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1 Introduction

1.1 Numerical context

Penalization methods are now quite classical to compute the flow of an incompressible fluid
around a no-slip boundary. The advantage of these methods is to avoid body-fitted unstruc-
tured mesh. In this paper, we study a penalization method conceived by C.H. Bruneau and I.

Mortazavi. They use this method in [5] to compute the flow around an obstacle surounded by
a thin layer of porous material, with applications in passive control for ground vehicles.

Let Q be a regular bounded domain of R? and @ be a regular open subset of Q such that O C Q.
We denote i = Q\ O and I' = 00. We fix x > 0.

For € > 0, we set

We = {:1: €0, 0<dist(z,T') < HE}

We denote U° = U Uw,.. The obstacle is represented by O \ w. and w, is the thin layer of porous
material. We set I', = {z € O, dist(z,T') = ¢}.

We are interested in the following penalized problem :

aus € € € 1 € £ H (2
py — Auf + (u* - V)u +ngeU +Vp*=finlU
u® = 0 on dU,

divu® =0 in UY*
where x,.(z) =1 if z € w, and equals zero if z ¢ w,, that is we add to Navier Stokes equation
a penalization term of order e~! in the thin layer w. of thikness re.

In this paper we first %ive an asymptotic expansion of u® when ¢ goes to zero. Furthermore
we study another model of porous thin layer wich consists in replacing the equation in the thin



layer by an equivalent boundary condition on I' :

8’08 13 13 £ £ :
5 — A+ (v°-V)* + Vg =finld
v® = —Ke (81) ) onT
on )p
g 13
where ((% ) is the tangential part of dv onI'.
on / on

For this equation we give an asymptotic expansion of v* when ¢ goes to zero and we prove that
u® — v* is of order 2.

1.2 Mains Results

We introduce V = {v € H}(U;R?), divv = 0}.
We recall a proposition partially proved in [7] concerning the Navier Stokes equation around the
obstacle O :

Proposition 1.1 Let vy € H3U)N'V. Let f € C®(RT x U) with space support inclused in U.
There exists a time T* > 0 and there exists VO defined on [0, T*[xU such that

(V0
e AVO+ (V0. )VO vl = f  in [0, T [xU

divV0=0  in[0,T*[xU

Vi=0  on[0,T*[x0U

Vot=0)=vy inlU.

\

For all T < T*, this solution V° is in L>(0,T; H3(U)) N L?(0,T; H*(U)).

Remark 1.1 In the two-dimensional case we can prove that T* = +oo.

We consider the following penalized thin layer problem :

( Ou® 1
(;; - A (- VUV X = in [0, T*[xUe,
dive® = in [0, T*[xUe,
¢ (1.1)
u® =0 on [0, T*[x 0Ue,
[ ©*(0,z) = ug(x) in U,.

For z € w, we introduce ¢(z) = dist(z,T") and P(z) the orthogonal projection of z onto I'. We
remark that since I is a regular surface of R?, ¢ and P are regular in a neigbourhood of T'.

F}(l)r well prepared initial data, we obtain an asymptotic expansion of u® decribed in the following
theorem :



Theorem 1.1 Let vy, f, VO and T* as in Proposition 1.1.
There exists two profiles V' : [0, T*[xU — R and W' : [0, T*[xT x [0,1] — R?® such that if
ug 15 an initial data of the form :

vo(z) +eV(0,2) + e¥ré(z) if €U
ug(z) =
' (0.2, 20 (0 s € o
where ||7¥||L2@.) < K and such that divug = 0 on U, then there exists u® a solution of the
penalized problem (1.1) which satisfies
VO(t,z) + eVi(t,z) + €2l (t,z) forz €U
p(x)

€

u®(t,z) =

eW(t, P(z), ) + 2wl (t,z) for z € we

where v7 and w’ are bounded in L>(0,T;L?) N L?(0,T; H'),YT < T*.

In order to perform the asymptotic expansion of u* we will use a BKW method, that is we will
formally write u° on the form of its ansatz :

VO(t,z) + eVi(t,z) + 2V2(t,x) + 3V3(t,z) ifz €U

ew! (t,P(a:), @) +2W? (t,P(:c), @) + 3w (t,P(:c), @) if z € w,

u(t,z) =
and we will plot this ansatz in Equations (1.1). Then we will identify the different powers of ¢
to characterize each term of the ansatz.

Remark 1.2 We will see that in order to obtain a remainder term of order €2 we have to
perform the formal asymptotic expansion at order €3. This phenomenon is quite classical in this
type of problems (see [6] and [8] for ezample).

i—1

Remark 1.3 Each term V' is deduced from the value on T of

n
need a lot of reqularity on VO and thus on the initial data v°. Here is the weakness of BKW
method : it is very expensive in regularity.

. It is the reason why we

Remark 1.4 We will see that the profile V' is charaterized by :

( 1
%—AV1+V°-VV1+V1-VV°+Vp1=0 in RT x U,

! divVli=0 in RT x U,

0
Vit,z) = -k (al) on RT x 0w,
on Jp

\

e (VO _ VO (VO . the tanaential tfa_VO
where on T— on on n | n s the tangential part o, on
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Furthermore W' is given by the expression :

ovo

Wl(t,o,2) = (z — K) (a—n>T(t,o).

In addition we remark that W' is tangential to T.

Remark 1.5 In the penalized thin layer, the principal terms of the anzatz satisfy an approzi-
mation of Brinkmann equation, that is

1
—Au+ gu + Vp is small in w,

The phenomenon has been remarked by Khadra and all (see [12]).

We study now a physical model for the flow of an incompressible fluid around a porous obstacle.
It cgnsists in computing the flow in the fluid ¢/ and in giving an equivalent boundary condition
onT:

4 g
aaq; —Av*+ (v - V) +Vp*=f in[0,T*[xU
dive® =0 in [0, T*[xU
v* =0 in [0, T*[x 00

< (1.2)
v en=0 in [0, T*[xT
v° = —ke (Bv ) in [0, T*[xT
on )
[ v°(0,2) = v§(x) inU

Remark 1.6 This model is obtained by Mikelic in [14], using an homogeneization process in
the porous material.

We will prove that this model is equivalent to the thin layer penalization problem since we have
the following theorem :

Theorem 1.2 Let ug, V° and T* as in Proposition 1.1. Let V' given by Theorem 1.1. Then if
v 45 an initial data of the form :

v§(z) = ug(z) +eV'(0,z) + % (z) ifr €U

with ||| L2y < K and such that divug = 0 on U, then there exists v° a solution of the problem
(1.2) which satisfies
ve(t,z) = VOt,x) + eV(t, ) + 2l (t, z),

where v7 is bounded in L*°(0,T; L2(U)) N L?(0,T; H(U)),VT < T*.

Since u° and v® have the same asymptotic expansion, we have the following result :

Corollary 1.1 The error between the penalized thin layer solution and the solution of Equation
(1.2) is of order €% in L>(0,T; L*(U)) N L?(0,T; H'(U)).
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This paper is organized as follows.

In the second part we explain the geometrical tools used for the study of the thin layer we.
Indeed we seek the profiles in the coordinates (P(z),p(z)) € T x [0,1] and we have to express
the differential operators in these coordinates.

All this work will allow us to prove an important lemma of relevement, that is : if g € L?(w.)

with / g = 0, there exists U, € H&(wg) such that div¥, = g and we can estimate ¥, since
We

) . C
there exists a constant C' independant on & such that ||¢5||Hé (we) < ;||g||L2(we).

In the third part, using BKW method we characterize the different profiles of the asymptotic
expansion of u°. Next we prove existence and regularity of these profiles, and it is here that we
will see why we need a so big regularity for the nitial data vy.

In the fourth part we estimate the remainder term of the asymptotic expansion using a classical
Gronwall Lemma and we conclude the proof of Theorem 1.1.

The fifth part is devoted to the proof of Theorem 1.2. BKW method for this problem and the
proof of the regularity for the profiles are already done in the previous section and we only have
to estimate the remainder term for this equation.

