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The classifying topos of a group scheme and invariants
of symmetric bundles

Ph. Cassou-Noguès, T. Chinburg, B. Morin and M. J. Taylor

Abstract

Let Y be a scheme in which 2 is invertible and let V be a rank n vector bundle on Y endowed
with a non-degenerate symmetric bilinear form q. The orthogonal group O(q) of the form q is a
group scheme over Y whose cohomology ring H∗(BO(q),Z/2Z) � AY [HW1(q), . . . , HWn(q)] is a
polynomial algebra over the étale cohomology ring AY := H∗(Yet,Z/2Z) of the scheme Y . Here,
the HWi(q)’s are Jardine’s universal Hasse–Witt invariants and BO(q) is the classifying topos of
O(q) as defined by Grothendieck and Giraud. The cohomology ring H∗(BO(q),Z/2Z) contains
canonical classes det[q] and [Cq] of degree 1 and 2, respectively, which are obtained from the
determinant map and the Clifford group of q. The classical Hasse–Witt invariants wi(q) live in
the ring AY .

Our main theorem provides a computation of det[q] and [Cq] as polynomials in HW1(q) and
HW2(q) with coefficients in AY written in terms of w1(q), w2(q) ∈ AY . This result is the source of
numerous standard comparison formulas for classical Hasse–Witt invariants of quadratic forms.
Our proof is based on computations with (abelian and non-abelian) Cech cocycles in the topos
BO(q). This requires a general study of the cohomology of the classifying topos of a group scheme,
which we carry out in the first part of this paper.

1. Introduction

In [6, 18], Fröhlich and Serre proved some beautiful formulas that compared invariants
associated to various kinds of Galois representations and quadratic forms defined over a field
K of characteristic different from 2. Their work has inspired numerous generalizations (see,
for example, [2, 4, 17]). The basic underlying idea may be summarized as follows. Let (V, q)
be a symmetric bundle, defined over a scheme Y in which 2 is invertible and let O(q) be the
orthogonal group of (V, q) considered as a group scheme over Y . We may associate to any
orthogonal representation ρ : G→ O(q) of a finite discrete group G and any G-torsor X on Y
a cocycle in the cohomology set H1(Yet,O(q)). Since this set classifies the isometry classes of
symmetric bundles with the same rank of q, we may attach to (ρ,X) a new symmetric bundle
(VX , qX), known as the Fröhlich twist of (V, q). The results consist of various comparison
formulas, in the étale cohomology ring H∗(Yet,Z/2Z), which relate the Hasse–Witt invariants
of (V, q) to those of its twisted form (VX , qX). One of the principal aims of this paper is
to show that all these comparison formulas, together with a number of new results, can be
immediately deduced by pulling back from a single equation which sits in the cohomology
ring H∗(BO(q),Z/2Z) of the classifying topos BO(q) and which is independent of any choice of
particular orthogonal representation and particular torsor.

In [7, 10], Grothendieck and Giraud introduced the notion of the classifying topos of a group
object in given topos, and they suggested that it could be used in the theory of characteristic
classes in algebraic geometry. Building on their insight, we will prove our main theorem using
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both abelian and non-abelian Cech cohomology of the classifying topos BO(q) of the group
scheme O(q). To this end, the first part of this paper, namely Sections 2 and 3, is devoted to
the study of some basic properties of the classifying topos BG of a Y -group scheme G which is
defined as follows. Let Yfl denote the category of sheaves of sets on the big fppf-site of Y and
let yG denote the sheaf of groups of Yfl represented by G. Then BG is simply the category of
objects F of Yfl endowed with a left action of yG. We may view a Y -scheme as an object of
Yfl and write G for yG.

In Section 2, we recall the fact that there is a canonical equivalence

HomtopYfl
(E , BG)op ∼−→ Tors(E , f∗G), (1)

where f : E → Yfl is any topos over Yfl, HomtopYfl
(E , BG) is the category of morphisms of

Yfl-topoi from E to BG and Tors(E , f∗G) is the groupoid of f∗G-torsors in E .
Section 3 is devoted to the study of the cohomology of BG. First, we show that there is a

canonical isomorphism

H∗(BG,A) � H∗(BGet,A), (2)

where the right-hand side denotes the étale cohomology of the simplicial scheme BG (as defined
in [5]) and A is an abelian object of BG that is representable by a smooth Y -scheme supporting
a G-action. It follows that, for a constant group G, the cohomology of BG (or more generally
the cohomology of BG/X for any Y -scheme X with a G-action) computes Grothendieck’s
mixed cohomology (see [8, 2.1]). There are several interesting spectral sequences and exact
sequences that relate the cohomology of BG to other kinds of cohomology. For example, for
any commutative group scheme A endowed with a left action of G, there is an exact sequence

0 −→ H0(BG,A) −→ H0(Yfl,A) −→ CroisY (G,A) −→ H1(BG,A)

−→ H1(Yfl,A) −→ ExtY (G,A) −→ H2(BG,A) −→ H2(Yfl,A), (3)

where A = y(A), CroisY (G,A) is the group of crossed homomorphisms from G to A (which is
just HomY (G,A) if G acts trivially on A) and ExtY (G,A) is the group of extensions 1 → A→
G̃→ G→ 1 inducing the given G-action on A.

We shall also establish the existence of a Hochschild–Serre spectral sequence in this context.
Let 1 → N → G→ G/N → 1 be an exact sequence of S-group schemes (with respect to the
fppf-topology). Then, for any abelian object A of BG, there is a natural G/N -action on the
cohomology Hj

S(BN ,A) of A with values in Sfl (see Notation 3.9) and we have the spectral
sequence

Hi(BG/N ,H
j
S(BN ,A)) =⇒ Hi+j(BG,A).

The five-term exact sequence induced by this spectral sequence reads as follows:

0 −→ H1(BG/N ,A) −→ H1(BG,A) −→ H0(BG/N ,Hom(N,A))

−→ H2(BG/N ,A) −→ H2(BG,A), (4)

where we assume for simplicity that A is given with trivial G-action.
This then concludes our description of the first part of the article, which is of a relatively

general nature.
The aim of the second part of this paper, which starts from Section 4, is to apply the

general results of the first part to the study of symmetric bundles and their invariants. From
Section 4 on, we fix a scheme Y in which 2 is invertible and a symmetric bundle (V, q) on Y ,
that is, a locally free OY -module V of rank n endowed with a non-degenerate bilinear form
V ⊗OY

V → OY . A special case is given by (On
Y , tn = x2

1 + · · · + x2
n), the standard form of rank

n, and O(n) is defined as the orthogonal group for this form. The isomorphism (2), together
with a fundamental result of Jardine (see [14, Theorem 2.8]), yields a canonical identification
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of A-algebras

H∗(BO(n),Z/2Z) � H∗(BO(n)et,Z/2Z) � A[HW1, . . . , HWn],

where HWi has degree i and A := H∗(Yet,Z/2Z) is the étale cohomology ring of Y . The
symmetric bundle (V, q) provides us with the object Isom(tn, q) of Yfl, which naturally
supports a right action of O(n) and a left action of O(q). It is easily seen that Isom(tn, q)
is in fact an O(n)-torsor of BO(q). It follows from (1) that this torsor may be viewed as a
Yfl-morphism

Tq : BO(q) −→ BO(n).

This morphism is actually an equivalence of Yfl-topoi. Indeed, Tq has a quasi-inverse

T−1
q : BO(n)

∼−→ BO(q)

given by the O(q)-torsor Isom(q, tn) of BO(n). Note that, however, the groups O(n) and O(q)
are not isomorphic in general. For a proof of the analogous fact in the simplicial framework, we
refer the reader to [13, Theorem 3.1] where it is shown that the simplicial sheaves associated
to O(n) and O(q) are weakly equivalent).

This yields a canonical isomorphism of A-algebras

H∗(BO(q),Z/2Z) � A[HW1(q), . . . , HWn(q)],

where HWi(q) := T ∗
q (HWi) has degree i. The classes HWi(q), 1 � i � n, will be called the

universal Hasse–Witt invariants of q. We may now view the object Isom(tn, q) as an O(n)-
torsor of Yfl; it therefore yields a map

{q} : Yfl −→ BO(n),

which, incidentally, determines q. The classical Hasse–Witt invariants of q are defined by

wi(q) := {q}∗(HWi) ∈ Hi(Y,Z/2Z).

We can attach to (V, q) both a canonical map detO(q) : O(q) → Z/2Z and also the central
group extension

1 −→ Z/2Z −→ Õ(q) −→ O(q) −→ 1 (5)

derived from the Clifford algebra and the Clifford group of q. It turns out, by considering the
sequence (3), that the map detO(q) yields a cohomology class det[q] ∈ H1(BO(q),Z/2Z), while
the extension (5) gives us a cohomology class [Cq] ∈ H2(BO(q),Z/2Z). The main result of the
second part of the paper provides an explicit expression of det[q] and [Cq] as polynomials in
HW1(q) and HW2(q) with coefficients in A expressed in terms of w1(q), w2(q) ∈ A. To be more
precise, we will prove the following theorem.

Theorem 1.1. Let Y be a scheme in which 2 is invertible and let (V, q) be a symmetric
bundle on Y . Assume that Y is the disjoint union of its connected components. Then we have
the equalities

det[q] = w1(q) +HW1(q)

and

[Cq] = (w1(q) · w1(q) + w2(q)) + w1(q) ·HW1(q) +HW2(q)

in the polynomial ring

H∗(BO(q),Z/2Z) � A[HW1(q), . . . , HWn(q)].
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Section 5 is devoted to the proof of this result. The identity in degree 1 is proved using simple
computations with torsors. The proof of the identity in degree 2 is more involved and is based
on computations with Cech cocycles. A technical reduction makes use of the exactness of the
sequence (4) derived from the Hochschild–Serre spectral sequence for group extension (5).

Theorem 1.1 is the source of numerous comparison formulas, which are either new results
or generalizations of known results (see [2, 4, 15]), by using the following method: for any
topos E given with an O(q)-torsor, we have the canonical map f : E → BO(q), and we derive
comparison formulas in H∗(E ,Z/2Z) by applying functor f∗ to the universal comparison
formulas of Theorem 1.1. For example, given an O(q)-torsor α on Y , we consider the map
f : E = Yfl → BO(q), which classifies α, and we thereby obtain an identity in Hi(Yfl,Z/2Z) for
i = 1, 2. Our result, Corollary 6.1, generalizes a result of Serre to any base scheme Y . A second
example is provided by an orthogonal representation ρ : G→ O(q) of a Y -group scheme G: here
we consider the map Bρ : BG → BO(q) and thereby get identities in H∗(BG,Z/2Z). It should
be noted that Corollary 6.3 is new, even in the case when G is a constant (= discrete) group.
A third example is provided by an orthogonal representation ρ : G→ O(q) and a G-torsor X
on Y : in this case we may consider the map

Yfl
X−→ BG

Bρ−→ BO(q)

in order to derive identities in H∗(Yfl,Z/2Z) (see Corollary 6.5); the result that we obtain
essentially generalizes the theorem of Fröhlich–Kahn–Snaith (see [13, Theorem 2.4]). Our result
is general in the sense that Y is an arbitrary scheme (except that 2 must be invertible) and G
is not assumed to be constant. However, we should remark that we do not obtain a complete
analogue of [13, Theorem 1.6(ii)], when G is a non-constant group scheme (see the remark of
Section 6). Twists of symmetric bundles by G-torsors (for a non-constant group scheme G)
appear naturally in situations of arithmetic interest (for instance, the trace form of any finite
and separable algebra is a twist of the standard form). The formulas in Corollary 6.5 provide
us with tools to deal with the embedding problems associated to torsors; it is our intention to
return to these questions in a forthcoming paper.

2. The classifying topos of a group scheme

2.1. The definition of BG

Let S be a scheme. We consider the category of S-schemes Sch/S endowed with the étale
topology or fppf-topology. Recall that a fundamental system of covering families for the fppf-
topology is given by the surjective families (fi : Xi → X) consisting of flat morphisms that are
locally finitely presented. The corresponding sites are denoted by (Sch/S)et and (Sch/S)fppf .
The big flat topos and the big étale topos of S are defined as the categories of sheaves of sets
on these sites:

Sfl := ˜(Sch/S)fppf and SEt := ˜(Sch/S)et.

Here, C̃ denotes the category of sheaves on a site C. The identity (Sch/S)et → (Sch/S)fppf
is a continuous functor. It yields a canonical morphism of topoi

i : Sfl −→ SEt.

This map is an embedding, that is, i∗ is fully faithful; hence Sfl can be identified with the full
subcategory of SEt consisting of big étale sheaves on S which are sheaves for the fppf-topology.
The fppf-topology on the category Sch/S is subcanonical (hence so is the étale topology). In
other words, any representable presheaf is a sheaf. It follows that the Yoneda functor yields a
fully faithful functor

y : Sch/S −→ Sfl. (6)
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For any S-scheme Y , we consider the slice topos Sfl/yY (that is, the category of maps F → yY
in Sfl). We have a canonical equivalence [10, IV, Section 5.10]

Sfl/yY := ˜(Sch/S)fl/yY � ˜(Sch/Y )fl =: Yfl.

The Yoneda functor (6) commutes with projective limits. In particular, it preserves products
and the final object; hence a group scheme G over S represents a group object yG in Sfl, that
is, a sheaf of groups on the site (Sch/S)fl.

Definition 2.1. The classifying topos BG of the S-group scheme G is defined as the
category of objects in Sfl given with a left action of yG. The étale classifying topos Bet

G of the
S-group scheme G is defined as the category of objects in SEt given with a left action of yG.

More explicitly, an object of BG (respectively, of Bet
G ) is a sheaf F on Sch/S for the fppf-

topology (respectively, for the étale topology) such that, for any S-scheme Y , the set F(Y ) is
endowed with a G(Y )-action

HomS(Y,G) ×F(Y ) −→ F(Y ),

which is functorial in Y . We have a commutative diagram (in fact a pull-back) of topoi

BG

��

�� Bet
G

��
Sfl

i �� SEt

where the vertical morphisms are defined as in (7).

2.2. Classifying torsors

More generally, let S be any topos and let G be any group in S. We denote by Tors(S, G) the
category of G-torsors in S. Recall that a (right) G-torsor in S is an object T endowed with a
right action μ : T ×G→ T of G such that:

(i) the map T → eS is an epimorphism, where eS is the final object of S;
(ii) the map (p1, μ) : T ×G→ T × T is an isomorphism, where p1 is the projection on the

first component.

An object T in S, endowed with a right G-action, is a G-torsor if and only if there exists an
epimorphic family {Ui → eS} such that the base change Ui × T is isomorphic to the trivial
(Ui ×G)-torsor in S/Ui, that is, if there is a (Ui ×G)-equivariant isomorphism

Ui × T � Ui ×G

defined over Ui, where Ui ×G acts on itself by right multiplication.
The classifying topos

BG := BG(S)

is the category of left G-objects in S. The fact that BG is a topos follows easily from Giraud’s
axioms; the fact that BG classifies G-torsors is recalled below. We denote by

π : BG −→ S (7)

the canonical map: the inverse image functor π∗ sends an object F in S to F with trivial
G-action. Indeed, π∗ commutes with arbitrary inductive and projective limits; hence π∗ is the
inverse image of a morphism of topoi π. In particular, the group π∗G is given by the trivial
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action of G on itself. Let EG denote the object of BG defined by the action of G on itself by
left multiplication. Then the map

EG × π∗G −→ EG,

given by right multiplication is a morphism of BG (that is, it is G-equivariant). This action
provides EG with the structure of a right π∗G-torsor in BG. We shall also use the following
notation.

