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Abstract. In this paper we study a penalization method used to compute the flow of a viscous
fluid around a thin layer of porous material. Using a BKW method, we perform an asymptotic
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1. Introduction

The penalization methods are used since the former works of Peskin [16], [17],
about twenty years ago, in order to compute the flow of an incompressible fluid in
a complex geometry. The aim is to avoid body-fitted unstructured mesh in order
to use accurate and fast spectral methods [14] or finite volumes approximations
on cartesian meshes [13]. In [2], [3], [5], [6], [7], [10] [13], [18], the different authors
add a penalization term on the velocity defined on the volume of the obstacle.

In this paper we study a penalization method used by C. H. Bruneau and
I. Mortazavi in [8] in order to compute the flow of a viscous fluid around a ground
vehicle surrounded by a thin layer of porous material.

We consider @ a C*®-bounded domain of R? and © a C*°-open subset of O such
that Q C 0. We denote Qeyy = O\ Q and T' = 9Q. We fix x > 0.

For € > 0, we set

e w.={zeQ 0<dist(z,I') < ke};
o I'. = {x € Q, dist(z,T) = ns};

e 0. =0Q \w_Ea
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° Qjclu = Qoxt UT U w,
KE

ext

L

In [8] in order to compute the flow around the obstacle . surrounded by
the thin layer w. of porous material, Bruneau and Mortazavi add to the Navier—

1
Stokes equations a penalization term of order — in w. to model the porous layer,
€

and another penalization term of order — in the obstacle €., that is they solve
€

the following system:

8“6 [ g 1> 1 [ 1 1> > M
— Auf + (u - V)u® + —xp.u® + sxo.u® +Vrt = f in O,
ot ere g2
divee =0 in0O, (1.1)
u® =0 on 00,

where X, (resp. xq.) is the characteristic function of w. (resp. 2.).

In this paper we compare the penalized equation (1.1) with a model coupling
Navier—Stokes equations in the fluid with the stationnary Brinkmann equation in
the porous thin layer. This new model is given by

8“6 £ € € £ :
T —Auf+ (u® - V)ut +Vp® = f in Qext,
—Au® + éus +VpT =0 in we,
e 1.2
[u°] = 0 and {%u —pen} = L|u*l’n onT, (1-2)
n
u® =0 on 00 UT,
divu® =0 in 8

ext)

where [w] is the jump of w across T', and where n is the unitary normal to T
entering in €.
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Remark 1.1. The particularity of this new Brinkmann model is the term —|u®|?
in the right-hand side of the jump formula on I'. The presence of this term ensures

the global existence of weak solutions for equation (1.2).

We will perform for both problems (1.1) and (1.2) an asymptotic expansion of
the solutions when ¢ goes to zero. For the Brinkmann model (1.2) we perform in
the thin layer w. a rescaling in order to work in a fixed domain with an equation
depending of €. For the double penalization method (1.1), we treat the thin layer
as for (1.2) and we couple the asymptotic expansion of the solution in the thin
layer with the boundary layer that appears in the obstacle €).. These asymptotic
expansions are obtained with a BKW method.

With these two asymptotic expansions, we will compare both models. We will
prove that the solution of (1.1) is similar to the solutions of (1.2) around a porous
thin layer of thickness (1+#)e, that is the layer thickness for the Brinkmann model
is different to the layer thickness for the numerical process.

Let us describe more precisely our different results.

Let U° be a regular solution for the flow around the obstacle € with initial
data U%(t = 0) = uy, that is

aa—lf) AU+ (U - VU +Vp° = f in [0, T*[X Qext
divU° =0 in [0, T*[X Qext (1.3)
U° =0 in [0, T*[X OQext
Ut =0,7) = up(x) in Qe
with the following regularity property, for i := 0..2,
LU.O € L0, T; H % (Qex)) N L2(0, T; H 2 (Qeyt))
o ” o o . (1.4)
oip®

ot € LOO(O» T H4_2i(Qext)) n Lz(oa T? Hﬁ_%(ﬂext))'
Remark 1.2. The existence of the regular solution for Navier—Stokes equation is
a quite classical result (see for example [4], [9] or [10])

ou
We know in addition that 8—\ is tangent to T
n |r
Furthermore, the time T is the blow up time for the regular solution of (1.3).
In particular, we know that T* = +oco in the two dimensional case.

