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1 Introduction

The penalization methods are used since the former works of Peskin [16], [17],
about twenty years ago, in order to compute the flow of an incompressible fluid in
a complex geometry. The aim is to avoid body-fitted unstructured mesh in order
to use accurate and fast spectral methods [14] or finite volumes approximations
on cartesian meshes [13]. In [2], [3], [5], [6], [7], [10] [13], [18], the different
authors add a penalization term on the velocity defined on the volume of the
obstacle.

In this paper we study a penalization method used by C. H. Bruneau and I.
Mortazavi in [8] in order to compute the flow of a viscous fluid around a ground
vehicle surrounded by a thin layer of porous material.

We consider O a C*°-bounded domain of R3 and © a C>-open subset of O such
that Q C O. We denote Qezr = O\ Q and I' = 9Q. We fix k > 0.

For € > 0, we set
e w.={z€Q, 0<dist(z,T) < re}

o I ={zeQ, dist(z,I) =re}

e Q. =Q\w;
[ ] Q;lu:QertUFUW‘S



In [8] in order to compute the flow around the obstacle €2, surrounded by the
thin layer w. of porous material, Bruneau and Mortazavi add to the Navier

1
Stokes equations a penalization term of order — in w. to modelize the porous
€

layer, and another penalization term of order — in the obstacle €2, that is they
€

solve the following system:

8”6 € 1> 1> 1 1> 1 € € :
— Au® + (v - V)uF 4+ —xu.u* + S xa.u°+ V= fin O,
ot € g?
divu® =0in O, (1.1)
u® =0 on 00,

where x,,. (resp. xq.) is the characteristic function of w. (resp. €2.).

In this paper we compare the penalized equation (1.1) with a model coupling
Navier-Stokes equations in the fluid with the stationnary Brinkmann equation
in the porous thin layer. This new model is given by:

ous
ot

— Auf + (u® - V)u® + Vp® = fin Qea,

1
—Au® + —u® +Vp® =0 in w,,
€

[u]=0onT, 12)

*I?non T,

aus_ . _1|
on P T ol

u®=0o0on 00OUT,,

] g 3 154
divu® =0in QF,,,

where [w] is the jump of w across T', and where n is the unitary normal to I"
entering in 2.

‘ ‘ ) ) . 1, .9
Remark 1.1 The particularity of this new Brinkmann model is the term =|u°|

in the right hand side of the jump formula on I'. The presence of this term
ensures the global existence of weak solutions for Equation (1.2).



We will perform for both problems (1.1) and (1.2) an asymptotic expansion of
the solutions when e goes to zero. For the Brinkmann model (1.2) we perform
in the thin layer w. a rescaling in order to work in a fixed domain with an
equation depending of €. For the double penalization method (1.1), we treat
the thin layer as for (1.2) and we couple the asymptotic expansion of the solution
in the thin layer with the boundary layer that appears in the obstacle £2.. These
asymptotic expansions are obtained with a BKW method.

With these two asymptotic expansions, we will compare both models. We will
prove that the solution of (1.1) is similar to the solutions of (1.2) around a porous
thin layer of thickness (1 + k)e, that is the layer thickness for the Brinkmann
model is different to the layer thickness for the numerical process.

Let us describe more precisely our different results.

Let U° be a regular solution for the flow around the obstacle Q with initial data
U%(t = 0) = ug, that is

0

O AU+ (U V)0 + V9 = [ in [0, T [ O

div U° = 0 in [0, T*[x Qewt (1.3)
U% =0 in [0, T*[x0Qeut

Uo(t = 07 I) = Uo(ﬂf) in Qegy

with the following regularity property, for i := 0..2,

U . -2 2 ppT—2i

ott €L (0, Ta H (Qert)) nL (Ov Tv H (Qeft))’

‘ (1.4)
d'p° . prd—2i 2 776—2i

ott el (0, T, H (Qewt)) NL (07 T7 H (Qewt))'

Remark 1.2 The existence of the regular solution for Navier Stokes equation
is a quite classical result (see for example [4], [9] or [10])
0

U
We know in addition that e is tangent to T'.
n v

Furthermore, the time T* is the blow up time for the regular solution of (1.3).
In particular, we know that T* = +o0 in the two dimensional case.

With classical technics we can prove the existence of weak solutions for the
Brinkmann Model (see Leray’s arguments in [15]). In the following theorem
we perform an asymptotic expansion for a weak solution for Brinkmann model
(1.2) with initial data u®(t = 0) = U°(t = 0) = u:



Theorem 1.1 Let U° and p° the regular profile satisfying (1.3)-(1.4). Let u® be
weak solution of (1.2) with initial data u®(t = 0) = ug in Qezr and u(t =0) =0
in we. Then u® satisfies the following asymptotic expansion:

ut(t,x) = Ut 2) + eUt(t,z) + 5%v§(t,x) for x € Qeqt
where the profile Ul [0, T*[xQept — R3 satisfies

1
aait — AU+ (U VYU + (U VU +Vpt =0 in [0, T7[xQeut,

divU!=0 in [0, T*[XQext,

0
Ul = —n%i on [0, T*[xT,
n

Ul=0 on [0, T*[x00,

(1.5)
and where the remainder term vl is bounded uniformely with respect to € in the
space L>®(0,T; H' (Qezt)) that for all T < T*,

We study now the numerical process (1.1). We will perform an asymptotic
expansion of the solutions of (1.1). In the thin layer we describe the solution in
the variables (o, z) € I'x]0, k[ where 0 = P(z) is the orthogonal projection of x

onI', and where z = @ with ¢(z) =dist(z,I"). In the obstacle )¢, it appears

V()
€

a boundary layer described with the fast variable where ¥ (z) =dist(z,T';).

Theorem 1.2 Let U° and p° be the reqular solution of (1.3)-(1.4). Let u® be a
weak solution of Equation (1.1) with initial data u®(t =0) = U°(t = 0) in Qs
and u(t =0) =0 in Q. Then u® satisfies the following asymptotic expansion:

UO(t, x) + U t,2) + e 207 (£, 2) for & € Qeny,

us(t, ) eV(t, P(x), @) + »sgv;(t, x) for x € we, (1.6)

V()
€

W (t, z, )+ egvg(t,x) for xz € Q,
where

o U':[0,T*[xQest — R? satisfies



ou!
T AU + (U°- VYU + (U - W)U + Vp! =0 in [0, T*[XQeat,

divU' =0 in [0, T*[xQewt,

0

Ul=—(k+ 1)86% on [0, T*[xT,

Ul =0 on [0,T*[x00.

o V! is defined on [0, T*[xT x [0, k] with values in R3,
o W' is defined on [0, T*[xQ. x Rt with values in R®,

e the remainder term v’ is bounded in L*(0,T; H*(O)) N L>=(0,T; L*(O))
for all T <T*.

