy) by right
multiplication on the second factor and trivially on the first factor. It acts on Isom® (g, , an)
by composition. The map f is obviously O(q,, )-equivariant, hence f is a morphism of
O(quy )-torsors. The result follows, since any morphism of torsors is an isomorphism.

4. AN ANALOGUE OF THE SERRE-FROHLICH EMBEDDING PROBLEM FOR NORI’'S
FUNDAMENTAL GROUP SCHEME

4.1. The Serre-Fréhlich embedding problem. Let F' be a field of characteristic # 2, let
G be a finite group and let p : Gr — G be a surjective map, i.e. let F'/F be a separable closure
and let F//K/F be a Galois sub-extension of group G. We consider the G-unit form (F[G], k)
where & is the quadratic form such that x(g, h) = 645 (Kronecker symbol) for g,h € G. The
action of G on itself by left multiplication extends to an orthogonal representation

(11) p:Gp — G — O(k).
The Pin-extension (see [20] Appendix) gives a central extension of discrete groups
(12) 1 — 7)27 — O(r)(F) — O(r)(F) — 1.

Pulling back (12) via G — O(k)(F') — O(k)(F') we obtain a central extension of finite discrete
groups

15 72/22 -G —G—1
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which we suppose to be non-trivial. The embedding problem attached to G — G can be
expressed as follows: Is there a commutative triangle

G

]

S

G
where r is surjective? In other words, is there an F-embedding K — K where I?/F is a
Galois extension of group G7 This problem has a solution if and only if the Stiefel-Whitney
class swa(p) vanishes. It follows from Serre’s comparison formula ([34] Théoréme 1) that
swa(p) € H*(Gp,7/27) can be computed in terms of the Hasse-Witt invariant wa(Trg ) p),

where Trg/p is the quadratic from z — TrK/F(x2). This result can be applied to decide
whether or not the previous embedding problem has a solution in explicit examples.

Gr

4.2. An analogue for Nori’s fundamental group scheme. The aim of this section is to
formulate a similar embedding problem for Nori’s fundamental group scheme and to deduce
from the comparison formula of Theorem 3.3 a necessary and sufficient condition for the
existence of a solution. More precisely, let X be a proper integral scheme over a field k of
characteristic # 2, with a k-rational point = € X (k). We consider Nori’s fundamental group
scheme 7{¥(X/k,z) (see [27] and [37] 6.7). Let G = Spec(A) be a finite flat quotient of
7NV (X/k,z). We denote by p: m¥ (X /k,x) — G the projection.

4.2.1. Generalization of the G-unit form. The linear dual A” = Homy (A, k) of A has a natural
structure of Hopf k-algebra. We denote by SP its antipode.

Definition 4.1. For any generator 6 of the k-vector space of the integrals of A we define the
form
kg: AP x AP — k
(w,0) > (SP(w)v)(9)

Then kg is a non degenerate quadratic form over k. The action of AP on itself by left
multiplication corresponds to a linear representation p of G on AP, dual of the regular repre-
sentation of G. One can prove ([9] Proposition 5.1) that p : G — GL(AP) factors through
O(kg) and thus provides an orthogonal representation of G. We refer to (AP, kg) as a unit
form. If G is étale then there is a canonical generator 0y of the integrals of A, hence a canonical
orthogonal representation

W{V(X/k,l‘) — G — O(ky,),

which generalizes the unit form (11).

4.2.2. For any generator 6 of the integrals of A, we consider the representation G — O(kyp)
defined above. The Pin-extension (see [20] Appendix again) induces a central extension of
finite flat k-group-schemes

1= Z)27 — Go 28 G — 1

which we suppose to be non-trivial. Notice that ég = G X0(xy) 6(&9) depends on 6. The
embedding problem we are interested is the following:
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Problem 4.2. Let 0 be a generator of the integrals of A. Is there a faithfully flat morphism
r: iV (X/k,x) — Gy which renders the following triangle

/ Gy
N (X/k, x) —2 G

commutative?

In the next section, we give a necessary and sufficient condition for the existence of a solution
to Problem 4.2 up to conjugation by an element of G(k).

4.3. Existence of a solution in terms of Hasse-Witt invariants. Let X be a proper
integral scheme over a field k of characteristic # 2. Let « € X (k) be a rational point. In this
situation, Nori defines the category EF(X) of essentially finite bundles. Then EF(X) is a full
subcategory of the category VB(X) of vector bundles, which is closed under direct sums and
tensor products. The pull-back functor along the map = : Spec(k) — X gives a fiber functor
w : EF(X) — Vecty, and EF(X) is a neutral Tannakian category. Its Tannaka dual

V(X /k, x) = Aut®(w)

is by definition the fundamental group-scheme of X with respect to the rational point .
Then 7V (X /k,z) is a projective limit of finite k-group schemes. It classifies pointed torsors
under finite group-schemes: For any finite group-scheme G over k, one has a bijection between
Homy (7 (X /k,z),G) and the set of triples (G, T,t) where T — X is a G-torsor and t € T'(k)
is a rational point lying over z € X (k). The Tannakian category EF(X) has a distinguished
fiber-functor over X: the inclusion functor

n: EF(X) — VB(X).

As in the previous section, we also consider the composition

wy : EF(X) ~% Vect), L VB(X)

where f : X — Spec(k) is the structure map. Now let G be a finite flat quotient of 7{¥ (X/k, z)
given by the faithfully flat morphism s : 7" (X/k,z) — G. The regular representation of G
gives a representation 7 (X/k,x) — G — GL(V). By Tannaka duality, we obtain an object
R € EF(X). Let V := R be the dual of R and let < V >=< R >C EF(X) be the Tannakian
category generated by V. Let wx|<y~ and n<y~ the restrictions of wx and 7. Then

Aut®(wycps) ~ G xp X
and
T = Isom®(wX|<V>7 7)\<v>)
is a G-torsor over X. Note that 7" has a canonical k-rational point ¢ : Spec(k) — T over z,
which is given by the canonical isomorphism of tensor functors
r* o Wx|<y> = r*o MN<y>-

The triple (G, T,t) corresponds to the morphism s : 7 (X /k,x) — G.
Let 0 be a generator of the integrals of A, let (AP, kg) be the quadratic space of Definition
4.1 and let py : G — O(ky) be the corresponding orthogonal representation. By Tannaka
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duality again, pg endows the essentially finite vector bundle V with a canonical non-degenerate
symmetric bilinear form
7V ®o,V— Ox.
Then we consider the canonical central Pin-extension
1 — Z/27 — O(rg) — O(rg) — 1
and its base change
(13) 1= Z/2Z — Gy 4 G — 1

along the map G — O(kg). We consider the Hasse-Witt invariants w;(qg), w;(kg) € H (Xet, Z/27)
for i = 1,2. Finally, if 0 € G(k) is a rational point we denote by ¢, = o~ - (=) - o the conju-
gation map.

Theorem 4.3. Assume that the extension (13) is non-trivial. Then the following assertions
are equivalent.

(1) We have
wa(ke) + w1 (ke) - wi(kg) + wi(kg) - wi(ge) + wa(ge) = 0.

(2) There exist a rational point o € G(k) and a commutative diagram
Gl
)
™N(X/k,z) — G =G
where T is faithfully flat.

Proof. In order to ease the notations, we fix § and we set G = ég, s 1= Sy, k := Ky and
g = qp. We have an exact sequence of pointed sets (see [16] IV.4.2.10)

H'(X,G) — H'(X,G) 25 HX(Xu,2/22).

The quadratic space w(V, q) is the unit form (AP, k), whereas n(V,q) = (V,q). By Theorem
3.3, we have

§%(T) = wa(k) + wi (k) - wi(k) + wi(k) - wi(g) + wa2(q).
By the exact sequence above, 62(T) = 0 iff there exists a G-torsor T over X and a é—equivariant

map T — T.
We show (2) = (1). Suppose that there exists a commutative diagram as in (2). The map

oV (X/k,z) -GS G
corresponds to the triple (G,T,t - o), where (¢ - o) € T'(k) is the point
Spec(k) (ti;Tka:TxXGX ANy

The commutative diagram (2) therefore gives a triple (G, T, %) mapping to (G, T,t - o) hence
a G-torsor T over X and a é—equivariant map T — T. We obtain §2(T) = 0, hence (1).

We show (1) => (2). We have 62(T) = 0 hence there exists a G-torsor T over X together
with a é—equivariant map T — T. Taking the base change along = € X(k), we obtain a
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G-torsor Tx =T xx x over k lifting T,. Note that T, is the trivial G-torsor. The exact
sequence of pointed sets

H'(k,2.)27) — H'(k,G) — H'(k,G)

shows that there exists a € H'(k,Z/2Z) mapping to T,. Recall from ([16] I11.3.4.5) the
natural action of H'(k,Z/27Z) on H'(k,G). We have

[T2) = - [To]
where T o is the trivial G-torsor over k.
Let A be the image of a in H'(X,7/27). The action (see [16] II1.3.4.5) of HY(X,7Z/27) on

the set Hl(X G) is compatible with base-change. Let T' be a G-torsor over X such that we
have [T] = A- [T] in H'(X,G). Taking the pull-back T/, of T" along z € X (k), we have
(T3] = 2*[T') = 2"(A-[T) = (z"A) - (*[T]) = @+ [T] = a- a - [To] = [To].

Therefore, replacmg T with T’ we may suppose that T, is a trivial G-torsor over k. Choose a
rational point t € Ty (k), and let o be its image in Ty (k). Since T} is a G-torsor, there exists
a unique o € G(k) such that to = t - o. Hence the triple (G, T,t) maps to (G, T, o), which
corresponds to the map 7 (X/k,z) — G % G. We obtain the commutative diagram in (2).

It remains to show that the map 7 : 7 (X/k,2) — G in the diagram is faithfully flat.
The map 7 factors as follows ¥ (X/k,z) — m — G, where 7 is a finite flat k-group scheme
and 7 (X/k,x) — 7 is faithfully flat. Tt is therefore enough to show that the induced map
'« 7 — G is faithfully flat. The map r’ gives a morphism of exact sequences

1 N s G 1
LTk
1—>7/27 G—>aG 1

We have an exact sequence (see [8] Proposition 3.8)
HY(Bg,7/27) — H"(Spec(k)ppt, Z/2Z) — Exty(G,Z/2Z) — H*(Bg,Z/2Z).

But the map H'(Bg,Z/2Z) — H'(Spec(k)sppt, Z/2Z) is surjective, since it is induced by
the canonical section Spec(k)gppt — B of the structure map Bg — Spec(k)gpps. Hence the
canonical map Exty(G,Z/2Z) — H?(Bg,7/27) is injective. Similarly, we have an injection
Exty (7, Z/2Z) < H?(By,Z/27). The class [E] € Exty(G, Z/27Z) is non-trivial by assumption,
but dies in Exty(G,Z/27Z), and a fortiori in Exty(r,Z/2Z) (here we denote by [E] the class
of the extension denoted by (13) in the statement of the theorem). We consider the exact
sequence (see [8] Corollary 3.13)

— H°(Bg,Hom(N,Z/27)) — H*(Bg,7Z/27) — H?*(B,7/2Z).
Then [E] lies in Ker (H?*(Bg, Z/2Z) — H?*(Bx,Z/2Z)), and
3 € Hom(N, Z/22)*) = H°(Bg, Hom(N, Z/27Z.))

maps to [E] € H*(Bg,Z/27), which is non-trivial since Exty(G,Z/2Z) — H*(Bg,Z/27) is
injective. Hence (3 is non-trivial too, hence surjective. It follows that r’ is an epimorphism in
Spec(k)ppt, i.. 7' is faithfully flat.

O
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Remark 4.4. We may replace p : G — O(k) with an arbitrary orthogonal representation G —
O(u), and consider Problem 4.2 in this more general situation. This problem is the analogue
of Fréhlich’s embedding problem ([13], Section 7) for Nori’s fundamental group scheme. We
can prove mutatis mutandis Theorem 4.3 in this case.

5. ORTHOGONAL B-ADMISSIBLE REPRESENTATIONS

Various comparison formulas have been obtained, in different set-ups, between the Hasse-
Witt invariants of a form and the Hasse-Witt invariants of its twists (see [34], [13], [31]). In
this section we show that they all can be seen as consequences of Theorem 3.3 when applied
to a well choosen tannakian category. Fontaine’s theory of B-admissible representations and
regular G-rings provides us with a large range of such categories.

5.1. B-twist of a form. Let k be a topological field of characteristic # 2 and let G be a topo-
logical group. We denote by Rep,(G) the category of continuous finite dimensional k-linear
representations of G, and by w : Rep,(G) — Vecy, be the forgetful functor. Then (Rep,(G),w)
a neutralized k-linear tannakian category. We let B be a topological commutative k-algebra
(recall that the homomorphism k — B is continuous), equipped with a continuous action of
G by k-automorphisms. We set K = BY. For any k-representation V of G we set

Dp(V)= (B V)°
where G acts diagonally on B ®; V. By scalar extension we obtain a map
(14) ay : Beg Dp(V) - B® V.

The map ay is B-linear and G-equivariant. Here G acts trivially on Dp(V') and diagonally
on By Dp(V). We now recall the definition of a (k, G)-regular algebra ([12] Definition 2.8).

Definition 5.1. We say that B is (k, G)-regular if the following conditions hold:
(1) B is a domain.
(2) B¢ = Fr(B)“.
(3) If b€ B, b# 0, such that kb is stable by G, then b is invertible in B.