With classical technics we can prove the existence of weak solutions for the
Brinkmann Model (see Leray’s arguments in [15]). In the following theorem we
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perform an asymptotic expansion for a weak solution for Brinkmann model (1.2)
with initial data u(t = 0) = U°(t = 0) = up:

Theorem 1.3. Let U° and p® the regular profile satisfying (1.3)—(1.4). Let u® be
weak solution of (1.2) with initial data us(t = 0) = ug in Qext and u(t =0) =0
in we. Then u® satisfies the following asymptotic expansion:

ut(t,z) = Ut ) + U (t, x) + Egvg(t:r) for x € Qexs,

where the profile UL : [0, T*[xQext — R3 satisfies

oUt
T AU + (U° - W)U + (U - VYU + Vp! =0 in [0, T*[X Qexts
divU! =0 in [0, T*[X Qext,
Ut = fn%—%g on [0, T*[xT,
Ut =0 on [0, T*[x00,
(1.5)

and where the remainder term vl is bounded uniformly with respect to € in the
space L°°(0,T; HY(Qext)) that for all T < T*.

We study now the numerical process (1.1). We will perform an asymptotic
expansion of the solutions of (1.1). In the thin layer we describe the solution in
the variables (o, z) € I'x]0, k[ where ¢ = P(z) is the orthogonal projection of z
#lz)

€

on I', and where z = with ¢(x) = dist(z,T'). In the obstacle €, it appears

v
a boundary layer described with the fast variable @ where U(z) = dist(x, T¢).

Theorem 1.4. Let U and p° be the regular solution of (1.3)—(1.4). Let u® be a
weak solution of equation (1.1) with initial data uf(t = 0) = U°(t = 0) in Qux and
uf(t=0)=0 in Q. Then u® satisfies the following asymptotic expansion:

UO(t, x) +eUNt,z) + e300 (t,2)  for x € Qext,

us(t,z) = ev? (t7P(x), SD(;)> +e2ul(t,x) forx € w, (1.6)

) + Egvg(t,x) for x € Q,

where
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e Ul: [0, T*[X Qext — R? satisfies
1
aa—g — AU+ (U° - v)U!
+(UL- VYU +Vpt =0 in [0, T*[X Qext,

divU! = 0 in [0, T*[X Qexs, (1.7)

U' = —(k+ )2 on [0, T*[xT,

Ul =0 on [0, T*[x 0.

o V! is defined on [0, T*[xI" x [0, k] with values in R?,

e W' is defined on [0, T*[xQ. x RT with values in R,

e the remainder term v’ is bounded in L*(0,T; H'(O)) N L>(0,T; L*(0)) for
all T <T*.

Remark 1.5. We note that the first terms U! and U" given respectively by (1.5)
and (1.7) are different.

Therefore in order to obtain a good approximation of the solutions of (1.2) we
have to modify the numerical process (1.1) taking the porous layer thickness equal
to (k — 1)e.

Remark 1.6. In [10] we study another model for the flow around a porous thin
layer and we perform for this model an asymptotic expansion compatible with the
expansion obtained here for the Brinkmann model (1.2). The particularities of
the present work are first the new Brinkmann model (see Remark 1.1) and that
we couple for the study of (1.1) the thin layers methods with the boundary layers
ones.

This paper is organized as follows.

In the second part, we briefly recall the geometrical tools used for the study of
the thin layer w., and we mention useful analytical results.

In the third part, we study the Brinkmann model. We perform the asymptotic
expansion of the solutions of (1.2) and we prove Theorem 1.3.

The last part is devoted to the proof of Theorem 1.4.

The proofs of Theorems 1.3 and 1.4 are based on the following method. In a
first step we perform a formal BKW method, that is we assume that the solution
admits an asymptotic expansion given in the theorem, and we plug this expansion
in the equations. Identifying the different powers of ¢ we obtain then equations
characterizing the profiles in the asymptotic expansion. In a second step we prove
the existence and the regularity of the profiles. In a last step, we define by dif-
ference the remainder term and we estimate it using rather classical variational
estimates. This estimation gives a rigorous validation of the asymptotic expansion.
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2. Preliminary results
2.1. Geometrical tools for the thin layers

In order to describe the behaviour of the flow in the thin layer w. we use technics
developed in [9] and used in [19] in the framework of ferromagnetism.

We will write the equations in the thin layer using the coordinates (o, z) where
o = P(z) is the projection of z onto I' and z is the distance between = and I'. We
use these coordinates because we can easily rescale in the variable z the equations
and then work in the fixed domain I" x [0, x].

We use the parametrization of w. defined by

0 : I'x]0, ke[ — we
0,z — o+ 2n(o)

Since I' = 99 is a regular compact surface of R without boundary, there exists
7o > 0 such that for £ < ng, O is a C*°-diffeomorphism from I'x]0, ke[ onto we.
Furthermore ¢ and P are regular on wy,, and

Vo €wy, Ve(r)=n(P(z)).

On the submanifold I" we can classically define the integrale and the differential
operators Vr, divp and Ap. Furthermore, n is a map defined from I' with values
in the unit sphere S? so for ¢ € T, the differential dn(c) is a linear map from
ToT into Thy (o) S? (where T,T" denote the tangent plane of ' at the point o). Since
Tn((,)S2 = T,I', we can consider dn(c) as an endomorphism of T, T.