Notation 2.2. Let G be a group in a topos S and let X (respectively, Y ) be an object in
S endowed with a right action of G (respectively, with a left action of G). Then the contracted
product

X ∧G Y := (X × Y )/G

is the quotient of the diagonal G-action on X × Y .

If f : E → S and f ′ : E ′ → S are topoi over the base topos S, then we denote by
HomtopS(E , E ′) the category of S-morphisms from E to E ′. An object of this category
is a pair (a, α) where a : E → E ′ is a morphism and α : f ′ ◦ a � f is an isomorphism, that
is, an isomorphism of functors α : f ′∗ ◦ a∗ � f∗, or equivalently, an isomorphism of functors
α : f∗ � a∗ ◦ f ′∗. A map τ : (a, α) → (b, β) in the category HomtopS(E , E ′) is a morphism (of
morphism of topoi) τ : a→ b compatible (in the obvious sense) with α and β. The following
result is well known; see [7, VIII.4.3].

Theorem 2.3. Let f : E → S be a morphism of topoi and let BG be the classifying topos
of a group G in S. The functor

Ψ : HomtopS(E , BG)op −→ Tors(E , f∗G),
(a, α) 	−→ a∗EG

is an equivalence of categories. A quasi-inverse for Ψ is given by

Ψ−1 : Tors(E , f∗G) −→ HomtopS(E , BG)op,
T 	−→ (aT , αT ),

where

a∗T : BG −→ E ,
X 	−→ f∗X ∧f∗G T

and αT : f∗ � a∗T ◦ π∗ is the obvious isomorphism.

An immediate corollary is the following result; see [7, VIII. Corollaire 4.3].

Corollary 2.4. Let f : E → S be a morphism of topoi and let G be a group in S. Then
the following square:

Bf∗G(E)

��

�� BG(S)

π

��
E f �� S

is a pull-back.
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2.3. Torsors under group scheme actions

Corollary 2.5. Let G be a group scheme over S and let Y be an S-scheme. There are
canonical equivalences

Tors(Yfl, GY )op � HomtopYfl
(Yfl, BGY

)

� HomtopSfl
(Yfl, BG)

� HomtopSEt
(Yfl, Bet

G ).

Proof. The first equivalence follows directly from the previous theorem, and so does the
second equivalence, since the inverse image of y(G) along the morphism Yfl → Sfl is the
sheaf on Y represented by GY = G×S Y . The third equivalence follows from the canonical
equivalence

BG := BG(Sfl) � Sfl ×SEt BG(SEt)

given by Corollary 2.4.

The key case of interest is provided by an S-group scheme G which is flat and locally of
finite presentation over S. For an S-scheme Y , denote by Tors(Y,GY ) the category of GY -
torsors of the scheme Y ; that is, the category of maps T → Y which are faithfully flat and
locally of finite presentation, supporting a right action T ×Y GY → T such that the morphism
T ×Y GY → T × T is an isomorphism of T -schemes. The Yoneda embedding yields a fully
faithful functor

y : Tors(Y,GY ) −→ Tors(Yfl, GY ).

This functor is not an equivalence (that is, it is not essentially surjective) in general. However,
it is an equivalence in certain special cases; see [16, III, Theorem 4.3]. In particular, this is the
case when G is affine over S.

Corollary 2.6. Let Y be an S-scheme. Let G be a flat group scheme over S that is locally
of finite type. Assume that G is affine over S. Then we have an equivalence of categories

Tors(Y,GY )op � HomtopSfl
(Yfl, BG).

Notation 2.7. Let G be a flat affine group scheme over S that is of finite type and let Y
be an S-scheme. We have canonical equivalences

Tors(Y,GY )op � Tors(Yfl, GY )op

� HomtopSfl
(Yfl, BG(Sfl))

� HomtopYfl
(Yfl, BGY

(Yfl)).

If a Y -scheme T is aGY -torsor over Y , then we again denote by T the object of Tors(Yfl, GY )op,
and also denote by T,

T : Yfl −→ BG(Sfl)

the corresponding object of HomtopSfl
(Yfl, BG(Sfl)); and similarly we denote by T,

T : Yfl −→ BGY
(Yfl),

the corresponding object of HomtopYfl
(Yfl, BGY

(Yfl)).
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2.4. The big topos BG/X of G-equivariant sheaves

Let X be an S-scheme endowed with a left action (over S) of G. Then yX is a sheaf on
(Sch/S)fppf with a left action of yG (since y commutes with finite projective limits). The
resulting object of BG will be denoted by y(G,X), or just by X if there is no risk of ambiguity.
The slice category BG/X is a topos, which we refer to as the topos of G-equivariant sheaves
on X. This terminology is justified by the following observation: an object of BG/X is given
by an object F → X of Sfl/X � Xfl (that is, a sheaf on the fppf-site of X), endowed with an
action of yG such that the structure map F → X is G-equivariant. We have a (localization)
morphism

f : BG/X −→ BG

whose inverse image maps an object F of BG to the (G-equivariant) projection F ×X → X,
where yG acts diagonally on F ×X.

Let Y be an S-scheme with trivial G-action, and consider the topos BG/Y . We denote by
GY := G×S Y the base change of the S-group scheme G to Y and we consider the classifying
topos BGY

of the Y -group scheme GY . Recall that BGY
is the category of y(GY )-equivariant

sheaves on (Sch/Y )fl. The following result shows that the classifying topos BG behaves well
with respect to base change.

Proposition 2.8. If G acts trivially on an S-scheme Y, then there is a canonical
equivalence

BGY
� BG/Y.

Proof. Let π : BG → Sfl denote the canonical map. On the one hand by [10, IV, Section
5.10], the square

BG/π
∗(yY ) ��

��

Sfl/yY

��
BG

π �� Sfl

is a pull-back. Note that π∗(yY ) is given by the trivial action of G on Y so that BG/π∗(yY ) =
BG/Y . On the other hand, the square

Bg∗(yG)(Sfl/yY ) ��

��

BG

��
Sfl/yY

g �� Sfl

is also a pull-back by Corollary 2.4. Hence, we have canonical equivalences

BG/Y � BG ×Sfl
Sfl/yY � BSfl/yY (g∗(yG)).

Here, the first equivalence (respectively, the second) is induced by the first (respectively the
second) pull-back square above. Finally, we have g∗(yG) = y(G×S Y ) = y(GY ) in the topos
Sfl/yY � Yfl; hence, we obtain

BSfl/yY (g∗(yG)) � BYfl
(yGY ) = BGY

.
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3. Cohomology of group schemes

The cohomology of a Lie group can be defined as the cohomology of its classifying space.
Analogously, Grothendieck and Giraud defined the cohomology of a group object G in a topos
as the cohomology of its classifying topos BG.

Definition 3.1. Let G be an S-group scheme and let A be an abelian object of BG =
ByG(Sfl). The cohomology of the S-group scheme G with coefficients in A is defined as

Hi(G,A) := Hi(BG,A).

Note that any commutative group scheme A over S, endowed with an action of G, gives rise
to an abelian object in BG. Note also that, in the case where the S-group scheme G is trivial
(that is, G = S), the cohomology of G is reduced to the flat cohomology of S.

In this section, we show that the cohomology of the classifying topos BG of a group scheme
with coefficients in a smooth commutative group scheme coincides with the étale cohomology
of the simplicial classifying scheme BG. This fact holds in the more general situation given by
the action of G on a scheme X over S.

Definition 3.2. Let X be an S-scheme endowed with a left G-action. We define the
equivariant cohomology of the pair (G,X) with coefficients in an abelian object A of BG/X by

Hi(G,X,A) := Hi(BG/X,A).

Note that if X = S is trivial, then the equivariant cohomology of the pair (G,X) is just the
cohomology of the S-group scheme G as defined before. If the group scheme G is trivial, then
the equivariant cohomology of the pair (G,X) is the flat cohomology of the scheme X.

3.1. Etale cohomology of simplicial schemes

After recalling the notions of simplicial schemes and simplicial topoi, we observe that the big
and the small étale sites of a simplicial scheme have the same cohomology. References for this
section are [5, I,II, 11, VI, Section 5].

The category Δ of standard simplices is the category whose objects are the finite ordered sets
[0, n] = {0 < 1 < · · · < n} and whose morphisms are non-decreasing functions. Any morphism
[0, n] → [0,m], other than identity, can be written as a composite of degeneracy maps si and face
maps di. Here, recall that si : [0, n+ 1] → [0, n] is the unique surjective map with two elements
mapping to i and that di : [0, n− 1] → [0, n] is the unique injective map avoiding i. A simplicial
scheme is a functor X• : Δop → Sch. As usual, we write Xn := X•([0, n]), di = X•(di) for the
face map and si = X•(si) for the degeneracy map. From the functor X•, we deduce a simplicial
topos

X•, et : Δop −→ Top,
[0, n] 	−→ Xn, et,

where X•, et([0, n]) = Xn, et is the small étale topos of the scheme Xn, that is, the category of
sheaves on the category of étale Xn-schemes endowed with the étale topology. Strictly speaking,
X•, et is a pseudo-functor from Δop to the 2-category of topoi.

Finally, we consider the total topos Top(X•, et) associated to this simplicial topos (see [11,
VI. 5.2]). Recall that an object of Top(X•, et) consists of the data of objects Fn of Xn, et

together with maps α∗Fm → Fn in Xn, et for each α : [0,m] → [0, n] in Δ satisfying the natural
transitivity condition for a composite map in Δ. The arrows in Top(X•, et) are defined in the
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obvious way. We observe that this category is equivalent to the category of sheaves on the etale
site Et(X•) as defined in [5, I, Definition 1.4].

In a similar way, we define the big étale simplicial topos associated to X• as follows:

X•,Et : Δop −→ Top,
[0, n] 	−→ Xn,Et,

here, Xn,Et is the big étale topos of the scheme Xn, that is, the category of sheaves on the
category Sch/Xn endowed with the étale topology. Then we denote by Top(X•,Et) the total
topos associated to X•,Et.

Lemma 3.3. For any simplicial scheme X•, there is a canonical morphism of topoi

ι : Top(X•,Et) −→ Top(X•, et)

such that the map

Hi(Top(X•, et),A) −→ Hi(Top(X•,Et), ι∗A)

is an isomorphism for any i � 0 and for any abelian sheaf A of Top(X•, et).

Proof. The canonical morphism YEt → Yet, from the big étale topos of a scheme Y to its
small étale topos, is pseudo-functorial in Y ; this follows immediately from the description of
this morphism in terms of morphism of sites. Hence, we have a morphism of simplicial topoi

ι• : X•,Et −→ X•, et

inducing a morphism between total topoi:

ι : Top(X•,Et) −→ Top(X•, et).

Note that we have a commutative diagram of topoi

Xn,Et
ιn ��

fn

��

Xn,et

gn

��
Top(X•,Et)

ι �� Top(X•, et)

for any object [0, n] of Δ. Here, the inverse image g∗n (respectively, f∗n) of the vertical
morphism gn : Xn,et → Top(X•, et) (respectively, fn : Xn,Et → Top(X•,Et)) maps an object
F = (Fn; α∗Fm → Fn) of the total topos Top(X•, et) (respectively, of Top(X•,Et)) to Fn ∈
Xn, et (respectively, to Fn ∈ Xn,Et). Recall that the functors g∗n and f∗n preserve injective
objects. This leads to spectral sequences (see [10, VI Exercice 7.4.15])

Ei,j1 = Hj(Xi,et,Ai) ⇒ Hi+j(Top(X•, et),A) (8)

and
′Ei,j1 = Hj(Xi,Et, (ι∗A)i) ⇒ Hi+j(Top(X•,Et), ι∗A) (9)

for any abelian object A of Top(X•, et). The morphism ι• of simplicial topoi induces a
morphism of spectral sequences from (8) to (9). This morphism of spectral sequences is an
isomorphism since the natural map

Hj(Xi,et,Ai) −→ Hj(Xi,Et, (ι∗A)i) = Hj(Xi,Et, ι
∗
i (Ai)) (10)

is an isomorphism, where the equality on the right-hand side follows from the previous
commutative square. Then the map (10) is the natural morphism from the cohomology of
the small étale site of Xi to the cohomology of its big étale site, which is well known to be an
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isomorphism. Therefore, the induced morphism on abutments

Hi(Top(X•, et),A) −→ Hi(Top(X•,Et), ι∗A)

is an isomorphism.

3.2. Classifying topoi and classifying simplicial schemes

Let S be a scheme, let G be an S-group scheme and let X be an S-scheme that supports a
left G-action G×S X → X. We consider the classifying simplicial scheme B(G,X) as defined
in [5, Example 1.2]. Recall that

B(G,X)n = Gn ×X,

where Gn is the n-fold fiber product of G with itself over S and the product Gn ×X is taken
over S, with structure maps given in the usual way by using the multiplication in G, the action
of G on X and the unit section S → G. We consider the big étale simplicial topos

B(G,X)Et : Δop −→ Top,
[0, n] 	−→ (Gn ×X)Et

and the total topos Top(B(G,X)Et) as defined in the previous subsection.

Lemma 3.4. There is a canonical morphism of topoi

κ : Top(B(G,X)Et) −→ Bet
G/X.

Proof. We let Desc(B(G,X)Et) be the descent topos. It is defined as the category of objects
L of XEt = B(G,X)0,Et endowed with descent data, that is, an isomorphism a : d∗1L→ d∗0L
such that

(i) s∗0(a) = IdL;
(ii) d∗0(a) ◦ d∗2(a) = d∗1(a) (neglecting the transitivity isomorphisms).

Then there is an equivalence of categories

Desc(B(G,X)Et) −→ Bet
G/X. (11)

Indeed, for any object L of SEt/X � XEt, descent data on L are equivalent to a left action
of G on L such that the structure map L→ X is G-equivariant (see [11, VI, Section 8]). We
define the functor

Ner : Desc(B(G,X)Et) −→ Top(B(G,X)Et),
(L, a) 	−→ Ner(L, a)

as follows. Let (L, a) be an object of Desc(B(G,X)Et). We consider

Nern(L, a) = (d0 · · · d0)∗L

in the topos SEt/(Gn ×X) � (Gn ×X)Et. The map

d∗i Nern−1(L, a) −→ Nern(L, a)

is Id for i < n and (d0 · · · d0)∗(a) for i = n. Finally, the map

s∗i Nern(L, a) −→ Nern−1(L, a)

is the identity for any i. The functor Ner commutes with inductive limits and finite projective
limits, since the inverse image of a morphism of topoi commutes with such limits and since
these limits are computed component-wise in both Desc(B(G,X)Et) and Top(B(G,X)Et).
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Hence, Ner is the inverse image of a morphism of topoi

Top(B(G,X)Et) −→ Desc(B(G,X)Et).

Composing this map with equivalence (11), we obtain the desired morphism

κ : Top(B(G,X)Et) −→ Desc(B(G,X)Et) � Bet
G/X.

Lemma 3.5. The canonical map

Hi(Bet
G/X,A) −→ Hi(Top(B(G,X)Et), κ∗A)

is an isomorphism for any i and any abelian sheaf A on Bet
G/X.

