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1. Introduction

We denote by K a field of characteristic different from 2, by Ks a separable closure of K
and by GK the Galois group of Ks/K. If q is a quadratic form of rank n, over a field K, then
we may diagonalise q and write q =< a1, · · · , an >, for ai ∈ K×.

Let G be a finite group and let L/K be a G-Galois algebra. We attach to this algebra the
so called trace form. This is the G-quadratic form qL : L→ K defined by

qL(x) = TrL/K(x2).

When the degree of L/K is odd, Bayer and Lenstra [2] have proved that L has a normal
and self-dual basis over K; therefore qL is isometric to the unit form < 1, · · · , 1 >. Their
result does not generalize to the case of algebras of even degree; so for instance a quadratic
extension does not have a self-dual normal basis. In [3], Bayer and Serre have given criteria
to ensure the existence of such a self-dual normal basis, depending on the Sylow 2-subgroups
of G. Other authors have studied the trace form for Galois extensions L/K of even degree
either when the degree is small or when K is a number field (see [7], Theorem I.9.1, [8] and
[11]). If L/Q is a Galois extension of even degree and if the Sylow 2-subgroups of Gal(L/Q)
are non-metacyclic, then one can prove that either qL '< 1, · · · , 1 > if L is totally real, or
that the class of qL is trivial in the Witt ring of Q if L is totally imaginary. The key-tool in
the proof of this result is the Knebusch exact sequence of Witt rings.

Another important tool in the classification of quadratic forms is provided by their Hasse-
Witt invariants. They are cohomological invariants {wm(q) ∈ Hm(GK ,Z/2Z),m ≥ 0} in
the cohomology mod 2 of the profinite group GK . In this paper we study the trace forms of
G-Galois algebras of even degree, over any arbitrary field of characteristic different from 2,
by computing their Hasse-Witt invariants at least in small degrees. As we will see later these
invariants are related to classes in the mod 2 cohomology ring of G. The computation of the
cohomology ring of finite groups appears in a myriad of contexts. It plays an important role
in the work of Quillen ( [13], [14] and [15]). We will make use of several of his results in this
paper. We introduce the following definition:

Definition 1.1. A finite group G is said to be 2-reduced if H2(G,Z/2Z) contains no non-zero
nilpotent element of its mod 2 cohomology ring.

We observe that various natural families of groups are 2-reduced. More precisely, denoting
by Fr the finite field of r elements, we obtain:

Theorem 1.2. The following groups are 2-reduced:
i) groups with Sylow 2-subgroups which are either cyclic or abelian elementary;
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ii) symmetric groups Sn and alternating groups An;
iii) dihedral groups;
iv) linear groups Gln(Fr), r ≡ 3 mod 4;
v) orthogonal groups On(Fr), r ≡ 1 mod 4;
vi) the Mathieu group M12.

Remarks. 1) One should note that for most of these groups one knows that H2(G,Z/2Z) 6=
0. This is the case when G = An, Sn, D2n and M12.
2) For the sake of simplicity let us call a finite group reduced if its mod 2 cohomology ring is
reduced. If the groups G1 and G2 are reduced, then it follows from the Künneth formula that
the same holds for G1 ×G2. This is the case for instance for G1 = (Z/2Z)n and G2 = D2m .
Therefore any product of reduced groups provides us with new families of reduced and so
2-reduced groups. Nevertheless one should note that there exist 2-reduced groups which are
not reduced; every cyclic 2-group of order greater than 4 has this property. We now consider
G = Z/4Z × Z/2Z. This is a product of 2-reduced groups, however one can prove that
H∗(G,Z/2Z) = F2[z, y, x]/(z2) with z, y having degree 1 and x having degree 2 (see [5],
Appendix A) and so one can check that H2(G,Z/2Z) contains non-zero nilpotents elements.
We conclude that the product of 2-reduced groups is not in general a 2-reduced group.
3) One can also use the wreath product of groups for constructing large families of 2-reduced
groups (see Remarks, Section 3.3)

We now explain how such cohomological considerations relate to the Hasse-Witt invariants
of trace forms: indeed this was very much the driving motivation for our results on the
mod 2 cohomology ring. So suppose now that L/K is a G-Galois algebra, defined by a group
homomorphism ΦL : GK → G and let qL be its trace form. Serre’s comparison formula (([18],
Theorem 1) provides us with the equality :

(1) w2(qL) = Φ∗L(cG) + (2) · (dL/K)

where dL/K is the discriminant of the K-algebra L and Φ∗L(cG) is the inverse image by ΦL of
cG ∈ H2(G,Z/2Z) defined by the group extension

1→ Z/2Z→ Pin(G)→ G→ 1,

(see (14) Section 4.2 for a precise definition of this extension). We shall prove, under certain
assumptions on the order of G, that when G is 2-reduced then this group extension is split.
Therefore as a consequence of this result and the equality (1) we will obtain:

Theorem 1.3. Let G be a 2-reduced group of order n, n ≡ 0 or 2 mod 8. Then for any
G-Galois algebra L/K one has:

w2(qL) = (2) · (dL/K).

Corollary 1.4. Let G be a 2-reduced group of order n, n ≡ 0 mod 8. We assume that the
Sylow 2-subgroups of G are non-cyclic. Then for any G-Galois algebra L/K one has:

w1(qL) = w2(qL) = 0.

We note that Corollary 1.4 can be slightly generalized in the following way:

Corollary 1.5. Let G be a group of order n, n ≡ 0 mod 8 and let S be a Sylow 2-subgroup of
G. Suppose that:

i) S is non-cyclic;
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ii) S is the Sylow 2-subgroup of some 2-reduced group H.
Then for any G-Galois algebra L/K one has

w1(qL) = w2(qL) = 0.

Remark. Corollary 1.5 can be useful in cases where G itself is not 2-reduced. Let G = S be
the quaternion group of order 8. We note from the description of the cohomology ring mod 2
of G ([5], Appendix B) that G is not 2-reduced. However, since G can be seen as the Sylow
2-subgroup of the symmetric group S4, which is a 2-reduced group, we can apply Corollary
1.5. We conclude that if the Sylow 2-subgroups of a group G are quaternion groups of order
8, then, for any G-Galois algebra L/K one has w1(qL) = w2(qL) = 0.