We assume from now on that B is (k, G)-regular. This implies that K is a field and that
ay is injective for any k-representation of G (see [12| Theorem 2.13).

Definition 5.2. A k-representation V of G is said to be B-admissible if oy is an isomorphism.

We denote by Rep?(G) the full subcategory of Rep(G) consisting of representations of
G which are B-admissible. This category is a tannakian sub-category of Rep,(G) with fiber
functor given by the restriction of w. Moreover the restriction of Dp to RepkB (G) defines a fiber
functor 7 : Rep? (G) — Veck ([12] Theorem 2.13). We let Gg be the Tannaka dual Aut®(w)
and T be the Gp k-torsor Isom®(wg,n). There is a continuous morphism G — Gp(k) and
the functor sending p: Gg — GL(V) to p: G — Gp(k) — GLy (k) induces an equivalence of
tensor categories ([12| Proposition 1.2.3)

Repy,(Gp) — Repf(G).

We identify these categories.

An orthogonal object of Repf (@) is given by a continuous orthogonal representation p :
G — O(q)(k) where (V,q) is a quadratic form over k and O(q)(k) is endowed with topology
induced by that of k. Following the method of Section 3, we associate with (V,q, p), via the
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fiber functors w and 7, non degenerate quadratic forms on k and K, on the one hand the form
(V,q) obtained through the forgetful functor w and the form (Dp(V'),qp) obtained through
n, where gp is the restriction to D (V') of the form B ® gq. The quadratic space (Dg(V),qp)
will be called the B-twist of (V,q).

Since gp is the twist of ¢ by the Gp i torsor Tg (see [11], definition 2.4), then Theorem
3.4 provides us with a comparison formula for the Hasse-Witt invariants of these forms. More
precisely, let (V,q, p) be an orthogonal B-admissible k-representation of G and let < V' >
be the subtannakian category generated by V. Then w and 7 induce fiber functors w’ and
n on < V >. We consider the subalgebra By of B consisting of all the periods of all the
objects of < V' > ( [11], Section 1.7)). The algebra By /k is a (k, G)-regular algebra of finite
type. We set Tgy = Spec(By). By [11], Theorem 1.7.3 we know that Ty represents the
functor Isom®(wj,n'). Therefore Theorem 3.4 expresses the invariants 6, (T) = 0,(T,v)
and 53(T3) = 5§(TB,V) of this algebra in terms of the Hasse-Witt invariants of the forms ¢
and ¢p.

Our aim is now to express 5; (Tp) and 62(TB) in terms of invariants attached to p. We
start by introducing some notations. As before B/k is a topological algebra and K /k is a field
extension. We fix a separable closure K of K and we take for group G the profinite group
Gk = Gal(K/K). We suppose that B is a (k,Gf) regular algebra, such that B¢% = K.
Moreover we assume that B/K is a filtered equivariant algebra. In other words there exists a
decreasing filtration by K-subvector spaces {B%,i € Z}, stable under the action of G, such
that K ¢ B and B'BJ C B'*J for i,j € Z. If V is a k-representation of G, the filtration
on B induces natural filtrations on B® V', Dp(V) and B®k Dp(V'). More precisely for any
integer ¢, we set

(Bey V) =B'@,V, Dp(V) = (B'®,V)°x,

and we endow B ®x Dp(V) with the tensor product filtration given by (B ®x Dp(V))! =
Yisi—i B* ®x Dp(V)'.

We recall that a Hausdorff topological field F' is called t-Henselian if for every etale mor-
phism X — Y of F-varieties the induced map X(F) — Y(F) is a local homeomorphism,
where X (F') and Y (F') are endowed with the topology of F' ( [14] Section 3 and [29] ).

Definition 5.3. We say that the algebra B/ K is well filtered if the following conditions hold:

(1) There exists a Gk -equivariant K -structure on B° extending the K -algebra structure.
(2) C := Gr'(B) is a t-Henselian field when endowed with the quotient topology such that
C* = 0*2'

If B/K is filtered a B-admissible representation V' of G is said to be filtered if ay and
a‘_,l both respect the filtrations.

Let p : Gk — O(q)(k) be a continuous, orthogonal and B-admissible representation. We
define the first Stiefel-Whitney class swi(p) as det(p) € HY(Gk,Z/27Z). We now consider the
central extension of group schemes

(15) 1 —Z/2Z — O(qc) — O(qc) — 1,
where o = q ® C. We associate to (15) an exact sequence of groups

(16) 1 — Z/27Z — O(q)(C) = O(¢)(C) = H'(Spec(C)et, Z/27).
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Since B/K is well filtered and since the morphism O(gc) — O(gc) is etale we deduce from
(16) an exact sequence of topological groups
(17) 1 — Z/27 — O(q)(C) — O(q)(C) — 1,
with the trivial Gx-action. Since the map k& — C is a continuous and Gg-equivariant ring
homomorphism, the map p defines a 1-continuous cocycle of G with values in C' and thus a
class [p] € HY(Gk,O(q)(C)). We define the second Stiefel-Whitney class swa(p) of p as the
image of [p] by the boundary map of continuous cohomology

62 HY(Gk,0(q)(C)) = H*(Gk,Z/2Z).

Composing p with the spinor norm homomorphism
sp:O(q)(k) = k*/k*? - K*/K*? = HY(Gg,7Z/27),
we obtain a homomorphism sp o p € Hom(G, H'(Gk,Z/2Z)). The spinor class spa(p) is
defined as the image of sp o p by the map
Hom(G g, HY(Gy,Z/22)) ~ HY (G, Z/22) ® H (Gk,7/27) — H*(Gk,7/27)

defined by cup-product.

Theorem 5.4. Let B be a (k, Gi)-regular algebra and let p : Gxg — O(q)(k) be a continuous,
orthogonal and B-admissible representation. Then we have:

(1) wi(gp) = wi(g) + swi(p).
(2) Moreover, if B/K is well filtered and the representation is filtered then

wa(qp) = wa(q) +wi(g)swi(p) + swa(p) + sp2(p).

Proof. 1t follows from Theorem 3.3 that in order to prove the first equality it suffices to prove
the equality
5; (TB) = swi(p)

in HY(Gg,7Z/27Z). The morphism of group schemes p : Gg — O(q) induces a map ps :
HY(Gg,G) — H (Gk,O(q)). The image of Ty by p. is the O(q)-torsor Isom(qg, qp) over
K ([CCMT], Section 4). Tt defines a class in the continuous cohomology set H!(G g, O(q)(K)),
when O(q)(K) is endowed with the discrete topology. One defines a 1-cocycle representative
of p«(TB) by choosing a K-point of Isom(qg, gp), given by an isometry

f:K®,V = K®g Dg(V),

and considering the map ¢ : G — O(q)(K), g — flo(g®1)o fo (¢! ®1). We have the
equality
(18) 34(Tp) = det([d]),
where [c] € H' (G, O(q)(K)) is the class of c. B

Scalar extension by B induces a G k-equivariant group homomorphism O(q)(K) — O(q)(B)
which is continuous, with respect to the discrete topology on O(q)(K) and the topology
induced by B on O(q)(B). Therefore this group homomorphism induces a map of pointed
sets

ip: H'(Gk,0(q)(K)) — H'(Gk,0(q)(B)),

and the class ip([c]) is represented by the cocycle cp associated with the B-point fp of
Isom(qx, gp) obtained by scalar extension from f

fB:B®V — Bk Dp(V).
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Since p is B-admissible we obtained an other B-point of Isom(q, ¢p) by considering

oyt i B®,V — Bk Dp(V).

Let ¢z : Gk — O(q)(B) be the map (¢ > ayo(g®1)o a‘_/l o(g7t®1). We observe that ay

is Gg-equivariant when Gi acts diagonally on B ® V and via B on B ® Dp(V). Therefore
we have

(19) avo(g@l)oay o(¢t®@1)(b®v) =avo(g®1)oay (g7 (b® p(g)(v)) = b® p(g)(v).

Since k — B is continuous and preserves Gg-action, the group homomorphism p : Gg —
O(q)(k) defines a 1-cocycle of the continuous cohomology set H'(Gg,O(q)(B)) and (19)
shows the equality ¢z = p. Moreover since the 1-cocycles cg and ¢z are both defined through
B- points they are cohomologous. Thus we have proved that

(20) i([c]) = [p]
in H'(Gr,O0(q)(B)). Since the group homomorphism det : O(q)(k) — Z/2Z factors through
O(q)(B) we conclude that
(21) 51(T) = det([d]) = det([in([d]) = det(p) = swi(p)
We now assume that B is well filtered and the representation p is filtered. It follows from
Theorem 3.3 and the previous description of p.(T) that it is sufficient to show the equality
6%([e]) = swa2(p) + spa(p),

where 62 is the boundary map associated with the exact sequence of groups
1 —Z/2Z — O(q)(K) — O(q)(K) — 1

with the natural Gg-action. Moreover it follows from a general result of [31|, Lemma 3, that
swa(p) + spa(p) = 64(p), where 62 is the boundary map associated with the exact sequence
of topological groups (17)

1 = 7/27 — O(q)(C) — O(q)(C) — 1.
Therefore, in order to prove (ii) we have to show, in H?(Gf,7Z/27), that

6%([e]) = 82 (p)-

We denote by O°®(¢)(B) the group of isometries B ®; V — B ®j V which respect the
filtration of B ®; V. Since B is well filtered we note that Gx acts on O°®(¢)(B). It is now
easy to check that since fp and ay both preserve the filtration thus the 1-cocycles cp and g
have values in O®(q)(B) and define the same class in H' (G, O*(q)(B)). We conclude to the
equality
(22) i([c]) =[]
in HY(G,0°%(q)(B))). Any isometry B®; V — B ®y V which respects the filtration induces
an isometry Gr’(B) @ V — Gr’(B) ® V. This yields to a group homomorphism O°®(q)(B) —

O(q)(C) and thus a map H*(G,0°%(q)(B)) — H(Gk,O(q)(C). Using this map we deduce
from (22) that

(23) ic([c]) = [p]
in H'(Gk,0(q)(C), where i¢ is induced on the cohomology sets by the group homomorphism
O(¢)(K) — O(q)(C). From (23) and from the commutativity of the diagram
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{1} — (2/22) — O(q)(K) — O(q)(K) — {1}

IdJ/ jci icl
{1} —(2/2Z) — O(¢)(C) —— O(g)(C) —= {1}

we deduce that §2([c]) = §2(p) as required
U

5.2. Examples. We consider several examples of (k, G )-algebras where we can apply the
formulas of Theorem 5.4.
We introduce a small amount of notations. We set

H*(K,7/2Z) = @ H'(Gk,Z/2Z)
0<i<2
endowed by cup product with a structure of abelian group. For a quadratic form g over K
we define its Hasse-Witt invariant by w(q) = 1+ w1 (q) +w2(q) € H*(K,Z/2Z). For a virtual
quadratic form ¢ — g2 over K we write w(q1 — ¢2) = w(q1)w(g2)~!. For a B-admissible
orthogonal representation p of G we define respectively the Stiefel-Whitney and the spinor
norm classes of p by sw(p) =1+ swi(p) + swa(p) and sp(p) = 1+ spa(p)

5.2.1. Frihlich-Serre formulas. We let k be a field of characteristic # 2, K = k and B = k
the separable closure of k endowed with the discrete topology. Then k/k is a (k, Gy)-algebra,
which satisfies the hypotheses of Section 4.1. The k-admissible orthogonal representations of
Gy are the group homomorphisms p : G — O(q)(k), with open kernel, where ¢ is a non
degenerate quadratic form on the k-vector space V of finite dimension. It is clear that k is
a well filtered when endowed with the filtration given by £ = k and k! = {0} and that any
orthogonal representation is filtered. The k-twist of (V,¢q) is the k-vector space (k ® V)Gk,
with the form obtained by restriction from k ®j q. Theorems 2 and 3 of Fréhlich [13] are the
equalities of Theorem 5.4 in this special case. More precisely:

Corollary 5.5. Let p : G, — O(q)(k) be an orthogonal representation with open kernel and
let q be the form (k ® q)C*. Then

sw(p) + sp(p) = w(g — q)-

Let H be an open subgroup of G. We let V' be the k-vector space with basis the left-cosets
gH of H in G and ¢ be the quadratic form on V which has {gH} as an orthonormal basis.
The action of G by permuting the cosets gH extends to an orthogonal representation p of
Gj. The Hasse-Witt invariants of q are trivial since ¢ is the form 23 + ...z2. The k-twist of
q is the trace form Try,/, where L is the fixed field of H. Moreover one can compute spa(p)
in this case and prove that it is equal to the cup product (2)(dy ;) where dp ;, is the relative
discriminant of L/k. Therefore Corollary 5.5 provides us with the equality

swa(p) + (2)(dp ) = w2(Trp ),
which is Serre’s formula [34].

The references for the next two sections are [11] and [12]. Throughout these sections k and
K denote complete discrete valuation fields of characteristic 0, whose residue fields are perfect
of characteristic p. We assume that £ C K. We let C, be the completion of an algebraic
closure K of K. We note that since C), is Henselian it is t-Henselian ([4] Lemma 5-3, or [14]
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Proposition 3.1.4). There exist many examples of (k, Gx) regular rings in this set-up. For
instance C) itself is (k, Gi) regular. The Cp-admisible representations are those for which
the inertia acts through a finite quotient. We can filter C, by setting C’D C)p and 01 = {0}.
Therefore for any Cp-admissible orthogonal representation p : G — O( )(k:) we Wlll deduce
from Theorem 5.4 that

w(p) + sp(p) = w(q' — q),

where ¢ is the form (C, ® ¢)%. We treat in more details the case of Hodge-Tate and de
Rham representations.