At last, in the Appendix, we detail the calculations of the second part, for the interested reader.

Remark 1.7 In a previous paper, Carbou and Fabrie study a penalization method without effect
of thin layer, i.e. the penalization occurs on the whole domain O, but is numericaly smaller (of

order 10~8). They prove in this case that the error between the penalized problem and the physical
obstacle problem is of order \/e. The proof of this result is based on an asymptotic expansion of

the solution which describes the boundary layer in the penalized obstacle.
2 Tools for the study of thin layers
We will use the following notations :

e (p-q) is the scalar product in R3.
e '=00,
e for 0 € T, n(o) is the unitary normal to I" at the point o, entering in O,

o for o € I, T,I" is the tangent plane of I" at the point o :

T,T = (n(0))*

o(r) = dist(z,T') for z € O,

P(z) the orthogonal projection of z onto T, for z € wQO,

wsz{a:EO, 0<<,0(117)<K,8},

fors >0, = {w €0, ) = ms}.

2.1 Geometrical tools

For no > 0 small enough, we define a parametrization of wy, by :

U: I'x]0,6m[ — wpy,

0,2 — o+ zn(o)



Since I' = Jw is a regular compact surface of R? without boundary, there exists 79 > 0 such that
VU is a C*°-diffeomorphism from I"x]0, kno[ onto wy,,. We remark that for ¢ < 7y the restriction

of ¥ to I'x]0, ke[ is a C*°-parametrization of w,.

Furthermore ¢ and P are regular on wy, and

V z €wyy, Vo(z)=n(P(z)).

We are lead to precise the expression of the differential operators in the coordinates (o, z).

On the submanifold I we can classicaly define the integrale and the differential operators Vr,
divy and Ap (see the Appendix for the expression of these operators in a coordinate map).
Furthermore, n is a map defined from I' with values in the unit sphere S? so for o € T, the
differential dn(c) is a linear map from T, into T, S? and since T},(,) S* = T,T', we can consider
dn(o) as an endomorphism of T, T.

Integration : we set for s € [0,x19[ and 0 € T":
vs(o) = det(Id + s dn(o)).

If v : wyy — R, denoting % = u o ¥, we have :

/w "= /0 o /F i(0, 5)7s(0)dords.

10

Gradient : for v : I' — R, we define :
Vr,9(0) = (Id + s dn(0)) " (Vri(o))
and if u : wy, — R, denoting & = u o ¥, we have :

_0i

Vu(z) = .

(P(2), pla)n(P(@)) + (Vi) (Pe), ¢()).
Divergence Operator : let Y : T' — TT be a tangent vector field defined on T'. We define :
1

divp,Y (0) = 7o) divp ['ys(Id + sdn)_lf"] (o)

and if Z : wy, — R3, denoting Z=1Zo0 U, we have

. 0Z - _ N
div Z(2) = X (P(2), 9(2)) + Gy (P(@)) Zn (P(2), (@) + (divr,(, Zr ) (P(2), ¢(2))
0z
where Zy (0, z) = (Z(0,z) -n(c)) is the normal part of Z and Zr(o, 2) = Z(0,2) — Zn(0, 2)n(0)
is its tangential part, and where :

Laplace operator : for ¥ : I' — R we define
Ars’f) = diVFSVrS’T)
and if u : wy, — R, denoting & = u o ¥, we have :

= S2PW),9) + Gyt (P@) G (P, 0()) + (Br, 1) (Pa), (0))

Remark 2.1 All these expressions in the new coordinates are proved in the appendiz.

Au(x)



2.2 Functionnal spaces in thin layers

In this subsection we precise the dependance on e of the Sobolev constants on H'(w,). The
dependance on ¢ of these Sobolev constant acts a crucial part in the estimates of Section 4.

Proposition 2.1 There exists a constant C such that for all € < g, for all u € H'(w,),

C
lullLowe.) < — (ullz2 o) + 1Vull 22(w.))

1
3

™

|Q

1 1
lull z3we) < 1 (lullz2(we) + VUl L2)) ® 1ull 72, (2.1)

™
o=

! 1o !
lullzay < Ol (Jeluliagy + 19l

Proof : using an atlas of maps covering I' and a partition of the unity, we have to prove the
different inequalities in U x]0, ke[ where U is an open bounded set of R? where the map is
defined.

The first inequality is proved in Ladyzenskaya (see [13]) and in Teman Ziane (see [15]). From

this result and using a classical interpolation inequality between L? and L% we deduce easily the
second inequality.

For the last estimate, we consider u € D(w;), and we set & = uwo ¥. Then for z €]0, ke[ and
gel,

- . 9 z ot
u(0,0) = (u(o,2))” —2 | a(o,s)=—/(o,s)ds.
0 az

Integrating in o on I' we obtain that for all z €]0k, €],
_ - - o
Jii(-, 0) 122y < / (0, 2)2do + Ol 5, I120en)
Now we integrate this inequality in z between 0 and ke we obtain that :

elli, 02y < K (ll22s, + ellllzzon IVillzzn) )

that is dividing by e,

1 1 1
lullem) < K (ﬁnunmws) ol 22 |V zz(ws)) .

Proposition 2.2 We endow H} (we) with the norm :

1
2
lollmgeo = ([ 19?)"

There ezists C such that for all € < ng, for all u € H} (w.), then
lullr2(w.) < Cellull g (w,)-

Proof : we prove this Poincaré inequality for regular u as

o) 93
u(z) = /0 O (P(a), s)ds

and using Cauchy Schwarz inequality.



2.3 Divergence operator in thin domains

The goal of this part is to prove the following fundamental result :

Theorem 2.1 There exists 1 with 0 < 11 < no, there exists a constant K such that for all
g < m, for all g € L?(w:), zf/ g =0 there ezists U € (H}(we))? such that :

divU = g in w,
(2.2)

K
< =

10N 3 ey < M9llz2 (e

Remark 2.2 It is well known that the divergence operator is a surjection from (Hg(we))? onto
Li(w.) = {g € L (w,), / g= O}, and so there exists a constant such that estimate (2.2)

We
gccuraj. Here we determine the dependance of this constant on the thickness ke of the thin
omain.

Remark 2.3 For fized domain, this proposition is proved in details in [10] (¢f Theorem 2.1. p.
18). Here we adapt their proof for variable domains.

Proof of Theorem 2.1 :
IfU:w, — R and g: w, — R3, we denote U = uo ¥ and § = g o U. Then equation (2.2) is
equivalent to :

ou . 8
B—SN + GsUn +divyp,Ur = g for s €]0, ke[ and o € T.
We seek U on the form : 5 _—
UN (Ja 3) _YN(Ua _)
Mo €

where Y is defined on I'"x]0, knp|.

Setting h(o,s) = g(o, E—S), the existence of X is equivalent to the existence of Y : I'x]0, kmo|
Mo

aY;
PN 4 € GeYy +divr., Yo = h for (o,2) € Tx]0, ko[- (2.3)
6z No "0 no

satisfying :

We define L? and H} spaces on I'x]0, knp| :
L*(T'x]0, kmo[) = {v : T'x]0, kmo[—> R, vo ¥ € L?(w.)}
H}(T'x]0,5m0[) = {v: T'x]0,5m9[— R, vo ¥ € Hj(we)}

We endow L2(I'x]0, kno[) with a family of scalar products :

KTo
< ulv >5:/ /u(a, 2)v(o, 2)yez (0)dzdo,
0 T M0

and we denote || ||c the norm associated with this scalar product.



We remark that the composition by ¥ is an isometric map from L%(wy,) to L%(I'x]0, knol)
endowed with the scalar product < | >,.

For u : I'x]0, kno[—> R we denote V. the following operator :

ou

Veu(o,z) = —n(o) + Vr. u
70

0z
For Y : T'x]0, kny[— R3 we consider div. the operator :

oY,
div.Y (0, 2) = a—: + WOGEZ Yy +divr.. V.

By construction div, and V. are in duality for the scalar product < | >..