Remark 1.3 We note that the first terms U' and U given respectively by (1.5)
and (1.7) are different.

Therefore in order to obtain a good approzimation of the solutions of (1.2) we
have to modify the numerical process (1.1) taking the porous layer thickness
equal to (k — 1)e.

Remark 1.4 In [10] we study another model for the flow around a porous thin
layer and we perform for this model an asymptotic expansion compatible with
the expansion obtained here for the Brinkmann model (1.2). The particularities
of the present work are first the new Brinkmann model (see Remark 1.1) and
that we couple for the study of (1.1) the thin layers methods with the boundary
layers ones.

This paper is organized as follows.

In the second part, we briefly recall the geometrical tools used for the study of
the thin layer w., and we mention usefull analytical results.

In the third part, we study the Brinkmann model. We perform the asymptotic
expansion of the solutions of (1.2) and we prove Theorem 1.1.

The last part is devoted to the proof of Theorem 1.2.

The proofs of Theorems 1.1 and 1.2 are based on the following method. In
a first step we perform a formal BKW method, that is we assume that the
solution admits an asymptotic expansion given in the theorem, and we plug
this expansion in the equations. Identifying the different powers of ¢ we obtain
then equations characterizing the profiles in the asymptotic expansion. In a
second step we prove the existence and the regularity of the profiles. In a last
step, we define by difference the remainder term and we estimate it using rather
classical variational estimates. This estimation gives a rigorous validation of the
asymptotic expansion.



2 Preliminary results

2.1 Geometrical tools for the thin layers

In order to describe the behaviour of the flow in the thin layer w. we use technics
developped in [9] and used in [19] in the framework of ferromagnetism.

We will write the equations in the thin layer using the coordinates (o, z) where
o = P(z) is the projection of z onto I' and z is the distance between x and
I". We use these coordinates because we can easily rescale in the variable z the
equations and then work in the fixed domain I" x [0, K].

We use the parametrization of w. defined by :
©: I'x]0,ke] — we
0,2 — o+ zn(o)

Since I' = 0 is a regular compact surface of R? without boundary, there exists
1o > 0 such that for e < 79, © is a C*°-diffeomorphism from I'x]0, ke[ onto w,.
Furthermore ¢ and P are regular on w,, and

Va€wy, Ve(r)=n(P(x)).

On the submanifold I' we can classicaly define the integrale and the differential
operators Vr, div r and Ar. Furthermore, n is a map defined from I' with
values in the unit sphere S? so for o € T, the differential dn(o) is a linear map
from T,T" into Tn(U)S2 (where T,I" denote the tangent plane of I' at the point
o). Since Tn(g)S2 = T,I', we can consider dn(c) as an endomorphism of T, T

Gradient : for ¥ : I' — R, we define :
Vr. (o) = (Id + sdn(o)) " (Vro(o)),

and if u : w,, — R, denoting & = u 0 ©, we have :

- (P(2), p(2))n(P(x)) + (Vi @) (P(x), (x)).

Vu(z) = s

Divergence Operator : let Y:I —TT be a tangent vector field defined on
I'. For s € [0,kno[ and o € T', we define:

- 1 -
divp,Y (o) = ——divr [’ys(ld + sdn)_lY} (o),
vs(0)

where
vs(0) = det(Id + sdn(o)).
In addition if Z : w,, — R?, denoting Z = Z 0 ©, we have
dZn
0z

div Z(z) = (P(x), ¢(x)) + Gy (P(2) Zn (P(), ()

+ (dim(m)ZT) (P(x), p(x)),



where Zy(0,2) = (Z(0,2) - n(0)) is the normal part of Z and Zr(o,z) =
Z(0,z) — Zn(o,z)n(o) is its tangential part, and where :

1 Ovs -
vs(o) ds * 7

Laplace operator : for v : I' — R we define

Gs(o) =

Aps’f) = div T, VFS’LN),
and if u : w,, — R, denoting & = u 0 ©, we have :
0% ou

Au(z) = =5 (P(2), ¢(2)) + G (P(2)) 5 (P(2), 0(2))

+(Ar, @) (P(x), o(x))-

Remark 2.1 All these expressions are proved in detail in [9].

2.2 Analytical tools

We recall the following lemma, proved in [12] (see Theorem 2.1 on page 18),
concerning the relevement of the divergence in a fixed domain:

Proposition 2.1 There exists a constant C such that for all g € L*(Q) such
that / g =0, there exists 1 € HE () with div ) = g in Q and
Q

1Y)l 1) < Cllgllza)-

For the domain w,, depending on e, we prove in [9] the same kind of result:

Proposition 2.2 There exists a constant C' such that for € small enough, for

all g € L*(w.) satisfying / g =0, there exists 1. € (H} (w:))? such that :

div¢. =g € we,
o (2.1)
Vel (w.) < ;||g||L2(w5)-

We mention now a result concerning the harmonic extension of a boundary value
in a variable domain depending on ¢.

Proposition 2.3 Let € < ng, let g € H%(F) Let us consider r. the harmonic
extension of g o P in Q, that is r. is defined by

Ar. =0 in Q.,

re(x) = g(P(x)) on T,



Then there ezists a constant C independant of € and g such that
This proposition is a straightforward adaptation of the same result for a fixed

regular domain (see [1] for the existence of a H? extension of the boundary
value, and [11] for the resolution of the Laplace equation in 2.).

3 Brinkmann Model

3.1 Formal asymptotic expansion

We denote by v® (resp. ¢°) the restriction of u® (resp. p°) in w.. We write
Equation (1.2) on the form:

a €

;t — AU+ (U V) + VpE = f in Rf x Qege (3.1.1)
divut =0 in R x Qe (3.1.2)

1
—Av® + gvs +Vg =0 in R xw. (3.1.3)
div v =0 in R xw. (3.1.4)
u® = v on R x dw  (3.1.5)
ous O 1 .9 "

o +pn——8n+qn+§|u|n on R x dw  (3.1.6)
v =0 inRS xT.  (3.1.7)
u® =0 on R x 90  (3.1.8)
u(t=0) =wuo on Qeqt (3.1.9)
v¥(t=0)=0 on we (3.1.10)

On one hand we assume that u® and p® admit the following asymptotic expan-

sion:
uf(t,r) = U%t, ) + UL (t, ) + ...,

pe(t,x) = p°(t,x) +ep*(t,x) + ...
where the profiles U* and p’ are defined for (t,z) € RT x Qcy.