5.2.2. Orthogonal Hodge-Tate representations. We fix a basis t of Zy(1), so that g(t) = x(g)t
for any g € G, where x is the cyclotomic character. We consider the ring of Hodge-Tate
periods

Bur = Cylt,t ™1 = @Ctk
keZ

This is a graded Cj-algebra endowed with a semilinear action of Gg. Moreover Byt is a
(k, Gi) regular ring such that BHT = K. We endow Byr with a filtration by setting

B%T = @ Cptka

k>i

and thus Gr’(B) ~ C,. One checks that Byr is a well filtered algebra. We denote by
(Dyr(V),qur) the Byp-twist of an orthogonal Hodge-Tate representation (V, ¢, p) of G.

Corollary 5.6. Let p: Gg — O(q)(k) be a filtered Hodge-Tate k-representation of Gy . Let
qr be the form K ® q and qur be the Byp-twist of q. Then

w(p) + sp(p) = w(gar — 9K ).

Let M Fx be the category of filtered K-vector spaces. This is a K-linear tensor, addive cat-
egory, with an identity object and an internal homomorphism. Therefore, following definition
3.1, we may define an orthogonal object of this category. One easily checks that a quadratic
object of M F is a filtered quadratic K-vector space as defined in [31], Section 1. The fiber
functor Dy : Repi®(G) — Vecy, factorises through Rep?®(G ) — M Fg. Hence if (V,q, p)
is an orthogonal Hodge-Tate representation of Gk, then (Dgr(V), qqr) is a filtered quadratic
K-vector space. Moreover, if the representation is filtered, the comparison isomorphism ay,
respects the filtration and so induces an isometry

) : Gr'(Byr @k Dr(V)) ~ Gr’(Brr @ V)
which can be written

ot - @ Gr'(Dur(V)) @k Cp(—i) ~ Cp &y V.

Therefore the orthogonal representations considered by Saito in [31] are precisely the filtered
orthogonal Hodge-Tate k-representations of Gx and Corollary 5.6 provides a new proof of
[31], Theorem 1.
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5.2.3. Orthogonal de Rham representations. We consider the ring of periods B = B;r endowed
with "its natural topology" (see [12], 5.2.2). Then Bygr/k is a (k, Gx)-regular ring such that
BdGé( = K. The field Byg is the fraction field of the discrete valuation ring B;{R. One can
check that Byg, filtered by the i-th powers of the maximal ideal of BjR, is well filtered and
that any de Rham representation of G is filtered [3] Proposition 6.3.7. The ring G°(Byg) is
by definition the residue field of B:er- It identifies with ()}, and the topology induced on C),
coincides with the usual topology. For any continuous, orthogonal, de Rham representation
p:Gg — O(q)(k), we can define the Byp-twist of ¢, that we denote by g4r.

Corollary 5.7. Let p : Gxg — O(q)(k) be an orthogonal de Rham k-representation of G .
Let qx = K ®p q and let ggr be the Bagr- twist of q. Then

sw(p) + sp(p) = w(qar — qK)-

Let Gradg be the category of graded finite dimensional K-vector spaces. The fiber functor
Dy factorizes through a fiber functor Dyr @ RepHT(Gi) — Gradg. Let (V,gq,p) be an
orthogonal de Rham representation. Since Dy (V) is filtered we can consider gr(Dyr(V)) as
an object of Gradg et prove that gr(Dyr(V)) and Dyp(V') are isomorphic in this category.
By applying the forgetful functor we obtain an isomorphism of quadratic space

gr(Dar(V)) =~ Dyr(V).

Let X/K be a proper and smooth scheme of even dimension n. The cup product defines a
non degenerate quadratic form ¢ on the Qp)-vector space V = H"(Xg,Q,)(n/2). The action
of Gg on V provides us with a continuous orthogonal de Rham representation p : Gx —
O(q)(Qp) to which the equality of Corollary 5.7 applies. It follows from a theorem of Faltings
that the Bgp-twist (Dgr(V),qqr) of (V,q) coincides in this case, up to isometry, with the
K-vector space H}j(X/K), endowed with the quadratic form defined by the cup product.

5.2.4. Orthogonal de Rham representation in the case of non perfect residue field. We let K be
a complete discrete valuation fields of characteristic 0, with residue field ki of characteristic
p, such that [ky : k%] = p? with d > 0. We fix K/K an algebraic closure of K and we set
Gk = Gal(K/K). Let C be the completion of K for the p-adic topology. In [2] O. Brinon has
constructed a ring of periods Byr which is a generalization to the case of imperfect residue
fields of the algebra considered in Section 4.2.3. One should note that Byg is not necessarily a
field when d > 1. This is a toplogical (Q,, G )-regular algebra such that ng = K. Therefore
for any Bgjgr-admissible othogonal representation p : Gg — O(q)(Q,) we have

w1(qar) = wi(q) + swi(p).

Byp has a structure of K-algebra and is endowed with a decreasing, exhaustive and separated
filtration, stable under the action of Gg. Tt follows from [2] Proposition 2.19 that Gr°(Bgg)
is a ring of polynomials over C in d variables and so that H'(Spec(C)et,Z/27) = {0}. Hence
we obtain from (16) an exact sequence of groups

(24) 1 — Z/2Z — O(q)(C) — O(q)(C) — 1.

However for such a C' we don’t know if the map O(q)(C) — O(q)(C) is alocal homeomorphism
and thus if Byg is well filtered.
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6. ORTHOGONAL E-MOTIVES

In this section we apply Theorem 3.3 to the tannakian category of Nori’s mixed motives
over a number field (see [28] and [18]). Here the fiber functors w and n are the Betti and the
de Rham realization respectively, and the torsor T, , is given by the spectrum of the algebra
of Kontsevich’s formal periods together with its natural action of the motivic Galois group.

6.1. Nori motives.

6.1.1. Let E/Q be a number field with a given complex embedding o : E — C. We denote by
NMMpg the category of cohomological Nori mixed motives over E with Q-coefficients (see [28],
[24], [18]). It is a neutral Tannakian category with Tannaka dual Gmot(E). More precisely,
Betti cohomology induces a fiber functor

Hp : NMMg — Vecg

and the motivic Galois group Gmot(E) is defined as the automorphism group-scheme Aut®(H3)
of the tensor functor Hyj. By Tannaka duality, an object M is determined by the Q-linear
representation

(25) Gmot (E) — GL(Hp(M))

where GL(Hp(M)) is seen as group scheme over Q. De Rham cohomology induces another
fiber functor

Hjp : NMMp — Vecg.
If X is a variety over E, Y C X a subvariety and ¢ an integer, then there is an object
h'(X,Y) € NMMg such that Hj(h'(X,Y)) = H(X,(C),Y,(C),Q) and H},(h'(X,Y)) =
Hp(X,Y). Here X,(C) denotes the set of complex points of X over E with respect to the
complex embedding 0. We write h*(X) := h*(X,0) and h'(X,Y)(j) = h*(X,Y) ® 1(j). The
category of Artin motives NMMY% is the Tannakian sub-category of NMMg generated by
objects of the form h%(Spec(F)) where F/FE is a finite extension. Then NMMY, is equivalent
to the category of Q-linear representations of the absolute Galois group Gg. For any prime
number p, étale p-adic cohomology yields a tensor functor

Hj : NMMpg — Repg, (GE)

where Repg, (GEg) denotes the Tannakian category of continuous Qp-linear representations of
Gp. Artin’s comparison isomorphism yields an isomorphism of tensor functors Ouo Hj ~
H}; ®Qp, where Ou is the forgetful functor Repg, (Gr) — Vecg,. Note also that p-adic Hodge
theory gives an isomorphism of tensor functor

(26) (Ouo Hy) ®@q, Barx ~ (Hjr ®& E\) ®E, Bira

for any prime number p and any finite place A of E lying over p, where Byg ) is the field
of p-adic periods (see Section 5.2.3). Moreover, (26) is compatible with the natural Galois
actions and filtrations. For an archimedean place A of E we have a tensor functor

H;: NMMp — Repg, (GE,)
(X, Y)(j) = H'(X5(C),YA(C),(2in)'Q) ®q Ex
where X)(C) is the set of C-points of X over F with respect to the complex embedding

\: E — C, for any choice of a representative A of A. Finally, the tensor functor Hp induces a
continuous morphism

GE — gmot (E) (Qp) .
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Here Gr(Q)(Qy) is endowed with its natural topology (i.e. the projective limit of the p-adic
topology on the Q,-points of the algebraic quotients of Gr(Q)).

6.1.2. We refer to [36] for generalities about scalar extensions of Tannakian categories, and
we define the category NMMpg(F) of Nori mixed motives with E-coeflicients as the scalar
extension NMMpg(FE) := NMMg ®g E. Then NMMpg(FE) is an E-linear Tannakian category
endowed with a universal Q-linear tensor functor

t: NMMp — NMMEg(E).

In particular, a Q-linear tensor functor NMMpg — C into some E-linear tensor category C
induces an essentially unique E-linear tensor functor NMMg(E) — C. We still denote by
h*(X,Y)(j) its image in NMMg(FE).
The Betti realization functor above induces a fiber functor

HE,E : NMME(E> — VecE

and we have
Gp = Aut®(Hp p) ~ Aut®(Hp) ®g E =: Guot(E) @ E.

The realization functor H}, above induces a fiber functor

Hip g NMMEg(E) — Vecg.
The p-adic realization functor induces

Hj : NMMp(E) — Repg, (G)

for any place A of E lying over p. Artin’s comparison theorem gives an isomorphism of tensor
functors

(27) Ouo H} ~ Hp p ®F E),

where Ou is the forgetful functor Repg, (Gg) — Vecg,. For any finite place A of E, (26)

induces by extension of scalars an isomorphism of tensor functors

(28) (Ouo HY) ®p, Birx ~ Hip g, ©5, Barx

which is moreover compatible with the natural G'g,-actions and filtrations, where Hipp, =

H§R7 r ®e E. Finally, for any archimedean place A | co the tensor functor H above induces
H} : NMMg(E) — Repg, (GE, )

6.2. The torsor of formal periods.

6.2.1. The space of effective formal periods P is the Q-vector space generated by the symbols
(X,D,w,7), where X is a variety over Q, D C X a subvariety, w € HgR(X, D) a de Rham
cohomology class and v € Hy(X(C), D(C), Q) a singular homology class modulo the following
relations:

(1) (linearity) (X, D,w,y) is linear in both w and .
(2) (change of variables) If f : (X, D) — (X', D’) is a morphism of pairs over Q, v €
Hy(X(C),D(C),Q) and w’' € Hip(X', D) then

(X7 D7 f*w/7 7) = (X/7 Dl? w’? f*’Y)
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(3) (Stokes formula) For every triple Z C Y C X we have
(Y7 Z7w7 67) = (X7 Y7 dw’ 7)

where 6 : Hg(X(C),Y(C),Q) — Hy—1(Y(C), Z(C),Q) is the boundary operator and

d: Hiz (Y, Z) — H3p(X,Y) is the differential.
Then P; is turned into a Q-algebra via

(X, D,w,v) (X',D', ' ) = (X x X', X x D' UDx X" JwAuw,vxv).
The space of formal periods P := P, [(Gy,, {1},dT/T,S')] is defined as a localization of
P, where S! C G,,(C) is the unit circle. Then
Hip(X, D) x Hy(X(C),D(C),Q) — C
(,7) — fw
induces a map of Q-algebras
ev:P — C.

Definition 6.1. The image of ev is the space P C C of Kontsevich-Zagier periods.

Below is Grothendieck’s period conjecture in the formulation of Kontsevich-Zagier, see ([23]
Conjecture 1) and (|23] Conjecture 4.1).

Conjecture 6.2. (Kontsevich-Zagier) The map ev : P — C is injective.

We denote by P,y the sub-algebra of P generated by symbols (X, D,w, ) where dim(X) =
0. Then the map ev induces an isomorphism Pye 5 Q C C, where Q C C denotes the set of
complex numbers which are algebraic over Q. Let z be such a complex number. Let m,(T") be
its minimal polynomial over Q and let F' = Q[T]/(m.(T')) be the corresponding number field.
We set X = Spec(F). Then T € F is a class in H)p(X) = F. The complex number z € C

gives a point in X (C) = Homg(F,C), i.e. a 0-cycle v, in X(C), such that ev(T',7,) = z.

6.2.2. We set P := Spec(P). Then B carries a natural action of Gnet(Q). By ([18] Theorem
2.10), there is an isomorphism of Gt (Q)-torsors

(29) B := Spec(P) =~ Isom® (H};, HjR).

Here Isom® (H};, H} ) is defined via its functor of points: For any commutative Q-algebra R
we have
Isom®(Hf;, Hjp)(R) = Isom®(Hj ®@g R, Hjp ®g R)

where the tensor functor Hj ®q R (resp. Hj, ®qg R) is the composition of H}; (resp. H}jp)
with (—) ®g R, and Isom®(—, —) denotes the set of isomorphisms of tensor functors. Let E/Q
be a number field with a complex embedding o. There is a unique map 8 — Spec(E) such
that £ — P = C coincides with ¢. Considering Gmot (E) as a subgroup of Gt (Q) leads to
an exact sequence of pointed sets

1 = Gmot(E) = Gmot(Q) — Homg(E,C) — *

where Homg (F, C) is pointed by o. Restricting the group of operators, p becomes a (Gmot (E) ®g E)-
torsor over Spec(F). Moreover, composition with the functor ¢ : NMMg — NMMpg(E) yields

an equivalence from the category of R-valued fiber functors on NMMpg(F) to the category

of R-valued fiber functors on NMMpg. In particular, we have Ggp ~ Guot(E) ®g E and the
identification (29) induces an isomorphism of Gg-torsors

B~ Isom®(H§7E, H:ikR,E)
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over Spec(E).