If we now take the fieldK to be a global field, then we can use the Hasse-Minkowski Theorem
to deduce from Theorem 1.3 a precise description of the trace form.

Corollary 1.6. Let K be a global function field of characteristic different from 2 and let G be
a 2-reduced group of order n, n ≡ 0 or 2 mod 8. Then for any G-Galois algebra over K one
has the following properties:

i) qL '< 1, · · · , 1 > if the Sylow 2-subgroups of G are non-cyclic;
ii) qL '< 2, 2dL/K , 1, · · · , 1 > otherwise.

Suppose now that K is a number field. For any infinite place v of K we consider Lv =
L ⊗K Kv. This is a G-Galois algebra on Kv. If v is real, since Gal(C/R) is of order 2, then
we can associate to Lv/Kv an element of order 2 of G, which is unique up to conjugacy (see
Section 2.1), and that we denote by σ(Lv).

Corollary 1.7. Let K be a number field and let G be a 2-reduced group of order n, n ≡
0 mod 8. We assume that the Sylow 2-subgroups of G are non-cyclic. Then for any G-Galois
algebra L/K the following properties are equivalent:

i) The trace form qL is isometric to the unit form < 1, · · · , 1 >;
ii) σ(Lv) = 1 for any real place v of K.

Corollary 1.8. Let G be a 2-reduced group of order n, n ≡ 0 mod 8. We assume that the
Sylow 2-subgroups of G are non-cyclic. Then the trace form of any G-Galois algebra over a
totally imaginary number field is isomorphic to the unit form < 1, · · · , 1 >.
Remark. Clearly if G is of odd order, then obviously H i(G,Z/2Z) = {1} for all positive i;
this is the situation considered in [2]. This leads us to consider the situation in Corollary 1.7
with the stronger hypotheses

H1(G,Z/2Z) = H2(G,Z/2Z) = 0.

In this case, then ii) is also equivalent to L having a self-dual normal basis ([3] Theorem
3.2.1.). We note that under our weaker hypotheses we may obtain Galois algebras which have
a self-dual basis but do not have a self-dual normal basis. This is in particular the case for
any G-Galois algebra over an imaginary quadratic field when G = Sn, n ≥ 4.

Let L/Q be a Galois algebra of rank n and let v∞ be the archimedean place of Q. If
σ(Lv∞) = 1 then Lv∞/R is split and so L/Q is totally real; if σ(Lv∞) 6= 1, then Lv∞/R is
the product of n/2 copies of C and so L/Q is totally imaginary. We set dL := dL/Q. If q and
q′ are quadratic forms then we denote their direct orthogonal sum by q ⊕ q′ and the direct
orthogonal sum of s copies of q by s⊗ q.
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Corollary 1.9. Let G be a 2-reduced group of order n, n ≡ 0 or 2 mod 8 and let S be a Sylow
2-subgroup of G. Then for any G-Galois algebra L/Q we have:

i) qL '< 1, · · · , 1 > if L is totally real and S is non-cyclic;
ii) qL ' n

2⊗ < 1,−1 > and wi(qL) =
(n

2
i

)
, i ≥ 3 if L is totally imaginary and S is

non-cyclic;
iii) qL '< 2, 2dL, 1, · · · , 1 > if L is totally real and S is cyclic;
iv) qL ' (n2 − 1)⊗ < 1,−1 > ⊕ < (−1)(

n
2
−1)2, 2dL >, if L is totally imaginary and S is

cyclic.

The computation of the Hasse-Witt invariants of qL in ii) follows immediately from the
description of qL and the observation that for i ≥ 3 the cup product of i-times the class of
(−1) ∈ H1(GQ,Z/2Z) is the non trivial class of H i(GQ,Z/2Z) ' Z/2Z. In particular it
follows from the equality wi(qL) =

(n
2
i

)
that wi(qL) = 0 for i ≥ 3 and odd. The triviality of

the Hasse-Witt invariants for i odd can also be deduced from the triviality of w1(qL), which
is true since S is non-cyclic (see Proposition 4.1), and the equality w1(q) ·wi−1(q) = wi(q) for
any Galois algebra L/K and any odd integer i (see [10], (19.3)).

Example 1.10. 1) The splitting field of the polynomial X4 − X3 − 4X − 1 is a totally real
Galois extension of Q with Galois group S4; hence its trace form is isometric to the unit form.

2) The splitting field of X4 − 2X2 − 4X − 1 is a totally imaginary Galois extension of Q,
with Galois group S4; hence its trace form is isometric to 12⊗ < 1,−1 >.

To complete the study of the trace form we add in Section 5 a brief proof of a slight
generalization of Conner and Perlis result ([7], Theorem I.9.1).

Proposition 1.11. Let K be a global field and let L/K be a G-Galois algebra. Assume that
the Sylow 2-subgroups of G are non-metacyclic. Then

i) If K is a function field of characteristic different from 2 then the trace form is isometric
to the unit form.

ii) If K = Q , the following assertions are equivalent:
a) The trace form qL is isometric to the unit form < 1, · · · , 1 >;
b) L is totally real.

We now describe the structure and the content of the paper. In Section 2 we recall some
basic properties of Galois algebras and Hasse-Witt invariants of quadratic forms. Section 3 is
dedicated to the study of 2-reduced groups and contains the proof of Theorem 1.2. In Section 4
we compute the Hasse-Witt invariants of degree 1 and 2 of the trace form of G-Galois algebras
when the group G is 2-reduced; we prove Theorem 1.3 and some of its corollaries. In Section
5 we assume that the base field K is a global field and we prove some corollaries of Theorem
1.3 in this case. Finally, in the last section, we show how our results apply to a geometric
set-up where we replace Galois algebras by Galois covers of schemes.

2. Preliminaries

We recall that in this paper K is a field of characteristic different from 2, Ks is a separable
closure of K and GK is the Galois group Gal(Ks/K).

2.1. Galois algebras. Let G be a finite group. A G-Galois algebra over K is an etale K-
algebra L of degree n = |G|, endowed with an action of G such that the action of G on
X(L) = Homalg(L,Ks) is simply transitive. The group GK acts by composition on X(L).
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Fixing an element χ ∈ X(L) we attach to L a group homomorphism ΦL : GK → G defined
by

(2) ωχ = χΦL(ω) ∀ω ∈ GK .