On the other hand we suppose that v and ¢° admit an asympotitc expansion
of the form:



v (t, ) = VO(t, P(x), @) + eV, P(x), @) +...,

qs(tvx) = qo(tv P(x)v

) b gt P, PO 1 g2 ), £
where the profiles V? and ¢' are defined on R x T' x [0, &].
In order to satisfy Equation (3.1.7) we suppose that:

VteR", Yoel, Vit o z=k)=0.

Using the notations of Section 2.1 we recall that if & : T’ x [0,x] — R, if we

denote a(x) = a(P(x), @), then

_1da (P(), () )n(P(x)) + Vr,,, a(P(z), @).

VOC(J?) = g& -

Furthermore, if 3 : T' x [0, k] — R3, if B(z) = B(P(z), @), then

aiv Bw) = 2% (pa), P 1,y (P)) B (Pl), D)
+div ., fr(P(), %”(:) ).
In addition, if & : T x [0, k] — R, if we denote a(x) = &(P(x), (p(;) ), then
Bae) = 528 (P@), 2D) 1+ Lo (P 22 (pa), 2O
A, a(P), 22

We plug the formal asymptotic expansions of u®, p®, v° and ¢° in System (3.1)
and we identify the different powers of €. Using this BKW method we can
identify the different profiles in the asymptotic expansions.

3.1.1 Determination of U° and V°

Writing (3.1.3) at order e~2 we obtain that V%, = 0. With (3.1.6) at order ¢!,
we obtain that V2 = 0 for 2 = 0. Thus, since V°(z = k) = 0 we have

VY =o. (3.2)



Therefore, with (3.1.5) at order €%, we know that U = 0 on I'. Writing (3.1.1),
(3.1.2), (3.1.8) and (3.1.9) at order € we characterize U° by

ou® 0 0 0 0 ~
W—AU +(U V)U —|—Vp :fanerta
div U° = 0 in Qeyy, (3.3)
U =0o0nTUHO.
UO (t = 0) = UQ
that is (U, pY) is our regular solutino of (1.3)-(1.4).
3.1.2 Order ¢! terms
With (3.1.4) at order €%, and with (3.1.7) we obtain that
Vy = 0. (3.4)
Now we write (3.1.3) at order e~1. We obtain that
o?vt  9¢°
Taking the normal part of (3.5) we obtain that
9q°
— =0, 3.6
P (3.6)

and with the tangential part of (3.5) we obtain that V7 is an affine map with
respect to the variable z.

Equation (3.1.6) at order ° gives that

ouv oVt
S —l—pon:—g—i—qon for z = 0. (3.7
0
Taking the normal part, since —— is tangential at the boundary, since V! is

n
tangential, we obtain that p® = ¢ on I', and with (3.6) we obtain that
q’(t,0,2) = p°(t, 0). (3.8)

With the tangential part of (3.7), since VTl(z = k) = 0 and since VTl is affine,
we obtain that
Mt o,2) = (2 — —0 o 3.9
Vi(t,o,2) = t,o). .
T ( z) = (2 — k) In (t,0) (3.9)

10



We can then determine U! with (3.1.1), (3.1.2), (3.1.5), (3.1.8) and (3.1.9) at
order gl

Ut
T AU + (U - W)U + (U - VU 4 Vp' =0 in Qeat,

div U = 0 in Qeyy,

Ul = —na—Uo onT (3.10)
on ’
U' =0 on 00.

Ul(t=0) =0 on Qeus

3.1.3 Determination of the order 2 terms

V2
Writing (3.1.4) at order ¢! we obtain that 8N + div pV4 = 0 and since
z

V2(z = k) = 0 we have:

0
Vi(t,o,z) = —%(z — k)%div p <88an> (t, o). (3.11)

With (3.1.3) at order € we have

vt PV ag"

—Go—— — /G Y=0. 12
Go a2 9.2 + + 92 n+ Vrq 0 (3.12)
With (3.1.6) at order €' we obtain
out 1 ov:
- [ f = U. 1
o +pn 5 +gnforz=0 (3.13)

Taking the normal parts of (3.12) and (3.13) we obtain that

0

)N (t,0) + (k= z)div p (ai > (t,o). (3.14)

on |r

ou!

q'(t,0,2) =p'(t,0) — < -

Taking the tangential part of (3.12) and (3.13) we characterize V2 by:

Vi(t,o,2) = 6(2 K) o (t,o) + 2(2 K) Go o +Vp’ | (t,0)
Ut K2 OU° oo o
+(Z— Ii) <<%>T - 7% + K <—G0% —I—Vp >) (t,U).

(3.15)

11



Taking the value of V2 for z = 0, taking (3.1.2) and (3.1.5) at order &2 we
prescribe U? by:
div U? = 0 in Qeuy,

U? =0 on 00, (3.16)
U%(t,0) = V3(t,0) for 0 € T.

3.2 Existence and regularity for the profiles

In this subsection we prove the existence of regular profiles satisfying the equa-
tions found by the BKW method.

We recall that (U, p%) is a regular solution of the Navier Stokes system (1.3)
defined in [0, T*[xQcyt, with initial data U°(t = 0) = uo.

The existence of the profile U! is claimed in the following

Proposition 3.1 There exists (U, pt) solution of Equation (3.10) on
[0, T*[x eyt and satisfying that for all T < T,
otut
ot
5ip1
ot

€ L0, T; H* 2" (Qezt)) N L0, T; HY 72 (Qegyr)) fori=0,1,2,

€ L0, T; H3 2 (Qept)) N L*(0,T; H* 2 (Qeyy)) for i =0, 1.
(3.17)

Sketch of the proof: we consider a relevement Y' of the boundary condition,
which satisfies :
o'r

ot © L0, T; H* 2(Qepe)) N L*(0,T; H**(Qegt)) for i = 0,1,

div Y =0,
AT =0,
YT! =0 on 00,

0
leaaionf.
n

Writting U! = Z' 4T, we are led to prove the existence of a sufficiently regular

12



solution for the following equation:

07!
o AZY+ (U -2+ (2 VU + Vet = QY
div Z' =0, (3.18)

Zl =0on aQext,

1
where Q' = —% — (U -w)rt — (1. w)U°.