If M is an object of NMMpg(F), we denote by (M) the Tannakian subcategory of NMMpg(E)
generated by M, i.e. the smallest strictly full E-linear abelian subcategory of NMMpg(E)
containing M, which is stable by tensor products, sums, duals and sub-quotients. We denote by

Hy pieys and Hyp gy therestriction of the fiber functors Hy p and Hyp 5 to (M). We set
Om/E = Aut®(ngE|<M>) and we consider the G/ g-torsor Isom®(HE,E|<M>, H;R7E‘<M>).

Note that the sheaf Isom®(H§E‘<M>, H;R7E|<M>) on Spec(E)ppt is represented by an affine

scheme. The inclusion (M) C NMMpg(FE) induces a faithfully flat map Gg — G/ and there
is a canonical isomorphism of Gy, g-torsors

Isom®(Hp g, Hjp p) A9 Gryp ~ Isom®(Hp g prss Hig p<ars)-

We consider the E-sub-algebra Py C P such that (29) induces an isomorphism of Gy p-
torsors

(30) Bar := Spec(Pur) =~ Isom®(H§E|<M>, ;R,E\<M>)-
Finally, we consider the restriction of the evaluation map
evip,, ¢ Py — P —C,
and we the denote by
Pys := Im(evip,,)
the E-algebra of periods of M.

6.3. Invariants of orthogonal E-motives. An orthogonal Nori motive (M,q) over E with
E-coefficients, or simply an orthogonal E-motive, is an orthogonal object of NMMpg(E), i.e.
an object M endowed with a symmetric map ¢ : M @ M — 1 inducing an isomorphism
M = MVY. Let (M, q) be such a motive.

6.3.1. The Hasse-Witt invariants wi(qp) and w;(¢ar). Recall that Mp := Hp p(M) and
Mar == Hjp p(M) denote the Betti and de Rham realizations of M. We denote by

gp: Mp® Mp - FE and qgr: Mgr®Q@ Myr —> F
the non-degenerate symmetric E-bilinear forms obtained by applying the tensor functors H,

and Hjp p to the map ¢ : M ® M — 1. We shall consider the Hasse-Witt invariants wi(gp) €
HY(GEg,7/27) and w;i(qqr) € H(Gg,7Z/27) of these quadratic forms.

6.3.2. The global Stiefel-Whitney invariants swi(pMGEA). Let A 1 0o be a finite prime of FE.

Recall that we denote M) := H}(M). Applying the tensor functor H} to the orthogonal
motive (M, q) we obtain a quadratic form

QM) ® My — FE,

and a continuous FE)-linear orthogonal representation of the Galois group Gg on (My,qy),
which we denote by

px: Ge — O(qy)(E))
where O(q\)(Ex) C GLE, (HY(M)) is endowed with the M-adic topology. If one forgets the
Galois action, we have an isometry (My,qx) ~ (Mp,qp) ®g E)\. Composing p) with the
determinant map, we obtain a continuous morphism

det(pr) : Gg — O(qr)(EN) — Z/2Z.
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The first Stiefel-Whitney invariant swi(py) € HY(Gg,Z/2Z) is the cohomology class of

det(py).
Let Cy be the completion of E, given with its natural topology. Consider the continuous
representation

Py i Ge 25 O(q))(Ex) — O(qx)(Cy).
We have a central extension of topological groups

(31) 1 — Z/2Z — O(q))(Cy) — O(g))(Cy) — 1

inducing a central extension in the topos ﬂ) of sheaves on the site of all topological spaces
endowed with the open cover topology (see [16]VIIL.8.1). Pulling-back (31) via p,, we obtain
central extension of topological groups

(32) 1—7/2Z — Gg — Gg — 1

inducing a central extension in Top. The second Stiefel-Whitney invariant sws (px) € H¥(GR,Z/27)
is the cohomology class (see [16]VIIL.8.2) of the central extension (32).

6.3.3. The local Stiefel-Whitney invariants swi(p,\‘GEA). For a finite prime \ { 0o, we choose

an E-embedding E — E) and we consider the restriction of py to Gg,, i.e. the representation
PAGE,  GBy — G — O(q))(E))

and we define Swi(pMGE)\) € H(Gg,,Z/2Z) as above. Then sw,-(pMGEA) is the image of

swi(py) under the restriction map H'(Gg,Z/2Z) — H'(Gg,,Z/2Z). For an archimedean
prime A | oo, we denote by M) := H; (M) and by

Q)\IMA(XJM)\—)EA

the quadratic form over E) obtained by applying the tensor functors Hy to the map ¢. If X is
a real place, then we obtain an orthogonal representation

PG, + GBy — O(2)(E))

and Swi(p)\|GE/\) € H(Gg,,Z/2Z) is its classical Stiefel-Whitney invariant.

6.3.4. The local spinor class SPQ(PMGEA)- Let A be a place of E. The spinor norm is the map
sp: O(qx)(Ey) = H'(GE,, O(a\)(Ex)) — H'(GE,, Z/2L) = EY | EX?
induced by the exact sequence of group-schemes
1 — Z/27Z — O(g)) = O(q) — 1.
Composing PAGE, with the spinor norm we obtain an element sp o PG, in the group
Hom(Gp,, By /EX?) = Hom(Gp,, H (Gp,,Z/2Z)) ~ H (Gg,,Z/2Z) ® H (Gg,,Z/27).

The spinor class 8P2(P/\|GEA) is defined as the image of sp o PG, by the cup product

HY(Gg,,7/27) @ H(Gg,,7/27) — H*(Gp,,Z/27).
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6.3.5. The classes 5; (Bar) and 53(‘13]\/[), As in section 3.3, an orthogonal Nori motive (M, q)
over F with E-coefficients yields an orthogonal representation

pq G — O(qB)

inducing maps
8y« H' (Spec(E)ppr, Gr) — H'(GE,Z/27)

for i = 1,2. The protorsor 3 gives a canonical class in H!(Spec(E)¢pt, Gr) and we shall
consider its image 5; (B). The orthogonal representation p, factors through

Gv/e — Ol(gn)
hence gives
8y + H (Spec(E)ppt, Gar/p) — H'(Gp, Z/27).
By definition, we have
0g(P) = 6y(Pur) € H(Gr, Z/2Z).
6.4. Interpretation of 6, (Prs) and 73 (Pr).
6.4.1. The class 5;(‘13M) and the periods of detp(M). Let M € NMMpg(E) be a motive given

by the representation Gy — GL(Mp). The motive detg(M) is the motive associated with
the determinant representation

QE — GL(AdEimE(MB)MB)
Using the canonical isomorphism GL(AdEimE(MB )M B) ~ Gy, where G, is the multiplicative
group over E, we see that detg(M) is the motive corresponding to

det,

(33) Gy — GL(Mp) 25 G,,..

An orthogonal structure ¢ on M induces an orthogonal structure det(q) on detg(M). Recall
that the class 6;(‘1?M) belongs to the group H!(Spec(E),Z/2Z) ~ E*/E*2.

Proposition 6.3. Let (M, q) be an orthogonal motive.

(1) We have
Pyetpary = F (\/53(‘31\/[)) :

2) If 61 (Bas) is non-trivial, then we have G MY/ E == Z/27 and an isomorphism
q detg(M)/

Pty = Spec (E (1/61Bar) ) )
of Z/2Z-torsor over Spec(E).
Proof. Consider the composite map
(34) G — Olgp) =% Z/22 ~ O(det(q) ).

Here Z /27 ~ O(det(q) p) is the orthogonal group of the Betti realization of (detg (M), det(q)).
The motivic Galois group Gqe,(ar)/E comes with a monomorphism

Gaetp(M)/E — L/2Z
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s0 that Gqet,,(ar)/E is either trivial or isomorphic to Z/27Z. The canonical morphism QM/E —

Gaet(a)/E induces H YE, Gu/e) = H\(E, Gaet(M)/E)> Which maps Py to Pae (). More-
over, 5}1 is the map H'(FE, Gm/e) = HY(E,7/27) induced by

Gr/e — Gaetp(an)/E — LZ/2Z.

In particular, if Gyet,(ar)/E is trivial then 5; (Bar) is trivial, Pgeg (ar) 1 trivial and Peg,ar) =
E. So one may assume that Gqet (1) g =~ Z/2Z. In this case we have 5; (Bm) = Baetp(m)-
If Pet(ar) is the trivial Z/2Z-torsor, then Py, vy = F and 5;(&]31\4) is trivial. So one
may assume that the Z/2Z-torsor Pget, (ar) is non-trivial. In this case we have Pyer () =

Spec (E ( o4 (‘BM))) and the evaluation map Pyet,(ar) — Pdet () is an isomorphism.
]

6.4.2. The class 02(Brr) and the lifting problem Lift(M, q).
Definition 6.4. Lei Q — G be a map of group schemes and let T be a G-torsor. We say that
T admits a G- lifting if there exist a G-torsor T and an 1somorphism of G-torsors T AG G~T.
Let (M, q) be an orthogonal motive given by the representation
G — Guye — O(gn).
Pulling back the canonical central extension
1— 7Z/27 — O(qg) — O(qp) — 1

we obtain a central extension

We shall also consider its base change

We would like to address the following lifting problem for torsors.
Notation 6.5. We say that Lift(M, q) has a solution if the Gy p-torsor Py admits a GVM/E—
lifting. We say that Lift(M, q) has a solution over E) if the (gM/E QR EA)—torsor Vrr @ Ey
admits a (éM/E RF EA) -lifting.

We identify H*(Spec(E)sppt, Z/2Z) with Galois cohomology H*(Gg,Z/2Z). Recall that the

class 02(ar) belongs to the groups H*(Gp,Z/27Z) which is described by class field theory:
One has the exact sequence

(37) 0 — H2(Gp,2/20) — @) HX(Gy, 2,/22) = 1,/2Z — 0
A
and H*(Gg,,Z/27) ~ 7/2Z for X finite and for A real. Finally, we denote by
H*(Gg,z2/22) — H*(Gg,,Z/2Z)
x — T

the canonical restriction map, for any place A of E.

Proposition 6.6. Let (M, q) be an orthogonal motive.
(1) The following assertions are equivalent.
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(a) &g (¥nr) =0.
(b) The problem Lift(M, q) has a solution.
c e problem Lift(M, q) has a solution over Ey for any place \ of E.
Th blem Lift(M,q) h [ E) f lace A of E
(2) Let X be a finite place. The problem Lift(M,q) has a solution over E\ if and only if

62 (Par)x = 0.
(3) If there exists a finite prime \ t oo such that swa(py) # 0 then the central extension
(36) is non-trivial (and a fortiori (35) is non-trivial).

Proof. The exact sequence (35) induces an exact sequence of pointed sets

~ 52
H* (Spec(E)ppt, Grrym) — H' (Spec(E)gppr, Grr/p) — H*(Spec(E)gppr, Z,/27)

and similarly for (36). Assertions (1) and (2) follow from these exact sequences of pointed
sets, their compatibility with base change and from the exact sequence (37). It remains to
prove assertion (3). Assume that (36) is a trivial extension. Then the extension of topological
groups

(38) 1 — Z/2Z — Gpr/p(Cr) = Garyp(Cy) — 1

is also trivial. But (32) is the pull-back of (38) via the continuous morphism Gg — Gy g(Cy),
so that (32) is trivial as well.
U

6.4.3. The class 64(Par) as an obstruction to the existence of isometry qp ~ qqr. Let E be
a totally imaginary number field and let (M, q) be an arbitrary orthogonal E-motive. Recall
that E has strict cohomological dimension 2. We consider the multiplicative group

H*(Gp,Z/2L)" = {l+a+ay € Y H(Gp,Z/2L), a; € H(Gp, L/2L)}
0<i<2

of the cohomology ring H*(Gg,Z/2Z). We consider the elements
5q(Bar) = 1+ 64(Br) + 07 (Bur)

w(qgp) = 1+wi(gp)+w2(qB)
w(qar) = 1+ wi(qar) + w2(qir)

of H*(Gg,Z/2Z)*. We already record the following corollary of Theorem 6.10.

Corollary 6.7. Assume that E is a totally imaginary. The forms qp and qqr are isometric
if and only if 04(Prr) = 1.

Proof. Using the notation introduced above, Theorem 6.10(1) reads as follows:

(39) Sq(Bar) = w(gp) ™" - w(qar)-

By (39) we have §,(Bas) = 1 if and only if w(gp) = w(gqr). This is equivalent to w(gp)y =
w(qqr) for any place A, hence equivalent to qg ®g E)\ ~ qqr ®g E) for any A, which is in
turn equivalent to gg ~ q4R. ]
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6.4.4. The motivic lifting problem MotLift(M, q).

Notation 6.8. Let (M,q) be an orthgonal E-motive given by the representation pq : Gg —
O(qp). We say that MotLift(M, q) has a solution if there exists a representation p such that
the following diagram commutes:

O(QB)
Pa i
Gr " . O(gp)

Proposition 6.9. If the MotLift(M, q) has a solution, then 62(?}31\4) = 0, swa(py) = 0 for
any finite prime X\, and SU’?(pMGEA) = Sp2(p>\‘GE>\) =0 for any prime A of E.