We note that ΦL is independant of the choice of χ up to conjugacy. If we denote by E the
subfield χ(L) of Ks, then E is a Galois extension of K, with Galois group Im(ΦL), and the
algebra L is K-isomorphic to the product of m copies of E where m is the index of Im(ΦL)
in G. This implies an isometry

(3) qL ' m⊗ qE
of quadratic forms. Indeed when ΦL is surjective the G-algebra L is a Galois extension of K
with Galois group G. In the case where K = R, the group GK is of order 2 and so ΦL is
defined, up to conjugacy, by an element σ(L) ∈ G such that σ(L)2 = 1.

We denote by S(G) the group of permutations of G and by f : G → S(G) the group
homomorphism induced by the action of G on itself by left multiplication. We may identify
G and X(L) as sets via the map g → χg. Under this identification the action of GK on X(L)
provides us with a group homomorphism

(4) ϕL : GK −→ S(G)
ω 7−→ (g → ΦL(ω)g)

which is the composition of ΦL with f . Identifying G with [1, · · · , n] then f and ϕL become
respectively group homomorphisms f : G→ Sn and ϕL : GK → Sn.

2.2. Hasse-Witt invariants. If q is a non-degenerate quadratic form of rank n over K, we
choose a diagonal form < a1, · · · , an > of q with ai ∈ K×, and consider the cohomology classes

(ai) ∈ K×/(K×)2 ' H1(GK ,Z/2Z).

For 1 ≤ m ≤ n, the m-th Hasse-Witt invariant of q is defined to be

(5) wm(q) =
∑

1≤i1<···<im≤n
(ai1) · · · (aim) ∈ Hm(GK ,Z/2Z)

where (ai1) · · · (aim) is the cup product. Furthermore we set w0(q) = 1 and wm(q) = 0
for m > n. It can be shown that wm(q) does not depend on the choice of the particular
diagonalisation of q.

In the case where L/K is a G-Galois algebra as considered in Section 2.1, it follows from
the Whitney formula for the Hasse-Witt invariants of quadratic forms that (3) implies the
equalities:

(6) w1(qL) = mw1(qE) and w2(qL) =

(
m

2

)
w1(qE) · w1(qE) +mw2(qE).

3. 2-reduced groups

3.1. The 2-lift property. For a finite group G we consider the group extensions of G by
Z/2Z:

1→ Z/2Z→ G′ → G→ 1.

The isomorphism classes of such extensions correspond bijectively to the group H2(G,Z/2Z).
An extension is split if it corresponds to the zero class of H2(G,Z/2Z). In that case G′ is
isomorphic to the direct product Z/2Z×G.
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For a subgroup H of G we let resGH denote the restriction map

H2(G,Z/2Z)→ H2(H,Z/2Z).

Let S be the set of subgroups of G of order 2. We consider the group homomorphism

(7) sG : H2(G,Z/2Z) −→
∏

T∈S H
2(T,Z/2Z)

x 7−→ (resGT (x))T∈S
.

Definition 3.1. An extension of G by Z/2Z is said to have the 2-lift property if it defines an
element of Ker(sG). Similarly an element of H2(G,Z/2Z) is said to have the 2-lift property
if it belongs to Ker(sG).

We note that the terminology is justified by the following tautological lemma:

Lemma 3.2. The following assumptions are equivalent:
(1) 1→ Z/2Z→ G′ → G→ 1 has the 2-lift property;
(2) every element of G of order 2 has a lift in G′ of order 2.

Remark. It follows from the properties of the restriction map that for any subgroup H of G
we have the inclusion:

(8) resGH(Ker(sG)) ⊂ Ker(sH).

3.2. A cohomological characterization. In this section we shall be particularly interested
by the groups G such that Ker(sG) = 0, namely the groups G such that the split extension is
the unique extension of G by Z/2Z which has the 2-lift property. We recall that a finite group
G is said to be 2-reduced group if H2(G,Z/2Z) contains no non-zero nilpotent of H∗(G,Z/2Z).

Theorem 3.3. Let G be a finite group. Then the following assumptions are equivalent:
(1) Ker(sG) = 0;
(2) the group G is 2-reduced.

Proof. The proof of the theorem is an immediate consequence of the following lemma:

Lemma 3.4. Let x be an element of H2(G,Z/2Z). Then the following properties are equiva-
lent:

(1) x is a nilpotent element of the cohomological ring H∗(G,Z/2Z);
(2) x has the 2-lift property.

Proof. Let x ∈ H2(G,Z/2Z) be a nilpotent element of H∗(G,Z/2Z). For T ∈ S, the even
degree subring H2∗(T,Z/2Z) of H∗(T,Z/2Z) is isomorphic to the polynomial ring F2[z2] in
one variable, generated by the generator z2 of H2(T,Z/2Z). Since this ring is reduced, we
conclude that resGT (x) = 0 and so that x, by definition, has the 2-lift property. We now
consider an element x ∈ H2(G,Z/2Z) having the 2-lift property. It follows from (8) that for
any abelian 2-elementary subgroup H, then resGH(x) has the 2-lift property. We now have:

Lemma 3.5. For any elementary abelian 2-group H, then we have Ker(sH) = 0.

Proof. Suppose that 1 → Z/2Z → H ′ → H → 1 is an exact sequence having the 2-lift
property. Then any h of H ′ is the lift of an element of H and so satifies h2 = 1. Therefore H ′
is an abelian 2-elementary group and the sequence is split. �
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It follows from Lemma 3.5 that resGH(x) = 0 for any abelian 2-elementary subgroup. By
a theorem of Quillen [12] we know that every element x ∈ H∗(G,Z/2Z) which restricts to
zero on any elementary abelian 2-subgroup of G is nilpotent. Therefore we conclude that x is
nilpotent. This completes the proof of Lemma 3.4. �

�

Remark. We note that if G is the abelian elementary group (Z/2Z)n the cohomological
ring H∗(G,Z/2Z) is a polynomial ring F2[x1, ..., xn] and then, as expected, has no non zero
nilpotent element.

