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1 Introduction

In this paper we are interested in an initial boundary value problem for a mathematical model
in ferromagnetism. The physical context is the following. A piece of ferromagnet is supposed to
be a regular bounded open set € in R3. The magnetic state at a point x €  at time ¢ is given
by a vector u(t,z) € R? which belongs to the unit sphere of R3, called the magnetic moment.
The evolution of u is coupled to the evolution of the electromagnetic field (E(t,z), H(t,z)) in
the whole space R3, by a system of nonlinear partial differential equations.

The first equation is the following Landau-Lifschitz equation in R} x €, where ¢
to be a constant :

2 is supposed

Ou=uA (H+e*Au) —uA (uA (H+e*Au))  in [0, +00[x
Onu =0 in [0,400[x0N (1.1)

where n is the unitary outward normal at the boundary 0f2.

This equation is coupled with the Maxwell system in RZF x R3

Oy(H +u)+curl E=0

OFE —curl H =0 (1.2)

(B, H)jt=0 = (Eo, Ho).
where u means the extension of u by 0 outside of R x 2.

Remark 1.1 In all the paper we take all the physical constants equal to 1, excepted the exchange
coefficient, since their value don’t change the mathematical analysis of the equations.

Furthermore, the solution must satisfy the divergence condition
div (H +u) =0, (1.3)

and the constraint
lu(t,z)| =1, xe€Q, t>0. (1.4)

A basic observation is that these two last conditions are propagated by the full system, from the
initial conditions. The condition (1.3) is given by the Maxwell equations (1.2), since the first
equation of (1.2) implies that dydiv (H + @) = 0. The condition (1.3) is then satisfied for all
t > 0 if and only if it is satisfied for ¢ = 0. In other words, condition (1.3) means exactly that
the initial data Hy and ug satisfy

div (Ho + ug) = 0. (1.5)
The same remark is true for the condition (1.4), assuming however that u is regular enough,
since the equation (1.1) implies 9;(|u(t, z)|?) = 0.

The existence of global weak solutions for the system (1.1), (1.2) was established by A. Visintin in
[32], and for another form of the system (equivalent for regular enough solutions) by G. Carbou
and P. Fabrie in [8].



In this paper, we first prove the existence and uniqueness of regular enough solutions for the
system (1.1), (1.2). The solutions obtained are local in time. This result is stated in section 2.
The section 3 is concerned with the question of the asymptotic behavior of the solution of (1.1)-
(1.2) as € > 0 tends to 0. ;From a formal point of view, the system obtained when ¢ = 0, is
equivalent to a first order semilinear symmetric hyperbolic system, which is known to admit
local piecewise regular solutions (Sobolev regularity) discontinuous across the boundary R x 02,
which is a characteristic hypersurface of constant multiplicity for this hyperbolic system. This
hyperbolic system has a very particular structure and admits global solutions as proved by Joly,
Métivier and Rauch in [19]. We prove here two new results. First, a solution (u, EY, H?) of the
limit hyperbolic system being given on [0,7], we show that under some natural assumptions,
this solution is limit of a family of solutions (u®, E%, H?) of (1.1)-(1.2). The other result is that
if u® satisfy the additional condition d,u®(0, Jjaa = 0, the solution of (1.1)-(1.2) with initial
data (u° |t=0> E° 1t=0> HO li=0) converges to (u®, B9, HY) as € goes to 0. To obtain this results, we
perform an asymptotic expansion in € and bring to the fore a boundary layer of characteristic
size ¢, and amplitude &, localized closed to 92. As it is classical in BKW method, we have to
suppose that the limit solution (u?, E°, H?) is very regular on each side of € (Sobolev piecewise
regularity).

Notation. In all the paper, we will note H™ := (H™)? = (W"?2)3 the usual Sobolev spaces of
functions with values in R3, and L? := (LP)? the usual Lebesgue spaces with values in R3.

2 A local existence result for a fixed ¢ > 0
Let us introduce some notations. For 7' > 0, let us call A(T") the set of functions
we L*([0.7): B (@) ne((o, 7] B (@) nc! (0, 7): H' (2)

such that dyu € L?([0,7); H*(Q?)) and 07u € L*([0,T] x Q).
Concerning the regularity of the electromagnetic field, we will use the following classical space

Hey = {v € L*(R3;R?) such that curl v € L*(R% R3)}
equiped with the natural norm ||v|| ;2 +||curl v|| 2. The main result of the section is the following.

Theorem 2.1 Let ¢ > 0 be fized. Let ug € H?(Q) satisfying |ug| = 1, Onugjgo = 0. Let
(Eo, Hy) € Heyy X Heyyl. Assume that div (Ho+up) = 0. Then there exists T > 0 and a unique
solution (u, E, H) to the problem (1.1), (1.2), such that v € A(T), and

E,H € ([0, T];L*(R*)) N C([0,T] : Heu).
Furthermore, |u| =1 in [0,T] x Q and div (H + @) =0 for all t € [0,T].

This theorem will be deduced from theorem 4.1 below, which is proved in section 5.

3 Asymptotic analysis as ¢ — 0

In this section, we are interested in the behavior of the local solution described in theorem 2.1, as
¢ tends to 0. This is a natural question of current interest in the modelisation of micromagnetism.



Let us consider the system formally obtained when € = 0, on a time interval |0, T'[, which writes
o’ = u® A H —u® A (u® A H) in ]0, T[xQ
Oy(H® +u0) + curl E =0 in ]0, T[xR? (3.1)
HE® — curl H* = 0 in 0, T[xR?

Note that the first equation holds in ]0,7[x€2, and that no boundary condition is needed on
10, T[x 99 for u°. This system satisfies as the original (1.1)-(1.2) system, the propagation prop-
erties of |[u’(t,z)| and div (H® + u0) in the sens that the relations

[u0(t,z)|? = 1,Vz € Q,Vt € [0,T]

— 2
div (HY +u0) = 0,Vt € [0,T] (3:2)

hold if and only if they are satisfied at ¢ = 0.
Now, since the principal part of the first equation is the field ;, it follows that (u°, H?, E) € L

loc

satisfies system (3.1) in the sens of distributions if and only if (V° := u0, HO, E°) satisfies the
following semilinear first order symmetric hyperbolic system in the domain |0, T[XR3:

VO =VOAH? —VOA VO HY
OH® +curl E=-VOAHY + VOA (VO A H? (3.3)
HE? —curl HY =0

For this system, the hypersurface R x 92 is characteristic (of constant multiplicity). Hence, it
admits classical piecewise regular (Sobolev) solutions discontinuous across R x 9 ([26], [28],
[29], [27]). More precisely, if m € N, and if we call ' := R3\Q, let us denote by p—H™(12) the
space of functions v € L?(R?) such that vjq € H™(Q) and vjor € H™(€'). The space p—H™(Q2)
is endowed with the natural norm |lviq||gm Q) + |V | gm@). As before, we use the notation
p—H™(Q) when the function is valued in R3. For any given m, it is a consequence of the theory
of discontinuous solutions of hyperbolic semilinear systems ([26], [28], [29], [27]) that the system
(3.1) has solutions which satisfy

w9, E°, 7Y € ¢'([0,T),p—H™(Q)), (3.4)

for some T' > 0. For m big enough (m > 3/2), and inside this class of functions, it is equivalent
to solve system (3.1) with initial datas

0 0 10 0 70 0
u‘tzo — 'LLO, E\t:O — E07 H|t:0 — Ho, (35)
or to solve the system (3.3) with initial conditions

V|§:0 = uY, Eﬁzo = E, ngo = HY. (3.6)

In this paper we consider such solutions of system (3.1) which satisfy

w0, E°, H € C*([0,T,p—-H*(Q) ), (3.7)



for some T > 0. Our result in this section is that such a solution is actually the limit of a
sequence of solutions of original system (1.1)-(1.2) as € goes to zero. In order to state the result,
let us introduce a function ¢ € C*(R3,R) such that Q = {p > 0}, Q' = {¢ < 0}, 9Q = {¢ = 0}
and normalized such that |Ve(x)| = 1 for all z in a neighborood V of 9. This implies that
o(z) = dist(z,02) on VN Q.