We build a regular solution Z' as we build a regular solution for Navier Stokes
equation (see [4] or [10]). In particular we obtain more regularity derivating the
Galerkin approximation of Equation (3.18) with respect to ¢.

We can deduce from Proposition 3.1 the regularity for the other profiles:

Proposition 3.2 Under condition (1.4) on U® and under hypothesis of Propo-
sition 3.1, we have the following reqularity results: for T < T*,
o V1 defined by (3.4) and (3.9) satisfies:
oVt
ot

€ L0, T; HE (1) ® C*(0, k) N L*(0, T; HE3(T) @ C=(0, k),

o ¢° defined by (5.8) satisfies:

aiq()

ot

€ L=(0,T; HE (1) ® €=(0,x)) N L*(0,T; H2~2(I") @ C%(0, k),

o V2 defined by (3.11) and (3.15) satisfies:

o'v?

o € L0, T HE2(T) @ C(0,5)) N L3(0, T3 HE*(T) @ C(0, 1)),

o ¢! defined by (5.14) satisfies:

aiql

ot

€ L=(0,T; H3 (D) ® €=(0,x)) N L*(0,T; H2 ~2(I") @ C%(0, k),

o U? defined by (3.16) satisfies:

O'U?
ot

€ L>®(0,T; H3 %" (Qep)) N L2(0, T; H*2(Qent))-

13



3.3 Estimate of the remainder term for Theorem 1.1

We define U, (resp. V,) and p, (resp. ¢,) the approximations of u° and p° in
Qert (resp. we) given by

Un(t,z) = Ut x) +eUl(t,z) + 2U?(t, z) for (t,z) € [0, T*[XQewt,

Volt,z) = eVi(t, P(x), %”(;”)) 12Vt Pla), @) for (t,z) € [0, T*[xwe,

pa(t,x) = p°(t,z) +ep*(t,x) for (t,x) € [0, T*[XQewt,

(p(:)) +eq'(t, P(z), @) for (¢t,z) € [0, T*[Xw..

¢a(t, ) = ¢°(t, P(z),
Applying Proposition 2.2, we consider W€ € L>(0,T; H}(w:)) satisfying

1
div ¢ = ——div V,.
£2
We remark that
divV, =¢ (divr

Vi —divp, Vi) + e3divr, Vi

@ (x) @(x)

With the estimates performed on the different terms of the anzatz we remark
that

< Ck,
LQ(“’E)

1
—3d1V Va
£2

and then, with Proposition 2.2, we can assume that
I ooy < €. (3.19)
and with the Poincaré inequality in the domain w., we have

1] £2(w.) < Ce. (3.20)

We define now the remainder term 7¢ by :
Uu(t,x) + 5%r5(t,x) for z € Qege,
u®(t,z) =
Va(t, ) + E%@ba(t, x) + E%ra(t, x) for x € we.
We remark that ¢ € Hg(93;,) and div 7° = 0 on Q5,,. We take r° as a test

function in the weak formulation of (1.2). Dividing by £7 we obtain that :

1d

1
2 2 2 _
5%”T€HL2(QM¢) + ||VTE||L2(Q§ZH) + g |7’s| =Ty +...+ T5, (321)

We

14



with

lw

T,

—&

1
/ (r¢-V)re-r* + —et / [r€12(r€ - m),
Qezt 2 r
1 a
T, - _3[_/ aUrE—/ VUG-VTE—/ (Ua-V)Ua-rE]
€2 Q.,, Ot Qewe Qewt

1
+—= [—f—/ fre—/ VVa-VrE—l/ Vara},
€2 Qezt We € We
1
—/ VU Vre — g/ Vs,

e

T3

Qezt

1
Ts = — 3/|Ua|27“6-n—/(Ua-rs)rs-n.
2¢2 Jr r

We remark first that 77 = 0. Indeed,

T, = —/ (rs-V)Ua-rs—/ (U, - V)re - rf,
Qeat

1 ory , 2 1 12/ e
= X ety [ retm

The estimates of the other terms are given by the following lemmas:
Lemma 3.1 For all n > 0 there exists a constant C(n) such that

n
T < nlIVrelizgos,,) + 211 e + CNO+ I Il2qq, )

Proof: we first remark that

/ Vanez/ (VUO+6VU1)V7“E—/ (p0+sp1)d1vr€+52/ VU?Vre,
Q Qemt Qemt Qemt

ext

15



since div ¢ = 0. We integrate by part the two firts integrals and we obtain that

/ VU Ve = —/ [(AU? — Vp°) + (AU — Vp")] r° + 52/ VU?Vre
Q Q Q

ext ext ext

ou° 0 ouUt 1 R
(3.22)
In the same way,

VV,Vre = —/

We

N |

[ oV,
€
r

£
- n{r.
8” q{l :|

Thus, using the equations satisfied by the profiles, To = T5; + T with

We

2
Ty = —&b ( e NN (AR UeR N GaR VAR USR i )
Qemt Qezt

—a%/ (UL VU2 + (U - VYU + e(U? - V)U?) 18
Qext
—g%/ VU2 - Vre,

Qext

Too = il K.(t, P(z), elz) )re(z),
€2 Juw, €

where

1 oVt V2
K.(t,0,2) = E(Gsz - Go)W +Ar, V4 GszW +eAr, V? - V?

1
+=(Vr.. - Vr)¢’ + Vr..q".
With the estimates obtained for the profiles,

1 1
ITon| < e2C||r¢||L2(Qunr) + €2 IIVPE |l L2(0

cat)

<nllVrelza .., + CQ + vellizq,,,)-

Since s — G and s — Vr, are regular, since the profiles ¢* and V' are poly-
nomial in the variable z and are in L°(0,T; H?(T')) in the variable o € T, we
have:

< Ces,

H“’ o) Ko (t, Pla), 22
L>(0,T;L?(w:))

€

thus there exists a constant C' such that [Ti2| < C||7°||z2(..) and absorbing
7% | L2(w.)» if we fix 7 > 0 there exists C'(n) such that

n
|Toa| < g||7“6||2L2(w5) +C(n).

16



Adding the two previous inequality we conclude the proof of Lemma 3.1.