It is useful to note the following result:

Corollary 3.6. Let G be a finite group. Suppose that the Sylow 2-subgroups of G are 2-reduced
then G is 2-reduced.

Proof. Let S be a Sylow 2-subgroup of G. The group S being 2-reduced, it follows from (8)
that

resGS (Ker(sG)) ⊂ Ker(sS) = 0.

Since the index of S in G is odd, the restriction map is an injection and so Ker(sG)) = 0. �

3.3. Proof of Theorem 1.2. Our aim is to check that every group appearing in Theorem
1.2 is 2-reduced. It follows from Corollary 3.6 that in order to prove i) it suffices to prove that
cyclic or abelian elementary 2-groups are 2-reduced. The case of abelian elementary 2-groups
has been treated in Lemma 3.5. Let

(9) 1→ Z/2Z
i→ G′

s→ G→ 1

be an extension with the 2-lift property. We set im(i) = T = {e, t}.

Lemma 3.7. Assume that G is a 2-group. Then for any cyclic subgroup V of G the subgroup
s−1(V ) is abelian and equal to a direct product of T by a subgroup U of G′.

Proof. Since T is a central subgroup of s−1(V ) such that s−1(V )/T is cyclic then s−1(V ) is
an abelian group. Take a generator v of V and take U as the subgroup generated by a lift u
of v. Since the extension has the 2-lift property then U is a cyclic group of order equal to the
order of V which does not contain t. We conclude that s−1(V ) is the direct product of the
subgroup U and T . �

When G is a cyclic 2-group we may use Lemma 3.7 with V = G and conclude that every
extension of G with the 2-lift property is split.

In order to study extensions of G having the 2-lift property, Theorem 3.3 leads us to study
more precisely the cohomology algebra H∗(G,Z/2Z). Following Quillen [13] we shall say that
a family {Hi}i∈I of subgroups of G is a detecting family, if the map

H∗(G,Z/2Z)→
∏
i∈I

H∗(Hi,Z/2Z)

given by the restriction homomorphisms is injective. Since the 2-lift property is stable under
any restriction map we deduce that any group which has a detecting family of 2-reduced
subgroups is 2-reduced. This is precisely the case for symmetric, dihedral, linear groups
Gln(Fr)), orthogonal groups On(Fr), and M12 where the family of elementary abelian 2-
subgroups provides us with a family of detecting groups (see [13], Corollary 3.5, Theorem 4.3
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(4-5) and Lemma 4.6, [15], Lemma 13 and [1], VIII, Section 3.) which, according to Lemma
3.5, are 2-reduced.

Suppose now that G is the alternating group An, n ≥ 4. We know ([18], Section 1.5) that the
unique non trivial class ofH2(An,Z/2Z) is the restriction resSn

An
(sn) where sn ∈ H2(Sn,Z/2Z)

corresponds to the extension

(10) 1→ Z/2Z→ S̃n → Sn → 1

which is characterized by the property that transpositions in Sn lift to elements of order 2,
while products of two disjoint transpositions lift to elements of order 4. We conclude that
resSn

An
(sn) does not have the 2-lift property since a product of two disjoint transpositions has

a lift of order 4. Hence An is 2-reduced. This completes the proof of the theorem. �
Remarks. 1) We can also deduce that Sn is a 2-reduced group from the description of
H2(Sn,Z/2Z) given in [16]. This group is a non-cyclic group of order 4 for n ≥ 4. The first
of the three non-trivial extensions is the extension

1→ Z/2Z→ S̃n → Sn → 1

given in (10) above. The second such extension is the extension

1→ Z/2Z→ S′n → Sn → 1

which is obtained by pulling back, via the sign character εn : Sn → C×, the Kummer sequence

(11) 1→ Z/2Z ' ±1→ C× → C× → 1,

induced by squaring on C×. We prove that in this case the lift in S′n of any transposition in
Sn has order 4. The third and final such extension is the extension

1→ Z/2Z→ S′′n → Sn → 1

which represents the class of the sum of the two previous ones in H2(Sn,Z/2Z). By the
definition of Baer sums, we may describe S′′n and prove that any lift in S′′n of a transposition
in Sn has order 4. Therefore we conclude that the unique extension of Sn by Z/2Z having
the 2-lift property is the split extension and so that Sn is 2-reduced.
2) Let G be a group and let G

∫
Z/2Z be the wreath product. Recall that G

∫
Z/2Z is the

semi-direct product G2 o Z/2Z where Z/2Z is identified with the symmetric group S2 and
acts on G2 by permuting the factors. Suppose that the set of elementary abelian 2-subgroups
is a detecting family for the group G. Then it follows from a theorem of Quillen (see [1],
Theorem 4.3) that the same property holds for the wreath product G

∫
Z/2Z. Therefore we

conclude that every group G
∫
Z/2Z

∫
...
∫
Z/2Z is 2-reduced.

3) We know from Theorem 1.2 that amongst the groups of order 8 the cyclic group, the
elementary abelian 2-group and the dihedral group are 2-reduced. One should note that on
the contrary the quaternion group and the abelian group Z/4Z× Z/2Z are not. Let us treat
as an example the case of the quaternion group. Let G′ be the semi-direct product of two
cyclic groups of order 4 defined by the presentation

< u1, u2 |u41 = u42 = e, u2u1u
−1
2 = u−11 > .
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One notes that u21, u22 and u21u22 are the elements of order 2 ofG′ and that Z(G′) = {e, u21, u22, u21u22}
is the center of G′. We set T = {e, u21u22} and G = G′/T and we consider the exact sequence

(12) 1→ T → G′ → G→ 1.

The group G is the quaternion group of order 8 and the extension (12) has the 2-lift property.
One checks that every subgroupH of G′ of order 8 contains at least 2 distinct elements of order
2. Therefore H contains Z(G′) and is commutative since H/Z(G′) is cyclic. We conclude that
G′ does not contain any quaternion subgroup of order 8 and so that (12) is not split.

4. Hasse-Witt invariants of the trace form

In this section we consider a G-Galois algebra where G is a finite group and we denote
its trace form by qL. We attach to L/K the group homomorphisms ΦL : GK → G and
ϕL : GK → Sn introduced in Section 2. We recall that ϕL is the composition of ΦL with the
group homomorphism f : G→ Sn induced by left multiplication of G on itself. Our aim is to
compute the Hasse-Witt invariants of the trace form qL.