Proof. We will prove this lemma as follows: we describe spectral sequences converging to
H∗(Bet

G/X,A) and H∗(Top(B(G,X)Et), κ∗A), respectively; then we show that these spectral
sequences are isomorphic at E1. Let eG be the final object of Bet

G . Since the map EG → eG has
a section, it is an epimorphism, hence so is EG ×X → X, since epimorphisms are universal in
a topos. We obtain a covering U = (EG ×X → X) of the final object in Bet

G/X. This covering
gives rise to the Cartan–Leray spectral sequence (see [10, V, Corollary 3.3])

Ȟi(U ,Hj(A)) ⇒ Hi+j(Bet
G/X,A),

where Hj(A) denotes the presheaf on Bet
G/X

Hj(A) : (F −→ X) −→ Hj((Bet
G/X)/F ,F ×X A)

and Ȟi(U ,−) denotes Cech cohomology. By [10, IV, 5.8.3], we have a canonical equivalence

(Bet
G/X)/(EG ×X) � SEt/X.

Consider more generally the n-fold product of (EG ×X) with itself over the final object in
Bet
G/X

(EG ×X)n = (EG ×X) ×X · · · ×X (EG ×X) = (EnG ×X).

Here, EnG is the object of Bet
G represented by the scheme Gn = G×S · · · ×S G on which G acts

diagonally. Then we have an equivalence

(Bet
G/X)/(En+1

G ×X) = (Bet
G/X)/(EG × (EnG ×X)) � SEt/(Gn ×X)

for any n � 0. Therefore, the term Ei,j1 of the Cartan–Leray spectral sequence takes the
following form:

Ei,j1 = Hj((Bet
G/X)/(Ei+1

G ×X), (Ei+1
G ×X) ×X A)

= Hj((SEt/(Gi ×X), Gi ×A)

= Hj((Gi ×X)Et, G
i ×A)

for any abelian object A → X of Bet
G/X. We conclude that the spectral sequence can be written

as follows:

Ei,j1 = Hj((Gi ×X)Et, G
i ×A) ⇒ Hi+j(Bet

G/X,A). (12)

We also have a spectral sequence (see (9))

′Ei,j1 = Hj(B(G,X)i,Et, (κ∗A)i) ⇒ Hi+j(Top(B(G,X)Et), κ∗A), (13)
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where κ : Top(B(G,X)Et) → Bet
G/X is the map of Lemma 3.4. For any i � 0, the following

square:

B(G,X)i,Et ��

��

(Bet
G/X)/(Ei+1

G ×X)

��
Top(B(G,X)Et)

κ �� Bet
G/X

is commutative, where the top horizontal map is the canonical equivalence

B(G,X)i,Et = (Gi ×X)Et � SEt/(Gi ×X) � (Bet
G/X)/(Ei+1

G ×X).

Note that this last equivalence is precisely the equivalence from which we have deduced the
isomorphism Ei,j1 = Hj((Gi ×X)Et, G

i ×A). We obtain a morphism of spectral sequences from
(12) to (13). This morphism of spectral sequences is an isomorphism since (κ∗A)i = Gi ×A,
which in turn follows from the fact that the square above commutes. The result follows.

We now consider the flat topos Sfl, the big étale topos SEt and their classifying topoi

Bet
G = ByG(SEt) and BflG = ByG(Sfl).

It follows from Corollary 2.4 that the canonical morphism i : Sfl → Set induces a morphism
BG → Bet

G such that the following square:

BG ��

��

Bet
G

��
Sfl

i �� SEt

is a pull-back. This morphism induces a morphism [10, IV, Section 5.10]:

γ : BG/X −→ Bet
G/X.

The following is an equivariant refinement of the classical comparison theorem [9, Theorem
11.7] between étale and flat cohomology.

Lemma 3.6. Let A = yA be an abelian object of BG/X represented by a smooth X-scheme
A. Then the canonical morphism

γ∗ : Hi(Bet
G/X, yA) −→ Hi(BG/X, yA)

is an isomorphism for any i � 0.

Proof. Consider the spectral sequence (a special case of (12))

Hj((Gi ×X)Et, G
i ×A) ⇒ Hi+j(Bet

G/X,A) (14)

associated to the covering (EG ×X → X) in Bet
G/X. Applying the functor γ∗ to U = (EG ×

X → X), we obtain the covering γ∗U = (EG ×X → X) in BG/X, and we get a morphism of
spectral sequences from (14) to

Hj((Gi ×X)fl, Gi ×A) ⇒ Hi+j(BG/X,A).

But the canonical maps

Hj((Gi ×X)Et, G
i ×A) −→ Hj((Gi ×X)fl, Gi ×A)
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are isomorphisms [9, Theorem 11.7]. It therefore follows that the maps

Hi(Bet
G/X,A) −→ Hi(BG/X,A)

are also isomorphisms.

Theorem 3.7. Let A = yA be an abelian object of BG/X represented by a smooth X-
scheme A. Then there is a canonical isomorphism

Hi(BG/X, yA) � Hi(Et(B(G,X)), yA)

for any i � 0, where BG denotes the classifying topos of G and Et(B(G,X)) denotes the (small)
étale site of the simplicial scheme B(G,X) as defined in [5].

Proof. The proof follows from Lemmas 3.3–3.6.

3.3. Giraud’s exact sequence

Let A be a commutative S-group scheme endowed with a left action of G. We denote by
ExtS(G,A) the abelian group of extensions of G by A in the topos Sfl. More precisely,
ExtS(G,A) is the group of equivalence classes of exact sequences in Sfl

1 −→ yA −→ G −→ yG −→ 1,

where yA and yG denote the sheaves in Sfl represented by A and G, respectively, and such
that the action of G on yA by inner automorphisms induces the given action of G on A. Note
that G is not a scheme in general. We denote by CroisS(G,A) the abelian group of crossed
morphisms f : G→ A. Recall that a crossed morphism is a map of S-schemes f : G→ A such
that

f(gg′) = f(g) + g · f(g′). (15)

This identity makes sense on points. Equivalently (15) can be seen as a commutative diagram
in Sch/S. Note that if G acts trivially on A, then CroisS(G,A) = HomS(G,A).

More generally, for any abelian object A of BG, one defines ExtS(G,A) and CroisS(G,A)
in the very same way (of course one has ExtS(G,A) = ExtS(G, yA) and CroisS(G,A) =
CroisS(G, yA)).

Proposition 3.8. We have an exact sequence of abelian groups

0 −→ H0(BG,A) −→ H0(Sfl,A) −→ CroisS(G,A) −→ H1(BG,A)

−→ H1(Sfl,A) −→ ExtS(G,A) −→ H2(BG,A) −→ H2(Sfl,A).

Proof. This is a special case of [7, VIII.7.1.5].

3.4. The sheaves Hi
S(BG,A) for i = 0, 1, 2

Recall that we denote by π : BG → Sfl the canonical map.

Notation 3.9. For an abelian object A of BG, we denote by

Hi
S(BG,A) := Ri(π∗)A

the cohomology of BG with values in the topos Sfl.
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The sheaf Hi
S(BG,A) may be described as follows:

Proposition 3.10. For any abelian object A ofBG and, for any i � 0, the sheafHi
S(BG,A)

is the sheaf associated to the presheaf

Sch/S −→ Ab,
T 	−→ Hi(GT ,AT ),

where GT is the T -group scheme G×S T and AT is the abelian object of BGT
induced by A.

Proof. The sheaf Hi
S(BG,A) is the sheaf associated to the presheaf

T −→ Hi(BG/T,A× T ),

but, by virtue of Proposition 2.8, we have

Hi(BG/T,A× T ) = Hi(BGT
,AT ) =: Hi(GT ,AT ).

For any abelian sheaf A of BG, we denote by AG the largest subobject of A on which G acts
trivially. Then we consider the abelian presheaf

Sfl −→ Ab,
F 	−→ CroisSfl/F (G× F,A× F ). (16)

This presheaf is easily seen to be a subsheaf of the sheaf of homomorphisms Map(G,A) (here
the group structure is not taken into account) in the topos Sfl endowed with the canonical
topology. The sheaf (16) is therefore representable by an abelian object CroisS(G,A) of Sfl
(recall that any sheaf on a topos endowed with the canonical topology is representable). There
is a morphism:

τ : A −→ CroisS(G,A),
a 	−→ g 	−→ g · a− a.

Finally, we consider the presheaf

Sfl −→ Ab,
F 	−→ ExtSfl/F (G× F,A× F ).

Basic descent theory in topoi shows that this is a sheaf for the canonical topology. We denote
by ExtS(G,A) the corresponding abelian object of Sfl.

Corollary 3.11. We have

H0
S(BG,A) � AG, H2

S(BG,A) � ExtS(G,A)

and an exact sequence (of abelian objects in Sfl)

0 −→ AG −→ A τ→ CroisS(G,A) −→ H1
S(BG,A) −→ 0.

In particular, if G acts trivially on A, then

H1
S(BG,A) = Hom(G,A).

Proof. By Proposition 3.8, for any T over S we have the exact sequence

0 −→ H0(BGT
,AT ) −→ H0(Tfl,AT ) −→ CroisT (GT ,AT ) −→ H1(BGT

,AT )

−→ H1(Tfl,AT ) −→ ExtT (GT ,AT ) −→ H2(BGT
,AT ) −→ H2(Tfl,AT ).
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This exact sequence is functorial in T , so that it may be viewed as an exact sequence of abelian
presheaves on Sch/S. Applying the associated sheaf functor together with Proposition 3.10,
we obtain the exact sequence of sheaves

0 −→ AG −→ A −→ CroisS(G,A) −→ H1
S(BG,A)

−→ 0 −→ ExtS(G,A) −→ H2
S(BG,A) −→ 0

since the sheafification of the presheaf T 	→ Hi(Tfl,AT ) is trivial for i � 1 (as it follows from
[10, V, Proposition 5.1] applied to the identity map Id : Sfl → Sfl).

3.5. The Hochschild–Serre spectral sequence

We consider a sequence of S-group schemes

1 −→ N −→ G −→ G/N −→ 1,

which is exact with respect to the fppf-topology.

Proposition 3.12. For any abelian object A of BG, there is a natural G/N -action on
Hj
S(BN ,A) and there is a spectral sequence

Hi(G/N,Hj
S(BN ,A)) =⇒ Hi+j(G,A).

Proof. The quotient map G→ G/N induces a morphism of classifying topoi

f : BG −→ BG/N ,

and hence a spectral sequence

Hi(BG/N , Rj(f∗)A) =⇒ Hi+j(BG,A),

which is functorial in the abelian object A of BG. In view of the canonical equivalences

BG/N/EG/N � Sfl and BG/(G/N) � BN ,

we have a pull-back square

BN
π ��

p′

��

Sfl

p

��
BG

f �� BG/N

where the vertical maps are localization maps. As previously this ‘localization pull-back’ yields
isomorphisms for all n � 0,

p∗Rn(f∗) � Rn(π∗)p′∗.

Moreover, the functor p′∗ : BG → BN maps a G-object F to F on which N acts via N → G, so
that, for A an abelian object of BG, Rn(π∗)p′∗A is really what we (slightly abusively) denote
by Hn

S (BN ,A).

Recall that there is a canonical map τ : A → CroisS(G,A), and that this map is the zero
map if G acts trivially on A.

Corollary 3.13. There is an exact sequence

0 −→ H1(BG/N ,AN ) −→ H1(BG,A) −→ H0(BG/N ,CroisS(N,A)/Im(τ))

−→ H2(BG/N ,AN ) −→ H2(BG,A).
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If N acts trivially on A, then we obtain an exact sequence

0 −→ H1(BG/N ,A) −→ H1(BG,A) −→ H0(BG/N ,Hom(N,A))

−→ H2(BG/N ,A) −→ H2(BG,A).

Proof. This is the five-term exact sequence given by the Hochschild–Serre spectral sequence
of Proposition 3.12.

4. Invariants of symmetric bundles

In the following sections, we fix a scheme Y → Spec(Z[1/2]) in which 2 is invertible. The
principal goal of this section is to associate to any symmetric bundle over Y cohomological
invariants that generalize the classical Hasse–Witt invariants associated to quadratic forms on
vector spaces over fields.

4.1. Symmetric bundles

A bilinear form on Y consists of a locally free OY -module V (which one may see as a vector
bundle on Y ) and a morphism of OY -modules

B : V ⊗OY
V −→ OY

such that, for any affine open subscheme Z of Y, the induced map

BZ : V (Z) × V (Z) −→ OY (Z)

is a symmetric bilinear form on the OY (Z)-module V (Z). Let V ∨ be the dual of V . The form
B induces a morphism of bundles

ϕB : V −→ V ∨,

which is self-adjoint. We call B non-degenerate or unimodular if ϕB is an isomorphism. A
symmetric bundle is a pair (V,B) consisting of a Y -symmetric bundle V endowed with a
unimodular form B. In general, we will denote such a bundle by (V, q), where q is the quadratic
form associated to B. Since 2 is invertible in Y , we will refer to (V, q) either as a symmetric
bundle or as a quadratic form over Y . In the case where Y = Spec(R) is affine, a symmetric
bundle (V, q) is given by a pair (M,B), where M is a locally free R-module and B is a
unimodular, symmetric, bilinear form on M .

Let (V, q) be a symmetric bundle over Y and let f : T → Y be a morphism of schemes. We
define the pull-back of (V, q) by f as the symmetric bundle (f∗(V ), f∗(q)) on T where f∗(V )
is the pull-back of V endowed with the form f∗(q) defined on any affine open subsets U ′ and
U of T and Y , such that f(U ′) ⊂ U , by scalar extension from q. We denote by (VT , qT ) the
resulting symmetric bundle on T .

An isometry of symmetric bundles u : (V, q) → (E, r) on Y is an isomorphism of locally free
OY -modules u : V → E such that r(u(x)) = q(x) for any open affine subscheme U of Y and
any x in V (U). We denote this set by Isom(q, r). It follows from [3, III, Section 5, no. 2] that
T → Isom(qT , rT ) is a sheaf of sets on Sch/Y endowed with the fppf-topology. We denote this
sheaf by Isom(q, r), or by IsomY (q, r). We define the orthogonal group O(q) as the group
Isom(q, q) of Yfl. This sheaf is representable by a smooth algebraic group scheme over Y ,
which we also denote by O(q). We denote by (On

Y , tn = x2
1 + · · · + x2

n) the standard form over
Y of rank n and by O(n) (or by O(n)Y if we wish to stress that the base scheme is Y ) the
orthogonal group of tn.
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4.2. Twisted forms

Let (V, q) be a symmetric bundle over Y . A symmetric bundle (F, r) is called a twisted form
of (V, q) if there exists an fppf-covering {Ui → Y, i ∈ I} such that there exists an isometry

(V ⊗Y Ui, q ⊗Y Ui) � (F ⊗Y Ui, r ⊗Y Ui) ∀i ∈ I.

Recall that a groupoid is a small category whose morphisms are all isomorphisms. We denote by
Twist(q) the groupoid whose objects are twisted forms of (V, q) and morphisms are isometries.
Let Twist(q)/∼ be the set of isometry classes of twists of (V, q), which we consider as a set
pointed by the class of (V, q). If (F, r) is a twist of (V, q), then Isom(q, r) is an O(q)-torsor of
Yfl. We denote by Tors(Yfl,O(q))/∼ the pointed set of isometry classes of Tors(Yfl,O(q)),
pointed by the class of the trivial torsor.