Lemma 3.2 Forn > 0 there exists a constant C(n) such that

n
T3] < g||7‘5||%2(w5) + Vel 22 + Cn)-

Proof: We remark that

1
T3] < [IVPellL2wi)lIVrllLz (. + g||‘Ifa||L2<ws>||7“s||L2<ws>

n
< g||7“6||2L2(%) + Vo2 + Cn),
with (3.19) and (3.20).

Lemma 3.3 For n > 0 there exists a constant C(n) such that

Tl < nllVrélZaa,,, + COIr ..

Proof: We estimate T4 in the following way:

T4l < VUall£6 (@) 171 23(0a) VTN L2 (0000
= £
HUallLs @eon) 1718 (@) VT L2 (02000

3 1
< C||vr5||z2(ge“)||T6||z2(9 )+C||7”5||i2(9

ext emt)

< allVelie ) + COIr Iz @,

using the Sobolev inequalities, the estimates performed on U, and using Young
inequalities.

Lemma 3.4 There exists a constant C' such that for n > 0 there exists €9 > 0
such that if € < €y then

IT5] < nllVrelie g, + CA+ Iz q,,.))-

ext

Proof: We have

1
T5| < 06—%||Ua||2L3(p)||7"6||L3(r) + Cl|Uall oy 17175y

IN

1
Ce>||rl| a1 (@ear) + Cellr®llin @

emt)

since ||U,||£3(ry < Ce and since ||r€|| L3y < C||r€||H%(F) S Or a1 (Qun) -

17



We fix n > 0, and for £ small enough, we obtain that

IT5] < 0l Vreliaga,. + CO+ 71 e q,,0))-

End of the proof of Theorem 1.1:
Adding the different estimates on Ts,..., T5, we obtain that there exists a
constant K (n) such that:

1d
2dt

1 2n
17122 et IV Iz, ) + =l < = 1712 o)

+A[IVre | 2oz, ) + KM+ 11772, ,)

ext
. 1 .
Taking n = 3 there exists a constant K such that:

d 1
%Hrsﬂiz(gm) + ”er”%?(Q;m) + g||r5|\%2(w5) <C(1+ ||T€H%2(Qm))

and we conclude the proof with the Gronwall Lemma.

4 BKW Method for Equation (1.1)

4.1 Characterization of the profiles

We denote by v° (resp. w®) the restriction of u® in w, (resp. €.). Furthermore
the pressure 7¢ is denoted by :

pe(t,x) if © € Qg
e (t,x) = ¢ ¢°(t,z) if z € we,
re(t,x) if x € Q..

Equation (1.1) is equivalent to the following system :

18



ous

5 Auf + (u® - V)u® + Vp® = fin Qeqe (4.1.1)
div uf = 0 in Qegy (4.1.2)
aUE £ £ € £ 1 £ 3

5 — Av® 4 (v° - V)o° + Vg +gv =01in w, (4.1.3)
divv® =0 in w, (4.1.4)
ow® 1

;‘; — Auf 4 (- V)u VIS et =0 Q. (4.15)
div w® = 0 in Q. (4.1.6)
u*=v"onl (4.1.7)
v® =w" on I'; (4.1.8)

ou® . o .
o —|—pn——an—|—qnonl" (4.1.9)
154 €
—881; +¢n= —a(;;; +7r*non T, (4.1.10)
u(t =0) = up in Qegy (4.1.11)
v*(t=10)=01in w, (4.1.12)
w(t=0)=01in Q. (4.1.13)

For x € Q..+ we perform an asymtotic expansion on the form :
uf (t,x) = U°(t, ) + U (t,z) + ...
pe(t,x) =p°(t,z) +ep'(t,z) + ...

For = € w, the asymptotic expansion will be described by

Ve (t,z) = VO(t, P(x), @) +eVi(t, P(z), M) + ...

¢ (t2) = o6, Pl), 22) 1 g’ 1, PLa), 2

where the different profiles are defined on R;” x I" x [0, x], and where P(x) (resp.
©(x)) denote the orthogonal projection of = onto I' (resp. the distance from x
to I).

19



For x € Q. we write

we (t,z) = WO(t, z, @) +eWi(t,z, @) +...

re(t,x) = rO(t, x, @) +erl(t, @) +...

where 1 (z) is the distance from x to I'..
Here the profiles are defined on Ry x Q. x R} and can be splited in two terms:

Wit 2, &) = WO (t,2) + Wit,z, ),

where we suppose that W and all its derivatives with respect to 2 and € tend

to zero when € tends to +o0o. The boundary layer is described by this term W*.

Determination of order 0 terms

270
At order e72 in (4.1.5) we obtain that — ae2 + W = 0. Taking the limit
when € tends to +00 we obtain that
w0 =0,

and that there exists a function K°: Q. — R3 such that :
WOz, €) = K(z)e ¢, (4.2)

At order €72 in (4.1.3) we obtain that

2V0
—887:01an [0, K] (4.3)
. . oA 0
With (4.1.9) at order e+ we have that ~ 5, = 0 for z = 0 and thus V" does
z
not depend on z.
WO VO
Now with (4.1.10) at order e~! we have a€ &=0) = —88 (z=k) =0.
z
With (4.2) we obtain that
WY =0. (4.4)

Writing (4.1.8) at order 0 we obtain that V® = 0 for z = & and since V° does
not depend on z we have
V% =0. (4.5)

We are now able to caracterize UY with (4.1.1), (4.1.2), (4.1.7) and (4.1.11) at
order 0, and with (4.5), we see that (U, p") is our regular solution of Navier
Stokes Equation (1.3) in Qcq.

20



Determination of order 1.

WL -
Writing (4.1.6) at order £° we obtain that 68§N = 0 and since W} tends to
zero when & tends to 400 we have :
WL =o0. (4.6)
With (4.1.5) at order e ! we get
W or° .
—— t+ == W =0. 4.7
o2 +a£n+ (4.7)

Performing the limit when £ — +o0 we have :

W!=0. (4.8)
. . or? .
With (4.6) the normal part of (4.8) gives us that e = 0 that is
r0 =0, (4.9)

and there exists K! : Q. — R3, a tangential vector field, such that

Wz, &) = K'(z)e €. (4.10)
. . IVy . L
Writing (4.1.4) at order 0 we obtain that 5 0. With (4.1.9) at order &*,

Vi(z=k)=Wx(£=0).