Theorem 3.1 Assume that (u®, H°, EV) satisfies the system (3.1), (3.2) and the condition (3.7),
for some T > 0. Then the following holds.

1. There exists a family of initial datas (uf, H§, EG)e>0 satisfying the assumptions of theorem
2.1 such that the corresponding solution (u®, H%, E¥) of (1.1) — (1.2) given by theorem 2.1
exists on [0,T] and converges to (u®, H, E°) in C([0,T],L*(2) x L?(R®) x L?(R?)), as
e —0.

2. If uy = U%:o satisfies Onuojpn = 0. Then, the solution (u®, H®, E®) of (1.1) — (1.2)
given by theorem 2.1 with initial data (u%zo, Hﬁzo, Eﬂ:o) exists on [0,T] and converges to
(u, H° E®) in C([0,T],L3(Q) x L*(R3) x L%(R3)), as ¢ — 0.

3. In both cases (1 et 2) there exists a boundary layer profile V(t,x,z) € C([0,T], H*(Q) ®
H*(]0,+o0[) such that:

uf(t,x) = U%t,z) + V(¢ z, S0(;[:)) + eré(t, )

He(t,z) = HO(t,z) + eR5 (t, x)

Ef(t,x) = E°(t,x) + eR%(t, 2)
with the following uniform estimate

17 | oo 0,751y + 167 | oo (0,75 12) + (1Rl oo 0,7 Hen) T I1RE Lo (0,70 < C-

Note that in the point 1. the function u is not supposed to satisfy any boundary condition, and

in particular the trace ug := “|0t:0 is not supposed to satisfy anuﬁo Txo0 = 0. This comment is
to emphasize the fact that one cannot apply the existence theorem (2.1) with the initial values

u?t:O, Eﬁ:ov H |%:0' On the other hand, this is a natural motivation for the point 2..

4 Reduction of the problem

4.1 The modified equation for u.
For regular solutions, the equation (1.1) is equivalent to the following equation (see [9]):
Ou— e Au—2u N Au=*|VulPu+uANH —uA(uAH) (inRxQ) . (4.1)

Let us introduce some notations. We will note P the orthogonal projector of L?(R?;R?) onto
the subspace of divergence free vector fields, and P := Id — P,. For convenience we will also



use the notations vy :=P v and v :=Ppifv € L?(R3;R3). Using the Fourier transform ~ in
L?(R3;R?) gives the following expressions

o) = €177 (€(©) €, L) = —lEIT EA(ENT(E)) (4.2)
where (.) is the scalar product and A the vectorial product in R3.
The relation (1.3) means that P (H) + Pj(u) = 0. Replacing then H = H, — Pj(u) in the
Landau-Lifschitz equation (4.1), gives the following equation
O —e* Au=e? AAu+e*Vul*u
—uAPy(a) +uA (uAPy(a)) (4.3)
+uANH] —uAN(uNH))

4.2 The wave equation for H .

In a classical way, we use the Maxwell system to get a scalar wave equation on H |, with a right
hand side depending on u: we apply 0; to the first equation in (1.2) and take the curl of the

second equation to get
OH, — AH, = —92P, (). (4.4)

We are then interested in solving the following non linear system of equations
ou — &2 Au=e? u A Au + 2| Vul?u
—uAP(@) +uA (uAPy(a) (4.5)
+uAh—uA(uAh) in]0,oc0[x,

Oh — Ah = —9P, (a) in]0,00[xR?, (4.6)
with boundary condition
On|j0,00[x00 = 0 (4.7)
and initial conditions for u
Uj—p = up in €, (4.8)
and for h
h,_o=hy, &h,_o=h; inR> (4.9)

4.3 Initial data and compatibility conditions

A natural question is to express the initial data for H, and 0;H | in terms of the original data
ug, By, Hy. Concerning H | we just have:

(H1)—o = PLHo. (4.10)
For 0,H, we must use the equations. The Maxwell equations imply
O H, = —curl E — 0,P (u). (4.11)
The modified Landau-Lifschitz equation (4.5) writes

8{& = f(HJ_, u, vu? A’U,, PH (ﬂ)m)



with obvious notations. Let us call

Fo = (F(Hoiw Vo A Py(@)g) )

= F(PLHo,uo, Vug, Aug, P (1) |0) -

It follows that o
(&:PL(@)) =0 = P, (Fo).

Coming back to equation (4.11) we find the following expression for the initial value of 9;H |,
expressed with the original datas ug, Ey, Ho:

(0:H )i=0 = —curl By — P (Fy). (4.12)
We will solve the wave equation for H, in the space
c(0,T; H'(R?) nc'(0,T; L*(R?)),

so we need an initial data for 9;H, in L?(R3). This requirement will be our first ”compati-
bility condition”. Since ug € H?(Q2), we see that Fg and also P (Fg) are in L?(R3). In view
of relation(4.11) in follows that the condition (0;H)y—o € L?(R?) reduces to the following
necessary compatibility condition

curl By € L*(R?). (4.13)

This is the reason why we assume that our initial data Fy belongs to Hey.
Let us turn now to the compatibility conditions for ug. The point is that the function d;u has
to be in C([0,7] : H'(Q)). A necessary compatibility condition is then

VF € L?(Q) . (4.14)
This condition is always fulfilled when ug belongs to H3(Q).

4.4 An existence result and the proof of theorem (2.1).

Let us first state the main theorem of this section.

Theorem 4.1 Let ug € H?(Q) such that Ontojpn = 0 and let hy € H'(R?) and h; € L?(R?).
There exists T > 0 and a unique solution (u,h) to the system (4.5)---(4.9) on |0,T[x such
that u € A(T) and

h € ¢'(0,T); L*(R?)) n ¢([0,T]; H' (R?)). (4.15)

Moreover, if Pyhy =0 for j = 0,1,then Pjh(t,.) =0 for all t € [0,T].

Assuming for a moment theorem 4.1, we can now give the proof of theorem 2.1. Apply theorem
4.1 with initial datas ug and hg := P, (Hp) and

hy := curl Ey — P, (Fg) € L*(R?).

This gives a function u € A(T) and a function h, with regularity (4.15) satisfying P;h = 0,
because of the last observation in theorem 4.1. Now, one can solve the Maxwell hyperbolic
system (1.2) with 0yu in the right hand side

OH + curl E = du
OFE —curl H=0 (4.16)
(B, H)ji=o = (Eo, Ho).

7



Since 0(@) = (Ju) is in L2([0,7] x R?) it follows that this equation has a unique solution
(H,E) € C([0,T]; L*(R%RY)).

Let us consider now the wave equation (4.4) satisfied by H . Observing that the initial values
(H1)ji—o and (O¢H 1)|;—o are the same as the initial data hg and h; (since of relation (4.12)),
we deduce that H| = h. Now, the fact that H belongs to C([O,T]; chrl) is a consequence of
the following lemma.

Lemma 4.1 A function v given in L2(R3) belongs to Heuy if and only if vy is in HY(R3). In
such a case, it satisfies the inequality

¢ curl vl L2msy < [IVoLlr2msy < ¢ |lcurl vf|p2@sy
for some ¢ > 0 independent of v.

Proof.
We write v = v + v, and by Fourier transform on R?, (curl v)(§) = i€ AD(E) = i€ A vy (€).
Now, since & and v, (€¢) are orthogonal vectors, noting |.| the Euclidean norm in R?® we have:

|(curl v)(&)] = [£] [v(§)|. Now, using the Parseval-Plancherel equality we obtain the lemma.

Then, as we already observed in section 2, we have
Hy = —P(a) € C'([0, T]; L*(R?)).

which implies that H = Hy 4+ H_ is also C' from [0,T] to L*(R*). Applying the time derivative
O¢ to the Maxwell system (4.16) we see that H' := 9;H and E’ := 0, F, are solutions of

O H' + curl E' = 02u € L2([0,T)] x R3;R?)
OE —curl H =0 (4.17)
(E',H')j—g = (—curl By — Fo,curl Hy) € L*(R%R%) ,

which implies that 9, F (and also 8; H, which is already known) is in C ([0, T]; L?(R?)). It remains
to prove that curl E belongs to C([O,T ]; L2 (R3)). This follows from the first equation of the

Maxwell system
curl £ = 0yu — 04 H

because of the regularity of H and u. This proves theorem 2.1.