6.5. Examples of orthogonal Nori motives. Let V/E be a smooth projective algebraic
variety of even dimension n. By Corollary 8.11, the motive h"(V')(n/2) € NMMg(FE) has a
canonical orthogonal structure ¢ such that the forms ¢gp and ggr are the perfect pairings

g5 : H3(V(C), (2in)"?Q)p © HE(V(C), (2in)"/*Q)p — HF(V(C), (2in)"Q)p — E
and
qar - Hip(V/E) © Hip(V/E) 2 HE(V/E) 5 E

given by cup-product and trace maps. Similarly, for A | p a finite prime of F, the A-adic real-
ization yields the orthogonal Galois representation py of Gg given by p-adic étale cohomology

U ¢
o s H'(Vg, Qp(n/2))5, © H"(Vg, Qp(n/2))5, — H?" (Vg Qp(n/2))E, — Ex

with its natural Galois action. If A is a real prime of E, then PAIG s, is the G g, -equivariant

quadratic form

H"(VA(C), (2im)"*Q) 5, ® H"(VA(C), (2im)"*Q) 5, — HE'(VA(C), (2im)"Q) 5, — B
where V) (C) is the set of complex points of V over E with respect with the complex embedding
EAR-C.

6.6. The main result. Recall that we denote by

H*(Gp,Z/2Z) — H*(Gp,,Z/2T)
T — Ty

the canonical restriction map, for any prime . In particular, if € H?(Gg,Z/27) then we
have z = >, z) in H*(Gg,Z/27).

Theorem 6.10. Let (M, q) be an orthogonal Nori E-motive.

(1) We have
5(Bn) = wilgs) +wi(gar)
53(%M) = wa(qp) +wi(qp) - wi(gp) + wi(gn) - wi(qar) + w2(qar)-

(2) Assume that (M, q) is of the form (h"(V)(n/2),q) as in Section 6.5. Then we have
3q(PBar) = swi(py)-
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(3) Let (M,q) be an arbitrary orthogonal motive. Assume that either E = Q or E is totally
imaginary. Then we have

03(Bar) = Y swalprgy, ) + sp2(prjap, )-
X

H*

Proof. In view of the isomorphism of G/ p-torsors Py =~ Isom®(H* dR’E‘<M>),

B,E|<M>’
Assertion (1) follows from Theorem 3.3.

Let A be a finite place of E. By Artin’s comparison theorem (27), we have an isome-
try (Mp,qB) ®r Ex ~ (My,q\). We denote by (Myg E,,qdr,E,) the Ex-quadratic space
(Mgg, qar) ®p E\. 1t follows from the first assertion that we have identities

(40) 5y (PB)r = wi(qr) + wi(qar,s,)

(41) Ga (B)x = walgr) + wilgr) - wilgr) + wilgr) - wi(gar,5,) + wa(dar, g, )
since the Hasse-Witt invariants are compatible with base-change.

By (28) the representation PAIG, is de Rham and (Myr E,,44r,E,) 1s a A-adic twist of
(M, qx) by PAG, in the sense of Section 5.1 (see for example [3], Theorem 2.2.3). By (40),
(41) and Corollary 5.7, we obtain

(42) Gy (P)x = swi(prjGp, )

(43) 3 (B)x = swa(prjap, ) + sp2(Prcp, )

for any At oco. In order to prove the assertion (3), it remains to consider the case £ = Q and
A = 00, and to prove that we have

(44) w2(goo) +w1(goo) * W1 (goo) +W1(goo) * W1 (garR) + W2(garR) = SW2(Poo|cr) T 5P2(Poc|Gr)
where (M, goo) = (MB,qB) ®g R and pogiay : GrR — O(goo)(R) is induced by the action of
the complex conjugation on Mp. But in this case we have an isometry

(Moo ®r C)* =~ Myp g

and thus gqp is the Fréhlich twist of geo by poo|Gy, SO that (44) is given by Corollary 5.5.

We show Assertion (2). By ([32] Corollary 3.3), the global Stiefel-Whitney invariant sw;(py)
does not dependent on the finite place A. Let u be a fixed finite place of E. For any A finite,
we have

swi(pp)n = swi(pa)x = swi(prjap, ) = g (B)a-
But the map
HY(Gg,2/22) — [ H'(GE,,Z/2Z)
Moo

is injective, by the Chebotarev density theorem. In view of (42), we obtain 5; (Bamr) = swilpp),
as required. O

We observe the following corollary, where we suppose to simplify that £ = Q or E totally
imaginary.
Corollary 6.11. If the map Gg — O(qp) given by the orthogonal motive (M,q) admits a

lifting Gg — (~)(q3), then 53(‘}3]\4) =0 and swg(p)\‘GEA) = 3P2(/0,\\GEA) =0 for any prime X\ of
E.
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Proof. Assume that Gp — O(gp) admits a lifting Gg — 6((]3). Then Gg — Gp/p factors
through JM/E, and P A9E Q~M/E lifts Bas so that 63(%]\4) = 0. Moreover, the extension of
topological group

(45) 1—>Z/2Z—>§E(C)\) %QE((C,\) — 1.

is trivial (it has a global section), hence so is the extension (32). It follows that swa(py) =0
for any prime A. In view of Theorem 6.10(3), we get swg(p/\|GEA) = SpQ(p)\|GE>\) = 0 for any
A. g

6.7. The case M = h"(V)(n/2). Let V be a smooth projective variety over E of even dimen-
sion n. We endow M = h"(V')(n/2) with its canonical orthogonal structure ¢. For any prime
p, we consider swy(p,) € H'(Gg,Z/2Z) ~ EX/E*2. We denote by b; = dimgH%(V,(C), Q)
the i*" Betti number and, following [30], we set

r(V) = Z(-l)i b (respectively r(V) = Z(_Dz’ - b;)
i<n i<n
if n =0 mod 4 (respectively if n = 2 mod 4).

Corollary 6.12. If V is a smooth projective variety over E of even dimension n, then we
have

Pact(hn (Vy(n/2)) = £ ( Swl(Pp)>
for any prime p < oo, and
e (PBar) = walgp) + (1) - (=1)"V) 4 (=1)"™) - wy (qar) + wa(qar).

Proof. The first assertion immediately follows from Theorem 6.10 and Proposition 6.3. As for
the second assertion, it is enough to showing that

w1 (gp) = disc(gp) = (—1)’"(‘/)
in E*/E*? by Theorem 6.10(1). This is equivalent to the equality (written additively)
wi(gar) = swi(pp) +r(V)-{-1}
by Theorem 6.10(2), which is ([30] Theorem 2) (see also [33], Remark 2.4). O
Remark 6.13. It s conjectured that there is a short eract sequence
1562 Gp—Gp—1

where G% is the connected component of the identity in Gg, Gg is the absolute Galois group
and the map Gg — Gg is induced by the inclusion of Artin motives inside the category of all
motives. Assume that there is such an exact sequence and let (M, q) be an orthogonal motive,
given by the orthogonal representation

pm G — O(gB).
Then the determinant motive detg (M) is given by the representation
Pdet (M) * 9B — O(det(q)p) = Z/2Z
which must factor as follows:

Pdetp(M) 1 G = Gp — L)2Z.
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Hence detgp(M) would be an orthogonal Artin motive, and we would obtain det(py)) = o and
Paetpary = E ( swl(pk)> for any finite prime X of E.

7. EXAMPLES

7.1. Artin motives. In the case of orthogonal Artin motives, Theorem 6.10 reduces to clas-
sical results of Serre and Frohlich, see ([34] Theorem 1) and ([13] Theorems 2 and 3) over
number fields. The aim of this section is to compute these invariants for some explicit Artin
motives.
Let (M, q) be an orthogonal Artin motive given by a representation of the form
pg:Gr — Gp 2% O(qp)

We have P = Spec(K) for K/FE a finite Galois extension. In this situation Frohlich defines
[13] the twisted form (¢p ®p K)“x/2.
Corollary 7.1. We have an isometry qir ~ (4B @F K)GK/E and the following identities in
H*(Gg,72/27):

55 (Spec(K)) = wi(gp) +wi(qar) = swi(po);

52(Spec(K)) = wa(gn) + wilgs) - wilgs) + wi(gn) - wi(qar) + w2(qar)

= swz(po) + sp2(po).-

Proof. The local representation py g B, identifies with the composition

GEA — GE ﬂ) O(qB)(E) — O(qB)(E)\)
for any place A of E. We obtain
swa(po) =Y swapacrg, ) and spa(po) = Y spa(pajcs, )
A A

and swq(pg) = swi(py) for any A finite. The result then follows immediately from Theorem
6.10 and its proof. O

Let F/E be finite extension let M = h%(Spec(F))(0) € NMMg(FE). Consider the canonical
orthogonal structure ¢ on M. In this case one has Mp = EHome(0) (wrt. o : F — C) and
pHomg (F,C) ® pHompg(F,C) SN E

((vr)r, (wr)r) — ZT Ur - Wr

is the standard form. Moreover, one has Myr = F and

gB :

qirn: F®F — E
(z,y) +— Tracep/p(z-y)

is the usual trace form. The representation p, : Gg — O(gp) factors as follows
pg: Gy — Gp 2% O(qp)

where G acts on Mp = FHome(FC) — EHomE(j’E) by permuting the factors. Let K be the
Galois closure of (some embedding of) F'/E in E C P. We have P = Spec(K). We denote
by dp/g the discriminant.
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Corollary 7.2. For M = h%(Spec(F)), one has
8, (Spec(K)) = wi(qar) = dp/p = swi(po);

5o (Spec(K)) = wa(qar) = swa(po) + sp2(po)-
Proof. The from ¢p is the standard form, hence w;(¢p) = wa(qp) = 0. O

7.1.1. The lifting problem Lift(h?(Spec(F)),q). As above, we consider an extension of number
fields F'/E with discriminant dp,p and let M = h%(Spec(F)). Let K/E be the Galois closure

of F in E. Recall that Gy;/p = Gg/p. The terms 67(Spec(K)) and swa(po) have a Galois
theoretic interpretation. We consider the exact sequence of groups

(46) 1 — Z/2Z — O(qp)(E) — O(4p)(E) — 1.

Then the group-scheme G M/E can be seen as the group of E-points

gM/E( )= GK/E X 0(qp)(E) O(QB)(E)
endowed with its natural G g-action. We also consider
Gr/e = GK/E X0y @E) Olas)(E)
endowed with the trivial action of Gg, as a constant group scheme over E. Note that the
group-schemes G. Mm/E and G K/E are isomorphic if and only if QM/ g is constant, i.e. iff the

natural Gp-action is trivial. We say that the lifting problem Lift®(h?(Spec(F)),¢) has a
solution if there exists a GK/E—torsor lifting Prs = Spec(K), i.e. if it is possible to embed
the Galois extension K/E into a Galois extension f(/E with Galois group éK/E. Then
Lift® (h%(Spec(F)), q) has a solution if and only if swy(po) = 0 while Lift(h?(Spec(F)), q)
has a solution if and only if 63(Spec(K)) = 0. It follows that if sp2(po) # O then QM/E is
not constant. Moreover, it follows from [13] and from [10] in a more general set up, that

sp2(p) = (2)(dp/E).

7.1.2. Explicit evamples. We assume in this section that F'/Q is of degree 4 and that G /g =

&4. The group 64 is characterized by the fact that a transposition in Gy lifts to an element
of order 2 of &, whereas a product of 2 disjoint transpositions lifts to an element of order 4.
Since 2 is a square of R = Q we note that (2,dr)s = 1. We write wy for the Hasse Witt
invariant wa(Trz/g) and we denote by (r, s) the signature of the field F'. Proposition 6.5 gives
W2 0o = —1if (r,s) = (0,2) and wy oo = 1 otherwise. The following result is taken from [21].

Proposition 7.3. Let p > 3 be a prime number. Then wa ), = (2,dr), = 1 if p is non ramified
i F. Moreover we have the following equalities:

2
wap = (2.dp)y = (-1)°T if pOr = wipip},
wap = (2,dp)p =1 ZfPOF = 131131;
wyp = —(2,dr)p = — (-1 ) 8 prOF = piph,
wap = (<1)'3" and (2,dp), = (~1)*5 if pOF = pl,
wap = (—1)2 and (2,dp), =1 if pOp = p3,
wop = (—=1)"7 (dp,p), and (2,dp), = 1 if pOp = pIp2.
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In the following examples P is an irreducible polynomial of Q[X], « is a root of P in C,

F = Q(Oé) and GK/Q = 64.

e P=X*+ X —1,dr = —283 and the signature of F is (2,1). Since the ideal 2830

decomposes into a product p?p}p5 it follows from Proposition 7.3(1) that wagz, =
(2,dFp)283 = —1. Since 283 is the unique finite prime ramified in F', we have wp ), =
(2,dp), for every p # 2. We deduce from the product formula that wy and (2,dp)
coincide at every prime p of Q and so are equal. We conclude that

w2(Trpyq) = sp2(p) # 0, swz(p) =0
hence Lift(h%(Spec(F)), q) has no solution and Lift’ (h%(Spec(F)), q) has a solution.
P=X*4+X3-2X—1and dp = —5%11. One checks that 110 = pap/Pand 50k = p2.