Since W} = 0 and W' = 0, we obtain that

Vi =0. (4.11)
With (4.1.9) at order €°, we have
—%%+ﬁn:—%z+fn%z:0 (4.12)
: : : : 1 ou° .
Taking the normal part of this equation, since V* and o are tangential on

I', we obtain the continuity of the pressure :
0 — ) — 0
q (o,2=0)=p"(0), (4.13)
and with the tangential part we have :

1 0
a;i (0,2 =0) = 0. (4.14)




PV 9q°
+ %L =0onT [0, k). Taking the

Equation (4.1.3) at order e 1 gives

022 0z 0
scalar product with n since V' is tangential, we obtain that 68% = 0 and with
(4.14) we have :
¢°(0,2) = p°(c) on T x [0, x], (4.15)
and then o
rra (4.16)

With (4.1.10) at order € we have

(_38_‘5 + qon) (z=r)= <_ 8;‘; + ron) €=0). (4.17)

With the normal part we have :

q° =% = p® at the boundary,
and with the tangential part :
ovt  ow!

—W = _6—§ at the boundary. (418)
Thus with (4.14) and (4.16) we have :
ov'! ou°
W(Ua z) = W(U% (4.19)
w! 0
and with (4.18) 8—(x, )= Q(P(x)) We know then that :
193 on
—— 0
W (t,2,€) = (1, Pla))e (1.20)
on
and using (4.14), (4.16) and (4.1.9) at order ' (since W' = 0), we have :
ou°
\'A =(z—Kk—1)—=—(t,0). 4.21
(t,0,2) = (5~ 1) —(t.0) (121)
We can then define U' with (4.1.1), (4.1.2), (4.1.7) and (4.1.11) at order &' :
ou! 1 0 1 1 0 1
o —AU +(U°-V)U + (U -V)U” 4+ Vp =0 on Qege,

div U = 0 on Qeyr,

U' =0 on 00, (4.22)

0
Ul =(-k-1) (ﬂ) on T,
on )y

Ut =0) =0 on Qeue.
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Determination of the order 2 terms
2
43

equality in the variable ¢ we obtain the expression of W?V :

+ div W' = 0. Integrating this

Equation (4.1.6) at order &' gives n -

W2 I AR L (ou
Ntz &) =— div W~ (¢, z, 7)dr = —div e

—00

(t, P(;v))) e . (4.23)
Writting (4.1.5) at order £° we have
*W? OW! OW!

Taking the limit when £ tends to +0o we obtain that

+w0+5—rln+w2—o (4.24)
o€ o€ - '

V0 + W2 = 0. (4.25)

3

W
We remark that with (4.1.6) at order €2 we have n - 63—5 + div W? = 0 and

taking the limit when £ — 400 we obtain that :
div W2 = 0.

Taking the divergen_ce of (4.25) we have then Ar® = 0 and since 7° = p® at the
boundary, r° and W? are totally determined by

Ar® =0 in .,
0 =p®on g, (4.26)
W = —vro.

Taking the scalar product of (4.24) with n we can express ? and integrating

between 400 and £ we obtain that :

1t x, &) = (div <8a—[f> +2(n-V) <8a—[f> n) (t, P(z))e”s. (4.27)

2

\%
With (4.1.4) at order £°, we have 88 N 1 divp Vi =0.
z

Equation (4.1.8) at order 2 gives : Vi = W?V on I'.. In addition, W?\, is
totally defined and we have

0 0
V3 (t, 0,2 = k) = —div <88Ln> (t,0) — %Ln(t,a + ken(o)),
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0
V3 (t,o,2) = l22—(/@—&—1)2—1—|—1,‘$2—|—/~6 divp ov” (t,0)
57‘0 ( : )
—a—n(t,a + ken(o)).
With (4.1.8) at order ! we have :
1 2
_aa% +ptn = —% +¢'nonT. (4.29)

The normal part of this equation gives that

ou! ou°
! =0)=— ! Ddivr | =— (4
i(to=0 == () o) sendie (5-) o). (@30
Writing (4.1.3) at order € we obtain that :
V3 ov? o 0g" 1
L G, —n+V ' =0. 4.31
5.2 Go Ep + Vroq" + 5" T 0 (4.31)
d¢t  9°Vy

The normal part of this equation gives :——

(4 30) btain that 92 022 and using (4.28) and
.30) we obtain that :

ou' ou°
1 _ 1 A ov”
q(t,z,0)= ( o )N(t,0)+p (t,0)+(k+1—z)divp ( o )T(t,a). (4.32)
The tangential parts of (4.31) and (4.29) give :
ovVy _ [ou! U’ 0
o= (Gr) oG (Gr) (o) - Tedo)
— z_2 — — 3_[]0 (t )
5 TRz 2 o ), ,O).
(4.33)
2 2
The tangential part of (4.1.10) at order &' gives: 8§ZT = a;[T on I';, thus
z
Vet =0)= (L) (1 Pw) +rCo(P(a) 2t Pla)
5§’$’__6nT’x KGo(P(2))— ~(t, P(z
(4.34)
2 0
S (- U
WV (6, P(2) — (5 — ) (1, P(a),
and since with the tangential part of (4.24) we have :
—@+VA\I5—2 ( v)a_\7v7 +A¢3VAV/1T (4.35)
o€ e\ e ) o€ '
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Therefore, W? is totally determined. Integrating (4.31), V2 is totally deter-
mined. We consider then an extension of V‘QF in Q¢+ denoted by U2,

We write now the normal part of (4.1.10) at order ':

ovy ., OW3%  [OW!
- =rl - — I..
P T: ( on )N on
. OW? . OW?3, . (ou°

oV,

and with (4.28) —

that :

0
(z =k) = =divp, (%) We obtain then using (4.32)

out
n

rl(t, ) = p'(t, P(z)) — < )N (t, P(z)) + div <%—[f(t,P(x))> for z € T..

o (4.36)
With (4.27) we introduce the extension r! : 2. — R such that

) = pw) - () ~2(tn9) (52)) (P foraer.
(4.37)

4.2 Regularity of the profiles

We recall that (U°,p°) is our given regular solution of Navier Stokes Equation
(1.3) with the regularity property (1.4). This U is defined in the time inter-
val [0, T*[. The existence of a regular profile U! satisfying (4.22) is given by
Proposition 3.1 replacing the coefficient x by x + 1.