The next section is devoted to the proof of theorem 4.1.

5 Proof of Theorem 4.1

For the proof of theorem 4.1 we use a priori estimates on a Galerkin approximation. The
approximation space is based on the eigenspaces of the Laplacian on the domain

D(A) = {u € H*(Q) such that Ontjpn = 0}.

Let’s call II,, the usual orthogonal projector on the finite dimensional invariant subspace built
on the first n eigenspaces.



Our goal is to establish a priori estimates, uniform in n on the solution (u,,h,,) of the following
non linear problem (where we note simply (u, h) instead of (u,,hy)):

Ou — 2 Au = Hn< 2 A Au—i—aQ\Vu]Qu )

—Hn(u/\PH(ﬂ)—i-u/\ (u/\PH(H)) ) (5.1)
+Hn(u/\h—u/\(u/\h)) in ]0,00[x§) |
O — Ah = —9?P, (u) in]0,00[xR? | (5.2)
with boundary condition
On)o,00[x00 = 0 (5.3)
and initial conditions
u|t:0 = HnUO in Qv (h7ath)‘t:0 = (h07hl) in RS' (54)

5.1 Technical lemmas and notations

For m > 0, We will note H™(2) = W™2(Q) the usual Sobolev space, and we will note ||.|,,, the
usual norm

lollm =Y 195020 -

laf<m

We will denote by H™(Q) := H™(2;R?) and will still denote ||.||,,, the corresponding norm on
H™(Q). We will also use the corresponding notations with R? in place of Q. We will use many
times the following lemma (see [1], [2], [31]).

Lemma 5.1 Let Q be a reqular open subset of R3. On the linear space
V := {u € H*(Q) such that Ontjpqn = 0},

the norms ||ul|gz and |lul|z2 + ||Aul/z2 are equivalent. On the subspace H3(Q2) N'V, the norms
llul| s and ||u||gz + ||VAul| 2 are equivalent.

The following result is also very useful in the study of ferromagnetism equations, and a proof
can be found in [9] and [10].

Lemma 5.2 Let m > 0 and p €]1,00[. The mapping u — (73”(11))‘Q is continuous from
WmP(Q) into W™P(Q). The same is true with P, .

Let us also recall that H(€) is continuously embedded in L°(2) ([1], [2]).

5.2 Estimates on h

Let us begin with the classical estimate for the wave equation, obtained by taking the scalar
product of the equation with 0;h.

We get:

| =

(l:h[|7> + [Vh]|7.)

IN

IPL(@F )] 2 10kl
107 ull 2 (|06 2.

1
2

QU

' (5.5)

IN



In order to get also an estimate on |hl|/;2, we add to this estimate the obvious inequality

d
1/2 E(Hh”%z) < |||l z2]|0¢h|| 2. This gives the following energy inequality:
1d 2 2 2 2
577 UM + 0[5 + [VhI[Z2) < (bl + 10Ful2) 196 2 - (5.6)

In view of the right hand side of this estimate, we are lead to look for estimates on time
derivatives of u in order to control the term ||02u(s)]| r2(q)- This is an important difference with
the ”quasistatic case” as treated for example in [9] and [10].

5.3 Estimation on |ju(t)]| 2

Taking the scalar product of the equation with u, and integrating by parts gives

1d
5 gl +EIVu@)lzz < e*u@®)|z=Vu®)llz: (5.7)

5.4 Estimation on [|[Vu(t)| 2

Let us write the equation (5.1) in the form:
dpu — e2Au = 211, (X(u) A Au) + 1L, f (5.8)

where
f=eVuPu+un (h=Py@) +uA (uA (P)(a) —h)) .
Let us form the scalar product of the equation and Au, in L?(2). Integrating once by parts we

obtain
1d

2dt
We control || f||;2 as follows.

IVu@®)Z: + 2 Au®)]Z2 < If e | Au®)]z2 - (5.9)

1fllz2 < NIVulullp2+lu A (b= Py(@)]] 2

+lun(u A (Py(a) —h))]l 2

(5.10)
< &2 [lu() |z [IVul) || oo [ Vu()| 2
H(fu®) |z + a1 Ee ) (Nu@lzz + 8@ L2 ) -
By Sobolev embedding of H?(2) in L>(Q) we get
1FOlz2 < a2 u®)]lms
(5.11)
+ e ([lu@®llm + lu@)F2) (lu@)llze + Bl e).
We obtain then the following estimate:
1d 2 .2 2 3
- <
S IV s+ Al < ¢ @) e (o) o 512

¢ (lu®lzr +lu@®iz ) (lu@llzz + B ).

10



5.5 Estimation on ||Au(t)||2

Taking the scalar product of the equation 5.8 with A%u, and integrating by part. We obtain the
inequality

thHAu”LQ +e? |[VAulF: < €% ||V (u) A Al g2 (VAU 2 + |V £l 22|V Aul| 2
< o || [Vul Al g2 lful s + [V ]2 ull s (5.13)
< | Vaullgs [Aullps [lullgs + [V F Il [Julle
with a constant ¢ independant of u.
Let us recall the Sobolev embedding
lullzsy < e llullgq) - (5.14)
By interpolation betwen L? and L% we deduce from (5.14) the inequality
1/2 1/2
lullzs@ < e llullfs lulyig, - (5.15)
Using (5.14), (5.15) we obtain
1d 3/2 3/2
s gllAulie +e* IVAulfe < e llullie lullGs + 1Vl fulls (5.16)
We estimate ||V f||z2 in the following way.
IVAllie <&l [Vul’ 2 + €2l ul [Vul (D%l ||
+ 11 [Vul [Py (u) = h] [z + || Jul [V (P (@) — Vh] |12
+ [lful[Vul [Py (@) = hlll g2 + | [u* [V(Py(@) - Vh| || 2 (5.17)

< & |[Vullis + € Jullze [IVullgs [|D?ull o

+ IVullgs (lullzs + lbllze) + [[ullzee (lull g + bllg1)

+lullzee IVullzs (lullzs + [l ze) + llullZe (lulla + [hlg) -
Now, using again the inequalities (5.14) and (5.15), we obtain

3/2 1/2
IVFlle < e ellullde +c fullze ful3s lullk

+cllullgz (Jullgr + hllg) + llullze (lullgr + [l (5.18)
+c llull pzllull oo (g + ) + llullZee (lullg + [hllg) -

Using then the Sobolev embedding of H%(Q) in L>(f2), we obtain

2 3 2
IV A2 < e (lullfze + llullzz) + ¢ (lullgz + llullz2) [l

5.19)
5/2 1/2 (
+o )3 fulkz
We have then the following estimate:
5 dtHAuHLz +e |[VAulz. <
3/2 3/2
el Nl + ¢ (lullZe + ullle) lullgs (5.20)

5/2 3/2
+o (g + ulde) Il lulgs +c ull3s ul2s

11



5.6 Estimations on 0;u
Applying 9; to the equation (5.1) we obtain
8t2u — 2 Adyu = %11, <8tu ANAu+u A dAu )

+ €2Hn< 2(Vu.Vou)u + ]Vu|28tu)

( Opu NP(u) + unPy(9u) )
(5.21)
Hn< Osu A (u A PH(E)) +uA (8tu APy (a ))
+u A (uAPy(Oa)) ) ( dyu AN'htu A dgh )
- Hn(atuA(uAh) — uA(QiuANh) — uA (uA dh) )
with boundary condition
On(0su)10,00[x 00 = 0. (5.22)
This equation has the form
O2u — 2 Adyu = 210, (u A Adyu) + 1,9 (5.23)

where g does not contain the term Ad,u.