Proposition 4.1. The canonical functor

Twist(q) −→ Tors(Yfl,O(q)),
(F, r) 	−→ Isom(q, r)

is an equivalence.

Proof. By [3, III, § 5, no. 2.1], the functor above induces an isomorphism of pointed sets:

Twist(q)/∼ −→ Tors(Yfl,O(q))/∼,
(F, r) 	−→ [Isom(q, r)],

where [Isom(q, r)] is the isometry class of the torsor Isom(q, r). Since Twist(q) and
Tors(Yfl,O(q)) are both groupoids, we are reduced to showing that the automorphism group
of Isom(q, r) in Tors(Yfl,O(q)) is in bijection with the automorphism group of (F, r) in
Twist(q). In other words, one has to show that the map

O(r)(Y ) −→ HomTors(Yfl,O(q))(Isom(q, r), Isom(q, r))

is bijective. But this follows from the fact that Isom(q, r) is a left O(r)-torsor.

Since O(q) is smooth, the functor Tors(Yet,O(q)) → Tors(Yfl,O(q)) is an equivalence.
Hence, any twist of q is already split by an étale covering family. This can also be seen as
follows: let (On

Y , tn = x2
1 + · · · + x2

n) be the standard form over Y of rank n and let O(n) be
the orthogonal group of tn. Since on any strictly henselian local ring (in which 2 is invertible)
a quadratic form of rank n is isometric to the standard form, any symmetric bundle (V, q) on
Y is locally isometric to the standard form tn for the étale topology. We denote by Quadn(Y )
the groupoid whose objects are symmetric bundles of rank n over Y and whose morphisms are
isometries. There are canonical equivalences of categories

Quadn(Y ) � Twist(tn) (17)
� Tors(Yet,O(n)) (18)
� Tors(Yfl,O(n)) (19)
� HomtopYfl

(Yfl, BO(n))op. (20)

Given a symmetric bundle (V, q) on Y , we denote by {q} : Yfl → BO(n) the morphism of topoi
associated to the quadratic form q by this equivalence.

Proposition 4.2. There is an equivalence of categories

Quadn(Y ) −→ HomtopYfl
(Yfl, BO(n))op,

(V, q) 	−→ {q}.
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4.3. Invariants in low degree: det[q] and [Cq]

For a symmetric bundle (V, q) over Y , there are canonical cohomology classes in
H1(BO(q),Z/2Z) and H2(BO(q),Z/2Z).

4.3.1. Degree 1 The determinant map

detO(q) : O(q) −→ μ2
∼→ Z/2Z

is a morphism of Y -group schemes. By Proposition 3.8, there is a canonical map

HomY (O(q),Z/2Z) −→ H1(BO(q),Z/2Z).

This yields a class det[q] ∈ H1(BO(q),Z/2Z).

Definition 4.3. The class det[q] ∈ H1(BO(q),Z/2Z) is the class defined by the morphism
detO(q) : O(q) → Z/2Z.

The cohomology class det[q] is represented by the morphism

BdetO(q) : BO(q) −→ BZ/2Z.

The Z/2Z-torsor of BO(q) corresponding to this morphism is given by O(q)/SO(q) with its
natural left O(q)-action and its right Z/2Z-action via O(q)/SO(q) � Z/2Z. In other words,
we may write

det[q] = [O(q)/SO(q)] ∈ H1(BO(q),Z/2Z).

4.3.2. Degree 2 One can define the Clifford algebra of the symmetric bundle (V, q); this is
a sheaf of algebras over Y . This leads us to consider the group Õ(q) which, in this context, is
the generalization of the group Pin(q) (see [5, Section 1.9, 13, Appendix 4]). The group Õ(q)
is a smooth group scheme over Y which is an extension of O(q) by Z/2Z, that is, there is an
exact sequence of groups in Yfl

1 −→ Z/2Z −→ Õ(q) −→ O(q) −→ 1. (21)

Such a sequence defines a class Cq ∈ ExtY (O(q),Z/2Z) and therefore (see Proposition 3.8) a
cohomology class in H2(BO(q),Z/2Z) that we denote by [Cq].

Definition 4.4. The class [Cq] ∈ H2(BO(q),Z/2Z) is the class defined by the extension
Cq ∈ ExtY (O(q),Z/2Z).

4.4. The fundamental morphisms Tq and Θq

Let (On
Y , tn = x2

1 + · · · + x2
n) denote the standard form over Y of rank n and let O(n) :=

Isom(tn, tn) be the orthogonal group of tn. Let π : BO(q) → Yfl be the morphism of topoi
associated to the group homomorphism O(q) → {e}. The sheaf Isom(tn, q) has a natural left
action of O(q) and a natural right action of O(n):

O(q) × Isom(tn, q) × O(n) −→ Isom(tn, q),
(τ, f, σ) 	−→ τ ◦ f ◦ σ.

These actions are compatible; more precisely, Isom(tn, q) is naturally an object of BO(q) that
carries a right action of π∗O(n).

Lemma 4.5. The sheaf Isom(tn, q) is a π∗O(n)-torsor of BO(q).
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Proof. On the one hand, Isom(tn, q) is an O(n)-torsor of Yfl, since there exists an fppf-
covering (or equivalently, an étale covering) U → Y and an isometry

(V ⊗Y U, q ⊗Y U) � (On
Y ⊗Y U, tn ⊗Y U).

We obtain a covering U → Y in Yfl and an O(n)-equivariant isomorphism in Ufl � Yfl/U :

U × Isom(tn, q)
∼→ U × O(n).

On the other hand, there is a canonical equivalence Yfl � BO(q)/EO(q) such that the composite
morphism

f : Yfl
∼→ BO(q)/EO(q) −→ BO(q)

is the map induced by the morphism of groups 1 → O(q); in other words, the inverse image
functor f∗ forgets the O(q)-action. We may therefore view, respectively, the right (EO(q) ×
π∗O(n))-objects EO(q) × Isom(tn, q) and EO(q) × π∗O(n) of the topos BO(q)/EO(q) as the
right O(n)-objects Isom(tn, q) (with no O(q)-action) and O(n) of the topos Yfl. We obtain
an O(n)-equivariant isomorphism

U × EO(q) × Isom(tn, q)
∼→ U × EO(q) × π∗O(n)

in the topos

BO(q)/(U × EO(q)) � (BO(q)/EO(q))/(U × EO(q)) � Yfl/f
∗U � Ufl.

The result follows since U × EO(q) → ∗ covers the final object of BO(q).

Definition 4.6. We denote by Tq the sheaf Isom(tn, q) endowed with its structure of
π∗(O(n))-torsor of BO(q), and we define

Tq : BO(q) −→ BO(n)

to be the morphism associated to the torsor Tq.

Proposition 4.7. The map Tq : BO(q) → BO(n) is an equivalence.

Proof. Let Xq : BO(n) → BO(q) be the map associated to the O(q)-torsor of BO(n) given
by Isom(q, tn), and consider

Xq ◦ Tq : BO(q) −→ BO(n) −→ BO(q).

We have

(Xq ◦ Tq)∗EO(q) = T ∗
qX

∗
q (EO(q)) = T ∗

q (Isom(q, tn)) = Isom(tn, q) ∧O(n) Isom(q, tn).

But the map
Isom(tn, q) × Isom(q, tn) −→ Isom(q, q),

(f, g) 	−→ f ◦ g
induces a π∗O(q)-equivariant isomorphism

Isom(tn, q) ∧O(n) Isom(q, tn) � Isom(q, q) = EO(q).

Hence, we have a canonical isomorphism

(Xq ◦ Tq)∗EO(q) = Isom(tn, q) ∧O(n) Isom(q, tn) � EO(q)
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of π∗O(q)-torsors in BO(q). By Theorem 2.3, we obtain an isomorphism Xq ◦ Tq � IdBO(q) of
morphisms of topoi. Similarly, we have

(Tq ◦Xq)∗EO(n) = Isom(q, tn) ∧O(q) Isom(tn, q) � EO(n),

hence Tq ◦Xq � IdBO(n) .

Let η : Yfl → BO(q) be the morphism of topoi induced by the morphism of groups 1 → O(q),
while π : BO(q) → Yfl is induced by the morphism of groups O(q) → 1. Note that

IdYfl
∼= π ◦ η : Yfl −→ BO(q) −→ Yfl.

However, η ◦ π � IdBO(q) , since (η ◦ π)∗ sends an object of BO(q) given by a sheaf F of Yfl
endowed with a (possibly non-trivial) O(q)-action to the object of BO(q) given by F with trivial
O(q)-action. The pull-back η∗Isom(tn, q) is an O(n)-torsor of Yfl, and π∗η∗(Isom(tn, q)) is a
π∗(O(n))-torsor of BO(q). We denote this torsor by Θq . This is the sheaf Isom(tn, q) endowed
with the trivial left action of O(q) and its natural right action of O(n).

Definition 4.8. We consider the π∗(O(n))-torsor of BO(q) given by

Θq := π∗η∗(Isom(tn, q)),

and we define

Θq : BO(q) −→ BO(n)

to be the morphism associated to the torsor Θq.

We have a commutative diagram:

BO(q)

π

��

Θq

��������������������

Yfl
Id

��

η
���������������

η
��������������� Yfl {q}=η∗Isom(tn,q)

�� BO(n)

BO(q)

Tq

��������������������

In other words, we have canonical isomorphisms:

π ◦ η � id, {q} ◦ π � Θq, Tq ◦ η � Θq ◦ η � {q}.

4.5. Hasse–Witt invariants

In [14, Theorem 2.8], Jardine proved the following result, which is a basic source for the
definitions of our invariants.

Theorem 4.9. Let Y be a scheme in which 2 is invertible and let A denote the algebra
H∗

et(Y,Z/2Z). Assume that Y is the disjoint union of its connected components. Then there is
a canonical isomorphism of graded A-algebras of the form

H∗(Top(B(O(n), Y )Et),Z/2Z) � A[HW1, . . . , HWn],

where the polynomial generator HWi has degree i.
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By Theorem 3.7, there is a canonical isomorphism:

H∗(BO(n),Z/2Z) � H∗(Top(B(O(n), Y )Et),Z/2Z).

We use this isomorphism to identify these two groups and from now on we view HWi as an
element of Hi(BO(n),Z/2Z).

Definition 4.10. The universal Hasse–Witt ith-invariant of the quadratic form q is

HWi(q) = T ∗
q (HWi) ∈ Hi(BO(q),Z/2Z).

When q is the standard form tn, the invariants HWi(q) coincide in degree 1 and 2 with the
invariants we introduced in subsection 4.3, that is, we have

HW1 = HW1(tn) = det[tn] and HW2 = HW2(tn) = [Cn].

Corollary 4.11. There is a canonical isomorphism of graded A-algebras of the form

H∗(BO(q),Z/2Z) � A[HW1(q), . . . , HWn(q)],

where the polynomial generator HWi(q) has degree i.

Proof. This follows from Theorem 4.9 and Proposition 4.7.

We note that the ‘usual’ ith Hasse–Witt invariant of q is the class of Hi(Yfl,Z/2Z) obtained
by pulling back HWi(q) by η. To be more precise, the ith Hasse–Witt invariant of q is defined
by

wi(q) = η∗(HWi(q)) = {q}∗(HWi).

Since η∗ ◦ π∗ � Id, the group homomorphism

η∗ : Hi(BO(q),Z/2Z) −→ Hi(Yfl,Z/2Z)

is split for any i � 0. Therefore, we may identify via π∗ the group Hi(Yfl,Z/2Z) as a direct
factor ofHi(BO(q),Z/2Z). Since Θq � {q} ◦ π, we note that under this identification Θq

∗(HWi)
identifies with wi(q). This leads to the following definition.

Definition 4.12. The ith Hasse–Witt invariant of q is defined by

wi(q) = Θ∗
q(HWi) ∈ Hi(BO(q),Z/2Z).

Let GY be a Y -group scheme and let (V, q, ρ) be a GY -equivariant symmetric bundle on
Y . The group scheme homomorphism ρ : GY → O(q) induces a morphism of topoi ρ : BGY

→
BO(q). We obtain

Tq ◦ ρ : BGY
−→ BO(q) −→ BO(n).

This morphism corresponds to the O(n)-torsor ρ∗(Tq) of BGY
, which is given by the sheaf

Isom(tn, q) endowed with a left action of GY via ρ and a right action of O(n).

Definition 4.13. The ith equivariant Hasse–Witt invariant of (V, q, ρ) is defined by

wi(q, ρ) = ρ∗(HWi(q)) = ρ∗T ∗
q (HWi) ∈ Hi(BGY

,Z/2Z).
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5. Universal comparison formulas

Let (V, q) be a symmetric bundle on the scheme Y . We assume that 2 is invertible in Y and
that Y =

∐
α∈A Yα is the disjoint union of its connected components. This second condition is

rather weak but not automatic.
By Corollary 4.11, we have a canonical isomorphism

H∗(BO(q),Z/2Z) � A[HW1(q), . . . , HWn(q)],

where A = H∗
et(Yfl,Z/2Z). Under this identification, we have classes

w1(q), w2(q) ∈ A and det[q], [Cq] ∈ A[HW1(q), . . . , HWn(q)]

defined in subsection 4.5. Theorems 5.2 and 5.3 provide an explicit expression of det[q] and [Cq]
as polynomials in HW1(q) and HW2(q) with coefficients in A written in terms of w1(q), w2(q) ∈
A. More precisely, we will prove the following theorem.

Theorem 5.1. Let (V, q) be a symmetric bundle of rank n on the scheme Y in which 2 is
invertible. Assume that Y is the disjoint union of its connected components. Then we have

det[q] = w1(q) +HW1(q)

and

[Cq] = (w1(q) · w1(q) + w2(q)) + w1(q) ·HW1(q) +HW2(q)

in the polynomial ring

H∗(BO(q),Z/2Z) � A[HW1(q), . . . , HWn(q)].

These formulas are the source for many other comparison formulas that either have been
proved in previous papers [2, 4] or that we shall establish, using the following principle. For
any topos E given with an O(q)-torsor, we have a canonical map f : E → BO(q), and we obtain
comparison formulas in H∗(E ,Z/2Z) by applying the functor f∗ to the universal comparison
formulas of Theorem 5.1.

We split Theorem 5.1 in two theorems according to the degree.

Theorem 5.2. Let (V, q) be a symmetric bundle of rank n on the scheme Y in which 2 is
invertible. Then

HW1(q) = w1(q) + det[q]

in H1(BO(q),Z/2Z).

Proof. The group H1(BO(q),Z/2Z) can be understood as the group of isomorphism
classes of Z/2Z-torsors of the topos BO(q). Hence, the theorem may be proved by describing
an isomorphism between the torsors representing both sides of the required equality. The
cohomology class HW1(q) = T ∗

q (HW1) = T ∗
q (det[tn]) is represented by the morphism

BdetO(n) ◦ Tq : BO(q) −→ BO(n) −→ BZ/2Z,

where BdetO(n) is the map of classifying topoi induced by the morphism of groups detO(n) :
O(n) → Z/2Z. Therefore, HW1(q) is represented by the Z/2Z-torsor:

(BdetO(n) ◦ Tq)∗EZ/2Z = T ∗
q B

∗
detO(n)

EZ/2Z = T ∗
q (O(n)/SO(n))

= Tq ∧O(n) (O(n)/SO(n)).
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Similarly, w1(q) is represented by the Z/2Z-torsor Θq ∧O(n) (O(n)/SO(n)). Note that O(q)
acts on Tq ∧O(n) O(n)/SO(n) via its left action on Tq, while it acts trivially on Θq ∧O(n)

O(n)/SO(n). In both cases Z/2Z acts by right multiplication on O(n)/SO(n) � Z/2Z. The
group O(q) acts on Tq ∧O(n) (O(n)/SO(n)) as follows:

O(q) × (Tq ∧O(n) (O(n)/SO(n))) −→ Tq ∧O(n) (O(n)/SO(n)),
(f, [σ, ḡ]) 	−→ [f ◦ σ, ḡ].