4.1. The invariant w1(qL). The discriminant of the form qL is by definition the discriminant
dL/K of the etale algebra L/K. The Hasse-Witt invariant w1(qL) is the class (dL/K) defined
by this discriminant in H1(GK ,Z/2Z). As a group homomorphism GK → Z/2Z it is the
composition εn ◦ ϕL where εn : Sn → {±1} ' Z/2Z is the signature map. Thus, w1(qL) = 0
if and only if f(Im(ΦL)) ⊂ An. Indeed this will be always the case if the order of G is odd.
We now consider the case where the rank of L/K is even. The following proposition is well
known at least for Galois extensions (see [7] Theorem 1.3.4.)

Proposition 4.1. L/K be a G-Galois algebra of finite even degree. Then w1(qL) = 0 if and
only if one of the following assumptions is satisfied:

(1) the Sylow 2-subgroups of G are non-cyclic;
(2) the index of Im(ΦL) in G is even.

Proof. We start by proving a lemma.

Lemma 4.2. Let G be a finite group of even order n then the following properties are equiv-
alent:

(1) Im(f) ⊂ An;
(2) the Sylow 2-subgroups of G are non-cyclic.

Proof. We write n = 2an′ with a ≥ 1 and n′ odd. Let g ∈ G be an element of 2-power order,
2b say, b ≤ a. Each orbit of g̃ := f(g) acting on [1, ..., n] is of length 2b and so g̃ decomposes
into a product of 2a−bn′ disjoint cycles of length 2b. Therefore we deduce that

εn(g̃) = (−1)(2
b−1)2a−bn′ = (−1)(n−2

a−bn′).

We conclude that if the 2-Sylow subgroups of G are not cyclic the image by f of any 2-power
order element of G belongs to An and so that Imf ⊂ An, whereas, if the 2-Sylow subgroups
of G are cyclic, then the signature of the image by f of any element of order 2a is odd. �

Following the proof of the Lemma we observe that w1(qL) = 0 if and only if Im(ΦL) does
not contain any element of order 2a that is to say if and only if (1) or (2) is satisfied.

�
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Corollary 4.3. Let L/K be a G-Galois algebra of either odd degree or of even degree, satisfying
the assumptions of Proposition 4.1; then wi(qL) = 0 if i is odd.

Proof. The result is an immediate consequence of Proposition 4.1 since we know that for any
non-degenerate quadratic form and any odd integer i the following equality holds:

w1(q) · wi−1(q) = wi(q)

(see [10], (19.3)). �

4.2. The group Pin(G). Let (V, q) be a quadratic form over K. We denote the Clifford
algebra of q by Cl(q). Recall that this is the quotient algebra T (V )/J(q), here T (V ) is
the tensor algebra of V and J(q) is the two-sided ideal of T (V ) generated by the elements
x⊗x− q(x)1 when x runs through the elements of V . We shall view V as embedded in Cl(q)
in the natural way. If we write q =< a1, · · · , an > with orthogonal basis {e1, · · · , en}, then
Cl(q) is generated as an algebra by the ei’s, with relations

e2i = ai, eiej = −ejei, if i 6= j.

The Clifford group C∗(q) is the group of homogeneous invertible elements x of Cl(q) such
that xvx−1 ∈ V for all v ∈ V . The algebra Cl(q) is endowed with an involutory anti-
automorphism x → xt with (x1 · · ·xm)t = (xm · · ·x1) for xi ∈ V . The map Cl(q) → Cl(q)
defined by x→ xtx restricts to a group homomorphism sp : C∗(q)→ K×. This is the spinor
norm of C∗(q). We define the group Pin(q) as the kernel of the spinor norm homomorphism.
The orthogonal map v → −v on (V, q) extends to an involutory automorphism I of Cl(q). We
let r : Pin(q) → O(q) be the group homomorphism given by r(x) : v → I(x)vx−1. Let n be
an integer, let V = (Ks)n be the direct sum of n copies of Ks and let t be the unit form on
V with

t(fi) = 1, t(fi, fj) = 0, i 6= j,

where {fi, 1 ≤ i ≤ n} is the canonical basis of V . We set On(Ks) = O(t) (resp. Pinn(Ks) =
Pin(t)). The homomorphism r yields an exact sequence of groups

(13) 1→ Z/2Z→ Pinn(Ks)→ On(Ks)→ 1,

where Z/2Z is the group with two elements.
We let G be a group of order n and let f : G → Sn be the group homomorphism induced

by left multiplication of G on itself. We denote by i the standard embedding Sn → On(Ks).
Pulling back (13) by i ◦ f provides us with an exact sequence

(14) 1→ Z/2Z→ Pin(G)→ G→ 1.

We observe that since the isomorphism S(G) → Sn is defined up to conjugacy, the class of
H2(G,Z/2Z) attached to the group extension (14) is well-defined.

4.3. Proof of Theorem 1.3 and Corollaries 1.4 and 1.5.

4.3.1. Proof of Theorem 1.3 and Corollary 1.4. The proof of Theorem 1.3 is a consequence of
the equality (1) and the following proposition:

Proposition 4.4. Let G be a group of even order n. Then the following properties are equiv-
alent:

(1) the group extension Pin(G) has the 2-lift property;
(2) n ≡ 0 or 2 mod 8.
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Proof. Take any element z of order two in G. Then the orbits of the left multiplication by z
on Sn all have order two. So z′ := f(z) is the product of n/2 disjoint transpositions in Sn.
For each transposition (i, j) of Sn, we can construct a lift to the Clifford algebra of t by taking
εi,j = (ei− ej)/

√
2. One easily checks that each of these belongs to Pinn(Ks) and has square

1. Moreover εi,j .εk,l = −εk,l.εi,j whenever (i, j) and (k, l) are disjoint transpositions of Sn. So,
by counting how many sign changes occur as we move lifts of transpositions past each other,
we see that the square of a lift of z′ is the identity if and only if n