For the other profiles, under the regularity asumptions on U® we have the fol-
lowing propositions:

Proposition 4.1 We define V' and 6Vv1 by (4.20) and (4.21).
Then for all T <T* and for i =0..1 we have:

AVAS . ) )

aax € L*°(0,T; H2~2/(T) ® ¢*([0, k])) N L2(0, T; H2 % (") @ C>([0, x])),
(91@ o T_9; 00 [T+ 2 92 0o (M+
5% € L0, T; H2""(Q:) @ C*(R™)) N L0, T; H2" () @ C*(R™)).

Using Proposition 2.3 and the estimate on p” in (1.4) we obtain the following

Proposition 4.2 We define r® : [0,T*[xQ. — R and W? [0, T*[xQe — R3
by Equation (4.26).
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Then for all T < T*, there exists a constant C (which does not depend on €)
such that for i =0..1:

az‘ 7,0

|75 [l o< 0,75 14 (. ))nL2 (0,13 185 (20)) < Cs
ot

IW?
| ot HL°°(07T?H2(Qs))ﬂL2(O,T;H3(QE)) <C.

Proposition 4.3 We define V* : [0, T*[xI'x [0, k] — R> by (4.28) and (4.33),
W2 [0, T*[xQe x RY — R3 by (4.23), (4-34) and (4.95), r* : [0, T*[x Q% x
RT — R3 by Equations (4.27) and ¢ : [0, T*[xT x [0, 5] — R by (4.32).
Then for all T < T* there exists a constant C' such that for i =0..1,

o'v?
| ott ”L°°(07T%H%72i(F)®C°°([Oxﬁ]))ﬂLz(QT;H%*%(F)®C°°([07F~])) S

W2 e
I ot | (0,710 o= m L2 072 sy = O

1
I HL“’(O,T;H%(Qs)®C°°(R+))ﬁL2(O7T;H%(QE)®C°"(R+)) <G,

1
lg ”L°°(0,T;H3(F)®CO°<[0,K]))HL2<07T;H%(F)@coo([o,n])) =C

The term U? is an extension of V‘QF in Q¢z¢, then we have:

Proposition 4.4 There exists U? satisfying U? = V? on T and div U% =0 in
Qert, such that

9iU?

5 € L®(0,T; H¥2(Qept)) N L*(0,T; H%(Qept)) fori=0,1.

The inside term 71 is obtained by extension of a boundary value, so its regularity
is deduced from classical trace relevements theorems and is described by the
following

Proposition 4.5 There exists 1 : [0, T*[xQ. — R satisfying (4.37) such that
for all T < T* there exists a constant C' independant on € with

72| Lo (0,73 13 (2 ) L2 (0,73 14 (920)) < C.
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4.3 Estimate for the remainder term
We define U, and p, the approximations of u* and p° given by
UC(t, ) + U, x) + 2U%(t, x) for € Qegr,

eV(t, P(x), M) +e2V23(t, P(z), M) for z € we,

U,(t,z) = € €

0(z)W(t, x, @) + 20()W2(t, o, @)

+62W(Yf, x) for x € Q,

p°(t,x) + ep(t, x) for x € Qeye,

pa(t,x) = ¢ (t, P(x), tp(:)) +eq*(t, P(x), &) for x € we,

x)
€
P(x)
5
We consider W€ € L>°(0,T; H}(Q)) satisfying

rO(t, ) + er~1(t, x, ) +ert(t,z) for x € Q..

1
div ¥¢ = ——div U,
£2

We remark that

e(divr,,, Vp —divy, V) +edive,,, V7 if 2 € w,

@(x)

divU, = - - -
VO - (eW! + 2W?) + 20div W2 if = € Q..

With the estimates performed on the different terms of the anzatz we remark
that

1

—div U, < Ce and then we can assume that

ez L2(9)

ove
1| gy + |l 5 llL2(q) < Ce.
We define now ¢ by :
1
— (uf(t,x) —Ugy(t,x)) for & € ey,
c2
re(t,z) =

1
— (uf(t,x) = Ugy(t,x)) — ¥ (¢, z) for z € Q.
c2

We remark that r* € H}(O) and div 7¢ = 0 on 0. We take r¢ as a test function
in the weak formulation of (1.1). We obtain that :

1d 9 9 1 9 1 9
LR Ry WY LR SR R LD
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with

T = i[ —aU“r€+/ VUaVrE—F/(Ua-V)Ua-rE—Fl/ Uara]
(@] (@] (@] w

5% ot 3 -
1 1
+—= [—2/ UaTE—i-/ fra],
85 € Qs Qemt
ove
T = re +/ VUevVre —|—/ ((¥°-V)U, + (U, - V)T?) - r*
o Ot Q Q
3 1 1
+82/(\IJE-V)\IJE-7‘5+—/ \Ilsrs—l——Q/ AT
Q € Jow. €% Ja.
Ty = —/ ((rE-V)(Ua+s%\IJE)+ ((Ua+e%qf€)-V)r€) e
o
Ty= —e2 / (r¢ - V)re - rc.
o

Lemma 4.1 Forn > 0, there exists a constant C(n) such that

1
T2 < 0l Vrelze + 05l 17 + CO) (L Ir1Z2) -

Proof: Since div r¢* = 0 we can add to 73 the term —/ padiv r®. We split the

o
integrals in 7} in 3 terms writing that / = / +/ +/ , and we have :
O Qeat We Qe

Ty = — (T + Th2 + Tu3),

™
mlw| =

with

U, :
T = / <8 +(Ua - V)U, + f) e+ / (VU V7r® — podiv r9) ,
Qemt Q

ot

ext

ou, " e
Tlg—/we< 8t +(UG-V)UQ>-7‘ +E/UEUGT

—|—/ (VUV7r® — podiv r®),

U, 1
T3 = / (a + (Ua ' V)Ua> Tt + _2/ Uara
Q. 8t g Q.