Let L%,E(FX]O,F&’U()D defined by :
K1o
B0, ) = {1 € exiomD. [ [ sz ()asao o}
0 T

We have then the following proposition :
Proposition 2.3 There ezists a constant C such that for all e < ng, for all h € Lg,E(Fx]O, kmol),
there exists V € (H}(T'%]0, kmo[))® such that :

div.V = h
(2.4)
VeV < Clhlle

Assuming that Proposition 2.3 is true we can complete the proof of Proposition 2.1.
End of the proof of Proposition 2.1
Let g € L3(w:). We define h : T'x]0, smo[ by

We remark that :

/ / 0,8 'yss o)dsdo = / / (0)dzdo = /wE g=20

and so h € L _(I'x]0, ko).
According to Proposition 2.3 there exists V € (H} (I'x]0, smo[))? satisfying (2.4). We then define
U:w. — R by:

Un(z) = %VN (P(a:), ?(p(x)) and Ur(z) = Vip (P(:c), %(p(a:))

and we already know that
divU = g in w,.



Furthermore,

0= [

oY Y s
= [ [ (19nyai s BG4 v v+ TR ) 0 s

U

55 + ‘VFSU‘ (0,s)dsdo

2 KE

o 2 8YT 2 9 8YN 9 nos
= 2 vr.Y: 92 Y, — (0, 8)dsd
< g2/0 /r(' F3T|+|82|+|VI‘SN|+|8Z| (o, )7(03)50

o 9Y; oY,

< @/ / |VFQYT\2+|_T|2+|VFQYN|2+‘_N|2 (0, 2)ye: (0)dzdo

€ Jo T n0 0z = 9z =
< Byv.y)?2

(9
< On?

£

m
< C3l9lio )

Hence this complete the proof of Proposition 2.1.

Proof of Proposition 2.3
We endow H{(T'x]0, smg[) with the family of norms :

[ulle = [[Veule-

We remark that the composition by ¥ is an isometric map from H{(wp,) to H{(I'x]0, ko)
endowed with the norm ||.[[1,5.
The dual space H~! can be endowed with the family of norms :

Vier [ili.= sp LSHtZel

weHN X0 ko)) 1Ull1e
Lemma 2.1 There exists C1 and Cy such that for all € €]0, 1],
(1) ¥ ue L*(Tx]0,km[), Cillully < llulle < Collufly,
(2) ¥ ue HX0, s CllVartulg < [1Vellno < Col[ Vot (2.5
(3) ¥ 1€ B0, D)y Gl 1 < Il 1e < Colll] 1

Proof of Lemma 2.1.
We remark that (o, z) — 7,(0) is regular, 79 = 1, T' is compact, thus, even if it means reducing

N0, we can suppose that for all z € [0, k7], for all ¢ € T,

9 _ ()<11
10 = "2\ =10

10



Therefore for all z € [0, kng], for all € € [0, ], for all ¢ € T,

9 11
J— < ez < — .
77:(0) <7 (0) < 5:(0)

For u € L*(I'x]0, o),
K70
[ull2 = / /UQ(U, 2)yezdzdo
0 T 10

9 11
Tl < lull? < - llullg,.

thus

For the second inequality,
IVeullg, = 1Me(3,0) Vigullng

where M, (s, o) is the endomorphism defined by :

M.(s,0)(€) = éx + (1d+ ;—jdnw)) o (Id+ sdn(0)) (ér)

(since Vr, = (Id + sdn(o))Vr,).
Now for s = 0, M.(0,0) = Id so even if it means reducing 79, since (o,¢,0) — M.(s,0) is
regular, we can suppose that :

|M.(0,s)| < K and |(M.(0,s))""| < K.

Hence we have : )
EHVUOUHZO < | Veullp, < K[| Vyeully,-

In conclusion, for the last inequality, we remark that for I € L2(I'x]0, sno), for & € H}(T'x]0, ko),
we have :

K70
<€ >.= /0 /Fl(a, 2)&(o, z)’y%(a)dzda

= /Omo/Fl(a,z)é(a,z)y?f)%(a)dzda

72(0)
hence .
|[< 1€ >e| < M-1mllE 2l -
Yz
Now,

le D) < Clelh (||7% i + [V ﬁ)nm)
,yz 70 —= »710 ’Yz 7o 'yz

and since (o,s) — 7s(0) is regular, there exists an universal constant K such that for all
€€ [Oa 770]

Ve Ve
| ||L°°+||Vn0(,y—)||L°° <C.

z z
Hence we have

< CllHl-1,0 [ VE]lo

‘<l\£>g

IN

CllHl 1,0 KN Ve€llng

/11
CE A 1o lUll—1n0 V€]l

11



Hence we obtain that :

11
1. < CK 35 11

and we can obtain in the same way the inverse inequality.

Lemma 2.2 There exists a constant K such that for all € € [0,19], for all u € L*(I'x]0, snq]),
1
Envnounflmo S Veull-1,m0 < K| Vioull—1,9,-

Proof of Lemma 2.2. We prove the inequality for u regular and we conclude the proof by
density. For & € H}(T'x]0, kmo[) we have :

K7o
< V5U|f >no= /0 /F(ME(SaU)Vnou : 5)75

_ /0 o /F (Voo - Me(s,0)€)7s

hence

|< Veul€ >’f)0‘ < ||Vnou||—1,no||Ms(3a0)£”1,no

AN

Vol —1.m0 (1Me (s, 0) [ Lo + [V Me(s, 0)l[Lo0) €]l 1m0
thus since M, and V,, M, are uniformly bounded, there exists K such that
IVeul| 1m0 < KV ygua]|-1,o-
In the same way, we obtain the inverse inequality.
Lemma 2.3 There exists C there exists n1 < ng such that for alle < ny, for allu € Lg’E(FX]O, knol),
lulle < ClIVeul|-1.

Proof of Lemma 2.3. We suppose that Lemma 2.3 is false. Then there exists a subsequence
en — 0, and uy, € L§_ (T'x]0, kno[) such that :

1
lunle, =1 and [[Ve,upl -1, <

With (1) in (2.5) we obtain that :

1 1
Vo, o <l < &
thus we can extract a subsequence still denoted u,, such that :
uy, — u in L*(T'x]0, kng[) weak.

We remark that for all n, with Lemma 2.1 and Lemma 2.2,

||vnoun||—l,no < KHVsn“n”—l,no
S KCHVEnu”H_l;gn

KC
c

12



Thus V,,u, tends to zero in H }(I'x]0, kno[) strongly, hence u is constant.

Now, from [10], we know that there exists C such that :

V0 € L2wn); Iollz2wg) < C (I10lm-10u) + 170 -1(00)) -
Since the composition with U is an isometry, we obtain that :
vV u e LX(Tx]0, 5mo]);  Nullpg < C (lull-1n0 + I Vigull-1,n0) -

Using this inequality, since the injection of L? in H ! is compact, the Cauchy criterium in
L?(T'x]0,mq[) gives that :

Uy, — u strongly in L*(I'x]0, km]).
Thus with (2.6) we have :
1
full > - 27

On the other hand, we know that for all n we have :

/ /unazvsnz—O

We know that u,, tends to w in L? strongly and that yznz tends to 1 uniformly. Then, we have :
g Ven

KTlo
/ /’U,ZO
0 T

Since w is a constant, this implies that v = 0, and this leads to a contradiction with 2.7 and
concludes the proof of Lemma 2.3.

End of the proof of Proposition 2.3.

Following [10], using their Theorem 2.1 page 18 and a duality argument in the spirit of Corollary
2.4 page 24, we conclude the proof of Proposition 2.3.

3 BKW Method for the penalized thin layer problem

3.1 Formal asymptotic expansion

We consider the following penalized problem :

( 8u8 15 13 19 1 13 :
(u® - V)u® + Vr + —xp.u® = f in RT x U¢,
ot €
divu® =0 in RT x ¢,
| v =0 on RT x 89, (3.1)
u® =0 on Rt x I,
u®(0,z) = ug(z) in U°.