2 (n2 − 1) ≡ 0 mod 4. This
proves the equivalence. �

We now return to the proof of the theorem; we let L/K be a G-Galois algebra of degree
n, n ≡ 0 or 2 mod 8 and we assume that G is 2-reduced. By Proposition 4.4 we know that
Pin(G) has the 2-lift property; since G is 2-reduced, this implies that the group extension
(14) is split and so the class cG is trivial. Therefore Theorem 1.3 follows from the equality (1)
whereas Corollary 1.4 is a consequence of Theorem 1.3 and Proposition 4.1. �

Remarks 1) One should note that, in order to prove that w2(qL) = 0, [18], the equality (1)
can be replaced by a slightly weaker result (see [6], Remark 6.6).
2) Suppose thatG is the group PSL2(Fq), q ≡ 5 mod 8. This is a group of order n = q(q2−1)/2
with elementary abelian Sylow 2-subgroups. It follows from Theorem 1.2 that G is 2-reduced.
However, since n ≡ 4 mod 8, we deduce from Proposition 4.4 that Pin(G) does not have the 2-
lift property and so that (14) is not split. It can be proved in this case that Pin(G) = SL2(Fq)
whose Sylow 2-subgroups are quaternion groups of order 8.

4.3.2. Proof of Corollary 1.5. If L/K is a G-Galois algebra and S a Sylow 2-subgroup of G,
we know that there exists a field extension K ′/K of odd degree, an S-Galois algebra M/K ′

and an isomorphism of G-Galois algebras over K ′

(15) L′ := K ′ ⊗K L ' IndG
S (M)

(see [3], Proposition 2.11). We recall that if ΦM : GK′ → S is the group homomorphism
attached to M/K ′, then the composition of ΦM by the canonical injection S → G is a group
homomorphism attached to IndG

S (M). From (15) we deduce an isometry of quadratic forms
qL′ ' m ⊗ qM where m is the index of S in G. Since S is a subgroup of H we may consider
the H-Galois algebra E = IndH

S (M). As a K ′-algebra E is the product of r copies of M
where r is the index of S in H. Hence we obtain an isometry of quadratic forms qE ' r⊗ qM .
Applying Theorem 1.3 to the H-Galois algebra E we obtain that w1(qE) = w2(qE) = 0.
Since r and m are odd integers, it suffices to apply (6) to deduce from the triviality of the
Hasse-Witt invariants of qE in degree 1 and 2 that w1(qM ) = w2(qM ) = 0 and so that
w1(qL′) = w2(qL′) = 0. The group GK′ is a subgroup of GK of odd index, therefore the
restriction maps

ResGK
GK′

: H i(GK ,Z/2Z)→ H i(GK′ ,Z/2Z)

are injective. Since ResGK
GK′

wi(qL) = wi(qL′) for each integer i, we conclude that w1(qL) =

w2(qL) = 0. �

4.4. Further results for Hasse-Witt invariants of the trace form. Let L/K be a G-
Galois algebra. If G is the direct product of the subgroups G1 and G2 we set L1 := LG2 and
L2 := LG1 . Then L1 and L2 are respectively G1 and G2-Galois algebras and L and L1 ⊗K L2
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are isomorphic K-algebras. This implies an isometry of the K-forms

(16) qL ' qL1 ⊗ qL2 .

For the sake of simplicity we set

H(GK ,Z/2Z)× = {1 + a1 + a2 ∈
⊕

0≤i≤2
H i(GK ,Z/2Z); ai ∈ H i(GK ,Z/2Z)}.

This is an abelian group under the law

(1 + a1 + a2)(1 + b1 + b2) = (1 + (a1 + b1) + (a2 + b2 + (a1)(b1)).

For a form q we set w(q) := 1 +w1(q) +w2(q) ∈ H(GK ,Z/2Z)×. We recall that w(q1⊕ q2) =
w(q1)w(q2).

Proposition 4.5. Let L/K be a G-Galois algebra and let S be a Sylow 2-subgroup of G. We
assume that S is the direct product of non-trivial subgroups G1 and G2 and that either G1 or
G2 is non-cyclic. Then one has the equalities:

w1(qL) = w2(qL) = 0.

Proof. By using once again [3] Proposition 2.1.1 it is easy to check that we may assume that
G = S. Suppose that G2 is a non-cyclic group of order n. By (16) we have an isometry of
quadratic forms qL ' qL1 ⊗ qL2 . After choosing a diagonalisation < a1, · · · , ar > of qL1 , we
obtain an isometry

(17) qL '
⊕
1≤i≤r

< ai > ⊗qL2 .

By [4] Proposition 1.1 we know that

(18) w(< a > ⊗qL2) = 1 + n(a) + w1(qL2) +

(
n

2

)
(a) · (a) + (n− 1)(a) · w1(qL2) + w2(qL2)

for any element a ∈ K×. Therefore, since n ≡ 0 mod 4 and G2 is non-cyclic, it follows from
(18) that w(< ai > ⊗qL2) = 1+w2(qL2) for each integer i. Therefore w(qL) = (1+w2(qL2))r =
1 since r is a power of 2. �

Corollary 4.6. Let L/K be a G-Galois algebra and let S be a Sylow 2-subgroup of G. We
assume that S is a non-metacyclic abelian group. Then one has the equalities

w1(qL) = w2(qL) = 0.

Proof. Since S is abelian it has a canonical decomposition into a product of cyclic groups.
Since S is non-metacyclic the decomposition of S contains at least three factors. Therefore S
satisfies the hypotheses of Proposition 4.5. �

When the group G is abelian it decomposes into a direct product S×S′ where S is the Sylow
2-subgroup of G and S′ is of odd order m say. Since S′ is of odd order, qLS '< 1, · · · , 1 >
by [2] and so qL is isomomorphic to m⊗ qE where E is the S-Galois algebra LS′ . We assume
that S is of order 2r, with r ≥ 3, (for r ≤ 2 the form qL has been described in [3] Section 6.1).
If S is either cyclic or equal to a direct product of s ≥ 3 non-trivial cyclic groups we have
computed the Hasse-Witt invariants w1(qL) and w2(qL) (see Theorem 1.3 and Proposition
4.5). We now assume that S is product of two cyclic groups. We know that w1(qL) = 0; our
aim is now to compute w2(qL). In general we observe that S is not 2-reduced in this case (see
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Section 3.3, Remarks 3)). We write S = S1 × S2 where Si is of order 2ri for i ∈ {1, 2} and
r1 ≥ 1, r2 ≥ 2. We set E1 = ES2 , E2 = ES1 and we denote by di the discriminant dEi/K .