Taking the scalar product of the equation with 0yu, and performing the usual inegrations by
parts, gives the following inequality :

1d

3 dt(llatUIle) + e 0 VulFa < + c? [|0ull 2 A0l 2 + 0pul 2 gz (5.24)

Taking the scalar product of the equation with Ad,u and using one integration by parts, gives
the estimate

d
Z(IVou@®)Z2) + & [A0u@®)| 72 < llg®)ll2 1A% z2 - (5.25)

Taking the scalar product of the equation with ?u we obtain in the same way, the following
inequality:

d
e? —(IVOru(®)|Z2) + 107u(t)llZ <
e[| A2 107u®)lle + Ig@®)lz2 9Fu()]12 -

(5.26)

12



Now, we control ||g(t)||z2 in the following way.

lg@)l2) < €°l10iu Aullpz + 26° |Ju Vu Vou| 12
+ 2|0 |Vul? |2 + [0uPy(@)llre + [luP)(pu)]| 12
+ 2(uduPy(@)r2 + |[|ul®PyOw)ll 2 + 10suhllr2

+ |Osuh)| 2 + |udsh| 2 + 2|uduh|2 + |||ul? h L2

(5.27)
< )|0yul| Lo l|Aullps + 26% ul| oo V]| Lo | VByu]| 1o
+ 2|0l Lo | Vull7e + ¢ (1+2]lull ) [[Opul| zo]|ull 1o
¢ ([ullpo + llullFoo) 1Bl 2 + (el o + [l Fo0 ) [|Beh]| 2
+ (1 + 2fful| Lo ) [[Orul| Lo 1] 5
We obtain the following estimate, with a knew constant c:
1/2) 1 11/2 1/2 1/2
lg®lzz@) < el llulyz lullgs + ellulfe 1Bl 0l

+eelldvull g l[ull Frz + (1 + 2l|ull g2) 0wl g ] o 5.28)
5.28

2 2
+elllullgz + lullg2) 19sull 2 + cllullpz + lullz2) 0] L2
+ (14 2f|ull g2) [|0sull g 1Bl 1

Now, adding inequalities (5.24) + (5.25)+ X (5.26), and chosing A big enough, we “absorb”

in left hand side the term ||0?u| 2|/ Adyul 2. We also absorb the term [|Adsul|2 in factor of
||Oru|| 12, and we obtain the following estimate:

1d
S (1ol +200 1 )IVOL ) + 5180 + Rl <

(5.29)
2_2 2 1 2
N0l + (10l + 180l + F1oulz ) loloe

which is satisfied for any A > \g with a Ay big enough.

5.7 End of the proof
Recall that u = u,, and h = h,, Let us call Q(¢t) = Q,, the quantity
Q(t) = [[u(®)ll72 + [Vu®)|Z2 + [|Au(®)]|72+

2 (5.30)
+10ullZe + 201 + ) VOullz2 + [[bll7 -

13



Adding the previous estimates we derive the following inequality, (to simplify, we have written
@, v and h, in place of Q,(t), u,(t) and h,(t)):

1dQ
52+ ¢ (ullms + 180l g2 + |0Pulp2)? <

AQ) + B@)(l[ull s + 120l 2 + (|07 r2)-

(5.31)

where A, B are some polynomial functions, ¢ is some positive constant, all independent of n.
Absorbing in the left hand side the term

(lull s + | Ayl 2 + (1070l 2)?

and noting F' = 2A + B, we obtain the inequality

d

Tt e el + 1800uls + 70l < F(Q). (532
It remains to control that the family of initial values @, (0) is uniformly bounded with respect to
n. Here is the place where the compatibility conditions appear. Because of the regularity of the
initial datas ug and hg, the quantity @,,(0) is uniformly bounded if and only if ||VOsu,,(0)|| 2 is

uniformly bounded. The equation (5.1) implies that
(Oun) =0 = IT,F O, (5.33)

with ) ) ) )
FXO’” =" Augp + €7ugpn A Augp + €7 Vug p|“uon

— ugn AP (Tom) + o A (ton APy (To,)) (5.34)

+ ugn A hO,n —Ugp A\ (’u,om AN hO,n) .
We know that hg € H'(R?) and ug € H3(Q). This implies that hy ,, and ug, are respectively
uniformly bounded in H!(R?) and H3(Q), which also implies that ug, and Vug ., are bounded

in L>°(Q). It follows that IFXO’" is uniformly bounded in H!(R3), which implies that Q,(0) is
uniformly bounded. The theorem 4.1 is now a classical consequence of the estimate (5.32).

6 BKW method for Theorem 3.1

The aim of this section is to work out the limit as € goes to zero of the solution of (1.1). To
perform this result we bring to the fore a small amplitude boundary layer induced by the Neuman
boundary condition. The analysis follows the usual steps: first we construct an approximate
solution by a BKW type analysis of the boundary layer, and second we justify the this asymptotic
expansion, proving at the same time the existence of the exact solution and the asymptotic
expansion.

6.1 Formal asymptotic expansion

We first recall the reduced system we have to study, and we introduce some notations.

14



(1) ot — 2Auf = 2uf|Vul|? + % A At —ut ANHE
+u® A (u® AHT) —u® Ah® +u A (u® Ah®) in Q,

(2)  Onpu® =0 on 0N
(3) 0?h® — Ah® = —02P) (vF) = =07 (uf + H°) in R3
(4) div(u*+HE)=01in Q, divH® =0 in °Q

(5) curl H =0 in R3.

Let us recall that the function ¢ € C*°(R? R) satisfies

Q= {x, p(x) >0}, 00 ={z, p(z) =0}

and |[Vy(z)| = 1 in a neighbourhood V of 9Q2. With this definition V(x) define the inward uni-
tary normal at the point z € 99, and 9,, extends to all R?® as the vector field 9, = — > (9;¢) 9;.
In particular, Opp = —1 on V.

In the spirit of BKW method, we seek u® on the following form:

p(z)

¢($))+6U1(t,x,T)+'~

u(t,w) = Ut @, =

We split U'(t,z, z) as ﬁ(t,x) + /Uvi(t,ac,z), where W(t,x,z) = lim, 0o U'(t,2,2). Moreover

we suppose that for any o € N5, liril 0°U(t,z,z) = 0. To be more precise we distinguish
Z—1T 00

HE, = H‘EQ from HE,, = H‘Iiﬂ and we write

Mot ) = Mt 2, 22 erth 0,0, 28 4

and

irt(t7x) = ngt(t7x) + EHért(t7x) +e

that is there is no boudary layer outside 2 (this fact may be shown by formal expansion but for
sake of simplicity we suppose it a priori).

The transmission conditions on H read
[H-n] =w-n on 09,
[H An] =0 on 0Q,
where we denote by [f] the jump of f across Jf2.

In the same way we write

h;,; = h?

int

e(x) e(x)
(t,z, ?) + Ehilnt(t,x, ?) + ...,

and
heyi(t,z) =00, (t,2) +ehl, (t,2) + ...,

ext ext

15



with the transmission condition

[h] = 0 on 09. (6.3)

Order -2 From equation (3) in (6.1) we deduce that hY

int,zz

= 0 that is as hm hmt(t,w, z2)=0

z——+00

hO

int

=0, (6.4)
Order -1 The boundary condition (2) in (6.1) yields

@antz:O, for x € 0N2
Now, from (4) in (6.1)

Vo (Hop.. +UY) =0,

Vo AHgy, . = 0.

. From these two previous equation, we deduce that

HO . = —(U° - n)n (6.5)

int

The equation (3) in (6.1) gives h}

int,z= = 0, and so

hl

int —

= 0. (6.6)
Order 0 We now write (1) in Equation (6.1) at the order 0 and we obtain
atUO - U,Sz = ‘US|U0 + U° A ng + U’ A (Hmt mt)

_UO A (UO (Hznt znt))
and
OnU° + OnpU! =0 (6.8)
from the boundary conditions. To obtain the equation satisfied by U0 we perform the limit as
z — +0o0 in the above equation, and we find:

U0 = TN (H, + 10, ) = TO A (TOA (D, +1E,,)) (6.9)

Substracting the previous equation from (6.7), we obtain as hgm =0:
a,U0 — U9, =|UD2 (17) +W) + (ﬁ +W) AU,

FUOAHO

int

+ U0 (H, +10,) +TO AHD,

int T + trilinear terms

JFrom (6.5) the solution U0 = 0 solves this equation, and by uniqueness argument one obtain:

UO—O HO

nt

= 0. (6.10)
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;From (4) in (6.1) we have

div H2,, = 0,

div (Hmt + UO) + VQD (Ul + Hznt z) - 07
curl HY . + Vo AHL =0,

curl HY,, = 0.