We denote by v° (resp. p°) the restriction of u® (resp. n°) in Y = Q \ @ and w® (resp. ¢°) the
restriction of u® (resp. 7°) on w.

13



Equation (3.1) is equivalent to the following system on v* and w® :

( 3
a(;;t —Av® + (v° - V)o* +Vp* = f in R x U (1)

£

1
8;; — Aw® + (w® - V)w® + Vg© + gws =0 in R X w, (2)
dive® =0 in RF x U (3)
divw® =0 in Rf X w 4
) Bowe @
w® =0 in R x T, (5)
V¢ = w on Rf x 0w (6)
o . 0w n

on +p°n = on +¢°n on R x dw (7)
[ v* =0 on R x 69 (8)

where n is the outward unitary normal at .

Remark 3.1 The boundary condition (6) in the previous equation comes from the variational
formulation of Equation (3.1) since :

/u(—Aug-l—Vqrs) cp = /M ((Vuf - V) — ﬂgdiv¢) -|-/F (_881;6 +7r5n> p

and

(Ve - Vo) — rdive) _/F (J?;:; +7rsn> 2

since n is outing from U and entering into we.

/w (—Au + Vi) p =

We

We perform an asymptotic expansion of v¢, w®, p¢ and ¢° of the form :

ve(t,z) = VO(t,x) +eVit,z) +...,

p(t,z) = p°(t,z) +ep' (t,2) + ...,

w (1) = WO, Pla), D) 1w (1, Pla), 22 4

¢ (t,z) = ¢°(t, P(z), @) +eq(t, Px), @) + e2¢%(t, P(x), “’(:)) ..

where P(z) is the projection of z on I' and ¢(z) = dist(z,T').
We assume that the terms W' : Rt x T x [0,x] — R®

VteR", Yoel, W{to,z=k)=0.

The coordinates of R x I' x [0, k] are denoted (¢, 0, 2).

14



We denote W% the tangential part of W*, and W}v its normal part :
Wi (t,o,2) = Wi(t,0,2) - n(o)
Wi(t,0,2) = Wit,0,2) — Wi(t,0,2)n(o)
where n (o) is the outward unitary normal at 9U at the point o.

In (3.2) we will formaly replace u®, v¢, p* and w® by their asymptotic expansion and we will
identify the different powers of ¢.

We recall that if @ : " x [0,x] — R, if we denote a(z) = a(P(z), @), then

Va(r) = é%(P(x), @ia:) )n(P(z)) + Vr, ., &(P(z), @)
and
2& T & . .
Aaa) = 52 8P, 2D 1 16,0 (P@) 2 (Pa), 2D 1 A, a(pla), 2D,
Furthermore, if 8 : T' x [0,x] — R3, if B(z) = B(P(ZE), @)’ then
aivp(z) = L2 (pa), D) 1 G (P@)Br (Pla), DD 1 v, Br(Pla), 22,

In addition we can perform an asymptotic expansion of G, Vr, and divr, and we have :
o Ge,(0) = Go(0) +e2G}y(0) + O(£?),
e for Z :T' —» TT a tangential vector field,
divr,, Z(0) = divrZ + ezdivi Z + O(e?)

with - - ~ -
diviZ = —Gy(o)divrZ + divp(Go(o)Z) — divr(dn(o)Z)
e fora:I' — R,
Vr., (o) = Vra(o) + ezVia(o) + O(e?)
with Vi.a(o) = —dn(o) (Vra(o))

Remark 3.2 Since n(o) does not depend on z, we remark that (g—f) = (g—f n)
9 (5.n) = 9w 9B\ _ 9r
%(ﬂ n) = 9z M50 <6z>T_ oz

15



Step 1 : we write (2) at order ¢ 2 :

*wo
o2 T

With (7) at order =%, on T, i.e. for z =0, W2 = 0. Since W°(o,z = k) = 0, we obtain :

wo=0o.

Step 2 : we write (1), (3) and (6) at order €° and we obtain :

( 0
%—AVUJr(VO-V)VOJerO:f in Rt xU

{ divi®=0 inR' xU

\VOZWO:() on Rt x ol
which determine V0 completely (if we precise the initial data).

Remark 3.3 We will prove in the following section that since V° is reqular in U, since divV? =
0inU and as VO =0 on T, we have :

0
(ﬂ) =0onl
on )
0

that is ——— is tangential on the boundary I.

on

1
Step 3 : with (4) at order €° we obtain 3 N — 0. Hence W1, does not depend on z and since
z

it is zero at z =1,

Wi =0.

(2) at order £ ! gives :
o°wt aq°
— Wl+ —Fn=0
022 + + 82" "
and taking the scalar product of this equation with n we obtain that ¢° does not depend on z
(since W9 = 0).
With (7) at order £ we have :

ow'! ovo
rr +¢%n = pn — B onl.

Taking this equation scalar n we have :

and we extend this expression in " x [0, 1] to obtain ¢ :

¢’(0,2) = p°(0).

16



Remark 3.4 We obtain here that the pressure in continuous at the boundary I.

We know then that
(0w
A
0z2

oy v
Loz T T on
that is PAE.
1 — —_ -
Wi (t,o,2) = (z — k) o (t,0).

Step 4 : With (1), (3) and (6) at order 1 we obtain that

/ 1
%—AV1+V0-VV1+V1-VVO+V;D1:0 in R x U,

 divvi=0 in R x U,

1 1 ov° +
Vi(t,z) =W (t,z,0) = —k——  on R" x T,
\ on

hence we determine V1.

Remark 3.5 The existence of a vector field satisfying divV?' = 0 in U, V! = 0 on 09Q and
VI =W"! onT is assured by the fact that /(W1 n) =0 (since Wi =0).

r
Step 5 : (4) at order ° gives :

oW?
V4

+ divr, Wi =0

thus the normal part of W? is given by :

2 e 1 1 2 1. Vo
Wx(t,o,2) = — divp, Wy (t,0,8)dé = —i(z — k)*divp W(t,a)

We write (7) at order ¢ and we obtain :

ow? ov!
e +q¢'n=p'n - B at z = 0. (3.3)

Taking the scalar product of this equation with n we determine ¢* at z =0 :

q'(t,0,0) = <p1 - (88—‘;1 n)) (t,o) + (a?ﬁ) (t,0,2 =0)

17




that is

ov! ovo
1 _(.i_ (oY . ov-
q (t,0,0) = (p ( o n)> (t,0) + k divr ( o ) (3.4)
With (2) at order £ we have :
0*W? ow't o Oq! 1
——55 — o — + Vred’ + 5 n+W'=0. (3.5)
1
Taking the normal part of this equation, since W' is tangential, we determine 8—(12
dq' Wy
0z 022
and then
ovt ovo
1 (1 ) o — N\
q (t,o,2) = (p ( o n)) (t,0) — (z — K)divp < o ) (3.6)

In order to precise the tangential part of W? we take the tangential part of (3.5) and the
tangential part of (3.3) and we derive the equation satisfied by W2 :

( *W} oV 0 Ve .
57 :—GOW—FVFOQ +(Z_K)W in RT x T x [0,1]
! oWz ovt

L(t,0,2=0) = <%>T(t,o)

Wi(t, o,z =kK) =0

hence

1 ovh 1 ov°
W2(t,0,2) = 6(2 - H)Sa— + = (2 — K)? (_Go—n + Vr0q0>

1 2 5170 0
—(z — k) <(8L) -I-K—al—l-ﬁGoaL —nVrqu)
T

(3.7)

2 On on

Step 6 : we remark that /(W2 -n)do = 0, since :
r

K
/ W2 = / (/ divr Wi (o, z)da> dz =0
r 2=0 I

Thus we can define the extension V? of W? satisfying :

VZ=W?2o0onT
V2 =0 on 09
divV2=0inlU

18



Step 7 : with (4) at order €2 we obtain that :
oW

5+ GoWx + divr, W7 + zdivy, Wi =0

with :
divi«oZ = —GodivrZ + divr (G(0)Z — dn(0)Z) .