We now consider Z/2Z as an object of Yfl endowed with a right action of O(q) via detO(q)

and right multiplication on the one hand, and with a left action of O(n) via detO(n) and left
multiplication on the other hand. Then O(q) acts on the left on Θq ∧O(n) Z/2Z as follows:

O(q) × (Θq ∧O(n) Z/2Z) −→ Θq ∧O(n) Z/2Z,
(f, [σ, ε]) 	−→ [σ, ε · detO(q)(f)−1].

Let us show that the map

ι : Tq ∧O(n) O(n)/SO(n) −→ Θq ∧O(n) Z/2Z,
[σ, ḡ] 	−→ [σ,detO(n)(g)]

is an isomorphism of Z/2Z-torsors of BO(q). The map ι is an isomorphism of Z/2Z-torsors
of Yfl since detO(n) induces O(n)/SO(n) � Z/2Z. It remains to check that ι respects the left
action of O(q). On points, we have

ι(f ∗ [σ, ḡ]) = ι[f ◦ σ, ḡ] = ι[σ ◦ (σ−1 ◦ f−1 ◦ σ)−1, σ−1f−1σ · ḡ]
= [σ,dettn(g) detO(q)(f)−1] = f ∗ ι[σ, ḡ]

since σ−1 ◦ f ◦ σ is a section of O(n). We remark that

O(n)/SO(n) ∧Z/2Z O(q)/SO(q)

is canonically isomorphic to Z/2Z and is naturally given with a right action of O(q) and a left
action of O(n). Hence, ι yields a canonical isomorphism of Z/2Z-torsors in the topos BO(q):

Tq ∧O(n) O(n)/SO(n) � Θq ∧O(n) (O(n)/SO(n) ∧Z/2Z O(q)/SO(q)). (22)

Recall that the class det[q] ∈ H1(BO(q),Z/2Z) is represented by the Z/2Z-torsor O(q)/SO(q).
We have

w1(q) + det[q] = [(Θq ∧O(n) O(n)/SO(n)) ∧Z/2Z O(q)/SO(q)] (23)

= [Θq ∧O(n) (O(n)/SO(n) ∧Z/2Z O(q)/SO(q))] (24)

= [Tq ∧O(n) O(n)/SO(n)] (25)
= HW1(q). (26)

Here, (24) is given by the associativity of the contracted product (see [7, 1.3.5]) and
isomorphism (25) is just (22).

Theorem 5.3. Let (V, q) be a symmetric bundle of rank n on the scheme Y in which 2 is
invertible. Assume that Y is the disjoint union of its connected components. Then

HW2(q) = w2(q) + w1(q) ∪ det[q] + [Cq]

in H2(BO(q),Z/2Z).

Proof. For the convenience of the reader we split the proof into several steps.
Step 0: Cech cocycles.
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Let E be a topos, let A be an abelian object in E and let U be a covering of the final object
of E , that is, U → ∗ is an epimorphism. We consider the covering U := {U → ∗}. The Cech
complex Č∗(U , A) with value in A with respect to the covering U is

0 −→ A(U) d0−→ A(U × U) d1−→ A(U × U × U) d2−→ · · · dn−→ A(Un+2)
dn+1−→ · · · ,

where, for f ∈ A(Un+1) = HomE(Un+1, A), we have

dn(f) =
∑

1�i�n+2

(−1)i−1f ◦ p1,2,...,̂i,...,n+2 ∈ A(Un+2) = HomE(Un+2, A).

Here, p1,2,...,̂i,...,n+2 : Un+2 → Un+1 is the projection obtained by omitting the ith coordinate.
We denote by Zn(U , A) := Ker(dn) the group of n-cocycles, and the Cech cohomology with
respect to the covering U with coefficients in A is defined as follows:

Ȟn(U , A) := Ker(dn)/Im(dn−1).

For a refinement V → U , that is, V covers the final object and is given with a map to U , we
have an induced map of complexes Č∗(U , A) → Č∗(V, A), hence a map Ȟn(U , A) → Ȟn(V, A)
for any n, which can be shown to be independent of the map V → U , using the fact that
the cohomology Ȟ∗(U , A) = Ȟ∗(RU , A) (respectively, Ȟ∗(V, A) = Ȟ∗(RV , A)) only depends
on the sieve RU (respectively, RV ) generated by U (respectively, by V ). We then define

Ȟn(E , A) := lim−→ Ȟn(U , A).

There are always canonical maps Ȟn(E , A) → Hn(E , A) (given by the Cartan–Leray spectral
sequence) but this map is not an isomorphism in general. However, the map

Ȟ1(E , A) −→ H1(E , A)

is an isomorphism for any topos E . Fix a ring R in the topos E , and let A and B be R-modules.
We have cup-products

Ȟn(E , A) × Ȟm(E , B) ∪−→ Ȟn+m(E , A⊗R B)

induced by the maps

Čn(U , A) × Čm(U , B) −→ Čn+m(U , A⊗R B),
(f : Un+1 → A, g : Um+1 → B) 	−→ f ◦ p1,...,n+1 ⊗ g ◦ pn+1,...,n+m+1,

where p1,...,n+1 is the projection on the (1, . . . , n+ 1)-components. We obtain a cup-product

H1(E , A) ×H1(E , B) ∼−→ Ȟ1(E , A) × Ȟ1(E , B) −→ Ȟ2(E , A⊗R B) −→ H2(E , A⊗R B).

For A = B = R, composing with the multiplication map R×R→ R, we obtain the following
lemma.

Lemma 5.4. For any ringed topos (E , R) there is a cup-product

H1(E , R) ×H1(E , R) −→ H2(E , R)

compatible with cup-product of Cech cocycles.

For a (not necessarily commutative) group G in E , we denote by H1(E , G) the pointed set
of isomorphism classes of G-torsors in E . Let U = {U → ∗} be a covering. The definitions of
C1(U , G), Z1(U , G) and Ȟ1(U , G) extend to the non-abelian case. Indeed, we set C1(U , G) :=
G(U × U) and

Z1(U , G) := {s ∈ G(U × U), (s ◦ p23)(s ◦ p13)−1(s ◦ p12) = 1},
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where pij : U × U × U → U × U is the projection on the (i, j)-components. There is a natural
action of C0(U , G) := G(U) on Z1(U , G) that is defined as follows: if σ ∈ G(U) and s ∈
Z1(U , G), then

σ � s = (σ ◦ p1) · s · (σ ◦ p2)−1 ∈ Z1(U , G),

where p1, p2 : U × U → U are the projections. Then one defines

Ȟ1(U , G) := Z1(U , G)/G(U)

to be the quotient of Z1(U , G) by this group action. Note that Z1(U , G) and hence Ȟ1(U , G),
both have the structure of a pointed set. Then there is an isomorphism

Ȟ1(E , A) := lim−→ Ȟ1(U , G) ∼−→ H1(E , A)

of pointed sets.
The 1-cocycle associated to a torsor.
Let G be a group in the topos E and let T be a G-torsor in E . In order to obtain a 1-cocycle

that represents T , we proceed as follows. By definition T → ∗ is a covering of the final object
in E which trivializes T . More precisely, the canonical map

μ : T ×G −→ T × T,
(t, g) 	−→ (t, t · g)

is an isomorphism in E/T . Here, the assignment (t, g) 	→ (t, t · g) makes sense on sections.
Indeed, for any object X in E , the set T (X) carries a right action of the group G(X) such that
the map

μ(X) : T (X) ×G(X) −→ T (X) × T (X),
(t, g) 	−→ (t, t · g)

is a bijection, that is, G(X) acts simply and transitively on T (X). Let μ−1 : T × T → T ×G
be the inverse map. For any X in E , we have

μ−1(X) : T (X) × T (X) −→ T (X) ×G(X),
(t, u) 	−→ (t, t−1u),

where, by the notation g = t−1u, we mean the unique element of the group G(X) such that
t · g = u. If f : U → T is a morphism of E such that U → ∗ is a covering, then we obtain a
1-cocycle representing T , by considering

cT ∈ Z1({U −→ ∗}, G) ⊂ G(U × U)

defined (on sections) by
cT : U × U −→ G,

(t, u) 	−→ f(t)−1f(u),

where Z1({U → ∗}, G) is the pointed set of 1-cocycles with respect to the cover {U → ∗} with
values in G. Recall that

Z1({U −→ ∗}, G) := {s ∈ G(U × U), (s ◦ p23)(s ◦ p13)−1(s ◦ p12) = 1},
where pij : U × U × U → U × U is the projection on the (i, j)-components. The cocycle cT
represents the G-torsor T in the sense that

Z1({U −→ ∗}, G) � Ȟ1({U −→ ∗}, G) −→ Ȟ1(E , G) ∼−→ H1(E , G)

maps cT to [T ], where [T ] is the class of the G-torsor T .
The 2-cocycle associated to a central extension with local sections.
We consider an exact sequence of groups in E

1 −→ A −→ G̃ −→ G −→ 1 (27)
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such that A is central in G̃. We have a boundary map H1(E , G) → H2(E , A) defined as follows:

δ : H1(E , G) −→ H2(E , A),
[T ] 	−→ T ∗([C]),

where [C] ∈ H2(BG, A) is the class defined (see Proposition 3.8) by the extension (27). The
class δ(T ) is trivial if and only if the G-torsor can be lifted into a G̃-torsor T̃ (that is, if and
only if there exists a G̃-torsor T̃ and an isomorphism of G-torsors T̃ ∧G̃ G � T ). Let T be a
G-torsor, let U = {U → ∗} be a covering and let cT ∈ Z1(U , G) be a 1-cocycle representing T .
Assume that there exists a lifting c̃T : U × U → G̃ of cT . Then

δ̌(cT ) := c̃T ◦ p23 − c̃T ◦ p13 + c̃T ◦ p12

is a 2-cocycle with values in A, that is, one has δ̌(cT ) ∈ Z2(U , A). The class of δ̌(cT ) inH2(U , A)
does not depend on the choice of c̃T . Moreover, the image of δ̌(cT ) in H2(E , A) is δ([T ]) =
T ∗([C]) (see Giraud IV.3.5.4).

Step 1: First reduction.
The aim of this step is to prove the following result. Denote by

Brq
: BÕ(q) −→ BO(q)

the map induced by the morphism rq : Õ(q) → O(q) (see Step 2 for a precise definition of rq).

Proposition 5.5. The identity

HW2(q) = w2(q) + w1(q) ∪ det[q] + [Cq] (28)

in H2(BO(q),Z/2Z) is equivalent to the identity

B∗
rq

(HW2(q)) = B∗
rq

(w2(q) + w1(q) ∪ det[q] + [Cq]) (29)

in H2(BÕ(q),Z/2Z).

Proof. By functoriality (28) implies (29). Let us show the converse. Assume that (29) holds,
so that (see Lemma 5.6)

B∗
rq

(HW2(q) + w2(q) + w1(q) ∪ det[q]) = 0.

Recall that Y =
∐
α Yα is the disjoint union of its connected components. Since cohomology

sends disjoint sums to direct products, we may assume Y to be connected. By Lemma 5.7, we
have either

HW2(q) + w2(q) + w1(q) ∪ det[q] = 0

or

HW2(q) + w2(q) + w1(q) ∪ det[q] = [Cq].

Assume that

HW2(q) + w2(q) + w1(q) ∪ det[q] = 0.

By Theorem 5.2, we would obtain

HW2(q) + w1(q) ·HW1(q) + (w1(q) · w1(q) + w2(q)) = 0

in the polynomial ring A[HW1(q), . . . , HWn(q)]. This is a contradiction since w1(q), w2(q) ∈ A.
Identity (28) follows.
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Lemma 5.6. Consider an extension

1 −→ A −→ G̃ −→ G −→ 1

of a group G by an abelian group A in some topos E . Let C ∈ Ext(G,A) be the class of this
extension and let [C] be its cohomology class in H2(BG, A). Then C vanishes in Ext(G̃, A). A
fortiori, [C] vanishes in H2(BG̃, A).

Proof. The natural map
Ext(G,A) −→ Ext(G̃, A)

sends the class C of the extension 1 → A→ G̃→ G→ 1 to the class C̃ of

1 −→ A −→ G̃×G G̃ −→ G̃ −→ 1,

which is split by the diagonal G̃→ G̃×G G̃, so that C̃ = 0.
Giraud’s exact sequence (Proposition 3.8) is functorial in G, so that one has a commutative

square:

Ext(G,A) ��

��

H2(BG, A)

��
Ext(G̃, A) �� H2(BG̃, A)

hence [C] ∈ H2(BG, A) maps to [C̃] = 0 ∈ H2(BG̃, A).

Recall that we denote by Cq the class of the canonical extension

1 −→ Z/2Z −→ Õ(q) −→ O(q) −→ 1.

Lemma 5.7. The Hochschild–Serre spectral sequence associated to the above extension of
group schemes induces an exact sequence

0 −→ H0(Y,Z/2Z) −→ H2(BO(q),Z/2Z) −→ H2(BÕ(q),Z/2Z).

Moreover, if Y is connected, then Z/2Z → H2(BO(q),Z/2Z) maps 1 to [Cq].

Proof. The scheme Y is the disjoint union of its connected components. Since cohomology
sends disjoint unions to direct products, we may suppose Y to be connected. By Corollary 3.13,
we have an exact sequence

0 −→ H1(BO(q),Z/2Z) −→ H1(BÕ(q),Z/2Z) −→ H0(BO(q),Hom(Z/2Z,Z/2Z))

−→ H2(BO(q),Z/2Z) −→ H2(BÕ(q),Z/2Z).

But Hom(Z/2Z,Z/2Z) = Z/2Z and H0(BO(q),Z/2Z) = Z/2Z, hence we obtain an exact
sequence

Z/2Z −→ H2(BO(q),Z/2Z)
r∗q−→ H2(BÕ(q),Z/2Z).

By Lemma 5.6, the class [Cq] lies in Ker(r∗q ). It remains to show that [Cq] �= 0 in
H2(BO(q),Z/2Z). Let U → Y be an étale map (or any map) such that qU is isomorphic to
the standard form tn,U on U . Then there is an equivalence (using Proposition 2.8)

BO(qU ) � BO(q)/U � BO(n)/U � BO(tn,U )

such that [CqU
] maps to [Ctn,U ] = HW2 ∈ H2(BO(tn,U ),Z/2Z), which is non-zero by Theo-

rem 4.9. Hence, [Cq] maps to [CqU
] �= 0, hence [Cq] �= 0.
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Step 2: The maps θ and θ̃.
For a brief summary of the Clifford algebras and Clifford groups associated to a symmetric

bundle, see [4, Section 1.9]. Let (V, q) be a symmetric bundle on Y . We denote by C(q)
its Clifford algebra and by C∗(q) its Clifford group. We then consider the sheaf of algebras
and the sheaf of groups for the flat topology, defined by the functors C(q) : T → C(qT ) and
C∗(q) : T → C∗(qT ), respectively. The norm map N : C(q) → C(q) restricts to a morphism of
groups

N : C∗(q) −→ Gm,

where Gm denotes the multiplicative group. We let Õ(q) denote the kernel of this homomor-
phism. This is a sheaf of groups for the flat topology that is representable by a smooth group
scheme over Y . The group scheme Õ(q) splits as Õ+(q)

∐
Õ−(q). Let x be in Õε(q) with

ε = ±1, then we define rq(x) as the element of O(q)

rq(x) : V −→ V ,

v 	−→ εxvx−1.