We can now derive the equation satisfied by H?,, and HY ,

divHS, =0, curlH’, =0

div (H?nt

—i—ﬁ):O, curl’HOt—O

The transmission conditions follow from (6.2) as according to (6.10) one has H) ., = 0.

Hemt An= HO

mt

H0y - = (H?erm) n

i From these last equation we deduce that:

H‘O nt — P||(m)|Q

a (6.11)
How = Pj(U%)

ext —
The equation (3) in (6.1) gives

at int Ah(z)nt hzznt 2z 81& (UO + Hmt)

at ext Ahgzt - 8t He:ct
Taking the limit as z goes to infinity, we obtain the equation satisfied by hO:
OFR0 — ABO =~} (T0+ 1),

that is, o o L
9?0 — Ah0 = —9? P, (U9) (6.12)

i From the transmission condition (6.2), one has

v (Hmt z + U;)

VSO/\Hmtz =

These previous equations yields to

H, = —([7/1 ‘n)n (6.13)

nt

Order 1
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The equation (6.1) gives
U —UL = UANUL+UA(H' +h') + U A (H®+ 1)
+ trilinear terms
U + 0npU? = 0.

As already done, we obtain the equation satisfied by Ut performing the limit as z — +o0, and
we find:

QT =00 N (Ml +0ly) + UT A (HEyq +0)

+ trilinear terms

By difference we can write the equation satisfied by Ul

QU —UL,, =TUOAUL,, + U9 AHL

int

+UT A (HO + 1)
+ trilinear terms

iFrom (4) in (6.1) we have

div HE,, =0, div (H;

int

+ U 4+ Ve- <U2 +Hmtz) 0,

curl HY, + Vo AHZ=0, curl Hl, =0.

int
So the equation satisfied by H} , and H],, reads

divHl, =0, culHl,=0,

div (Hh,+07) =0,  cwlHL, =
The transmission conditions follow from (6.2) as according to (6.13) one has ﬁ};t =U Ul n)n.
H;mt An = Hzlnt
Héxt ‘n= (Hzlnt + W) “n
From these last equations one has
MLy = Py(UT
e = H U e (6.14)

Hezt - P||(U )|‘ﬂ
As we will see later, we do not need the expression of h'.

6.2 Existence and regularity of the terms of the ansatz

We assume that that the asumptions of theorem 3.1 are satisfied. Let us recall that T > 0 and
u?, E° HO are given such that

u9, E°, H € C([0,T],p — H’(Q))

18



solution on the limit system (3.1).
The boundary condition (6.8) needs to be satisfied exactly on the set {¢(z) = z = 0} =
082 x [0,00]. However, we need to extend it in a convenient way to the larger set € x [0, o],

since the profile Ul(t,x, z) depends on z varying in 2. and not only in 92. By assumption
u® € C([0,T],H?(2)), which implies that

Bnt’ joq € C([0,T], H/2(09)).
Let us fix a linear continuous lifting
R: H'?(6Q) — HY(Q)

such that Rujpq = u. The following proposition concerns the the order one profile Ul

Proposition 6.1 There exists Ul:R* x Q x Rt — R such that :
HL

8tﬁ—ﬁzzzu0Aﬁzz+u0AH

int

+ l}vl A (W + hO) + trilinear terms

ML = (ﬁ.n) n (6.15)

nt

Ul = R(a,ﬂm) at z =20

z

such that .
Ul e cl0,T; H (Q) @ HYR™T)).

Moreover, if Oau®(0,.) oo = 0, the function U can be chosen (in a unique way) such that

Ul‘tzo :0 .

The reason why introducing the lifting R in the boundary conditions, and not taking the simpler
condition

Ul oo = Onu?, (6.16)
is because of the last assertion of the proposition 6.1. The point is that, when 9,u°(0, .)|3Q =0,
the boundary condition (6.16) is compatible with the null initial condition when the parameter
x belongs to 99, but is not compatible in general when x € €2 since the relation (0, U!|,—g)=0 =

(8Zﬁ‘t:0)‘ .—o does not hold in general, the term on the left being 9,u°(0, ) while that on the
right is 0. However, the boundary conditions of proposition 6.15, are compatible with the null

initial value for the wished regularity, and for every x in €2, since in that case (0, U!|.—¢)|i—o =
R(0) = 0.

Proof: The proof is the same as for Proposition 4.2 in [10].

7 Proof of Theorem 3.1

Let ¢ € C5°(R3,R) such that suppy C V verifying ¢ = 1 on a neighborhood of 9. Lastly, take
a function © € L®(R*; H*(Q)) such that 9,0(t,2) = —0,UL(t,2,0) on Rt x 9Q. We write
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(u®, H®, h®) as
W (t,z) = Ut z) + eto(2) UL <t, z, @) +O(t, ) + evi(t, z),

HE = Py(u°) = PY(U°) + Py (©) + eH! + R + P (vf),
h® =h’ + ch,

where ¥ = Py (4U7) — o,

We want to prove the following regularity for the remainder term: for all T there exists C' such
that :

o7l oo 0,711 + vy | poe 0,752y + IZ | Loc 0,71y < C

In a first step we will write the equations satified by the remainder terms.

7.1 Equation satisfied by the remainder term
In the following, we note:
Ugpp = U° —I—Ewlfﬁ + €0,
Happ = PY(U°) + e H! + 2P|(O) + eR°
h,,, = h'
Some straighforward computations show that v{ solves:
e —*AvE =Ty + ...+ Tig + F° on [0,T] x Q,

Onv; = 0 on 052, (7.1)
v;.(0,2) =0 on €,

T = e8|Vl %,

Ty = &3 <uapp|va:\2 + 205 (Vgpp, Vv,‘f)) ,

T3 = &2 (07| Vtapp|* + 2uapp (V05 Vtagy))

Ty = €205 A Atgpp + 2ugpp N AVE + 305 A AL,

Ts = vy A (Happ + happ) + tapp A Py (v7) + evp A By (vy),

Ts = uapp N hi + evy A D,

T7 = — (uapp A (Uapp N Pll (vr)) + Uapp A (Vr A (Happ + Dapp) + 07 A (tapp A (Happ + happ)) )
Ty = —tapp N (Uapp A7)

Ty = —& (V5 A (05 A (Happ + Bapp)) + 05 A (tagy A Py (65)) + tapp A (05 A Py (05)) )
Tio = —& (F A (tapp A D)+t A (05 AR))

Ty = —v A (vE A Py(vy)),

T = —%0 A (05 A LS.

20



The term F* in (7.1) corresponds to

Fe = g1 (atuapp—s2Auapp — 52uapp A Dugp, — |Vuapp|2uapp)
- 5_1( — Uapp N (Happ + Napp) + Uapp A (Uapp N (Happ + happ)))

In other way, this term reads
F& = — 0,0 + €A1 + Etapp| Viapp|® + etgpp A A1 + 20U A Atgpp
F ttgpy A RS+ UV AH + 20 AU — tgpp A (tigpp A R)
U0 A ((Zﬁ+@)/\771) —c(ul +©) A (U AHY)
— (U +O) A ((lﬁ +0) /\P”(UO)) 2wl 1) A ((lﬁ +0) Aﬁ’l) ,
with

1
Ay =Duigyy — ZWUL,

—AU° + $AQUL + 2(Vh, Vo) UL + 20(Vip, VUL)
+ eAwl}vl + ewAlval + 26V¢V&v1 +eAO.

Furthermore, we obtain that h¢ satisfies:
2

0°h;

ot?