By elementary computations on Hilbert symbols, it follows from Proposition 7.3(3) and
7.3(5) that

(2,dp)11 = —wz 1 = —1, (2,dp)s = —wz5 = 1.
We conclude that
wa(Trp/g) # 0, spa(p) # 0, swa(p) # 0
hence Lift(h%(Spec(F)), q) has no solution and Lift® (h%(Spec(F)), ¢) has no solution.
P=X*-2X?-4X —1,dpr = —2811 and the signature of F is (2,1). One checks that

110k = pip,. Hence, by Proposition 7.3(3), we know that ws 11 = —(2,dp)11 = 1.
We conclude that

wa(Trp)g) = 0, spa(p) # 0, swa(p) #0
hence Lift(h%(Spec(F)), ¢) has a solution and Lift? (h°(Spec(F)), q) has no solution.
P=X%—X3—X+1, dr = 2777 and the signature of F is (4,0). Since 27770k =

p3phpY, by Proposition 7.3 we obtain that (2,2777)2777 = wao777 = 1. We conclude
that

w2(Trpyg) =0, spa(p) =0, swa(p) =0

hence both lifting problems Lift(h°(Spec(F)), q) and Lift® (h9(Spec(F)), ¢) have a so-
lution.

7.2. Complete intersections. We consider a smooth and proper variety V over the number
field E of even dimension n.

7.2.1. The Betti form qp. For any integer k > 0 and for R = Z,Q or R, we let H*(V'; R) be the
singular cohomology group H*(V,(C); R) with coefficients in R. We set H*(V) = H*(V;Z).
We consider the quadratic form on Q

qp: H"(V;Q) x H"(V;Q) — Q

obtained by composing the cup product with evaluation on the fundamental class.
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Proposition 7.4. Let (r,s) be the signature of the extended form R ®q qp. Then qp is
isometric to the quadratic form
2 2
DD S

1<i<r 1<j<s
In particular, we have wi(qg) = s(—1) and wa(gp) = (5)(—1,—1).

Proof. We set ¢ = qp and ¢’ = Zlgz‘gr z? — Z1§jgs x%+j. For a quadratic form ¢ on Q and
any place v of Q we denote by ¢, the extended form Q, ®g t on Q,. In order to prove the
proposition it suffices to show that ¢ and ¢’ are locally isometric for every place of Q. Since ¢
and ¢’ have the same signature then ¢, and ¢/ are isometric over R. The form ¢ is induced
by extension from the integral form

qo : Hn(V)Cotor X Hn(v)cotor — 1L

where H™(V )cotor 18 the maximal quotient of H™(V') which is free as a Z-module.

It follows from Poincaré duality that g¢ is unimodular. Therefore the determinant of ¢ is
congruent to +1 modulo Q*2. The group homomorphism Q* — R* induces an injective map
{£1}Q*2/Q*? — R*/R*? such that w;(q) — wi(gr). This implies that

wi(q) = s(—1)
and so w1 (q) = wi(q"). We now examine wo(q) € H*(Q,Z/2Z). For any prime p < co we let
wz(q), be the p-component of ws(q) in H*(Qp,Z/2Z). Indeed w2(q), = wa(g,). For p = oo
we note that wa(q)ee = w2(q')os = (5)(—1,—1). Let p # 2 be a prime number. The form
gp is induced from the Zjy-unimodular form qp,. Since Zj, is a local ring, this form has an
orthogonal basis and we may write o =< a1, a, ...,a, > for a; € Z;. Therefore

wa(gp) = Z(aiaaj)~
i<j
Since the a;’s are units we conclude that wa(gy) = 0. It now follows from the definition of
q' that wa(q,) = 0. Hence we have proved that wa(q), = w2(q’), for any plave v # 2. By
the product formula we deduce that wa(q)2 = wa(q')2. Therefore the forms ¢ and ¢’ have the
same rank, the same signature and for any place v of Q then w;(q,) = w;(q,,), for i € {1,2}. Tt
follows that ¢ and ¢’ are isometric. In particular they have the same Hasse-Witt invariants. [J

As before we denote by gqr the quadratic form on H},(V/E) induced by the cup product
and we set
dy = disc(qar) = w1(qar)-
As a consequence of Proposition 7.4 we observe that the comparison formula of Theorem 6.10,
applied to the quadratic motive (M = h™(V)(n/2),q), should be written

(@ 55Bar) = 51 () = dy + 5(-1)
and
(49 528 = walaar) + v, 1) + (5 V) -1,

where in these formulas (—1) (resp. (—1,—1)) has to be understood as the image of —1 (resp.
(—1,—1)) in E*/E*? (vesp. by the restriction map H?(Q,Z/27) — H?(E,Z/27)).
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7.2.2. The Hasse- Witt invariants of qg. We assume that V' is a smooth complete intersection
in the projective space P%Jrc. More precisely V' is a variety of even dimension n defined by
¢ homogeneous polynomials fi, ..., f. with coefficients in E. For 1 <4 < ¢ we let d; be the
degree of f;. We note that V, is a complete intersection in Pg“c defined by the polynomials
fi seen via o as polynomials with coefficients in C. In this situation the rank of ¢p and the
Hasse Witt invariants w;(¢p) and wa(gp) can be explicitely expressed in terms of the integers
n,dy,...,d.. We will treat in some details the case where V is an hypersurface where the
formulas are very simple. However for any given complete intersection explicit formulas can
be obtained as well but they may be rather complicated. As an example we will consider a
case where ¢ = 2. When V is an hypersurface (¢ = 1) we write f for f; and d for d;. For
any integer k we denote by bg(V) the dimension of Q vector space H*(V,Q). For reason of
simplicity we will often denoted by V the complex variety V, and by P" the projective space
P?.
We need some preliminary results.

Lemma 7.5. For any integer k , 0 < k < 2n then H*(V) is torsion free. Moreover one has:

(1) bp(V) =0 if k is odd and bi,(V) =1 if k is even and k # n.

(2) ba(V) = x(V) = n where X(V) = Yg<pzn (—1) 0r(V).

(3) bu(V) =2+ L[(1 — d)""2 — 1] when V is an hypersurface.
Proof. 1t follows from Lefschetz Theorem (see |7], Chapter 5, (2.6) and (2.11)) that

H*(V) = H*(P") for k # n.
This implies that H*(V) is torsion free for any integer k and the equalities of (1). In order to
show (2) it suffices to observe that
X(V) = x(P") + b (V) — bp(P").

Since the Euler characteristic of an hypersurface is given by x(V) =n+2+ 1[(1 —d)"*? —1],
then (3) follows from (2). O

There exist several effective procedures to compute x (V') when V' is a complete intersection.
For instance this can be done by evaluating the n-th Chern class of V' on the fundamental
class. This leads to prove that x(V) is the coefficient of A€ in

(14 h)"tetldy...d.he
(14 d1h)(1 4 dah)...(1 +d:h)
Our aim is now to compute the signature of gg . We consider the index 7,(V) = — s of

the quadratic lattice H"(V). This index has been extensively studied (see [25] and [26] for
instance). If we put d = dyds...d., we have

(49)

. oty .
(50) (V) = 0 mod 8 %f (ztﬁ) %s even,
d mod 8 if (Qt ) is odd.

where dy, ...d; are even and diy1,...d. are odd integers. We define the integer m by

_ {X(V) —nif (%:rt) is even,

51 .
(51 x(V)—n—d if (2") is odd.

The following proposition is an immediate consequence of (51), Proposition 7.4 and Lemma
7.5.
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Proposition 7.6. Let V be a smooth complete intersection in P%+c of even dimension n.
Then m s even and we have

wi(qp) = m/'(—1) and ws(gp) = <n;’> (—1,-1), with m = 2m/.

If V' is an hypersurface defined by a polynomial of degree d we deduce from (51) that

(52)

(V)= 0 mod 8 if d is even and n = 2 mod 4,
Tn
d mod 8 otherwise.

We denote by {u} the integral part of u € Q.

Corollary 7.7. Let V' be a smooth hypersurface of degree d and even dimension n > 2 in the
projective space P%H. Then

(1) wi(gn) = 5(d —1)(=1)

d—1 . .
(=1, 1) if d is odd,
2) walan) = {nTH}(l + %)(—1,—1) if d is even.

Proof. We let r,, be the integer defined by the equality [(1 — d)"*2 — 1] = dr,,. If d is odd, it
follows from Lemma 7.5 and (52) that
rn d
=14 —=—-- 4.
(53) s + 5 "3 mod
From the equality (d—1)""2? = 1+dr, we deduce that d and r,, are both odd and that one and
only one of them is congruent to 1 mod 4. Suppose that d = 1+ 4v. Since 14 dr, = 0 mod 8,
then r, = —1+ 4v mod 8 and therefore s = 0 mod 4. If now d = 3 mod 4 and so r,, = 1 + 4t,
we obtain that d = —1 + 4¢ mod 8 and so that s = 2 mod 4.
We assume now that d is even. First we check that
2)d
(54) P S Gt Y
2 2 2
Suppose that n = 2 mod 4 and write n = 2 + 4u. It follows once again from Lemma 7.5
and (52) that s = 1+ 2(1 + u)(1 + %) mod 4. Therefore we conclude that s = 3 mod 4 if
n =2 mod 8 and d = 0 mod 4 and s = 1 mod 4 otherwise. Finally we suppose n = 0 mod 4

and we put n = 4u. In this case we know that s = 1+ 3 — % mod 4 which implies that

s = 2u(l + %) mod 4. Hence s = 2 mod 4 if d = 0 mod 4 and n not divisible by 8 and
s = 0 mod 4 otherwise. The proposition is proved by a case by case checking.

O

In various situations more precise computations of the index leads to the determination of
the form ¢p itself. This is the case when V be quadric of P"*!. By Lemma 7.5 the unimodular
lattice H™(V') is of rank 2. By Proposition 7.7 we have wi(¢gp) = 5(—1) and wa(gp) = 0.
If n = 2 mod 4, then 7,(V) = 0 and ¢p is isometric to the form x? — y2. If n = 0 mod 4,
(V) = 2 and gp is isometric to z2 + y2.

We now consider the case of a cubic surface V' (d = 3 and n = 2 ). The rank of the lattice
H?(V) given by Lemma 7.5 is equal to 7. Moreover by (52) we know that 7,(V) = 3 mod 8
and so 7, (V) is either equal to 3 or —5. We now observe that, under our hypotheses, (52) can
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be improved. More precisely it follows from (2) in [25] that 7,,(V) = d + 8 mod 16. Hence
(V) = —=5. We conclude that ¢p is isometric to

2 —al—ad—ad—al—

We treat now as an example the case of a smooth surface V defined in P# by the polynomials
f1 and f2 of degree d; and dy (n = 2 and ¢ = 2). It follows from (49) that:

(55) (V) = dydo[df 4 d3 + didy — 5(dy + dg) + 10).

Corollary 7.8. Let V be a smooth surface of P4E defined by the homogeneous polynomials fi
and fo of degree di and ds. Then

(1) wi(gp) = (didz — 1)(-1)

O EBY {2y + { D {2))(~1, 1) if diand do are both odd,
(2) wa(gp) = (11{%}{2%2})(_21,_12) if dyor do otherwise.

Proof. The equalities are obtained from (55) and Lemma 7.6 by an easy computation. g

We may use the results of Corollary 7.7 to improve the comparison formulas of Theorem
6.10 when (M, q) is the quadratic motive attached to an hypersurface.

Corollary 7.9. Let V' be a smooth hypersurface of even dimension n > 2 in P%H, defined
by an homogeneous polynomial f of degree d and let (M = h™(V)(n/2),q) be the associated
motive. Then

dy = w1(qqr) = €'(n, d)discq(f) in E*/E*2,

(d—1)

where discq(f) is the divided discriminant of f and where €' (n,d) = (—=1)" 2 if d is odd and
is (—1)(1+%)(1+%)+1 if d is even.

Proof. This is an immediate consequence of Corollary 7.7 and [32]. O

Remark 7.10. Suppose for simplicity that E = Q. When n = 0, we deduce from (53) that
s =0 mod 4 and so that w1(qg) = wa(qp) = 0. This result and Corollary 7.9 can be easily
understood in this case. Suppose that V is defined by the polynomial f = Xg+ad_1Xg*1X1 +
ctaoX{ Weset g(X) = f(X = %, ). The motive h(V') is isomorphic to the Artin motive
Spec(F) where F ~ Q[X]/(g9(X)). As we have seen in Section 6.1, the form qp is the form
2 4.+ :1:3 and thus its Hasse- Witt invariants are trivial. Moreover the form qqr tdentifies

with the trace form Trp,q. Therefore

(56) dy = disc(F/Q) = disc(Trp/q) = [ [(zi — z,)*,

1<j
where x1,...,xq are the roots of g in C. This equality can be expressed in terms of resultants.
More precisely, by [15], Chapter 12, (1.29) and (1.51),

[T~ 20 = ()™ Raios(0.6) = ~ 020 Ry s (Do), D1 () = (0. d)lisea ).

1<j

We conclude that Corollary 7.9 generalizes in higher dimension the classical equality (56).



TANNAKIAN TWISTS OF QUADRATIC FORMS AND ORTHOGONAL NORI MOTIVES 41

Corollary 7.11. Let V be a smooth hypersurface of even dimensionn > 2 in P%Jrl, defined by
an homogeneous polynomial of degree d and let (M = h™(V')(n/2),q) be the associated motive.
Then we have

(—1)% -discq(f) if d is odd

(—1)g.n;2 -discd(f) if d is even

52 (Bur) = {

and

L(—1,-1) if d is odd
52(5]3M) = w2(qar)+4 F(1 + %)(—1, —1) if d is even and n =0 mod 4
(—1,disca(f)) + (22)(1 + 2)(~1,-1) 4f d is even and n =2 mod 4.