This defines a group homomorphism rq : Õ(q) → O(q). One can show that, for each x ∈ Õε(q),
the element rq(x) belongs to O+(q) = SO(q) or O−(q) = O(q) \ SO(q) depending on whether
ε = 1 or −1, respectively.

We start by considering the affine case Y = Spec(R), where R is a commutative ring in
which 2 is invertible. In this situation, O(q) and Õ(q) can be, respectively, considered as the
orthogonal group and the Pinor group of the form (V, q), where V is a finitely generated
projective R-module and q is a non-degenerate form on V .

Lemma 5.8. Let (V, q) and (W, f) be symmetric bundles over R and let t ∈ Isom(q, f)(R).
(i) The map t extends in a unique way to a graded isomorphism of Clifford algebras

ψ̃t : C(q) −→ C(f).

(ii) The isomorphism ψ̃t induces, by restriction, an isomorphism of groups, again denoted
by ψ̃t, such that the following diagram is commutative:

{1} �� (Z/2Z)(R) ��

Id

��

Õ(q)(R)
rq ��

ψ̃t

��

O(q)(R)

ψt

��
{1} �� (Z/2Z)(R) �� Õ(f)(R)

rf �� O(f)(R)

where ψt is the group isomorphism u→ tut−1.
(iii) For any a ∈ O(f)(R) and t ∈ Isom(q, f)(R), we have the equalities

ψ̃at = ψ̃a ◦ ψ̃t and ψat = aψta
−1.

(iv) Suppose that (V, q) = (W, f). We assume that t has a lift s(t) in Õ(q)(R). Then ψ̃t = is(t)
(respectively, εis(t) on Õε(q)(R)) if t ∈ O+(q)(R) (respectively, O−(q)(R)).

Proof. It follows from the very definition of the Clifford algebra that t extends to a graded
isomorphism ψ̃t : C(q) → C(f), which itself induces by restriction an isomorphism ψ̃t : Õ(q) →
Õ(f). For a ∈ Õε(q), one has by definition

rf ◦ ψ̃t(a)(x) = εψ̃t(a)xψ̃t(a)−1 ∀x ∈W.



1122 PH. CASSOU-NOGUÈS ET AL.

Since ψ̃t is induced by a morphism of R-algebras, the right-hand side of this equality can be
written as

εψ̃t(aψ̃−1
t (x)a−1).

Since ψ̃t coincides with t on V and since at−1(x)a−1 ∈ V (recall that a ∈ Õ(q)) we conclude
that

rf ◦ ψ̃t(a)(x) = ψt ◦ rq(a)(x) ∀x ∈W.

Therefore, (i) and (ii) are proved. The second equality of (iii) is immediate. In order to prove
the first equality, it suffices to observe that both sides of this equality coincide when restricted
to V .

If we now assume that t has a lift in Õ(q)(R), then we obtain two automorphisms of C(q),
namely ψ̃t and ıs(t). Moreover, since s(t) ∈ Õε(q), it follows from the definition of rq that
t(x) = εs(t)xs(t)−1 for any x in V . If t ∈ O+(q), then ε = 1 and ψ̃t and is(t) coincide on V, and
therefore coincide on C(q). If t ∈ O−(q), then ε = −1 and therefore ψ̃t and is(t) will coincide
on C+(q) and will differ by a minus sign on C−(q), and the result follows.

We now return to the forms q and tn on Y and the sheaf Isom(tn, q) of Yfl. Let us define
morphisms in Yfl:

θ : Isom(tn, q) × O(q) −→ Isom(tn, q) × O(n),

θ̃ : Isom(tn, q) × Õ(q) −→ Isom(tn, q) × Õ(n)

as follows. The morphisms θ and θ̃ can be defined on sections. Furthermore, the class of
affine schemes yields a generating subcategory of Yfl, hence one can define the morphisms θ
and θ̃ on sections over affine schemes of the form Spec(R) → Y . For any Spec(R) → Y and
t ∈ Isom(tn, q)(R), we set θt = ψt−1 and θ̃t = ψ̃t−1 . Then the maps

θ(R) : Isom(tn, q)(R) × O(q)(R) −→ Isom(tn, q)(R) × O(n)(R),
(t, x) 	−→ (t, θt(x))

and
θ̃(R) : Isom(tn, q)(R) × Õ(q)(R) −→ Isom(tn, q)(R) × Õ(n)(R),

(t, x) 	−→ (t, θ̃t(x))

are both functorial in Spec(R) → Y , and yield the morphisms θ and θ̃. We denote by

π̃ : BÕ(q)

Brq−→ BO(q)
π−→ Yfl

the canonical map. Recall that

Θq := π∗Isom(tn, q).

Similarly, we denote by Θ̃q the object of BÕ(q) given by

Θ̃q := B∗
rq

Θq = π̃∗Isom(tn, q),

which is the sheaf Isom(tn, q) with trivial Õ(q)-action. Pulling back θ and θ̃ along the morphism
π̃ : BÕ(q) → Yfl, we obtain morphisms in BÕ(q):

π̃∗θ : Θ̃q × π̃∗O(q) −→ Θ̃q × π̃∗O(n) and π̃∗θ̃ : Θ̃q × π̃∗Õ(q) −→ Θ̃q × π̃∗Õ(n),

where the above maps are just θ and θ̃ seen as equivariant maps between objects of Yfl with
trivial Õ(q)-action. Moreover, π̃∗θ and π̃∗θ̃ are defined over Θ̃q, that is, π̃∗θ and π̃∗θ̃ commute
with the projection to Θ̃q. In other words, π̃∗θ and π̃∗θ̃ are maps in BÕ(q)/Θ̃q, which we simply
denote by θ := π̃∗θ and θ̃ := π̃∗θ̃. We summarize what we have constructed so far.
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Lemma 5.9. The following diagram is a commutative diagram in BÕ(q)/Θ̃q.

Θ̃q
�� Θ̃q × Z/2Z ��

Id

��

Θ̃q × π̃∗Õ(q)
rq ��

θ̃
��

Θ̃q × π̃∗O(q)

θ

��

�� Θ̃q

Θ̃q
�� Θ̃q × Z/2Z �� Θ̃q × π̃∗Õ(n)

rn �� Θ̃q × π̃∗O(n) �� Θ̃q

Moreover, the horizontal rows are exact sequences of sheaves of groups on BÕ(q)/Θ̃q and the

vertical arrows are isomorphisms. Note that Θ̃q is the trivial group in BÕ(q)/Θ̃q.

We now use the morphisms θ and θ̃ to associate to any object p : W → Θ̃q of BÕ(q)/Θ̃q

isomorphisms of groups

θp : π̃∗O(q)(W ) ∼−→ π̃∗O(n)(W ) and θ̃p : π̃∗Õ(q)(W ) ∼−→ π̃∗Õ(n)(W ),

where W is the object of BÕ(q) underlying p. For example, we have π̃∗O(n)(W ) :=
HomBÕ(q)

(W, π̃∗O(n)). These isomorphisms can be described as follows:

θp : (f : W → π̃∗O(q)) �� (θp(f) : W
p×f �� Θ̃q × π̃∗O(q)

θ �� Θ̃q × π̃∗O(n)
pr �� π̃∗O(n)),

θ̃p : (f : W → π̃∗O(q)) �� (θ̃p(f) : W
p×f �� Θ̃q × π̃∗Õ(q)

θ̃ �� Θ̃q × π̃∗Õ(n)
pr �� π̃∗Õ(n)),

where pr denotes the projection on the second component. We then have a commutative
diagram of groups

1 �� Z/2Z(W ) ��

Id

��

π̃∗Õ(q)(W )
rq,W ��

θ̃p

��

π̃∗O(q)(W )

θp

��
1 �� Z/2Z(W ) �� π̃∗Õ(n)(W )

rn,W �� π̃∗O(n)(W )

We (also) denote by η : Yfl → BÕ(q) the morphism of topoi induced by the morphism of
groups 1 → Õ(q). The functor η∗ forgets the Õ(q)-action. It has a left adjoint η!, which is
defined as follows: η!(Z) is the object of BÕ(q) given by EÕ(q) × Z on which Õ(q) acts via
the first factor. Furthermore, we may consider the maps η∗θ and η∗θ̃ as maps in the topos
Yfl/Isom(tn, q). For a map t : Z → Isom(tn, q) in Yfl we define

(η∗θ)t : O(q)(Z) −→ O(n)(Z) and (η∗θ̃)t : Õ(q)(Z) −→ Õ(n)(Z)

in a similar manner. In particular, for t : Z = Spec(R) → Isom(tn, q), one has

(η∗θ)t = ψt−1 and (η∗θ̃)t = ψ̃t−1 (30)

as defined in Lemma 5.8.

Lemma 5.10. Let Z = Spec(R) be an object of BÕ(q) with trivial Õ(q)-action and let

Z → Θ̃q be a map in BÕ(q). By adjunction one has canonical identifications

(−)|R : π̃∗Õ(n)(EÕ(q) × Z) ∼−→ Õ(n)(η∗Z) = Õ(n)(R), (31)

(−)|R : π̃∗Õ(q)(EÕ(q) × Z) ∼−→ Õ(q)(η∗Z) = Õ(q)(R), (32)

(−)|R : Θ̃q(EÕ(q) × Z) ∼−→ Isom(tn, q)(η∗Z) = Isom(tn, q)(R) (33)
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such that

θp(σ)|R = (η∗θ)p|R(σ|R) := ψp−1
|R

(σ|R) and θ̃p(σ)|R = (η∗θ̃)p|R(σ|R) := ψ̃p−1
|R

(σ|R) (34)

for any

(p, σ) ∈ Θ̃q(EÕ(q) × Z) × π̃∗Õ(q)(EÕ(q) × Z).

Proof. The map (31) is defined as follows. Given

σ : EÕ(q) × Z −→ π̃∗Õ(q) ∈ π̃∗Õ(q)(EÕ(q) × Z),

we define

σ|R : η∗Z e−→ η∗EÕ(q) × η∗Z
η∗(σ)−→ η∗π̃∗Õ(q) = Õ(q),

where e : η∗Z −→ η∗EÕ(q) × η∗Z is the map given by the unit section of Õ(q) = η∗EÕ(q). This
morphism σ 	→ σ|R is an inverse of the adjunction map:

Õ(n)(η∗Z) = HomYfl
(η∗Z, Õ(n)) = HomYfl

(η∗Z, η∗π̃∗Õ(n))

= HomBÕ(q)
(η!η∗Z, π̃∗Õ(n))

= HomBÕ(q)
(EÕ(q) × Z, π̃∗Õ(n)) = π̃∗Õ(n)(EÕ(q) × Z).

Replacing successively Õ(n) with Õ(q) and Isom(tn, q), we obtain, respectively, (32) and
(33). Then (34) follows immediately from the definitions: for some (p, σ) ∈ Θ̃q(EÕ(q) × Z) ×
π̃∗Õ(q)(EÕ(q) × Z) we have

θ̃p(σ) : EÕ(q) × Z −→ Θ̃q × π̃∗Õ(q) θ̃−→ Θ̃q × π̃∗Õ(n) −→ π̃∗Õ(n)

and

θ̃p(σ)|R : η∗Z −→ η∗EÕ(q) × η∗Z −→ η∗Θ̃q × η∗π̃∗Õ(q)
η∗θ̃−→ η∗Θ̃q × η∗π̃∗Õ(n) −→ η∗π̃∗Õ(n),

which is just

(η∗θ̃)p|R(σ|R) : Spec(R)
(p|R,σ|R)−→ Isom(tn, q) × Õ(q)

η∗θ̃−→ Isom(tn, q) × Õ(n) −→ Õ(n).

We shall also need the following result.

Lemma 5.11. The class of objects of the form EÕ(q) × Spec(R), where Spec(R) is an affine

scheme endowed with its trivial Õ(q)-action, is a generating family of the topos BÕ(q).

To be more precise, here we denote by Spec(R) an object of BÕ(q) given by a sheaf on Yfl,
represented by a Y -scheme of the form Spec(R) → Y (the map itself is not necessarily affine)
endowed with its trivial Õ(q)-action.

Proof. We need to show that, for any object F in BÕ(q), there exists an epimorphic family

{EÕ(q) × Spec(Ri) −→ F , i ∈ I}
of morphisms in BÕ(q). Recall that we denote by η : Yfl → BÕ(q) the morphism of topoi induced
by the morphism of groups 1 → Õ(q). The functor η∗ forgets the Õ(q)-action. It has a left
adjoint η!, which is defined as follows: η!(Z) is the object of BÕ(q) given by EÕ(q) × Z on
which Õ(q) acts via the first factor.
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Using the Yoneda lemma, one sees that the class of Y -schemes Y ′ → Y forms a generating
family of the topos Yfl. Since any Y -scheme Y ′ can be covered by open affine subschemes, the
class of objects of the form Spec(R) → Y is a generating family of Yfl. Now let F be an object
of BÕ(q), and let

{gi : Spec(Ri) −→ η∗F , i ∈ I}
be an epimorphic family in Yfl. By adjunction we obtain a family

{fi : η!(Spec(Ri)) −→ F , i ∈ I}
of morphisms in BÕ(q) such that

gi = η∗(fi) ◦ τi : Spec(Ri) −→ η∗η!(Spec(Ri)) −→ η∗F ,
where τi : Spec(Ri) → η∗η!(Spec(Ri)) is the adjunction map.

Let u, v : F ⇒ G be a pair of maps in BÕ(q) such that u ◦ fi = v ◦ fi for each i ∈ I. In
particular, we have

η∗(u) ◦ η∗(fi) ◦ τi = η∗(v) ◦ η∗(fi) ◦ τi
for each i ∈ I, hence η∗(u) ◦ gi = η∗(v) ◦ gi for each i ∈ I. It follows that η∗(u) = η∗(v) since
the family {gi, i ∈ I} is epimorphic. We obtain u = v since η∗ is faithful. Hence, the family
{fi, i ∈ I} is epimorphic as well, and the result follows.

Step 3: The cocycles α, β and γ.
Recall that we denote by

π̃ : BÕ(q)

Brq−→ BO(q)
π−→ Yfl

the canonical map. We set

Θ̃q := B∗
rq

Θq, T̃q := B∗
rq
Tq, ẼO(q) := B∗

rq
EO(q) = Õ(q)/(Z/2Z).