—|—/ (VU,Vr® — podiv rf).
Qe

28



In each domain we integrate by part the last term.
For T}; we obtain that

oU,
T11: / (8t _AUa"_(Ua'v)Ua"_vpa_f)'ra
Qeat

+/ Wa _ nj|-re
r 8” pa

2
(aU —AU? +(U°-V)U? + (U - V)U! + (U?- V)UO) e

+53/ (Uh- U2+ (U?-V)U' +¢(U?- V)U?) -1°
Q

ou° out

= 0N e + [ |G~ O =) o

since we know from the regularity theorems proved in section 3 that for a fixed
T < T* there exists a constant C' independant on e such that

2
Hai —AU? + (U°-V)U? + (U - V)U! + (U2 - V)U° + (Ut - V)U?

+e(U? - V)U +52(U2~V)U2H <
L>°(0,T;L?(Qext))

For T15 we have :

T12 = / <8; AU + (U V)U + Vpa + - U >

8Ua £ 8Ua g
—/F W—pan T —|—/F a—n—pan T

that is, using the equations satisfied by the profiles,
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8t @(x)
2 av? 1 2 1 2 e
+ 50 —Ar,,, V24 (VI +eV?) . V) (V! +eV?)

ovt ov: .
+/F€ ((W—q n)+6(W—q n))r

Now we know that, since p(z) < ke, there exists a constant C' such that for all
T € we,

|— o(x) T Go‘ < (Ce and |er(m> — Vro‘ < Ce.
Furthermore with Proposition 4.1 we know that for T' < T there exists C such

that )
oV
||—||L°°(OT[><0J5 + IV | o< o, xwe) < C

and since meas(w:) < Ce we obtain that

ov*
(ot + G

le

- Vpg)qo

+ (Vr < Ce

L>(0,T;L2(we))

@(x)

In the same way we know that

ov: L oV? L oo
H To@ ¥V~ Gw(w)w +Vr,,¢ +V <C,
L>(]0,T[xwe)
and thus
ovt oV? ) s
€ —Ar,., -G m—+meq1+V < Ce2.
ot w( e(@) 75, o (@) Lo (0 TiL2(we))
For the last inside term, we know that
ov? 1 2 1 2
e prm) +((V +eV9) - V)(V 4V <C,
L= (0,T3L%(we))

so we obtain that

5 ov! ov? E
Tio= 0Dl - [ (G -+ G —am) or

ovt ov: .
+/5 ((W—q n)+6(W—q n))r
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For the third term we have

ot

ou, .
AR

= Ti31 +Ti32 +Ti33 + T34,

U, 1
Tz = / (6 - AU, + (U, - V)U, + Vp, + 5—27“5) e
Qe

with
Tigt = / 6 oW —A\AR7/1—2(n~V)8—VAV/2—Awa—W/2+VT1 e
S S WY ¢ o€
+82/ 0 oW CAW? |
o\ Tt
+s2/ (W' + oW + W2) . V) (OW' + W + W2) ) °
Q.
v [ (D AW e
o, \ Ot ’
Tysy — — / (A0EW! +2W?) — (V0 Vi) (W +cW) ) r°
Q.

—a/ (VO- V) (WL + eW2)e,
Qe

a/\/Q 5 5
_ 2_“ 20 WV L€
Ti33 /FE <5 o +e€ o ) re,

1 2
Tizq = _/FE <(8¥ —ron)—i—s(agz —rln)> -rE.

With the estimates concerning the profiles, we know that

T131 + T3z = O(e)||r° || 20,y + 0(52)||T€HL2(F5)'

Concerning Ti32 we know that W' is exponentially decreasing in the variable
z. Since VO = 0 in a neigbourhood of I, we obtain then that

Tis2 = O(e)[Ir° || L2(a.)-
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Hence we have

Tio= 0@l + OEr o - [ (
Fe

W2
—/ a(agz —rln)-re.

Summing these three equalities, since the integrals on I" and T'; cancel by con-
struction of the ansatz, we obtain that

1 1 1 1
73 = O 120) + O lz2(a) + OV 2uiollr (o
We fix now 1 > 0. We have:
£ C £ &€ % € %
ITa] < Cllrllz2(0) + g—%HT IL2@.) + ClIVTElIZ20) 17511 72 (0)
and with Young Inequality we obtain that :
1
I3l < 05l 1320y + 2V [0y + CO) (14 1320 ) -
Lemma 4.2 For n > 0 there exists a constant C(n) such that
1
1Tl < 55 Iz +nllVrelze + C) (1 [Ir°1Z2) -

Proof: we estimate T5 on the following way :

ov
T>| < ||—(%s 227l L2 ) + 1S a2 @) IVl L2 (0

+ (||¢€||L3(Q)||an||L2(Q) + ||Ua||L3(Q)||V\I/6||L2(Q)) ||Ts||L5(Q)
3 € £ £ 1 c .
e 192 oo IV N oy 17| 2oy + 11 z2gon 7 22
1 R .
+€_2||‘Ij ”L?(Qs)HT ||L2(Q€).
Using that there exists C' such that || W] 1) < Ce we obtain then that:

C
|T2| < Cellr®||L2(0) + Cel|VréllL2) + Cllre |l 2 (w.) + ;||T6||L2(Q€)~

We fix then n > 0 and using Young Inequality we obtain that there exists a
constant C'(n) such that

1
12| < 0l V3o + 155320y + C) (14 120 ) -
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Lemma 4.3 Forn > 0 there exists a constant C(n) such that

IT5] < 1l 1320y + C) (14 11320 -
Proof: we have

T3] < [|7°||Ls(o)

‘VUG tedvee

£
| 120) 171l L2 (o)
HUa + 297 o0y Vel L2(0) 7| 3 (0)

< Clrfllso)lIVrellLz (o)

1 3
< C”TEHL?(O)HVTEHLQ(O) + C||r5||22(O)||V7“5||22(O).

We fix n > 0 and using Young Inequality we obtain that there exists a constant
C(n) such that

ITs] < IV 320y + C) (14 1320 ) -

Lemma 4.4
T, =0.

Proof: we perform the classical following computation

Il
|
N =
s
Q|
%3(3(“
—~
<L
S—
N
|
Do =
=
™
o
£
<
=
(U]

= 0 since div ¢ = 0.

Remark 4.1 The corrective term V€ is usefull to obtain that div r¢ = 0. So we
can use r° as a test function in (1.1). In addition the divergence free property
ensure that Ty = 0, thus the bilinear term in the Navier-Stokes equation does
not provoke a blow up for the weak solutions.

1
End of the proof: we take n = 6 in Lemmas 4.1, 4.2 and 4.3. Adding up the

obtained inequalities we obtain from (4.38) that there exists a constant C' such
that

1d 1 1 1
5%”7'6”%2(0) + 1V 13209+ g/ > + 5—2/ Ire? < §HVT‘EH%2(0)

We Qe

11
tym [ PO (L4l
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that is

a
dt

1
1720 + V7 o + £ [

We

1
P [P <20 (14 1))

and we conlude the proof with Gronwall Lemma.
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