Proof. The first assertion follows from [32] and Theorem 6.10(2). The second assertion follows
from Theorem 6.10(1) and Lemma 7.7. O

Remark 7.12. Let us assume for simplicity that n = 0 mod 4. Following a conjecture of
Saito |33, proved for | > n + 1, there should exist integers a(n,d) and 5(n,d), which can be
explicitely expressed in terms of n and d, such that for any prime number [, one has

(52(‘131%) = swa(p) + a(n,d)c + B(n,d)(—1,—-1) + (2,dy),
where c; is the unique element of H*(Q,7Z/27) which ramifies ezactly in | and oc.

7.3. The lifting problem Lift(M,q) over R. Let (M,q) be an orthogonal Q-motive, let
(Mp, qp) be its Betti realization and let oo be the real place of Q. Recall that (Mu, goo) :=
(Mp,qp) ®g R and that we have an orthogonal representation pu|g, : Gk — O(Mxo). Under
this action M, decomposes into a direct sum M, = M1 &M where the complex conjugation
(i.e. the non-trivial element in Gg) acts as the identity Id (resp. as —Id) on MZF (resp. on
Mg). Our aim is to compute the local invariants sw2(puo|c) and spa(pso|cy ), Which belong

to the group H?(Gg,Z/27) ~ 7./27.

Proposition 7.13. Let b~ be the dimension of M. Then we have

b= (b~ —1)
2

Proof. In order to ease the notation, we write p for py|g,- By choosing orthogonal bases
of M} and M, we decompose (Muo, ¢oo) into an orthogonal sum of dimension 1 quadratic
spaces, stable under the action of Ggr. Therefore the orthogonal character x, of p can be
written as a sum of degree one orthogonal characters,

(57) Xp =b"x0+ b x1,

where x (resp. x1) is the trivial (resp. non trivial) character of Gg and b* is the dimension of
M. The Stiefel-Whitney class of an orthogonal representation only depends on the character
of the representation. Moreover we obtain from [13] the following addition formula.

5W2(Poo|Gy) = and sp2(pos|cy) = 0.

Lemma 7.14. Let p and p' be orthogonal representations of a finite group I', of characters
Xp and X,. Then we have

swa(xp + Xp) = swa(x,) + swa(x,y) + det(x,) - det (x,).
Moreover swa(x) =0 for x € Hom(I', Z/27Z).
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It follows from the lemma that swa(p) = swa(x,) = sw2(b~x1) and that
swa(ax1) = swa((a = 1)x1) + (x)(xi™") = swa((a = Dx1) + (a = D) (), Va.

Therefore swy(p) = W(Xl)(m) Since (x1)(x1) identifies with the class of the Hamilton
quaternion algebra over R, under the group monomorphism H?(Gg,Z/2Z) — Br(R), we
conclude that (x1)(x1) is the non trivial element of H?(Gg,Z/27Z).

We now recall the definition of spa(t) for an orthogonal representation of ¢ : Gg — O(¢:)
as given in [13]. We let sp : O(q;) — Hom(GRr,Z/2Z) be the group homomorphism obtained
by composing the spinor norm O(g;) — R* /R*? with the canonical isomorphim R* /R*2? ~
Hom(Gr,Z/2Z). Let spt] : Gr — Hom(GRr, Z/27Z) be the group homomorphism g — sp(t(g)).
This map satisfies the relations

(58) sp[t +t'] = sp[t] + sp[t'] (addition in Hom(Gg, Hom(Gg,Z/27Z))
and
(59) splg] =0 V ¢ € Hom(Gg, £1)

The map splt] gives rise to a bilinear form
Ct . GR X GR — Z/2Z.

It is a 2-cocycle which represents spo(t) in H2(Gg,Z/27Z). The triviality of spa(p) now follows
from (57), (58) and (59). O

Remark 7.15. The lifting problem Lift(M, q) has a solution over R if and only if w 18

even.

8. THE KUNNETH FORMULA FOR NORI MOTIVES

A Kiinneth decomposition for motives appears in [1], Corollary 4.4.5. For the seek of
completeness we prove such a formula in this section. For generalities on Nori motives, we
refer to [28], [24] and [18].

Following Nori’s construction we attach to any diagram D and any representation 7' : D —
Vecg a Q-linear abelian category C(D,T), a representation T:D — C(D,T) and a forgetful
functor fr such that froT = T and T is universal for this property. For any such pair (D, T),
we may consider the pair (D°P, T") where D is the opposite diagram and T : D’ — Vecg
assigns to any vertex p of D the dual Q-vector space of T'(p) and to any edge m from p
to ¢ the transpose of T'(m). Let k be a subfield of the field of complex numbers C. The
category of effective homological Nori motives (respectively of effective cohomological Nori
motives) is defined as EHM := C(D, H,) (resp. ECM := C(D°,H))), where D is the
diagram of effective good pairs consisting of triples (X,Y,4) where X is a k-variety, Y — X
a closed subvariety and i an integer such that the singular homology H;(X(C),Y (C),Q) =0
if j # ¢, and H, is the representation which maps (X,Y,) to the relative singular homology
H;(X(C),Y(C),Q). For a good pair (X,Y,i) we write h;(X,Y) (resp. hi(X,Y)) for the
corresponding object in EHM (resp. ECM).

We denote by Ind(EH M) the category of ind-objects of EH M, i.e. the strictly full subcat-
egory of the category of presheaves of sets on FH M which are isomorphic to filtered colimits
of representables. Then Ind(EHM) is an abelian category with enough injectives, and the
Yoneda functor y : EHM — Ind(FHM) is an exact fully faithful functor. An object of
Ind(EH M) lying in the essential image of y is called essentially constant. Then we consider
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the abelian category Ch(Ind(EHM)) (resp. Chy(Ind(EHM))) of (resp. bounded below)
homological chain complexes in Ind(EHM).

Let X be an affine variety over k (i.e. an affine scheme of finite type over k). A good
filtration of X is a sequence of closed subvarieties

l=X,CcXpCc..CX,1CX,=X

such that (X, X;_1, ) is a good pair for 0 < j < n. Nori’s basic Lemma ensures that the set
of good filtrations is non-empty and filtered. It is moreover functorial in the sense that given
a morphism f : X — Y of affine varieties, there exist good filtrations X, on X and Y, on Y
such that f(X;) C Y; for any i. We set

C*(X*) = [hn(Xnaanl) — hnfl(anl, Xn,2> — ho(X(), (Z))] € Ch+(EHM)
where ho(Xo, ) sits in degree 0. We obtain a functor

C.: Affy — Chy(Ind(EHM))
X +— lzl}C'*(X*)

where the colimit is taken over the system of good filtrations X, of X, and Aff; denotes the
category of affine k-schemes of finite type.

Let X be any variety (i.e. a separated scheme of finite type over k). A rigidified affine
cover (U,r) is given by a finite open affine cover Y = {U; C X,i € I} of X, and a surjective
map of sets 7 : X(C) — I such that x € U, (,)(C) for any x € X(C), where X(C) denotes the
(discrete) set of complex points of X. A morphism (X,U,r) — (X',U',r") of varieties with
rigidified affine covers is a pair (f, ¢) given by a morphism of schemes f : X — X’ inducing a
map of sets ¢ : I — I’ (i.e. such that the obvious square commutes) such that f(U;) C Ué)(i)
for every ¢ € I. Note that, if (U, r) and (U’,r’) are two rigidified affine covers of X, there exist
at most one morphism (X,U’,r") — (X,U,r) whose underlying map X — X is the identity.
If such a morphism exists, we say that (U’,r’) refines (U, r).

Given a variety X endowed with a rigidified affine cover (U, r), we consider the simplicial
Cech complex Co(U), a simplicial affine scheme. Applying the functor C, above, we get a
simplicial object C,Co(U) of Chy (Ind(EHM)), and taking the associated complex we get a
double complex in Ind(EHM). We denote by Toc(C,Cs(U)) € Chy (Ind(EHM)) the total
complex. In other words, we consider the following functor

(60)
Toc : Fun(A%, Ch (Ind(EHM))) — Chy (Ch (Ind(EHM))) =% Ch, (Ind(EHM))

where the first functor sends a simplicial object to the corresponding unnormalized homo-
logical complex and the second functor sends a double complex to its total complex. Then
Toc(CCe(U)) is functorial in (U, 7). Moreover, if (V, s) refines (U, r) then

Toc(CCo(V)) — Toc(CCW(U))

is a quasi-isomorphism. Hence Toc(C,C4(U)) € Dy(Ind(EHM)) does not depend on (U, r)
up to a canonical isomorphism. Here Dy(Ind(EHM)) of course denotes the derived category
of bounded homological complexes in Ind(EH M).

This defines a functor

M: Var, — Dy(Ind(EHM))
X  —  Tot(C.C.(UU))
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The functor

Dy(EHM) — Dy(Ind(EHM))
is fully faithful and its essential image ﬁb(EH M) is precisely the full subcategory consisting
in chain complexes with essentially constant homology. Note that f)b(EH M) is strictly larger
than Dy(EH M) but these two categories are canonically equivalent; we make no distinction
between them. Let us denote by Vary the category of varieties over E. We obtain a functor

M : Vary, — Dy(EHM)
such that the image of M (X) in Dy(Vecg) computes the singular homology of X.
Notation 8.1. For any variety X/k we define the object h;(X) of EHM by
hi(X) = H;(M(X)).

The tensor product on EHM extends to a tensor product on Ind(FHM). Any object
of EHM is flat (since FHM has a fiber functor to the category of finite dimensional Q-
vector spaces) hence so is any object of Ind(EHM). Therefore, derived tensor products
on Dy(EHM) and Dy(Ind(EHM)) are well defined and Dy(EHM) — Dy(Ind(EHM)) is

monoidal.
Theorem 8.2. We have a functorial isomorphism in Dy(EHM)

M(X)el M) = M(X x,Y)
inducing the usual Kunneth isomorphism on singular homology.
Proof. Since the fully faithful functor Dy(EHM) — Dy(Ind(EHM)) commutes with ®@%, it
is enough to prove the result in Dy(Ind(EHM)). Given arbitrary varieties X and Y en-
dowed with rigidified open affine covers (U, r) and (V,s), the complexes Toc(CyC,(U)) and
Toc(C.Ce(V)) in Chy(Ind(EHM)) represent M(X) and M(Y). Hence M(X)®@* M(Y) is
represented by the total complex

Tot(Toc(CCo(U)) @ Toc(CLCs(V))) € Chy (Ind(EHM))
associated with the double complex Toc(CyCs(U)) @ Toc(CwCs(V))). It is therefore enough
to exhibit a quasi-isomorphism
(61) Tot(Toc(CCo(U)) @ Toc(CCo(V))) — Toc(CCW(U x V))

which is functorial in (U, ), (V,s), X and Y. Here (U x V,r x s) is the obvious rigidified open
affine cover of X x Y.
We first consider the affine case. Consider the following diagram of functors:

Aff, x Aff, 7% Chy (Ind(EHM)) x Ch (Ind(EHM))

l_x_ lTot(—@—)

Aff, C . Ch.(Ind(EHM))

Lemma 8.3. (Nori, 28] Section 4.5) The square above is quasi-commutative in the sense that
there is a natural transformation

Tot(Ci(—) ® Cu(=)) — Cu(= x —)
mducing a quasi-isomorphism
Tot(Cyx(X) @ Cu(Y)) = Cu(X X Y)
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in Ch(Ind(EHM)) for every X,Y € Affy.

Proof. We have Tot(C.(X) ® Cy(Y)) > lim Tot(Cy(Xy) ® Cy(Yx)) where the colimit is taken
over the system of good filtrations X, and Y, on X and Y respectively. Given such good
filtrations X, and Y, there exists a good filtration Z, on X xY such that U;; ;—, X; xY; C Z}.
The obvious map from
Tot (Co(X)QCL(Y2)) = @D hi(Xi, Xi 1)0h;(Y;, Y1) ~ €D hi(XixVj, Xix Y 1UX,; 1 xY5).
i+j=k it+j=k

to Cx(Zx) = Hp(Zy, Z—1) gives morphisms of complexes

Tot(Cy(Xy) ® Ci(Yy)) = Cu(Zy) — Co(X X Y)
which does not depend on the choice of the filtration Z,. This induces a quasi-isomorphism

Tot(C4(X) ® C4(Y)) = C4(X x Y)

which is moreover functorial in X and Y. This proves the lemma and thus the theorem when
X and Y are both affine.
O

Take now arbitrary varieties X and Y, and choose rigidified open afﬁr{e covers (U,r) and
(V,s), withitd ={U; C X, i€ I}andV ={V; C Y, j € J}. Wedenote by Ce(U) : AP — Aff},
and Co(V) : AP — AfF}, the corresponding simplicial affine schemes. Consider the diagram

A% s AP R Afr, C2CChy (Ind(EHM)) x Chy (Ind(EHM))

1d J(_X_ lTot(—@—)

AP x AP AfF), e Ch (Ind(EHM))

where the left square commutes. The bottom line gives a bisimplicial object of Chy (Ind(EH M)),
which we denote by

C(Co(Uh) X Co(V)) : AP x AP’ —3 Ch (Ind(EHM)).
Composing the top line with Tot(—®—) gives another bisimplicial object of Ch (Ind(EH M)),
which we denote by
Tot(C,Co(U) @ CCo(V))) : A% x A’ — Ch, (Ind(EHM)).
We denote by
(62) T(C.(Co(h) x Co(V))) and T(Tot(C.Co(Uh) ® CCW(V)))) € Chy(Ch (Ind(EHM)))

the complexes of objects of Chy(Ind(EHM)) associated with these bisimplicial objects of
Ch, (Ind(EHM)). More precisely, if Aqe is a bisimplicial object in an abelian category A, we
denote by C(Ase) the double complex associated with Aee and by T(Ase) its total complex,
so that T(Aee)n = D, 14— Ap,g- In our situation A = Ch, (Ind(EHM)).