Proposition 4.7. Let G be an abelian group and let L/K be a G-Galois algebra. We assume
that the Sylow 2-subgroup S of G is a product of two non-trivial cyclic groups. Then we have:

(1) w2(qL) = (d1d2, d2) if S has a direct factor of order 2;
(2) w2(qL) = (d1, d2) otherwise.

Proof. Since E is a S-Galois algebra and S is non-cyclic we know that w(qE) = 1 + w2(qE).
Since qL is isometric to m ⊗ qE , then w(qL) = w(qE)m = (1 + w2(qE))m and so, since m is
odd, we conclude that w2(qL) = w2(qE). From the isomorphism of algebras E ' E1 ⊗K E2

we deduce the isometry of forms qE ' qE1 ⊗ qE2 . If S has a direct factor of order 2, then qE1

is of rank 2 and qE2 is of rank 2r, r ≥ 2. We choose a diagonalisation < a1, a2 > of qE1 . Using
(18), we obtain that

(19) w(qE) =
∏

1≤i≤2
(1 + d2 + ((ai) · d2 + w2(qE2)),

and therefore that w(qE) = 1 + (d1d2, d2). We now suppose that S1 is of order 2s with s ≥ 2.
Then, for 1 ≤ i ≤ 2s−1, we can choose elements ai and bi in K× such that

qE1 =
⊕

1≤i≤2s−1

< ai, bi > .

Therefore one has:

(20) w(qE) =
∏

1≤i≤2s−1

w(< ai, bi > ⊗qE2) =
∏

1≤i≤2s−1

(1 + (d1(i)d2, d2))

with d1(i) = aibi. It follows from (20) that

w(qE) = 1 + (2s−1(d2, d2) +
∑

1≤i≤2s−1

(d1(i), d2)) = 1 + (d1, d2)

as required. �

5. Global fields

In this section K is either a global field of characteristic different from 2 or a number field.

5.1. Proof of Corollaries 1.6, 1.7, 1.8 and 1.9. We first observe that Corollary 1.8 is an
immediate consequence of Corollary 1.7. We let G be a group of order n; we denote by S a
Sylow 2-subgroup of G. We consider a G-Galois algebra L/K of degree n. For a place v of K
and a quadratic form r over K we let rv be the extended form Kv ⊗K r. For any place v of K
we know that wi(qL,v) is the image of wi(qL) by the restriction map induced by the injection
GKv → GK .

We first assume that the group S is non-cyclic. Let us denote by t the unit formX2
1 +...+X2

n

over K. For each place v of K it follows from Corollary 1.4 that

wi(qL,v) = wi(tv) = 0, i ∈ {1, 2}
so that qL,v and tv are isometric as forms over the local field Kv for any non-archimedean
place. Since any place of a global function field is non-archimedean, using Hasse-Minkowski
Theorem, we conclude that the trace form qL is isometric to t and Corollary 1.6 i) is proved.
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Suppose now that K is a number field. Let v be an archimedean place. If v is complex,
the forms qL,v and tv are isometric over C because they have the same rank. We now assume
that v is real. If σ(Lv) is trivial then Lv/Kv is completely split and so qL,v ' tv. If σ(Lv) is
non-trivial, then Lv is isomorphic as a Kv-algebra to a product of n/2 copies of C. The trace
form of C/R is isometric to < 1,−1 > and thus qL,v is isometric to n/2 copies of < 1,−1 >.
Since qL is isometric to t if and only if qL,v ' tv for any place v of K, then we conclude that
L/K has a self-dual basis if and only if σ(Lv) = 1 for any real place. This proves Corollary
1.7.

For K = Q there exists a unique non-archimedean place v∞. If L/Q is totally real then
σ(Lv∞) = 1 and so it follows from Corollary 1.7 that qL '< 1, · · · , 1 >. Suppose now that
L/Q is totally imaginary. We denote by r the Q-quadratic form (n/2)⊗ < 1,−1 >. Since
n ≡ 0 mod 8, using (6), we check that w1(r) = w2(r) = 0, and therefore, using Corollary
1.4, we deduce that wi(qL) = wi(r) for i ∈ {1, 2}. Moreover since σ(Lv∞) 6= 1, then qL,v∞
is isometric to (n/2)⊗ < 1,−1 > as R-forms. We conclude that qL and r having the same
Hasse-Witt invariants in degree 1 and 2 and having the same signature are isometric. Hence
Corollary 1.9 (1) and (2) are proved.

We now assume that the group S is cyclic. When K is a global function field or is equal
to Q, we let s be the quadratic form < 2, 2dL/K , 1, · · · , 1 >. One easily checks that wi(qL) =
wi(s) for i ∈ {1, 2}. If K = Q and L is totally real, then the forms qL and s have the
same signature. We conclude that q ' s when K is either a function field or when L/Q is
totally real. This completes the proof of Corollary 1.6 and proves Corollary 1.9 iii). Setting
s′ = (n2 − 1)⊗ < 1,−1 > ⊕ < (−1)(

n
2
−1)2, 2dL >, we complete the proof of Corollary 1.9 by

hand checking the equalities of the signatures and the Hasse-Witt invariants in degree 1 and
2 of the forms qL and s′. �

5.2. Proof of Proposition 1.11. We use the notation of Section 2.1. By a local field we
mean a field, complete with respect to a fixed discrete valuation, that has a perfect residue
field of positive characteristic .

Lemma 5.1. Let K be a local field with residual characteristic different from 2 and let G be
a finite group with non-metacyclic Sylow 2-subgroups. Then the trace form of any G-Galois
algebra over K is isometric to the unit form.