_OPPL(vy)
ot?

— AhS =

7.2 Estimates for the remainder terms

We will estimate the remainder term using the quantity Q defined by:
Q = [[v7 172 + IVoilI7e + lleAvg] e + 10wyl 72 + eVOrvs |72 + 0772 + 106h3][72 + [[Vhy]Z2
We will first obtain estimates on vy with the following

Proposition 7.1 For all n > 0 there exists a constant C'(n) such that :

1d

57 Uz + IVo7lze + [1e0villze) + & (IVoflizs + vl + [l VAL [Z2) <

ne2VAE |2, + C()Q + £C(n)Q°.

The term h? will satisfy a wave equation and we will obtain an estimate given by the following:

Proposition 7.2
0vg
ot?

d 1
7 (loshs][7> + [ Vhi|[72) < || 12:Q2 (7.3)

Thus we are lead to estimate w; := 0,v; and we have:

Proposition 7.3 For n > 0 there exists a constant C(n) such that :

d
7 (IFlZ2 + eVullza) + leVullzs + [l Awflz. - < nlle*Awf|7z +nlle®VAv[Z.

+C(n) + C(MQ + C(n)e? Q°

These technical propositions are proved in the last section.
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7.3 End of the proof of Theorem 3.1

We add the inequalities obtained in lemmas 7.1, 7.2 and 7.3, and we obtain that for n > 0 there
exists a constant C'() such that

1d
S V0 + oo 125 + 12V A 25 + eVt s + 20 25 <
(7.4)
2 €12 29, €2 i 0%y i
3nlle”V Avr|[z2 +nlle”duwrllz: + Cn) + C()Q + Cn)e2 P(Q) + || 75" 22 Q>
2,
Using Equation (8.4) we can estimate 8—15; = Jyw; and we obtain that :

l0cwille < NTY + ...+ Ty + Flll g2 + [l Awf]| 2 + €% [[uappl o< [ Awy | 2

+e?||vg ]| oo | Awg | 2

5

M2V AvE 12+ nlle Al + Cn) (1+QF +¢7QF)

IA

+O| 2 Aw|| 2 + 22 Q2 || At 2
Hence

825

5 12Q2 < Cn) + C)Q + Cn)e P(Q) + 2l|e* A 2 + 20>V Av 7.

thus using this estimate in (7.4)we obtain that :

14Q

53 T IVUilLe + [eAvIe + 12V AvIIZe + leVarlize + [l dwr|lze <

4|2V AGE 3 + 2|2 0us |2 + C(n) + CNQ + Cln)et P(Q)

1
We fix then n > 0 such that 4n < 3 and we obtain that there exists a constant C' and a
polynomial function P such that :
aQ
dt

This achieves the proof with a classical comparison argument.

+ Vi3 + lleAvf 22 + 2V AR + [eVui]3a + 20w < C+ CQ+ Ce2P(Q)

8 Proof of the estimates

JFrom the regularity results concerning the terms of the ansatz obtained in Section 4 we can
estimate the different parameters in equation (7.1). The proof is the same as that of proposition
5.1 in paper [10].

Proposition 8.1 For any p, 1 < p < 400, and for any T > 0, there exist some constants C,
such that for any e >0 and all t €]0,T],

||uapp( Mwr < Cpa

(8.1)
I DPuap(t. v < Cp
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For any p, 1 <p < +o00, and any T > 0, there exist some constants C), such that for any e >0
and all t €]0,T7,
|V Atgpy(t, )| 1r < Cp. (8.2)

For any p, 1 < p < +00,and for any T' > 0, there exist some constants C, such that for any
e >0 and all t €]0,T],

Happ(t; )llwrr < Cp,

e (8.3)
IF=(t, Ml < Cpe

8.1 Proof of Proposition 7.1
We recall that we denote by Q the following quantity:

Q = [[v7lIz2 + IVoilIZ: + lleAvflZ + 10wr |72 + eVOwr |72 + [hZlZa + |0h3][7: + [[Vhy]Z.

Lemma 8.1 There exists a constant C such that
1d

2dt (”UiH%2) +52HVU,€H2L2 <C+0Q+ C€2Q2

Proof. We multiply (7.1) by vi and we obtain that
L

2dt

We estimate the right hand side of this inequlity on the following way:

105122) + €2 Vg 2, gL(T1+...+T12+FE)v5.
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4, 2112 2 20,2 2 2032
e llvnllzeIVorllze < C ellvpllzn llevillz < CeQ

S~
=
ﬁem
I

1/2 3/2 3/2 1/2
Ce[ve |35 NEl32 llevs ||z + C €5/2|ug]| 2 E]27 Jlevt||1a < Ce2Q3/2

S~
o
S
IA

207 |22 Vatagpl 2o + 22 ttapll o [V tapll o 02 2 [ V0 2 < C2Q

S
S
o
IN

eVl L2 VULl 2 | Vtapp | L < C*Q

S~
=
S
IA

[app|| Lo | Py (v2) [ 2|0z ]| 2 < CQ

S~
&
S
IN

[tapp|| Lo [hZ] 2]z ]l 2 < CQ

S~
53
S
IA

Clllll7. < CQ

S~
[
‘KQ(T)
A

2
[tappl| 7o (L[| L2 [0 ]l 2 < CQ

S~
o
S
IN

3 3 3
Cellvz||72llvillfn < CeQz

S~
&3
o
INA

3
lluapp|lL= [ BE|| 2 [0E 74 < CeQ>

S~ S
e 3
~ o
*Sm ‘3@(“)

Il IA
(an)

T

/ Feu;
0

Summing these estimates and remarking that CEQ% < CQ + Ce%Q? we obtain the claimed
result.

S~
e
[\

S
o

Il
o

< FEleflville <€+ Q

Lemma 8.2 There exists a constant C such that

1d

S (I995132) + <A 2, < O+ CQ+ CeQ?

Proof : we multiply (7.1) by Av: and we obtain that
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1d (
2dt
The terms in T7, To, T3, Ty, 15, 17, Ts, Ty, T11 and 115 are estimates on the following way:

V02 ]122) + 22| At 12 g/Q(T1+...+T12+FE)Av,€.

/ T < el ety < C<Q?
Q
1 5 3 3 3 13
/ ToAvE| < OVEIRE|Za evs ] 3e + O30l levs |2 < CE3QE
Q
[ mavi < Celuilln e < C2Q
Q
/ TyAvE| < (02 1o l|V Attap 13 | V02 12 < C£2Q
Q
5 1 3
/ Tydvs| < ClE |2 + Ceb [log] 2 vl 2 < CQ+ O3 QS
Q
/ ToAv| < Clll2n < 0Q
Q
5 Y 5 s 5 1 en3 1 3
ToAvE| < Ced s 3y levt|2e + el 3n < Ce3 QP
Q

< elliliznllevilln: < CeQ?

/ THA’U;?

Q

/ TlgA’Ui
Q

For the other terms we perform an integration by parts:

< ellvilZol b ollevy] 2 < CeQ?
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/ TGA’U;?

Q

/ TGAU;E
Q

/TgA’Ui

Q

/TgAUi
Q

/TloAvi
Q

/TmA’Ui
Q

/ FeAv;

Q

/ FeAv;
Q

IN

IA

IA

IN

IA

<

- / (Vitapy A B + ttapy A VHE) + ¢ / (tapp A 05 A (VhE)) Voot

I Vuapp|l o< 07| 2 [V opll L2 + luappl| oo [ VhE [ 2] VOr|| 2

+el[Vh|| g2 [v7 || 2o [ Voi] s
1 3
CQ+Ce2Qz

/ (Vapp A (Uapp A7) + tapp A (Vapp A D7) + tapp A (Uapp A Vhy)) Vg
ClhZl| g [Vorl2 < CQ
. / (V05 A (ttapp A BE) + 05 A (Vttapp A BE) + 05 A (ttapy A VHE)) Vo

el Vuapplloe by ll o l[or [ ol [Vorllzs + elluappll oo [[or [l o[Vl L2 [ VOr]| ps

[N
(VI3

Ce2Q

— / VEFVv;
Q

[E [ [lonll < C+Q

We add the previous estimates and we obtain the claimed result.