We define then W3 by :

W3(o,z) = / (G’Q(U)WI%,(U,S) + divp, Wi(o) + s divaW%(o,s)) ds. (3.8)

Step 8 : with (2) at order £ we have

oWl W3 OW2 oW
o a2 -G

, 1 oWl  0g?
0z 0 9z

— ArW + Wy + =—n

+Vrg' + 2Vig® + W2 = 0.
Taking the normal part of this equation we obtain since W! is tangential :
O*Wy owW%  9¢

-G = 4+ WE = 0,
022 75, + 0z +Wh
¢
so we can determine —.
0z
Writing (7) at order ¢? we have :
3 2
_8W + ¢’n = p*n — 8L at z = 0.
0z on

Taking the scalar product with n, we obtain the value of ¢ at z =0 :
ov? ow3
2 — 0 — 2 _ N =
q°(0,2=0) =p°(0) ( o )N(0)+( o )(z 0)

thus ¢? is completely defined.

Taking now the tangential part of (3.9) we obtain that W23 is completely defined by :

(2W3  OW! OW2
az2T =—— —Go azT — AW 4+ Vrg' + 2Vig® + W2
! Wit,o,2=r)=0 (3.10)
oW} ov?
= = — _ t
| G taz=0 () o)

Step 9 : knowing W3 we fix V3 satisfying :
V3(z) = W3(z,0) for z € Ow

V3 =0 on 00

divV3 =0inU
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Remark 3.6 The ezistence of V> is assured by the fact that /(V3 -m) =0 since :
r

/r(V3 = /io /r (Go(0)WR(0,2) + diviWi(0, 2) + 2div Wi (0, 2)) dzdo
/ ) / (Go(0)WR (0, 8) + sdiviWi(o, s)) dsdo
0 JI
/z 0/ - ZGo o)divr Wi (o, s)ds dz da—/ /FzGo(a)dinW%(a,z)
+ / io /F adivr (Gol@)Wi(0,2) — dn(0) W (0, 2))

/ /sGo(a)dierr}(a, s)ds da—/ /zGo(a)dierr}(a, z)
s=0JT z=0JI

Remark 3.7 we will see in the remainder term estimates that inside w., we are lead to pusch
the asymptotic expansion at order €3. In U it is not necessary to be so precise, but to avoid the
creation of jumps at the boundary of w., we have to extend W? and W3 with V? and V3.

3.2 Existence and regularity of the terms of the anzatz
We denote

= {V € (L*(U))? such that divV =0in¥f and V -n =0 on BZ/I}

and
V= {V € (HL(U))? such that divV =0 in u} :

Let P be the orthogonal projection for the L? scalar product onto H.
We denote by A the operator with domain H N H?(U) defined by A = —Po A, that is if f € H,

AV = f <= Inc H'U)/R, —AV +Vr = f.
We recall the results due to Cattabriga (see [9]) :
Proposition 3.1 There ezists C such that for all V € D(A),

IVIlgz2@) + Il @wyr < CIAV 2wy

IVIiz @y + I7lle2@yr < CllAV || g-1
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3.2.1 Existence of V°
We recall Proposition 1.1. We only give the sketch of the proof of this result. The complete
proof can be found in [7].

Proposition 3.2 Let vy € H3(U) N V. There exists a time T* > 0 and there exists V°
[0, T*[xU — R® and p° : [0, T*[xU — R such that

[ oV° 0 0 0 0 - *
51 —AVI+ (VP V)V '+ Vp = f in [0, T [xU
divV®=0  in[0,T*[xU

< (3.11)

VO=0  on|[0,T*[x0U

VOt=0)=vy inlU.

\

For all T <T* and for 0 < k <4,

Vo

o € L0, T; H3 2K (U)) N L2(0, T; H* % (U1)).

Furthermore for 0 < k < 3, the associated presure p° satisfies :
k0
—i € L7, T; H™™2% ) N L2(0, T; H 2k (1)).

Remark 3.8 The regular solution of (3.11) is unique.

Sketch of the proof : we consider a Galerkin approximation of equation (3.11) based on the
eigenspaces of the Stokes Operator A. We denote by (3.11), this approximation of (3.11) and
by V0 (resp. pQ) the approximation of V0 (resp. p°) obtained solving (3.11), . Multiplying
(3.11), by V2 and by AV,? we obtain using Gronwall Lemma that there exists T* such that for
all T' < T*, there exists a constant C with :

||VaO“U’"(O,T;Hl) + ||AVa0||L2(0,T;L2) <C,
that is using Proposition 3.1

||Va0||L°°(0,T;H1) + ||Va0||L2(0,T;H2) + ||pg||L°°(O,T;L2) + ||p2||L2(0,T;H1) <C. (3.12)

0
a

In a second step, derivating (3.11), with respect to ¢, we obtain the equation satisfied by
0 0

BVO 8V0 [‘)p dp 0
|| ||L°° o,1;HY) + || ||L (o,T;H2) + || ||L°° 0,7;L2) T || ||L2 or;a) < C. (3.13)

In a third step we rederivate (3.11)a with respect to t and in the same way we obtain an estimate
0?0 :
ot?

on

82V0 aZVO 32 O 82 O
|5~ a2 | oo (0,51 + =55 o 202y + 50 a2 Hl oo o,m522) + 155" 52 Hloeorry < C (3.14)
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0 0

. . . . 0 . V' . .
Using these estimates and the equation satisfied by 8; we obtain that A 6: is bounded in

L*(0,T; H') N L?(0, T; H?) hence using Proposition (3.1), there exists a time 7* such that for
T < T~ there exists C such that

ovo ovo op? op?
||a—ta||L°°(0,T;H3) + ||a—;||L2(O,T;H4) + ||a—;||L°°(0,T;H2) + ||6—ta||L2(0,T;H3) <C.

In the same way, using this estimate and the equation satisfied by V! we obtain that

||Va0||L°°(0,T;H5) + ||Va0||L2(0,T:H4) + ||p2||L°°(O,T;H4) + ||p2||L2(0,T;H5) <C

83V0
Using the same method of derivation in time, we prove first that 8t3a is bounded in L>(0,T; H' (U4))N
4v0
L?(0,T; H*(U)) and after that 8t4a is bounded in L?(0,T; L*(U)) N L?(0,T; H' (U)). Using

Proposition 3.1 and using the equation satisfied by V) we obtain that :
V2 is bounded in L*°(0,T; H3(U)) N L?(0,T; H®(U))
and for i € {1,...,4},

i1/ 0 . .
8(9‘7;;1 is bounded in L®(0,T; H* 2 (U)) N L*(0,T; H* % ()

and concerning p2,
p° is bounded in L>°(0,T; H' (U)) N L*(0,T; H3 (1))
and for all i € {1, 2,3},
2,0 . .
Bf; is bounded in L*(0,T; H™~% (1)) N L2(0, T; H3~% (U))

Since the bounds do not depend on the dimension of the approximation Galerkin space, taking
the weak limit, we obtain the existence of V° and p° which satisfy the same estimates.

0

ov
Proposition 3.3 Let VO given by Proposition 38.2. Then B is tangential on T'.
n

Proof : as in w. we build in a neigbourhood of I" in I/ a normal parametrization considering
®: T x [0,6[— U defined by :

U(o,z) =0 — zn(o).
(we recall that n(o) is the normal outing from U.
We denote V0 = V00 & and V) (resp. V) the normal part (resp. the tangential part) of V0.

In the new coordinates (o, z) we have :

o ) )
0=divV’= % + G, VY +divp, V).

OnT, V° = 0 hence, divrf/jg =0 and V](\} =0onI'. Thus on I,
ovy (VO
0=—="=(—) .
0z on )y
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3.2.2 Regularity for W' and ¢°
We define W' :]0, T*[xT x [0, 5] — R by the formula :
VO

Who,2) = (z — K)W(

t,0),

where V0 is given by Proposition 3.2.
On the other hand we define ¢° by ¢°(o, z) = p°(0).