Proof. Let L/K be a G-Galois algebra, χ ∈ Homalg(L,Ks) and ΦL : GK → G be the mor-
phism attached to L. We set H = Im(ΦL). Since G is non-cyclic we know from Proposition 4.1
that w1(qL) = 0. Moreover, it follows from (6) that w2(qL) =

(
m
2

)
w1(qE) ·w1(qE) +mw2(qE),

where E denotes the subfield χ(L) of Ks and m is the index of H in G. Let S be the Sylow
2-subgroup of H. Since the residual characteristic of K is different from 2, the extension
E/ES is at most tamely ramified and so S is metacyclic (see [17], Chapter IV). Let S′ be a
Sylow 2-subgroup of G containing S and let 2r be the index of S in S′. The integer 2r divides
m and r ≥ 1 since S′ is not metacyclic. If S is not cyclic it follows from Proposition 4.1 that
w1(qE) = 0 and so that w2(qL) = 0 since m is even by hypothesis. If now S is cyclic, since
S′ is not metacyclic, then necessarily r ≥ 2 and so

(
m
2

)
is even and once again w2(qL) = 0.

We conclude that, if n denotes the degree of L/K, the form qL and the unit form of rank n
having the same Hasse-Witt invariants in degree 1 and 2 are isometric. �

Suppose now that L is a G-Galois algebra over K with non-metacyclic Sylow 2-subgroups.
If K is a global function field of characteristic different from 2, following the proof of Corollary
1.6, we deduce from Lemma 5.1 that qL and the unit form t are locally isometric at every
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place v of K and so we conclude that they are globally isometric. Similarly, when K = Q,
we deduce that qL and the unit form are locally isometric at every place v 6= 2. Using Hasse
reciprocity law we conclude that the same is true at v = 2 and therefore that qL and t are
isometric. �

6. Trace form of Galois covers of a scheme

Our goal is to use the results of the previous sections on group extensions and group
cohomology in a geometric set-up, namely when we replace the base field K by a connected
scheme Y in which 2 is invertible and the Galois G-algebra L/K by a Galois G-cover X → Y .
This can be done thanks to the generalisation of Serre’s comparison formula for étale covers
of schemes obtained by Kahn, Esnault and Viehweg in [9], Theorem 2.3.

We fix a connected scheme Y in which 2 is invertible. We recall that a symmetric bundle
over Y is given by (V, q) where V is a locally free OY -module and

q : V ⊗OY
V → OY

is a symmetric morphism of OY -modules. Let V ∨ be the dual of V . The form q induces
a morphism ϕq : V → V ∨ of OY -modules; we assume that ϕq is an isomorphism. In this
section we consider symmetric bundles attached to finite étale covers of Y . More precisely
if π : X → Y is a finite étale cover we denote by (VX , qX) the symmetric bundle where
VX = π∗(OX) and

qX : VX ⊗OY
VX → OY

is defined over any affine open subcheme Spec(A) ⊆ Y by

(x, y)→ TrB/A(xy), ∀ x, y ∈ B

where Spec(B) = π−1(Spec(A)). For any symmetric bundle (V, q) and any integer m ≥ 1
one can define the m-th Hasse-Witt invariant of q as an element of the étale cohomology
group Hm

et (Y,Z/2Z) (see [9] Section 1 or [6] Section 4.5); indeed when Y = Spec(K) and
X = Spec(L), where L/K is a finite separable algebra, then qX is defined by the trace form
qL of L/K and the Hasse-Witt invariants of qX coincide with the Hasse-Witt invariants of qL
introduced in Section 2.2.

Let π1(Y, y) be the fundamental group of Y based at some geometric point y. We consider
a finite group G and a finite étale Galois cover π : X → Y of group G = AutY (X). Hence
the finite set HomY (y,X) is endowed on the one hand with a simply transitive action of G,
induced by the action of G on X, and on the other hand with a continuous action of π1(Y, y).
Following the lines of Section 2.1, the choice of a point χ ∈ HomY (y,X) gives a surjective
group homomorphism ΦX : π1(Y, y) → G, which does not depend on χ up to conjugacy.
By composition with f : G → Sn, we obtain a group homomorphism π1(Y, y) → Sn. Let
Ks be a separable closure of the residue field of some point of Y . We obtain an orthogonal
representation

ρX : π1(Y, y)→ G→ Sn → On(Ks)

by composing f ◦ ΦX with the standard embedding i : Sn → On(Ks). We can now associate
cohomological invariants to the orthogonal representation ρX . The first class w1(ρX) is the
group homomorphism det ◦ ρ ∈ H1(π1(Y, y),Z/2Z). The second class w2(ρX) is defined as
the pull-back by ρX of the group extension (13), Section 4.2. It follows from the definition of
ρX that w2(ρX) = Φ∗X(cG) where cG ∈ H2(G,Z/2Z) is defined by the group extension

1→ Z/2Z→ Pin(G)→ G→ 1
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introduced in (14), Section 4.2. Finally we define wi(π) ∈ H i
et(Y,Z/2Z), i ∈ {1, 2}, as

the image of wi(ρX) by the canonical group homomorphism can : H i(π1(Y, y),Z/2Z) →
H i

et(Y,Z/2Z). We note that can is an isomorphism for i = 1 and an injective morphism for
i = 2. Moreover wi(π) does not depend of the choice of the geometric point y.

For any unit a ∈ Γ(Y,Gm) we denote by (a) ∈ H1
et(Y,Z/2Z) the image of a by the boundary

map associated to the Kummer exact sequence of etales sheaves

0 // Z/2Z // Gm
2 // Gm

// 0.

Theorem 1.3 and Corollary 1.4 can be generalised as follows:

Theorem 6.1. Let G be a 2-reduced group of order n, n ≡ 0 or 2 mod 8. Then for any
G-Galois cover π : X → Y over Y one has:

w2(qX) = (2) · w1(π).

Moreover if the Sylow 2-subgroups of G are non-cyclic. Then

w1(qX) = w2(qX) = 0.

Proof. We consider the orthogonal representation ρX : π1(Y, y) → On(Ks) attached to π :
X → Y . Since the group G is 2-reduced it follows from Proposition 4.4 that the class cG is
trivial and so that w2(ρX) = Φ∗X(cG) = 0. Moreover if the Sylow 2-subgroups of G are non-
cyclic we know from Lemma 4.2 that Im(f) is contained in An and therefore that w1(ρX) = 0.
We deduce from [9] Theorem 2.3 the following equalities:

(21) w1(qX) = w1(π) and w2(qX) = w2(π) + (2) · w1(π).

Therefore the theorem follows immediately from (21) and the equalities wi(π) = can(wi(ρX)).
�
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