We now look for a covering of BÕ(q) that splits both the π̃∗O(n)-torsors T̃q and Θ̃q and also
the π̃∗O(q)-torsor ẼO(q). The map

ẼO(q) × Θ̃q −→ ẼO(q) × T̃q,
(x, t) 	−→ (x, xt)

is an isomorphism of BÕ(q). It follows that {U = ẼO(q) × Θ̃q → ∗} is a covering of the final
object in BÕ(q) trivializing T̃q, Θ̃q and ẼO(q). We now can use the construction recalled in
Step 1 to obtain 1-cocycles of U that represent each of these torsors. We then consider the
map f : U → T̃q, defined by

f : U = ẼO(q) × Θ̃q −→ ẼO(q) × T̃q −→ T̃q, (x, t) −→ (x, xt) −→ xt,

in order to obtain the 1-cocycle γ ∈ Z1({U → ∗}, π̃∗O(n)) which represents T̃q:

γ : U × U −→ π̃∗O(n),
(x, t, y, u) 	−→ (xt)−1(yu).

We apply again this construction where the role of f is now played successively by the
projections U = ẼO(q) × Θ̃q → Θ̃q and U = ẼO(q) × Θ̃q → ẼO(q). We obtain firstly

β : U × U −→ π̃∗O(n),
(x, t, y, u) 	−→ t−1u

for a representative of Θ̃q and secondly

α : U × U −→ π̃∗O(q),
(x, t, y, u) 	−→ x−1y
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for a representative of ẼO(q). Of course, we have

α ∈ Z1({U −→ ∗}, π̃∗O(q)) and β, γ ∈ Z1({U −→ ∗}, π̃∗O(n)).

Finally, applying the construction described in Step 2, we consider the group isomorphism

θp : π̃∗O(q)(U × U) ∼−→ π̃∗O(n)(U × U)

associated to
p : U × U −→ Θ̃q,

(x, t, y, u) −→ t.

Considering α as an element of the group π̃∗O(q)(U × U) and β, γ as elements of the group
π̃∗O(n)(U × U), we have

γ = θp(α) · β ∈ π̃∗O(n)(U × U), (35)

since we may write

γ(x, t, y, u) = (t−1(x−1y)t)(t−1u) ∈ π̃∗O(n)(U × U).

Note that (35) only makes sense in the group π̃∗O(n)(U × U), since Z1({U → ∗}, π̃∗O(n))
only carries the structure of a pointed set.

We continue to view α and β as elements of the groups π̃∗O(q)(U × U) and π̃∗O(n)(U × U),
respectively, and we consider the maps

rq : π̃∗Õ(q) � π̃∗O(q) and rn : π̃∗Õ(n) � π̃∗O(n).

Lemma 5.12. There exist an epimorphism U ′ → U together with elements

α̃|U ′×U ′ ∈ π̃∗Õ(q)(U ′ × U ′) and β̃|U ′×U ′ ∈ π̃∗Õ(n)(U ′ × U ′)

such that

α|U ′×U ′ = rq(α̃|U ′×U ′) and β|U ′×U ′ = rn(β̃|U ′×U ′).

Proof. First, we show that β has a lift. The map β can be factored in the following manner:

β : U × U = ẼO(q) × Θ̃q × ẼO(q) × Θ̃q −→ Θ̃q × Θ̃q
b−→ π̃∗O(n),

where
b : Θ̃q × Θ̃q −→ π̃∗O(n),

(t, u) 	−→ t−1u.

By base change, it is enough to show that there exists an epimorphism V → Θ̃q and a
commutative diagram in BÕ(q):

V × V ��

��

π̃∗Õ(n)

��
Θ̃q × Θ̃q

�� π̃∗O(n)

The objects Θ̃q × Θ̃q, π̃∗O(n) and π̃∗Õ(n) of BÕ(q) occurring in this square are all given
with the trivial action of Õ(q), hence it is enough to show that there exist an epimorphism
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V → Isom(tn, q) in Yfl and a commutative diagram in Yfl:

V × V ��

��

Õ(n)

��
Isom(tn, q) × Isom(tn, q) �� O(n)

Take an étale covering Y ′ → Y trivializing q, that is, such that there is an isometry f : qY ′
∼→

tn,Y ′ , that is, such that there is a section

f : Y ′ −→ Y ′ × Isom(q, tn) in Yfl/Y ′.

Composition with f

Y ′ × Isom(tn, q)
(f,1)−→ Y ′ × Isom(q, tn) × Isom(tn, q)

(1,−◦−)−→ Y ′ × O(n)

yields an isomorphism of O(n)-torsors over Y ′:

Y ′ × Isom(tn, q) � Y ′ × O(n).

Indeed, this map is clearly O(n)-equivariant; it is an isomorphism whose inverse is induced by
composition with f−1 : tn,Y ′

∼→ qY ′ in a similar way. We consider the maps

V = Y ′ × Õ(n) −→ Y ′ × O(n) � Y ′ × Isom(tn, q) −→ Isom(tn, q)

and
V × V = Y ′ × Õ(n) × Y ′ × Õ(n) −→ Õ(n),

(y′, σ, z′, τ) 	−→ σ−1τ.

It is then straightforward to check that the above square is commutative.
It remains to show that α has a lift. We consider the epimorphism in BÕ(q)

U ′ = EÕ(q) × Θ̃q
(r,Id)−→ ẼO(q) × Θ̃q = U.

Here, r : EÕ(q) → ẼO(q) is the map Õ(q) → O(q) seen as an Õ(q)-equivariant map, where Õ(q)
acts by left multiplication on both Õ(q) and O(q). Then

U ′ × U ′ ��

��

π̃∗Õ(q)

��
U × U �� π̃∗O(q)

is a commutative diagram in BÕ(q) where the top horizontal map is defined as follows:

U ′ × U ′ = EÕ(q) × Θ̃q × EÕ(q) × Θ̃q −→ π̃∗Õ(q),
(σ, t, τ, u) 	−→ σ−1τ.

We have shown that there exists epimorphisms Uα → U and Uβ → U such that α|Uα×Uα

and β|Uβ×Uβ
have lifts ˜α|Uα×Uα

and ˜β|Uβ×Uβ
, respectively. The conclusion of the lemma with

U ′ = Uα ×U Uβ � U follows.

It follows from (35) that

γ|U ′×U ′ = (θp(α) · β̃)|U ′×U ′ = θp|U′×U′ (α|U ′×U ′) · β|U ′×U ′ . (36)

Using Lemma 5.11, we obtain

γ̃|U ′×U ′ = θ̃p|U′×U′ (α̃|U ′×U ′) · β̃|U ′×U ′ ∈ π̃∗Õ(q)(U ′ × U ′) (37)
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is a lift of γ|U ′×U ′ ∈ π̃∗Õ(q)(U ′ × U ′). From now on, we write U for U ′, p for p|U ′×U ′ : U ′ ×
U ′ →W → Θ̃q, α for α|U ′×U ′ , β for β|U ′×U ′ and γ for γ|U ′×U ′ . We have lifts α̃ ∈ π̃∗Õ(q)(U ×
U), β̃ ∈ π̃∗Õ(n)(U × U) and γ̃ ∈ π̃∗Õ(n)(U × U) of α ∈ π̃∗O(q)(U × U), β ∈ π̃∗O(n)(U × U)
and γ ∈ π̃∗O(n)(U × U), respectively. Moreover, we have

γ̃ = θ̃p(α̃) · β̃ ∈ π̃∗Õ(q)(U × U). (38)

Step 4: Reduction to an identity of cocycles
The extension of group objects in Yfl

1 −→ Z/2Z −→ Õ(n) −→ O(n) −→ 1

gives a morphism
δ2n : H1(BÕ(q), π̃

∗O(n)) −→ H2(BÕ(q),Z/2Z).

Note that one has
δ2n(T̃q) = T̃ ∗

q [Cn] = B∗
rq
T ∗
q [Cn] = B∗

rq
HW2(q) (39)

and
δ2n(Θ̃q) = Θ̃∗

q [Cn] = B∗
rq

Θ∗
q [Cn] = B∗

rq
w2(q). (40)

Similarly, the group extension

1 −→ Z/2Z −→ Õ(q) −→ O(q) −→ 1

gives a morphism
δ2q : H1(BÕ(q), π̃

∗O(q)) −→ H2(BÕ(q),Z/2Z)

such that
δ2q (ẼO(q)) = Ẽ∗

O(q)[Cq] = B∗
rq

[Cq] = 0. (41)

Proposition 5.13. One is reduced to show

δ2n(T̃q) = δ2n(Θ̃q) +B∗
rq
w1(q) ∪B∗

rq
det[q] + δ2q (ẼO(q)) (42)

in H2(BÕ(q),Z/2Z), which in turn will follow from an identity of cocycles

δ2n(γ) = δ2n(β) + (detO(n) ◦ β) ∪ (detO(q) ◦ α) + δ2q (α) (43)

in Ȟ2({U → ∗},Z/2Z).

Proof. By Proposition 5.5, it is enough to show that (43) implies (42) and that (42) implies
(29). The fact that (42) implies (29) follows immediately from (39)–(41) and the fact that B∗

rq

respects sums and cup-products.
Let us show that (43) implies (42). The 2-cocycles δ2n(γ), δ

2
n(β) and δ2q (α), all elements

of Z2({U → ∗},Z/2Z), represent the cohomology classes δ2n(T̃q), δ2n(Θ̃q) and δ2q (ẼO(q)),
respectively. Then we observe that detO(n) ◦ β and detO(q) ◦ α are 1-cocycles representing the
maps

BÕ(q)

Brq−→ BO(q)
Θq−→ BO(n)

detO(n)−→ BZ/2Z

and

BÕ(q)

Brq−→ BO(q)

EO(q)=Id−→ BO(q)

detO(q)−→ BZ/2Z,

respectively. By definition, these two maps correspond to the cohomology classes B∗
rq
w1(q)

and B∗
rq

det[q], respectively. The result follows since the map Ȟ2({U → ∗},Z/2Z) →
H2(BÕ(q),Z/2Z) is compatible with cup-products.
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Step 5: Proof of (43)
We still denote by

pij : U × U × U −→ U × U

the projection on the (i, j)-components. Then we have

δ2n(γ) = (γ̃p23)(γ̃p13)−1(γ̃p12) ∈ Z2({U −→ ∗},Z/2Z) ⊂ π̃∗Õ(n)(U × U × U),

a 2-cocycle representative of δ2n(T̃q) ∈ H2(BÕ(q),Z/2Z). Of course, δ2n(γ) is only well defined
in Ȟ2({U → ∗},Z/2Z); that is, a different choice for the lift γ̃ gives a cohomologous 2-cocycle.
By (38), we have

δ2n(γ) = ((θ̃p(α̃)p23)(β̃p23))((θ̃p(α̃)p13)(β̃p13))−1((θ̃p(α̃)p12)(β̃p12)).

Our first goal is to understand the terms θ̃p(α̃)pij . To this end, we introduce the natural
projections pi for 1 � i � 3:

pi : U × U × U
pri−→ U −→ ẼO(q) × Θ̃q

pr2−→ Θ̃q.

Recall from Step 2 that

θ̃p(α̃)p23 = pr ◦ θ̃ ◦ (p× α̃) ◦ p23,

where

p : U × U
pr1−→ U −→ ẼO(q) × Θ̃q

pr2−→ Θ̃q.

We now observe that

(p× α̃) ◦ p23 = (p ◦ p23) × (α̃ ◦ p23) = p2 × α̃ ◦ p23.

Hence, we deduce that

θ̃p(α̃)p23 = θ̃p2(α̃p23) ∈ π̃∗Õ(n)(U × U × U).

Similarly, we have

θ̃p(α̃)p13 = θ̃p1(α̃p13) and θ̃p(α̃)p12 = θ̃p1(α̃p12)

in the group π̃∗Õ(n)(U × U × U). This yields

δ2n(γ) = θ̃p2(α̃p23)(β̃p23)(β̃p13)−1θ̃p1(α̃p
−1
13 )θ̃p1(α̃p12)(β̃p12). (44)

Moreover, we have

θ̃p1(α̃p
−1
13 )θ̃p1(α̃p12) = θ̃p1(α̃p

−1
13 α̃p12) = θ̃p1(α̃p

−1
23 )θ̃p1(α̃p23α̃p

−1
13 α̃p12).

Since α̃p23α̃p
−1
13 α̃p12 is in the kernel of rq,Z and since θ̃p1 coincides with the identity on this

kernel, we can write

θ̃p1(α̃p
−1
23 )θ̃p1(α̃p23α̃p

−1
13 α̃p12) = θ̃p1(α̃p

−1
23 )(α̃p23α̃p

−1
13 α̃p12). (45)

Since (β̃p23)(β̃p13)−1(β̃p12) is in the kernel of rn,Z , it belongs to the centre of π̃∗Õ(n)(U ×
U × U), and it follows from (44) and (45) that we have

δ2n(γ) = δ2n(β) · ξ · δ2q (α) ∈ π̃∗Õ(n)(U × U × U),

where ξ is defined as follows:

ξ = θ̃p2(α̃p23)(β̃p12)−1θ̃p1(α̃p
−1
23 )(β̃p12) ∈ Z2({U −→ ∗},Z/2Z).

Clearly, the result (43) would follow from an identity

ξ = detO(n)(β) ∪ detO(q)(α) ∈ Z2({U −→ ∗},Z/2Z)
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in the group of 2-cocycles Z2({U → ∗},Z/2Z). Since Z2({U → ∗},Z/2Z) ⊂ Z/2Z(U × U ×
U), it is of course equivalent to showing that

ξ = detO(n)(β) ∪ detO(q)(α) ∈ Z/2Z(U × U × U). (46)

Let us first make the cup-product detO(n)(β) ∪ detO(q)(α) more explicit: It is given by

m ◦ (detO(n)(β)p12,detO(q)(α)p23) : U × U × U −→ Z/2Z × Z/2Z −→ Z/2Z,

where m : Z/2Z × Z/2Z → Z/2Z is the standard multiplication,

detO(n)(β) := detO(n) ◦ β : U × U −→ μ2 = Z/2Z,
(x1, t1, x2, t2) 	−→ detO(n)(t−1

1 t2)

and
detO(q)(α) := detO(q) ◦ α : U × U −→ μ2 = Z/2Z,

(x1, t1, x2, t2) 	−→ detO(q)(x−1
1 x2).

By Lemma 5.11, the class of objects of the form EÕ(q) × Spec(R) → Y , where Spec(R) is an
affine Y -scheme endowed with its trivial Õ(q)-action, is a generating family of the topos BÕ(q).
Therefore, in order to prove (46), it is enough to show

ξ ◦ u = (detO(n)(β) ∪ detO(q)(α)) ◦ u ∈ Z/2Z(EÕ(q) × Spec(R)) (47)

for any map u in BÕ(q) of the form

u : EÕ(q) × Spec(R) −→ U × U × U,

where Spec(R) is an affine scheme. Moreover, by adjunction we have an isomorphism (see the
proof of Lemma 5.11)

HomBÕ(q)
(EÕ(q) × Spec(R),Z/2Z) −→ HomYfl

(Spec(R),Z/2Z),
f 	−→ f|R

sending f : EÕ(q) × Spec(R) → Z/2Z to

f|R : Spec(R) −→ η∗(EÕ(q) × Spec(R))
η∗f−→ Z/2Z.