Lemma 8.3 For any fized n > 0, there exists a constant C(n) such that

1d
5

leAvi||72) + 2 VAV (72 < nlle*VAV|T2 + C(n)Q +C(n)Q°

Proof : we multiply (7.1) by e2A2v¢ and we integrate each term by part. We obtain that :

with :

1d
3

leAE|2) + 2V AvE 2, gfs?/ V(T + ...+ Tia+ F%) VA
Q
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g? / VTV AvE
Q

g2 / VTLVAE
Q

g? / VT3V AUE
Q

g? / VT, VAU
Q

g2 / VTsVAvE
Q

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

3 9
ellevy Iz 1e*V AvE 2 + ellvfll i levr I o lle® V Avg| 2

3 3 z
+ellogll i vl e 1€V AvE] £

n
13 [EVAVIL: + C)"Q% + C (e Q?
3 1 3
Cez [|[vf]| 2 [levi || 22 €2V AVE|| L2 + Cellevs |32 1€V Avg | 2
L € % 2 € % 3 & % 15 % 2 €
+Ce2||evs | 2, [|E2VAVE| 2, + Cet||vs |2 [|eve | 22 | €2V AV | 2

3 1
+C%||evf| 2 VAV L2 + Ce? [|evs || 3o lle?V Avg | L2

5IEPVAE: + CmeQ + Cln)
0§l 12V A0 2 + ellof 2 |V AvE

+Cellevi|| 2lle®V Av7|| 2 + Cel[vf || |2V AV 2

T2V A7 + Cn)e*Q
Ol i €2V Al + Cellev 262V Avi |2

3
+C¢levi | 12V AVE | 2 + Ce3[|evs]| 2212V AvE | 12

LIEPVAE |+ CQ+ C) QP + C)
1 3 1
Ol i €2V Al + O3 ]| 10k | 2 |2V AvE 1

T2V A7 + C)Q+ Cn)eq?
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g? / VTV AvE
Q

£’ / VT:V AvE
Q

g? / VTV AvE
Q

£? / VTyVAvE
Q

£’ / VT10VAvE
Q

g? / VT VA
Q

£’ / VT1oVAVE
Q

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

[ttapp | L[| VHE] 22 |E*V AV || 12 + [ Vitappll 3]s || 6|6V A | 2

+el| VoLl s ]| o €2V Avs || 2 + €l|vf || oo | VG| 2 [V Avg | 12
2 e e Lo r % e %

16"V A || 2[|[Vhi| 2 | K + 2 {Jv]| 7 llevr | 7

n

3 E°VALIL + CQ + C(m)eQ”

1€V AV L2 (I[tapp 1,00 + Bapp 1o + [Happllfyr00) 107 |21

n

LI2VAG]E + Cm)Q

€2V AV 12 ([tappll 7o VB L2 + [[tiapp|[Fy1.00 05| £2)

n

L2V, + C)Q

”52VAU1€HL2 (5H”7€HL6HV(happ + Happ)”LG + ellvpll e I Vvzl s ”happ + Happ”L“’

+elloF 176l Vuappl s + ellv [l LIV Vs Il 2o luapp | o)

VA 72 + C)eQ?

N2V A el (1B 0 2o + 901 [0 g + I10f ol 2)
n 2 £112 s

VA e + C(n)eQ?

e l2V Awl| 22| V0 o o 136

VA2 + C)e*Q?

eIV A0 g2 (=205 o970 o0 L o + €205 3 | V] 12)

EEPVA|Z: + O QP
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< VAV 2| F| e

g2 / VFVAvE
Q

< El2VAd|3 + )
Adding up these estimates we conclude the proof of Proposition 8.3.

Proof of Proposition 7.1:
Adding up the estimates obtained in the Lemmas 8.1, 8.2 and 8.3 we conclude the proof of
Proposition 7.1.

8.2 Proof of Proposition 7.2
We multiply (7.2) by he and integrating on R3, and using that

|

we conclude the proof of Proposition 7.2.

0?vg

0vg

&Py (vg) <
L2 - 8t2

ot?

L2 ‘ L2

8.3 Proof of Proposition 7.3

We denote wi = dyv;. We derivate (7.1) with respect to ¢ and we obtain that
s — 20ws =T + ... + Ty + FL + ®ugpp A Aws + €308 A Awt (8.4)

.

where we denote T} = 0,T; for i # 4 and T) = 0,1y — (€2uapp A Aw; + sgv,‘f A Awf:) (these two
last term will be treated in a special way as we will see later).

We estimate the L? norm of each term of the right handside in the following way :

Lemma 8.4 Forn > 0 there exists a constant C(n) such that

Nt

I3+ o+ Ty + Fllle < FI2VAE 12 + e Aws 12 + ) (1+ QP +22Q

)

Proof : we have the following estimates :
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T

71 2

7

I3l 2

IN

IN

IA

IN

IA

e (WE|VUE[® + 208 Vi Vot
et llwill s IV oilI7s + 26 for [l oo | Vaf | s | Vo5 | o
€ €112 € % € % € % 2 € % LA % € % £
ellewr || g llevillz + ellorll i levil Fallewr | 7 lle”0wil 72 + e {lonll 7 llevr || e llews |
3 5, 92 13 %
eQ2 +eQi e Owrl|7,
% (Opttapp| VVEI? + 2uapp VUEVWE + 20E Vtayy VUE + V5V Oty VUE + VS Vg, V)
3 2
e” (0tappll 61V 0 76 + 2lluapp | oo Vg || ol Vwill s + 2[lwil| 2o [ Vtappl o [ Vop |l o
Hl|v7 N o< IV Ortiapp | L2 [ Vor | oo + 2||v7 ] Loe [ Vttapp | Lo [ Vi | 3)

1 1
CeQ + Ce Q7|2 Awt |2, + CeQi 2V A2,
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Ty = ¢ (wi|Vuapp|2 + 2v5. (VOitapp - Vuapp) + 204 tapp VU Vigpy,

+2Uapp VW5 VUapp + 2Uapps VOitiapy)

15l < e (Ilwfll ool Vauapp | 7o + 20107 oo |V Orttappll 13 Vttappll 26 + 2l Oetappll o V05| 161V ttapp | 2
+2||wapp | o= [ VWr | L3 ]| Vttappl| 6 + 2[[tapp | Los [[07] oo [V Orttapp || 2)
1 Lo 2 A2
< 0Qz +Ce2Qille”Aug| 7,
Ty = 2 (WS A Atgpp + V5 A Adytiapp + Opttapp N AV + sws A AvE)
2
ITillz2 < & (lwrllzoe | Avappll 2 + V7] oo [| Adrttappll L2 + 1| Ortiapp | o= | AVE 12 + el|wr || o< | AvE]| £2)
1 1030 9, % 1
< CeQ2 +Ce2Qi|e”Awg|l;, + Ce2Q
T; = wy A Happ + V5 A OHapp + Opttapp N Pj(vr) + Uapp A 0P (vy) + ewr A Py(vr) + evp A 0y P (vy)
I1T5ll2 < Nlwillc2Happllzee + 07l 26 110:Happll 3 + [ Octiappll oo 1071 22 + [ appll oo [yl 2
+ellwillpsllvzllze + ellonllpollwyll pa
1 1
< CQ2+4Ce2Q
T¢ = Opgpp N D + ugpy A Oihy + ew; Ay + ev; A Oshs,
ITgllrz < NOruappllLoe Iyl z2 + luappllzoe 0h7] 22 + ellwil gz Izl Lo + el[vrll oo [|OhT ] 2
1 1
< CQ2 +¢2Q
T} = Ottiapp N (tapp N P(v7)) + tapp N (Ogtbapp N P (V7)) 4 tapp A (tapp N O¢Py(vy))

+O0ttapp N (Vr A (happ + Happ)) + tapp A (Wi A (happ + Happ))

Ftapp N (U A O¢(happ + Happ))
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T3] <
<
T =
ITgll2 <
<
T3 =
1Tolle <
T1/0 =
[Tiollzz <
<
T