Using the results of regularity concerning V° and p° (see Proposition 3.2), we have the following
proposition :

Proposition 3.4 Under the hypothesis of Proposition 3.2, for all T < T*, for 0 < k < 3,

k 1
aazc/— e (20,1 H*5" (1) n L2(0, T; B3 (1)) ) @ ([0, ¥])
and
aqu 13—4k 15—4k

S € (L2, B (D) 0 L2(0, T H 5 (1)) © ¢ (0, )

3.2.3 Existence of V!

We have the following result :

Proposition 3.5 Under the hypothesis of proposition 3.2, there exists V1 : [0, T*[xU — R?
and p* : [0, T*[xU — R such that :

r 1
aalt_AV1+(V0'V)V1+(V1'V)V0+VP1=0 in RT x U,

{ divVi=0 inRF xU,

\ Vi(t,z) = W(t,z,0) = —Kg— on RT x Ow,

and satisfying for T < T* and for 0 <k <2 :

akvl

i € L®(0,T; H 2 (1)) n L?(0, T; H?* (1))
Icpl

i € L®(0,T; L*~2* U0)) n L2(0, T; H5 =2 (U))

Proof. We consider T! the extension of W' satisfying :

( Y(t,z) = Wi(t,z,0) forz €T
Ti(t,z) = 0 for z € AN

—AY! + VII! = 0 in |0, T*[xU

[ divY! =0 in 0, T*[xU
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The regularity of W' and its derivatives in times gives that for all T' < T*,
T! € L®(0,T; H (U)) N L*(0, T; H3 (1))
and for all i € {1, 2,3},

o't . .
5 € L0, T; H™2(U)) N L0, T; H3 2 (U)).
We will seek V! on the form V! = Y1 + Z1 where Z! satisfies :
(071
5 ~AZH(V-VZ (28 V)V V= Q!
\ Z'' =0 on U

with

Q' =- (6;;1 (vo. V)T1+(T1-V)V°).

We remark that for 0 < k < 2,
ale
otk

As in the proof of Proposition 3.2 we consider a Galerkin approximation of (3.15). We multiply
this approximation by AZ' and we obtain with Proposition 3.1 that :

€ L0, T; H> ?*(U)) N L2(0, T; HS % (1)).

Z' € L0, T; H (U)) N L*(0,T; H*(U1)).

71
We derivate in time the approximation of (3.15) and multiplying this new equation by Aa@t
we obtain that 07!
7
5 € L0, T H U) N L0, T; H* (U)),

thus using (3.15),
Z' e L*®(0,T; H3U)) N L*(0,T; H*(U)).

Now rederivating in time Equation 3.15 and using the same process we obtain the desired
regularity result on Z! and so on V.

3.2.4 Regularity of W2 and W?
We define W2 : [0, T*[xT x [0, k] by :

1 0
Wi(t,o,2) = —E(z — k)%divr (al)

on
and ovo ovo
1 1
2 — Z(y—_g)3 (g —
Wi(t,0,2) = 6(2 K) o +2(z K)? ( GOB -I-Vroq)
(3.16)

ov! k2 V0 ovo 0

—(z —K) ((6—H>T + 2 o —l—/ﬁGoW — kVryg )
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and with the regularity proved for ¢°, W' and V! we obtain that :
W2 e (L0, 7; HE(T)) N L2(0,T; HE (D)) ) ® C([0, 1)

oW?
ot

e (L=(0, ;B3 (1)) N L*(0, T; HH (1)) ) & C*([0, 1)

Now W3 is defined by (3.8) and (3.10), and it is a polynomial map in the z variable with
coeflicients depending on ¢ and o, obtained with the previous profiles.

Therefore we obtain that

W3 ¢ (LOO(O,T;H%(P)) N LQ(O,T;H%(P))) ® ([0, 1))

ow?
ot

€ (L=(0, 73 H3(1)) N L*(0, T H (T)) ) & C([0, 1)

3.2.5 Regularity of V? and V?
With the regularity obtained for W?2 and W3, their extensions V? and V? satisfy :

((V? € L0, T; HY(U)) N L*(0, T; H (U))

aVZ 00 2 2 3
oy € L0, T H2 ) N L*(0,T; H*(U))

V3 € L*®(0,T; H*(U)) N L2(0, T; H*(U))

BVS o0 1 2 2

4 Estimate of the remainder term for Theorem 1.1

We define the different terms of the ansatz as in the previous section and we introduce the
approximations W€ of the velocity w® in w. and his approximation V¢ in U defined as follows :

Wt 2) = W (e, (@), £ 1 w2t Pa), 22) 4 Wi, Pla), £

and
VE=VOt,z) + eVt z) + 2V2(t,z) + 3V3(t, x)

We set :
wé(t,z) = We(t, z) + 2w’ (t, z)
v¥(t,z) = VE(t,x) + €2l (t, )

¢ 1) = 't P), 2 e (1, P, 2D 121, )
pa(ta 37) = po(ta :L') + Epl (ta 33) + €2p£(t, :C)

We will write the equations satisfied by the remainder terms in order to estimate them.
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( Ow!
E_Awl + (w' - V)W + 2(w - V)wl + (We - V)uw!
i~ AU LW S e T
+vqg + Ew; = R;f)orous
divw! = g. in Rt x w, (2)
O _ AW 4+ (VE- V) + (0 - VIVE 4 200 - V)l
) ot € € € € € in R+ xU (3)
+Vp. = R’}lu
divel =0 in Rt x U (4)
vl = wl in Rt xT (5)
ovl ow; .
[~ TP Gy % = Blouna inRF XD (6)
where :
1 ow!
st)orous = 6_2 |:(ch(;v) —Go — QO(:E)G())W - (VFS‘,(m) —Vr - (P(w)VII‘)qo]
1 ow?
+E [(ch(z) - GO)W + (Arp(m) - AF)Wl - (VT¢(x) - Vf)ql]
ow? ow3 ow3 3 9 3
o E—at + Gw(gc) W + 5VI‘¢($)W + AF¢(¢)W -W
_l(wf V)W
g2 ’
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1
e = ——divW*®
€

= —Gu)Wi — (Gye) — Go)WR — (divr,,, — divr,)W7

17, . :
—= [dlvF<p(w) —divp, — p(z)div i“o] W'}

2
A —(%—AV2+(V1-V)V1+(V°-V)V2+(V2-V)V°)
ov? 3 0 3 1 2 2 1 3 0
—e | — AV H (V- VIVEH (VI V)V (VR V)V (VP )Y

—2 (V- V)VE+ (V2 V)V2 4+ (V3 V)VY) = &3 (V2. V)V3 + (V3 - V)V2)

—(V3-V)V?

. ov3
= e—/—
bound on

Lemma 4.1 We have the following estimates : for T < T™ there exists C such that
([ [WEl oo (0,mywto0 (w2)) < C
Vel oo o,mswrcouyy < C
”R;lswrous||L2(0,T;L2(wa)) <cC
) (4.18)

ll9ell oo (0,712 (w2)) < Ce

1 R%wllz20,1i2200) < C

\ ||Riound”L2(O,T;L2(I‘)) < C

Proof : these estimates are direct consequences of the regularity results proved for the different
terms of the asymptotic expansion.