Using the bijection f 	→ f|R above, we are reduced to showing the identity

(ξ ◦ u)|R = m ◦ (detO(n)(βp12u)|R,detO(q)(αp23u)|R) (48)

in Z/2Z(Spec(R)) = Z/2Zπ0(Spec(R)). Note by the way that one may suppose Spec(R) to be
connected and reduced. Indeed, (48) can be shown after restriction to Spec(Rj)red → Spec(R)
for any connected component Spec(Rj)red of Spec(R), given its unique structure of reduced
closed affine subscheme (note that a connected component is always closed but not necessarily
open). By Lemma 5.10, we have

(ξ ◦ u)|R = (θ̃p2u(α̃p23u) · (β̃p12u)−1 · θ̃p1u(α̃p23u)−1 · (β̃p12u))|R (49)

= (θ̃p2u(α̃p23u))|R · (β̃p12u)−1
|R · (θ̃p1u(α̃p23u))−1

|R · (β̃p12u)|R (50)

= η∗θ̃p2u|R(α̃p23u|R) · β̃p12u
−1
|R · η∗θ̃p1u|R(α̃p23u|R)−1 · β̃p12u|R, (51)

where α̃piju|R ∈ Õ(q)(R), β̃piju|R ∈ Õ(n)(R) and η∗θ̃piu|R : Õ(q)(R) → Õ(n)(R) is the map
induced by piu|R ∈ Isom(tn, q)(R); see Step 2. Moreover, one has

p2 = p1 � βp12,

where � : Θ̃q × π̃∗O(n) → Θ̃q is the π̃∗O(n)-torsor structure map of Θ̃q. Applying successively
(−) ◦ u and (−)|R, we obtain

p2u|R = (p1u|R) ◦ (βp12u|R),
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where the right-hand side (p1u|R) ◦ (βp12u|R) ∈ Isom(tn, q)(R) is the composition of p1u|R ∈
Isom(tn, q)(R) and βp12u|R ∈ O(n)(R). It then follows from (30) and Lemma 5.8 that

η∗θ̃p2u|R = ψ̃p2u
−1
|R

= ψ̃(βp12u|R)−1(p1u|R)−1 = ψ̃(βp12u|R)−1 ◦ ψ̃(p1u|R)−1

= ψ̃βp12u−1
|R

◦ η∗θ̃p1u|R . (52)

By Lemma 5.8(iii) and (iv), if βp12u|R ∈ O+(n)(R), then ψ̃(βp12u|R)−1 = i(β̃p12u|R)−1 , since
β̃p12u|R is a lift of βp12u|R. For βp12u|R ∈ O+(n)(R), we obtain

η∗θ̃p2u|R(−) = (β̃p12u|R)−1 · η∗θ̃p1u|R(−) · (β̃p12u|R),

hence, by (51), (ξ ◦ u)|R = 0. We now suppose that βp12u|R ∈ O−(n)(R) and αp23u|R ∈
O+(q)(R). It follows that α̃p23u|R ∈ Õ+(q)(R) and that η∗θ̃p1u|R(α̃p23u|R) ∈ Õ+(n)(R). Since
ψ̃(βp12u|R)−1 coincides with i(β̃p12u|R)−1 on Õ+(n)(R), we deduce from (51) and (52) that
(ξ ◦ u)|R = 0. We now assume that αp23u|R ∈ O−(q)(R) and α̃p23u|R ∈ Õ−(q)(R). Using
ψ̃(βp12u|R)−1 = −i(β̃p12u|R)−1 on Õ−(n)(R), we conclude that (ξ ◦ u)|R = 1 in this last case.
A comparison in each case of the values of (ξ ◦ u)|R and

((detO(n)(β) ∪ detO(q)(α)) ◦ u)|R = detO(n)(βp12u|R) · detO(q)(αp23u|R)

yields
(ξ ◦ u)|R = ((detO(n)(β) ∪ detO(q)(α)) ◦ u)|R ∈ Z/2Z(Spec(R)) = Z/2Z

for any Spec(R) connected. The result follows.

Remark 5.14. Let us define

H(BO(q),Z/2Z)∗ =

⎧⎨
⎩1 + a1 + a2 ∈

⊕
0�i�2

Hi(BO(q),Z/2Z); ai ∈ Hi(BO(q),Z/2Z)

⎫⎬
⎭ .

We define an abelian group structure on H(BO(q),Z/2Z)∗ by

(1 + a1 + a2)(1 + b1 + b2) = 1 + (a1 + b1) + a2 + b2 + a1 ∪ b1.
Moreover, Tq and Θq induce morphisms of abelian group from H(BO(n),Z/2Z)∗ to
H(BO(q),Z/2Z)∗. We associate to (V, q) the element

sq = 1 + det[q] + [Cq] ∈ H(BO(q),Z/2Z)∗

and we simply write sn for stn . Then Theorem 5.1 yields the identity

sq = T ∗
q (sn)Θq

∗(sn)−1.

6. Consequences of the main theorem

6.1. Serre’s formula

Our aim is to deduce comparison formulas from Theorem 5.1 which extend the work of Serre
(see [12, Chapitre III, Annexe, (2.2.1), (2.2.2)]) to symmetric bundles over an arbitrary base
scheme. This formula is also referred to as the ‘real Fröhlich–Kahn–Snaith formula’ in [13]. A
direct proof of this result is given in [2, Theorem 0.2].

We consider an O(q)-torsor α of Yfl. We also denote by α : Yfl → BO(q) the classifying map
for this torsor, and by [α] its class in H1(Yfl,O(q)). We define by

δ1q : H1(Yfl,O(q)) −→ H1(Yfl,Z/2Z)
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the map induced by the determinant map detq : O(q) → Z/2Z, and by

δ2q : H1(Yfl,O(q)) −→ H2(Yfl,Z/2Z)

the boundary map associated to the group extension Cq in Yfl

1 −→ Z/2Z −→ Õ(q) −→ O(q) −→ 1. (53)

In other words, we have

δ1q [α] := α∗(det[q]) and δ2q [α] := α∗[Cq]. (54)

As in Section 4.2, we associate to α a symmetric bundle (Vα, qα) on Y .

Corollary 6.1. For any O(q)-torsor α of Yfl, we have

(i) w1(qα) = w1(q) + δ1q [α] in H1(Y,Z/2Z);
(ii) w2(qα) = w2(q) + w1(q) · δ1q [α] + δ2q [α] in H2(Y,Z/2Z).

Proof. We define {qα} : Yfl → BO(n) to be the morphism of topoi associated to the O(n)-
torsor Isom(tn, qα) of Yfl and we let Tq : BO(q) → BO(n) be the morphism of topoi defined in
Definition 4.6.

Lemma 6.2. The following triangle is commutative:

Yfl
α ��

{qα} ����
��

��
��

BO(q)

Tq

��
BO(n)

Proof. It will suffice to describe an isomorphism

{qα}∗EO(n) � α∗T ∗
q EO(n)

of O(n)-torsors of Yfl. It follows from the definitions that {qα}∗EO(n) = Isom(tn, qα) and that

α∗T ∗
q EO(n) = α∗Isom(tn, q) = Isom(q, qα) ∧O(q) Isom(tn, q).

The lemma then follows from the fact that the map

Isom(q, qα) × Isom(tn, q) −→ Isom(tn, qα),

given by composition, induces an O(n)-equivariant isomorphism

Isom(q, qα) ∧O(q) Isom(tn, q) � Isom(tn, qα).

As a consequence of the lemma we obtain that

α∗T ∗
q (HWi) = {qα}∗(HWi) = wi(qα) in Hi(Y,Z/2Z) for i = 1, 2. (55)

We now observe that, since π ◦ α � id, we have

α∗(wi(q)) = α∗π∗(wi(q)) = wi(q). (56)

Using (54)–(56), the corollary is just the pull-back of Theorem 5.1 via α∗.
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6.2. Comparison formulas for Hasse–Witt invariants of orthogonal representations

Let (V, q, ρ) be an orthogonal representation of G. To be more precise, G is a group scheme over
Y , (V, q) is a symmetric bundle over Y and ρ : G→ O(q) is a morphism of Y -group schemes.

We denote by Bρ : BG → BO(q) the morphism of classifying topoi induced by the group
homomorphism ρ. The Hasse–Witt invariants wi(q, ρ) of (V, q, ρ) lie in Hi(BG,Z/2Z). Indeed,
there is a morphism

BG
Bρ−→ BO(q)

Tq−→ BO(n)

canonically associated to (V, q, ρ) and wi(q, ρ) is simply the pull-back of HWi along this map:

wi(q, ρ) := (Tq ◦Bρ)∗(HWi) = B∗
ρ(HWi(q)). (57)

On the other hand, the morphism of groups

detq ◦ ρ : G −→ O(q) −→ Z/2Z

defines (see Proposition 3.8) a cohomology class w1(ρ) ∈ H1(BG,Z/2Z). Note that one has

w1(ρ) = B∗
ρ(det[q]). (58)

Pulling back the group extension Cq along the map ρ : G→ O(q), we obtain a group extension

1 −→ Z/2Z −→ G̃ −→ G −→ 1,

where G̃ := Õ(q) ×O(q) G. We denote by CG ∈ ExtY (G,Z/2Z) the class of this extension and
by [CG] its cohomology class in H2(BG,Z/2Z) (see Proposition 3.8), so that

B∗
ρ([Cq]) = [CG]. (59)

Corollary 6.3. Let G be a group scheme on Y and let (V, q, ρ) be an orthogonal
representation of G. Then, in H∗(BG,Z/2Z) we have

(i) w1(q, ρ) = w1(q) + w1(ρ);
(ii) w2(q, ρ) = w2(q) + w1(q) · w1(ρ) + [CG].

Proof. Let us denote by μ and π the morphisms of classifying topoi associated to the group
morphisms GY → 1 and O(q) → 1, respectively. We have μ � π ◦Bρ and therefore

μ∗(wi(q)) = B∗
ρπ

∗(wi(q)), i = 1, 2. (60)

As in subsection 4.5, we identify Hi(Yfl,Z/2Z) as a direct summand of Hi(BG,Z/2Z)
(respectively, Hi(BO(q),Z/2Z)) via μ∗ (respectively, π∗). In view of (57)–(60), the corollary is
just the pull-back of Theorem 5.1 via B∗

ρ .

6.3. Fröhlich twists

In this section, we extend the work of Fröhlich [6] and the results of [2], Theorem 0.4, to twists
of quadratic forms by G-torsors when the group scheme G is not necessarily constant. Let G
be a group scheme over Y and let (V, q, ρ) be an orthogonal representation of G.

Definition 6.4. For any G-torsor X on Y , we define the twist (VX , qX) to be the
symmetric bundle on Y associated to the morphism

{qX} : Yfl
X−→ BG

Bρ−→ BO(q)
Tq−→ BO(n).
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Equivalently, (VX , qX) is the twist of (V, q) given by the morphism

Yfl
X−→ BG

Bρ−→ BO(q).

The twist (VX , qX) can be made explicit in a number of situations (see, for example,
Section 6.4). In order to compare w(q) with w(qX), we denote by

δ1q,ρ : H1(Yfl, G) −→ H1(Yfl,Z/2Z)

the map induced by the group homomorphism detq ◦ ρ and by

δ2q,ρ : H1(Yfl, G) −→ H2(Yfl,Z/2Z)

the boundary map associated to the group extension CG in Yfl

1 −→ Z/2Z −→ G̃ −→ G −→ 1.

Corollary 6.5. Let (V, q, ρ) be an orthogonal representation of G and let X be a G-torsor
over Y . Then we have

(i) w1(qX) = w1(q) + δ1q,ρ[X];
(ii) w2(qX) = w2(q) + w1(q) · δ1q,ρ[X] + δ2q,ρ[X].

Proof. By definition δ1q,ρ[X] is the cohomology class associated to the morphism

Bdetq
◦Bρ ◦X : Yfl −→ BG

Bρ−→ BO(q)

Bdetq−→ BZ/2Z.

It follows that
δ1q,ρ[X] = (Bρ ◦X)∗(det[q]). (61)

Moreover, one has

δ2q,ρ[X] := X∗([CG]) = X∗B∗
ρ([Cq]) = (Bρ ◦X)∗([Cq]) (62)

and
wi(qX) := (Tq ◦Bρ ◦X)∗(HWi) = (Bρ ◦X)∗(HWi(q)). (63)

and finally, we have
wi(q) = (Bρ ◦X)∗(wi(q)) (64)

since Bρ ◦X is defined over Yfl. In view of (61)–(64) the corollary now follows by pulling back
the equality in Theorem 5.1 along the morphism Bρ ◦X.

Remark 6.6. We have associated to any orthogonal representation ρ : G→ O(q) an exact
sequence of Y -group schemes:

1 −→ Z/2Z −→ G̃ −→ G −→ 1.

For any G-torsor X over Y the class δ2q,ρ[X] may be seen as the obstruction of the embedding
problem associated to the scheme X and the exact sequence. Corollary 6.4 provides us with a
formula for this obstruction in terms of Hasse–Witt invariants of symmetric bundles:

δ2q,ρ[X] = w2(qX) + w2(q) + w1(q)2 + w1(q)w1(qX).

In the particular case where ρ : GY → SO(q) we have this remarkably simple formula

δ2q,ρ[X] = w2(qX) − w2(q),
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which expresses this obstruction as a difference of two Hasse–Witt invariants of quadratic
forms.

6.4. An explicit description of the twisted form

We shall use our previous work to obtain an explicit description of the twists which, in this
geometric context, generalizes Fröhlich’s construction [6]. Recall that (VX , qX) is the symmetric
bundle on Y associated to the morphism

Yfl
X−→ BG

Bρ−→ BO(q).

In other words, (VX , qX) is determined by the fact that we have an isomorphism of O(q)-torsors

Isom(q, qX) � X ∧G O(q).

Our goal is to provide a concrete description of (VX , qX) at least when G satisfies some
additional hypotheses. We start by recalling the results of [1] in the affine case.

Definition 6.7. Let R be a commutative Noetherian integral domain with fraction field
K. A finite and flat R-algebra A is said to satisfy H2 when AK is a commutative separable
K-algebra and the image under the counit of the set of integral of A is the square of a principal
ideal of R.

Let S = Spec(R). We assume that G→ S is a group scheme associated to a Hopf algebra A
which satisfies H2 (we will say that G satisfies H2). We consider a G-equivariant symmetric
bundle (V, q, ρ) given by a projective R-module V endowed with a non-degenerate quadratic
form q and a group homomorphism ρ : G→ O(q). We have proved in [1, Theorem 3.1] that,
for any G-torsor X = Spec(B) → S where B is a commutative and finite R-algebra, the twist
of (V, q, ρ) by X is defined by

(VX , qX) = (D−1/2(B) ⊗R V, Tr ⊗ q)A.

The twist (VX ; qX) can be roughly described as the symmetric bundle obtained by taking the
fixed point by A of the tensor product of (V, q) by the square root of the different of B, endowed
with the trace form, (see [1], Sections 1 and 2 for the precise definitions).

We now come back to the general situation. We assume that G→ S satisfies H2. Moreover,
for the sake of simplicity, we suppose that Y is integral and flat over S. Let (V, q, ρ) be a
GY -equivariant symmetric bundle and let X be a GY -torsor. For any affine open subscheme
U → Y we set XU = X ×Y U and GU = GY ×Y U . We know that by base change XU → U
is a GU -torsor. Moreover, by restriction (V, q) defines an equivariant GU -symmetric bundle
(V | U, q | U, ρ | U) over U . Using the functoriality properties of the different maps involved, it
is easy to check that

(VX , qX) | U � ((V | U)XU
, (q | U)XU

).

Since the properties of G are preserved by flat base change, we conclude that GU → U satisfies
H2 and therefore that, by the above, ((V | U)XU

, (q | U)XU
) has now been explicitly described.
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