10¢ttapp | o< 1wapp || o< 1071 L2 + [uappl| Low | Ostiapp | Loo [0 | 22 + [[tbapp | Lo [[tapp | oo [|wi] L2
+l|Ortsapp | oo [[0r ]| L2 [Mapp + Happllzoe + tapp || oo [|wi | 2] Bapp + Happll

+ [ wappll oo (|05 | 22 10 (happ + Happ) || oo

Q>

Oytiapp N (tapp N'D) + tapp A (Oytiapp A7) + tapp A (tapp A Orhy)
2ettappll o< [ttappll oI 2 + ltappl3oc 96HE 1

cQ2

& (wi A (v A (happ + Happ)) + v A (Wi A (happ + Happ)) + vi A (07 A Oy(happ + Happ))
+wi A (tapp A Py (07)) + 07 A (Orttapp A Py (7)) + 07 A (tapp A 0: Py (v7))

+0¢Uapp A (U5 A By (v7)) + tapp A wy A P(07)) + ttapp A (05 A Oc(P)(v7))))

€ (Qg”wiumuvi”m”happ + Happllzoe + H”i”%ﬁuat(happ + Happ) | s

+ 2l|wyll s lluapp | Lo 1vpll Lo + 2lvr [l 3 1Osuapp | oo V7 [l o + 2107 || o[ appl oe [[wr ]| £3)
< Ce2Q

& (wy A (uapp A hy) + 07 A (Opttapp A DT) + 07 A (tapp A O¢hy)

+ Optiapp N (V; ADS) + Ugpp A (W ADS) + Ugpp A (V5 A O;h2))

2 (e o tapll o 1 26 + 115 L5 1Ot e I 5 + 105 o et [0S .2)
CE%Q

— €2 (wf A (0 A By(05) + 5 A (wf A BY(o5) + v A (6 A 9P| (1))

1T llze < 3e?[lwillpsllvr e

/
Tl 2

CEQ%

IN

= ? (Wi A (vEARE) + 08 A (wE ABS) 4 vE A (V5 A 9;hl))

IT{allze < € llwillpsllvgllzslhll g2 + (vl o< |00 2)

< CeQ:

In addition we know that |0 F°||;2 < C.
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Adding up these estimates, and using Young inequality for the terms ||e2AwE|| ;2 and ||e?V AvE]| 12,
we conclude the proof of Lemma 8.4.

Proof of Proposition 7.3
Multiplying (8.4) by w$, and using Proposition 8.4 we obtain that

d 1 1.5
lwslEs + 1oV 2 < (BIe2VAvE 2 + Bl Ausle + O (1+QF +3QF) ) gl
+&2|uapp | oo | Aws | g2 [[wi [ 22 + €% [[vF | po [lwr | s | Awy ] 2
24, 2112 2 2 103
< Cn)+CmQ+ 2nl|le”dwr |72 + 2nlle”VAvr |72 +22Q
We multiply then (8.4) by e2Aws, we remark that :
/Q (52uapp A Aws + 305 A Aws) Awi = 0.
Thus we obtain that :

d 2 2 2
g leVwrllze + [le” Awz

IN

12V 280 2 e Al 2 + 4 e A1
+C() (1+ Q3 +22Q3) [l A 2

< LlPAuf|a + F2VAE ] + CoQ+ Cm)e Q°

We add up these two inequalities and that concludes the proof of Proposition 7.3.

References

[1] R. A. Adams, Sobolev space, Pure and Applied Math. 65, Academic press 1975.
[2] S. Agmon, Elliptic boundary values problems, Van Nostrand Company, 1965.

[3] F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifschitz equations: existence
and nonuniqueness, Nonlinear Anal. 18, (1992), 1071-1084.

[4] C. Bardos, J. Rauch, Maximal positive boundary value problems as limits of singular per-
turbation problems, Trans. Amer. Math. Soc., 270, (1982), 377-408.

[5] F. Brown, Micromagnetics, Wiley, New York, 1963.

[6] L. Boutet de Monvel, Comportement d’un opérateur pseudodifférentiel sur une variété a bord,
J. Anal. Math 17 (1966), 241-304.

[7] G. Carbou, Thin layers in Micromagnetism, & paraitre dans M3AN.

[8] G. Carbou, P. Fabrie, Time average in Micromagnetism, Journal of Differential Equations
147 (1998), 383-409.

[9] G. Carbou, P. Fabrie, Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain,
Differential and Integral Equations, 14 (2001), 213-229.

33



[10] G. Carbou, P. Fabrie, O. Gues Couche limite dans un modéle de ferromagnétisme, Comm.
Partial Differential Equations 27 (2002), 1467-1495 .

[11] J. Chazarain, A. Piriou, Introduction & la théorie des équations aux dérivées partielles
linéaires, Gauthiers-Villars, 1981.

[12] G. Foias, R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les
phénomenes successifs de bifurcation, Ann. Scuola Norm. Super. Pisa IV, 5 (1978), 29-63.

[13] M. Gisclon, Etude des conditions aux limites pour un systéme strictement hyperbolique,
via 'approximation parabolique, J. Math. Pures Appl. 75, (1996), 485-508.

[14] E. Grenier, O. Gues, Boundary layers for viscous perturbations of noncharacteristic quasi-
linear hyperbolic problems, J. Differential Equations, 143 (1998), 110-146.

[15] O. Gues, Perturbations visqueuses de problémes mixtes hyperboliques et couches limites,
Ann. Inst. Fourier, Grenoble, 45 (1995), 973-1006.

[16] H. Haddar, Theése de I’Ecole Nationale des Ponts et Chaussées (2000).

[17] H. Haddar, P. Joly, Effective boundary conditions for thin ferromagnetic layers ; the 1d
model, Siam J. Appl. Math., a paraitre.

[18] L. Hormander, The analysis of linear Partial Differential Operators III, Springer-Verlag,
1985.

[19] J.-L. Joly, G. Métivier, J. Rauch, Global solutions to Mazwell equations in a ferromagnetic
medium, Ann. Henri Poincaré 1, (2000), 307-340.

[20] P. Joly, O. Vacus, Mathematical and numerical studies of nonlinear ferromagnetic materials.
M2AN Math. Model. Numer. Anal. 33 (1999), 593-626.

[21] S. Labbé et P.Y. Bertin, Microwave polarizability of ferrite particles, Journal of Magnetism
and Magnetic Materials, 206 (1999), 93-105.

[22] S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferro-
magnétiques, These de I’Université Paris 13 (1998).

[23] O. A. Ladysenskaya, The boundary value problem of mathematical physics, Springer Verlag
Applied Math. Sciences, Vol 49, 1985

[24] L. Landau et E. Lifschitz, Electrodynamique des milieux continues, cours de physique
théorique, tome VIII (ed. Mir) Moscou, 1969.

[25] J.-L. Lions, Perturbations singulieres dans les problémes aux limites et en controle optimal,
”Lecture Notes in Math.”, vol. 323, Springer-Verlag, 1973.

[26] G. Métivier, The Cauchy problem for semi-linear hyperbolic systems with discontinuous
data, Duke Math J., 53 (1986), 983-1011.

[27] G. Métivier, J. Rauch, Interaction of piecewise smooth smooth progressing waves for semi-
linear hyperbolic equations, Comm. Partial Differential Equations, 15 (1990), 1079-1140.

[28] J. Rauch, M. Reed, Discontinuous progressing waves for semi-linear systems, Comm. Partial
Differential Equations, 10, (1985), 1033-1075.

34



[29] J. Rauch, M. Reed, Classical, conormal, semilinear waves, Séminaire Ecole Polytechnique,
(1985-1986), exp. No. 5.

[30] D. Sanchez, Un exemple de couches limites en ferromagnétisme, en préparation
[31] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam.

[32] A. Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied
Mathematics, 1 (1985), 69-84.

[33] H. Wynled, Ferromagnetism, Encyclopedia of Physics, Vol. XVIII / 2. Springer Verlag,
Berlin, 1966.

35