In order to estimate the term (w[-V)w[ we need a divergence free condition. Since ||gc|| oo (0,7;02(w)) <
Ce, using Theorem 2.1 we have the following lemma :

Lemma 4.2 There exists a constant C' such that for all € > 0 there ezists 1. € Hi(we) satisfy-
ing :

divype = g in we,

||¢E||L2(w5) < Ck,

Vel 12wy < C.
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We multiply (1) in (4.17) by w!l — 1), and we integrate on w,. We obtain :

1d
2dt

ow;
I — _ T g _ T
1 /1_‘ ws ( an qE n) 7

== [ (@ 9w+ V) (ut = ),

1
tlf + IV + P = B4t T

with

I = ¢ / (W] — e - V) (] — he) (] — pe),
Io==e [ (0 V) ul + (uf - V)l -+ (- V)l )
Is = 52/ ((wg V)Y - e + (e - V)wg e + (Ve - V)the - wg) ’

Is = _52/ (¢5 : V)Tps - Pe,

1
— _ e
I7 - w&ﬁs, I8 - Rpo’l‘oust’
€ We We

ow?
h=-[ % o= [ vurve,
We t We
I =— R;—Jorouswg’
We

We multiply (3) in (4.17) by v7 and we obtain that :

1d

5 ST 4 IVL I = Ty
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where:

_ 61}2’ T (P
Jl—/r(anvg P, n),
To= = [ (V- 9p oot + 7 W)V o)
u

T = _gQ/M(vg V) o,

J4:/R§lu’vg,
u

We add (4.19) and (4.20). We estimate the right hand side terms in the following way:

|Il + J1| = ‘/ Ifoundw;
r

< N Rgpunall2 @y lwEl L2y
" c. .
< Ol 190 sy + 2l
< e+ K V| 2a, 2
= 10e " (we) 10" e A (we) €N (we)

L] < (Wil 2o VWl Lo ey (10Dl L2000y + el L2(w.))

FIWE oo ) Vw22 ) ([ | 22wy + 196l L2(we))

IA

1
EIIVWZII%%%) + K[l Lo, + K

1 o

= —5&> [ @l —yl)ni(uld - )’
oy

1 N I
tyet [ @ - )
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Using that 1. = 0 on I and that div(w] — 1.) = 0, we obtain finally that :

1
Is = ——62/w§-n|w§|2do.
2 Jr

1Ia| < Wil 16 o) IVell L2 (wo) WL 13 (o) + 26 NWE N 13 o) IV WL || 22 (o) 19e] 16 ()

_1 1 1 1
< Cee bl g Il e Il
_1 3 _1
+C| VUL L2y ™8 1ell i o) 1w 1 22,08~ 8 10 112 o)
3 s ri|z S0 s
< 062||Vw5||L2(w5)||w5||L2(w5)+C€2||w5||L2(w5)
1 T T
< ol Vel + Kllwglleo ) + K

1I5] < e2lIV¥ell 2 o) 1wE I Lo o) 19ell s wn) + €210 mo ) [ ¥ell 3o I Vel 2o

_1 1
< 26673 Wl g e 8 19 |2 (o) 19l Bt ()
< O (|Vulllz2(we) + It |2 ()
< IVl ) + I
= 10 ellL2(we) ellL2(w,)

1Ts| < IVell L2 () 19 | L3 we) |96 | 26 ()

< 52||¢5||§{1(w5) <K

1
17l < Zllwe e o) 19ellp2 e

1 2 c 2

< toelwellzeny + 2 l1vellza.
1

<

ﬁllwilliz(ws) +K
1
|Is| < EHRZorous”%Q(wE) + EHU]ZH%Q(%)

1
Tzt ey + K

VAN
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We integrate Ig in time from 0 to T" and we obtain that

[o=] L) - [ wlOw0)+ | y %

1 T
< GOz + WD gy + K+ [ Tl g

T o
+ [ )
1% e

1
|T10| < 1—0||Vw::||%2(ws) + CH,(le”%{l(ws)

IN

1
EHV%U:H%?(%) +K

|I11| < ||R1€)orous||L2(w5)H/lpEHLZ(wE) <K

We estimate the right hand side terms of (4.20) in the following way :

| Jo| S||V€||L6(u)||VU£||L2(Ll)||vg||L3(u) + ||VVE||L2(u)||U§||%4(u)
. ol ok
<NVl @y 02 sy 192 2
9 3 1
<[Velln) (nvznp(u) + 1907 2 12 zz(u))

1
<5 lIVeE 1220 + Cllvt gy

For J3 we perform the same calculation as for I3 and since v] = w] on I', we obtain that :
1
J3 = 62§/F'u§ -’ |?do = —1I3,

|4l

IA

||R?lu||%2(u) + ||U§||%2(u)

IA

||U;||2L2(u) + K

Hence adding all the previous inequality we obtain that there exists a function K € L'(0,T;R)
for all T < T™, there exists a; > 0 and ao > 0 such that :

d (03
= (012 ey + 2 W2y ) 1 (V0 + IV N2y )+ 20, < K<t><1+||(v;||%;(w).
4.21

We conclude the proof with a classical Gronwall Lemma.
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5 Proof of Theorem 1.2

We consider V°, p V! and p' defined in Theorem 1.1, and we introduce V2 : [0, T*[xU — R3
such that : o

r Vies & (—) on [0,T*[xT
on )

V2 = 0 on [0,7%] x 99 (5.1)

[ divV2=0o0n[0,T*] xU
and since V! satisfies regularity conditions given in Proposition 3.5 we can assume that :

V2 e L®(0,T; H*(U)) N L*(0,T; H> (1))

BVZ 0 2 2 3
wr € L*(0,T; H*(U)) N L*(0,T; H*(U))

We recall that we consider v® solution of the following problem :
( 8,05
ot

—Av* + (v - V)" +Vp* = f in [0, T*[xU
" =0 in [0, T*[x 09

-n=20 in [0, T*[xT (5.2)

v® = —ke (8’0 > in [0, T*[xT
on )

[ v°(0,z) = v§(x) inU
We write the asymptotic expansion of v and p° :
v = VO 4+ eVl 4+ £2V2 4 2T
p°=p" +ep' +e%pl
The equation satisfied by the remainder term is the following :

ovl
ot

— AT 4 2 - V)V (VE-V)ol + Vpl =g in U

dive, =0in U

r 2
vl = —KE (%) — KE (al) onT (5.3)
on )r on Jp

vi-n=0onT

vT =0 on 99

£

32



where -
= -t AVE—(vO. vy V22— (vt.v) vt — (v2.v)v0

—(VE-V)V2 —g(V2- V)V - 2(V2.V)V?

We remark that
g° € L*®(0,T; L*(U4)) for all T < T*.

We multiply Equation (5.3) by v!. Since

1
ozt =5 [ or-mpur =0
2 r

u
Vpl vl = —/ pLdivol =0
u u

ov; ,_1/ "2 / ov? r
Fan UE_E 1_‘|’U€|—+_1_‘ an TUE

and with the estimates on ¢° and V2, we obtain that for all ' < T* there exists C such that :

1d, .9 9 1 5 1 9 9 1 , €,0V?
§E||U§||L2(u)+||VU§||L2(u)+g/F\U§| < IVl +Cllvella gy + 52 F|U§| +3ll5, M2

that is for all T' < T™ there exists a constant K such that :
illv’"IIQ + IVol]|7 +i Wl|* < K + K|lL|13
ar ez ) YellL2u) T 22 . Vel = VellL2(u)

and we conclude the proof with a classical Gronwall Lemma.

6 Appendix

'lI‘his appendix is devoted to the calculation of the differential operators in the geometry of thin
ayers.

6.1 Local parametrization of I'

We consider a local parametrization of I" : let U (resp. V) be an open subset of R? (resp. R?)
and let X : U — V be a local regular parametrization of V NT.
We denote v =no X

For (u1,u2) € U, we denote g(0) the matrix of the first fundamental form on I" with entries :

0X 0X
w@@w)Z( ~—yum»
] 1, U2 dui ou; 1, U2

We denote g% (0) the coefficents of the matrix g(0)~!.
The matrix b of the second fundamental form is the matrix with entries b;; given by :

15) o0X
bij(u1,ug) = (% : W) (u1,ug).
i j

We know that g(0) and b are symmetric.
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The map n : I' — 52 is regular and its derivate dn(o) is a linear map from T,I" into T, S

Since T,T' = Ty,(,) 5%, we can consider that dn(c) is an endomorphism of T,T".