We can see (62) as double complexes and consider their total complexes

Tot(T(Cu(Co(U) x Co(V)))) and Tot(T(Tot(C,Cs(U) @ C.Ce(V))))) € Chy(Ind(EHM)).
Lemma 8.4. There is a canonical quasi-isomorphism

Tot(T(Tot(CCa(U) ® CLCo(V)))) s Tot(T(CL(Cuth) x Ca(V)))).
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Proof. Consider
T : Fun(A% x A°? Chy(Ind(FEHM))) — Ch;(Chy(Ind(EHM)))

as a functor from bisimplicial objects of Chy(Ind(EHM)) to Chy(Ch, (Ind(EHM))). The
natural transformation of Lemma 8.3 gives a morphism of bisimplicial objects:

Tot(C.Co(U) @ CoCo(V)) — Cu(Co(Uh) x Co(V)).
Applying the functor T, we get a morphism
D, = T(Tot(C,Co(U) ® CLCW(V))) — T(CL(CoUh) x Co(V))) = D,

in Chy(Chy(Ind(FHM))). By Lemma 8.3, the morphism in Chy (Ind(EHM))

Dp= @ Tot(C.C,U) ® Cly(V) — @D Cu(CpUh) x Co(V)) = D,

p+q=n ptg=n

is a quasi-isomorphism for any n > 0. The result then follows from a standard spectral
sequence argument. O
Lemma 8.5. There is a canonical isomorphism

Tot(Toc(CLCo(U)) @ Toc(CCo(V))) =~ Tot(T(Tot(CCo(U) @ CLCo(V)))).

Proof. These two complexes can be both identified with the total complex associated with the
quadruple complex whose generic term is

(Cpéq U) = Cuév (V))p,q,u,vEN4 :

Indeed, we have

Tot(T(Tot(CLCo(U) ® CLle(V))): = €D (T(Tot(C.Co(U) @ C.Co(V)))n)m

n+m=t

= P P Tot(C.CpUh) @ CLly(V))m

n+m=t p+q=n

= P P P iU eCl V)

n+m=t p+q=n ut+v=m

= P U ec.w),

utvtp o=t

andTot(Toc(C*C‘.(u))®Toc(C*C‘.(V)))t = P Toc(C.le(th)) @ Toc(CoCo(V))nm
- nggt Toc(CoCo(U))n @ Toc(CuCo(V))m
- :;é_z(pﬁn C,Coh)) @ (u @m CuCy(V))

= @ @ @ Cqu(u)®CuC’v(V)

n+m=t p+q=n u+v=m

= P Cli) @ CuCu(V).
u+tv+p+q=t
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_ Consider now the diagonal simplicial object associated with the bisimplicial object C\ (Co(U) %
Ce(V)), which we denote by

diag(C(Co(U) x Co(V))) : AP — AP x A’ — Ch, (Ind(EHM)).
We denote by D(C,(Co(Uh) x Co(V))) € Ch, (Ch, (Ind(EHM))) the associated (unnormal-
ized) homological complex, so that
D(Ci(Ca(Uh) x CaV)))n = Cu(Cu(U) x Cr(V))).

Lemma 8.6. (FEilenberg-Zilber Theorem) There is a canonical quasi-isomorphism

Tot (T(Cy(Co(Uh) x Cua(V)))) ~ Tot(D(C,(Ca(th) x Co(V)))).

Proof. We consider the bisimplicial object Cy(Co(U) x Co(V)) in the abelian category A :=
Chy(Ind(EHM)). By the Eilenberg-Zilber Theorem ([W| 8.5.1), the shuffle map (see |W]|
8.5.4)

T(Cu(Ce(U) x Co(V))) — D(CL(CaU) x Ca(V))),
a map in Chy(A) = Chy(Chy(Ind(EHM))), is a quasi-isomorphism. We conclude with a

spectral sequence argument.
0

We consider the rigidified open affine cover (U xV,rxs) of X XY, where U xV := {U; xV; C
X xY,(i,j) €I x J}.

Lemma 8.7. There is a canonical isomorphism
Tot(D(C(Co(U) x Co(V)))) = Toc(Cy(Co(U x V)))

Proof. The result follows from the fact that there is a canonical isomorphism of simplicial
object of Chy (Ind(EHM)):

(63) diag(C.(Co(U) x Co(V))) = Co(Co(U x V)).
Indeed, we have
diag(Ce(Co(U) x CeOW)n = Cu(Cu(U) x Cp(V))
= G || Ugnonti,x || Vien..nVj)
(10,+-sin) (J0s++53n)
C.( | | Uiy x Vi) NN (Us, X V3,)
(0,50 -+ (in,jn))

= C(ChUd x V).

The desired isomorphism is obtained by applying the functor (60) to the isomorphism of
simplicial objects (63).

12

0

We obtain (61) by composing the quasi-isomorphisms of the previous lemmas. More pre-
cisely, we have the quasi-isomorphism

Tot(Toc(C,Co(U)) @ Toc(C,Cu(V)))  ~ (
Ny Tot(T(CL(Co (U
> (

12
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Note that N is induced by Nori’s Lemma 8.3 (i.e. the Kiinneth formula for affine varieties) and
that V is induced by the Eilenberg-Zilber shuffle map. This quasi-isomorphism is functorial
in (X,U,r) and (Y,V, s) by construction. It induces a canonical isomorphism

M(X) @l M(Y) =5 M(X %, Y)
in Dy(EH M), inducing the usual Kiinneth formula on singular homology. O
Corollary 8.8. For any varieties X and Y, there is a canonical isomorphism in EHM
P 1p(X) @ hy(Y) = hn(X x Y).
pt+q=n

Proof. This follows immediately from the previous theorem since any object of EH M is flat.
O

Applying Nori’s universal construction to the diagram of arbitrary pairs of varieties, or
proceeding as we did for homological motives (see Notation 8.1), we may define h*(X) € ECM
for any variety X.

Corollary 8.9. For any varieties X and Y, there is a canonical isomorphism in ECM .
P w(X)@hI(Y) < WX xY).
ptg=n

Proof. Let C(D,T) be the diagram category associated to a diagram D and a representation
T : D — Vecg. First we exhibit a canonical equivalence of categories

(64) C(D,T) ~ C(D,TV).
To this aim, we consider the following square

D T . oD.T)

o b

(Do, TV)P =+ Vecq

where G is the representation of D obtained by composing the functors

D — D — C(D,TV).
Since the square is commutative we know from (|28], Theorem 1.6), that there exists a unique
Q-linear functor L(G) : C(D,T) — C(D°,TV)° such that

G =L(G)oT and fr = fyv o L(G).
The functor L(G) is an equivalence of categories. A quasi inverse for L(G) is constructed by
considering the square attached to the pair (D°P,TV).
We need to give a module-theoretic interpretation of the functor L(G). Recall that the

category C(D,T') is defined in [28| by

C(D,T) = colimpC(F,T|F)
where F' runs through all the finite subdiagrams F' of D and the 2-colimit is taken in the 2-

category of small categories. If F' is finite, then C(F,T|F) is the category of finitely generated
left End(7T'|F')-modules where

End(T|F) = {u = (up)per € HpeFEnd(T(p))luq o T(m) =T(m)ouy,¥m:p—q,p,q € F'}.
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For M an End(T'|F)-module, we have ring homomorphisms

End(T|F) —~ Endg(M) —Y> Endg(MY)"

where f is given by the action of End(7'|F') on M and where V associates to any v € End(M) its
transposed u". Moreover the map u = (up)per — u" = (u,) )per induces a ring isomorphism
End(T|F) ~ End(TV|F)°P. Therefore we obtain by composition a ring homomorphism

End(TV|F) — End(T|F)*” — Endg(M")
and thus a structure of End(7"|F)-module on MV. We let ap be the functor
C(F,T|F) — C(F°,TV|F)P
M — MY
and we denote by o : C(D,T) — C(D%,T")? the functor defined by the (ar)rcp. Tt is easy
to check that G = ao T and fr = f}\, o . It follows from the universal property of C(D,T)

that L(G) and « are isomorphic.
Applying these observations to the diagram of good pairs, we obtain an equivalence

a: EHM s ECM®.

We have a(h;(X)) = hi(X) for any integer i and any variety X/k. Moreover the functor
a sends direct sums to direct sums. Thus in order to deduce Corollary 8.9 from Corollary
8.8 it suffices to prove that a sends tensor products to tensor products. The categories
EHM and ECM are both diagram categories attached to a graded diagram endowed with a
commutative product structure with unit and a graded unital multiplicative representation.
Using the definition of the tensor product on such categories as defined in ([18], Proposition
B.16) and in ([19], Chapter VII, Section 7.1) and using the description of « in terms of modules
given above, we check that a respects tensor products as required. ]

We denote by NMMj, the category of cohomological Nori motives.

Corollary 8.10. Let V/k be a smooth projective variety of dimension n. There is a map in
NMMy

(65) R(V)(G) ® B2 (V) (n = §) — W2 (V)(n) —5 1

inducing the usual pairings in Betti and de Rham cohomology for any i,j € Z. In particular,
(65) yields an canonical isomorphism

R(V)(G) = B2 (V) (n = 5)".
Proof. Corollary 8.9 gives the canonical map in NMMy,
R(V)(G) @ B2 1 (V) (n = j) — B2 (V x V)(n) — h*"(V)(n)

inducing the same map on Betti cohomology. Here h?"(V x V) — h?"(V) is induced by the
diagonal map.
Let us show the existence of the trace map

K2V (n) 5 1.

We follow [18] with a slight modification. Since h*(V1||Va2) = h*(V1) @ hi(V3), we may assume
that V is connected. Let V — P{f be a closed embedding. We consider the finite extension
K := Oy (V) of k, so that V/K is geometrically connected. We obtain a closed embedding
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V — P x;, K = P¥, inducing a map ¢ : h?"(PY¥) — h?"(V). But Hj(¢) is an isomorphism,
hence so is . By ([18] Lemma 1.12(1)) we have a canonical isomorphism h?"(PY) ~ 1(—n).
We obtain

RPN (PR) = B?"(PY x Spec(K)) ~ h*"(PY) @ h?(Spec(K)) ~ h°(Spec(K))(—n).

One is therefore reduced to define the trace map h"(Spec(K)) — 1 in the category of Artin
motives, i.e. in the category of Q-linear representations of G. But h?(Spec(K)) corresponds

to the linear Gg-action on @Homk(K’E) by permutation of the factors, hence the sum map
QHomk(K,E) N @
(Vo)o — Y U
is Gy-equivariant, where G}, acts trivially on k. This defines a map h°(Spec(K)) % 1. The
trace map of the lemma is then given by composition
W2 (V) (n) <= W2 (PY)(n) = KO(Spec(K)) =5 1.

This map induces the usual trace map in Betti cohomology.
So we have the map

m: B(V)(j) ® B2 (V) (n — j) — h2(V)(n) - 1

and this map induces the usual pairing on Betti cohomology. Applying the tensor functors
Hp and Hjp, we obtain product maps

Hy(m) : H'(V(C), (2im)/Q) ® H*~/(V(C), (2im)" Q) — H*™(V(C), (2i7)"Q) — Q

and

Hip(m) : H(V/E) ® H{(V/K) — H*™(V/k) =5 k
On the other hand, we denote by

mp : H(V(C), (2ir)'Q) ® H*{(V(C), (2i7)" Q) — H>(V(C), (2i7)"Q) —> Q
and
mar : Hyp(V/k) @ H2W(V/E) — H™(V/k) =5 k

the usual product map in Betti cohomology (given by cup-product) and in de Rham co-

homology (given by wedge product) respectively. The usual period isomorphism yields an
isomorphism of tensor functors Hp ®g C ~ H}p ®; C, hence the square

Hp(m)oC

HY(V(C), (2in)Q)c ® H(V(C), (2im)" Q) (gHT
Hip(V/k)e ® HIp (V/k)c

commutes, where the vertical isomorphisms are given by the period isomorphism. But the
square

Hi(V(C), 2irVQ)c ® H2~i(V(C), (2im) Q)¢ 225

i n—i mqr®C
Hp(Vik)e ® HiE ' (V/k)c R
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commutes as well. By construction of m, we have Hj(m) = mp. It follows that Hj,(m) ®
C = mgr @4 C, hence that Hj,(m) = mgr. The first claim of the corollary is proved.

By adjunction, the map m gives a map d : hi(V)(j) — h?""4(V)(n — j)V inducing the
usual map Hj(d) : H(V(C), (2ir)’Q) — H*(V(C), (2im)" Q)" in Betti cohomology.
But Hj(d) is an isomorphism, hence so is d, since H}; is conservative. ]

We record the following special case of Corollary 8.10.

Corollary 8.11. Let V/k be a smooth projective algebraic variety of even dimension n over
the number field k. Then h™(V')(n/2) € NMMy, has a canonical orthogonal structure q such
that the forms qp and qqr are the perfect pairings

(66) qp : HE(V(C), (2in)"?Q) © HA(V(C), (2im)"/?Q) -L HE(V(C), (2i7)"Q) —= E
and
(67) qar : Hip(V/E) © Hip(V/K) 5 HI(V/E) < k

given by cup-product and trace maps.
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