X 0X
We denote d the matrix of dn(c) in the basis (a—, a—), and we denote d;; its entries.
Ooui’ Oug
We have : 5 ox ox
v
2 4 Ty = il
8’(1,]' n(U)(auj) Z 1] 8’U,Z

0X
hence, taking the scalar product with aa, e have by; = E dijgri(0) that is b = ¢(0)d.
k -
(3

6.2 Calculuson I’

If o : ' — R is regular, we set ¥ = v o X. We define the integral on I' and the differential
operators on I' with the map X :

/ o(o)do = / (u1,ug)v/det g(0)(uy,us)du;dus
rnv U

and

viile) = | ¥ S0 g | (o),

i,j€{1,2}

In addition

1 0 i, OU
Art(o) = —F——— — | ¢"7(0)=—+/det O)X_la.
) = e S (s70) - VT 90 ) (X7 0))
p . . . ,0X 0X
Furthermore, if Z : T' — TT is a tangent vector field, we decompose Z in the basis (8—’ 6—) :
u1’ Oug
X X
Z = 718— +'726— and we have :
8u1 6u2

e 1 29 .
divrZ(o) = (W;a_uz (’sz det 9(0))) (X (o).

Remark 6.1 One can verify that these definitions do not depend on the map X (see [11], ...)

6.3 Local parametrization of w;,.
We define Y by :
Y: UX]O,’I]Q[ — R3
(ui,u2,us) = X(u1,u2) + ugv(u, ug)

We denote §(ui,us,u3) the (3,3) matrix of the scalar product in the new coordinates, with

entries :
. Y 09Y
9ij = du; Ouj )’

oYy gy 0X
We remark that 8—(u1’ ug, u3) = v(ug,uz) and for i € {1, 2}, =
u3

O _ O oy up)us 22 (o)
Ou; oug Uy, u2 u38uz~ Ui, uz)-

Since v(u1,us2) is normal to I' at the point X (uq,us),

(l/(ul,uQ) - gii (ul,uQ)) ~0.
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Furthermore, since for all (uy, u9), |[v(u1,us2)|| =1,

(g—;(ul,ug) - V(ul,uQ)> 0.

Thus the matrix g is on the form :

G(u1, ug,s) = g(s)(u1,u2) 0

00 1
where g(s)(u1,u2) is the (2,2) matrix with entries g;;(s)(u1,u2) defined by :

0X ov 0X n ov ( )
S— Uy, u9).
a’ll/J 1, U2

811,2' Sa—m . 8uj

g 5) ) =

We denote g% (s) the entries of the matrix [g(s)]!.
We remark that :

ov X
— .. . 2 ]
9i5(s) i (0) + 2sb;; + s (8—uz . Ek di; 3—uk>

= gij(O) + QSbij + 82 Z bikdkj
k

Thus
g(s) = g(0) + 25 b+ s* bd.

Remark 6.2 Fors €]0,n9[, the map X defined by Xs(ui,u2) =Y (u1,ue, s) is a local parametriza-
tion of U, and g(s)(u1,uz) is the matriz of the first fundamental form of T's.

6.4 Integration in the new coordinates

For o e TNV, if 0 = X(u1,us2), we define (o) by :

1

75(0) = [(det g~ (0)g(s)) (u1,u2)]* .
Proposition 6.1 v, does not depend on the parametrization of I' since we have :
vs(o) = det(Id + sdn)(o).

Proof : we have :
g7 (0)g(s) = Id +2s g~ (0)b+ s°g~ ' (0)bd

and since d = g 1(0)b, we obtain that
g H0)g(s) = Id + 25 d + s*d®> = (Id + s d)*.

Proposition 6.2 If v: w,, — R, denoting v = v o ¥, we have :

/w,m” - /Omo /Ff’(aa s)7s(0)dods.
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Proof : using an atlas covering I" and a partition of the unity we may consider u with support
in Y(U x]0, kmo[). Then we have :

/ = / (INe) Y\/m
Wng U x]0,6m0(
KMo
= / / (X (u1,u2), s)v/det gs(u1,uz)duidusds
0 U
KTo
= / / (X (u1,u2), 8)vs (X (u1,usz))v/det go(ur,us)duidusds
0 U

_ /Owo/lﬂﬁ(o,s)'ys(a)\dﬂds.

6.5 Gradient in the new coordinates
For s € [0, ko] and for @ : ' — R we define V@ by :

Vi,i(0) = (Id+ sdn(0))” Vryi(o).

8

We have the following lemma, :
Lemma 6.1 Letv:wy, — R. We denote v =v o ¥. For z € wy, we have

o0

Vou(z) = 5

(P@), @)n(P@)) + (Vr,,7) (P(a), p(x)).

Proof : weset v =voY.
In the coordinates (u1,us,u3) we have :

3 _
Vo) = (3| D5 | g | @) (6.4

i=1 \ j

where §/ are the entries of g—!. We remark that for i = 3,
Sl ) = 00
> Ou; Ous

Y
Furthermore, a—(ul,uQ,u?,) = v(uy,uz).

6’11,3
In addition, for i € {1,2}, § = % = 0 hence

3 2
v v
~ij YU i (e)y 22
Z g Ou; Z ( )8u
7j=1 j=
Now we remark that
2 2
, ov | oY
SR ij 7
VFSU Zz_; ; g (S) au] auz



Proof : we know that g 1(0)g(s) = (Id + sd)? thus denoting o = Id + sd, and «;; (resp. a¥)
the entries of the matrix « (resp. o~ 1), we have :

g '(s)=a g }(0)

1j _ z ik Icll
g9 (s) = ¢7'(s ZO‘ I(

2
ov \ Y o 0X
— ] )
Z (Z auj) Ou; ~ auj (3) (2}; Qp;g 3up>

SO

Thus

=1

and since E aZkapi = 0pp we have :
%
2

2

0v |\ oY ov . 0X
E : E : Z- 7 ol dnlll
P ( lg ( )Buj) ou; 8uja g (O)a’”’au

j=

= V0.

8

6.6 Divergence in the new coordinates

For W : T — TT a tangent vector field, and for s € [0, k79] we define divy, by :

divr, W = Ldivy (fys(Id + sdn)—1W) .
Vs

10
Furthermore we denote G5(o) = (— 78) (o).
Vs Os

Lemma 6.2 If Z : w,;, — R3, we denote Z=2Z0T. We define the normal and the tangential
parts of Z by :

ZVN(Ua z) = Zv(aa Z) : n(a)a
ZT(Ua Z) = Z(Ua z) - ZN(U, Z)n(a)
Then we have :

07N
0z

div Z(2) = S (P(2), 9(2)) + Go(a(P(@)) 2w (P(), (@) + (divr,,, Zr ) (P(2), p(=))
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Proof : by duality we will obtain the expression of the divergence operator in the new coordi-

nates :
/ vdivZ = —/ Z -Vv
w w

10 10

KTo ~
= —/ /Z-Vf)’ys
0 Iy
Moo rl 9
— IS (2 VE) ) s
[ ()
_ / / (9sz5 / /75 1d + sdn) " Zp - Vro)

since Id + sdn is a symetric operator of T,I.
Integrating by part we obtain that :

/ vdivZ = / /( p (Znys) + d1vr(’ys(Id+sdn) 1ZT)>1773
wng Vs 0% Vs

wich concludes the proof of the lemma.

6.7 Laplace operator in the new coordinates

Let u : wy, — R. We denote % = uo V.
Since A = divV we obtain that :

Au(z) = T2 (P(a), ¢(x)) + Gy (P(2) 9 (Pla), 9(a)) + (Br, 1) (P(2), 6(2))

with AI‘S'&/ = dins (VI‘S’&,).

Example : if T is the unit sphere of R?, we take the classical parametrization of S? :
X :(0,¢) — (cosBcos @, cos fsin p,sinh).

We denote e, = (—sin,cos ¢,0) and ey = (—sinf cos ¢, —sinfsin g, cos ).

0)

Let ¥ : 82 — R. We introduce & = ¥ o X. Then :

= o+ [—— 9,
o (1—35)cos@dp) ¥’

9 o5\ 0%
Arf=— s LAY
LU= s) cos? 0 (Coseae (Coseae) * 8(,02)

IfZ:T' — 1T, we decompose Z = Zgeg + Z,e, and we have :

1 0 0Z
divp,Z = ——— Z, 0)+ 2.
VI (1 —s)cos@ (69( ocost) + Oy )
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