Gradient. For v : I' — R, we define:
Vr,9(0) = (Id + sdn(c)) " (Vri(o)),
and if v : w,; — R, denoting @ = u 0 ©, we have

Vau(z) = %(P(x), e(@)n(P(2) + (Vr,,, @) (P(@), ().

Divergence Operator. Let Y:T'— Tl bea tangent vector field defined on T'.
For s € [0, kmo[ and o € T', we define:

divp, Y (0) = Ldivr [’ys(ld—O— sdn)Y | (o),
' 7Ys(0)

where

vs(0) = det(Id + sdn(o)).



Vol. 8 (2006) Double Penalization 7

In addition, if Z : wy,, — R3, denoting Z=2Z0 ©, we have

v 2(2) = 22X (P(a), (2) + G () 2 (P(2), ()

+ (div r

s 1) (P(2), 0(2)),
where Zy (0, 2) = (Z(0, 2) -n(o)) is the normal part of Z and Zr (o, 2) = Z(0, z) —
Zn (o, z)n(o) is its tangential part, and where

1 0vs

Gilo) = vs(0) 9s

(o).

Laplace operator. For o : ' — R we define
Aps’f} = div T, VFS”D,
and if v : w,; — R, denoting @ = u 0 ©, we have

0% ot
Au(z) = @(P(w)wp(:c)) + Gg;(@(P(fv))g(P(x),w(x))

+ (AFw(z)ﬂ) (P(x), go(x))

Remark 2.1. All these expressions are proved in detail in [9].

2.2. Analytical tools

We recall the following lemma, proved in [12] (see Theorem 2.1 on page 18),
concerning the relevement of the divergence in a fixed domain:

Proposition 2.2. There exists a constant C such that for all g € L?(Q) such that
/ g =0, there exists ¢ € HE () with divy = g in Q and
Q

[l 1) < Cllgll2@)-
For the domain w,, depending on &, we prove in [9] the same kind of result:

Proposition 2.3. There ezists a constant C such that for € small enough, for all

g € L?(we) satisfying / g =0, there exists 1. € (H}(w:))? such that:

div¢pe = g € we,
; (2.1)
el ri(wey < Zl9llL2(we)-

A
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We mention now a result concerning the harmonic extension of a boundary
value in a variable domain depending on €.

Proposition 2.4. Let € < 19, let g € H%(F) Let us consider re the harmonic
extension of go P in Q., that is r. is defined by

Ar. = 0 in Q.,

{Te(w) = g(P(x)) on I,
Then there exists a constant C independent of € and g such that
[7ellm2 @) < Cligll

a3y

This proposition is a straightforward adaptation of the same result for a fixed
regular domain (see [1] for the existence of a H? extension of the boundary value,
and [11] for the resolution of the Laplace equation in €2.).

3. Brinkmann model
3.1. Formal asymptotic expansion

We denote by v¢ (resp. ¢°) the restriction of u® (resp. p®) in w.. We write equa-
tion (1.2) on the form:

6;; — Auf + (uf - V)uf + Vp© = f in R x Qexe (3.1.1)
divu® = 0 in R X Qe (3.1.2)
—Av® + évf +V¢ =0 in RS xw. (3.1.3)
dive® =0 in R} x w,. (3.1.4)
u® = ¢ on R x ow (3.1.5)

Qu’ € e | e 11,62 +
~on +p'n = =G +¢"n+ 5[u*n on RS x dw (3.1.6)
v* =0 in R x I'. (3.1.7)
u® =0 on R x 00 (3.1.8)
uf(t=0) = ug on Qext (3.1.9)
ve(t=0) =0 on we (3.1.10)

On one hand we assume that u* and p® admit the following asymptotic expan-
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sion:

f(t,x) = U t,z) + Ul (t,2) + ...,
pe(t,x) = p°(t, @) +ept(t,x) + ...,
where the profiles U? and p’ are defined for (t,z) € RT X Quys.

On the other hand we suppose that v and ¢ admit an asymptotic expansion
of the form

(t,x) =V° (t,P(x), @) +eV? (t,P(x)

€
Ft2) = ° (t,P@:), S”(f)) teg! (t,P<x>, M) 4o (t,P<x>, “’ff)) T
where the profiles V? and ¢' are defined on R;” x ' x [0, &].
In order to satisfy equation (3.1.7) we suppose that

VteRY, Voel, Vi(to z=k)=0.
Using the notations of Section 2.1 we recall that if & : " x [0,x] — R, if we
denote a(z) = & (P(:c), M), then

Va(r) = %% (P(x), *”(Ex)) n(P(x)) + Vr.__ a (P(x), M) .

Furthermore, if §: T' x [0, k] — R3, if f(z) = § <P(m),

aiv 3e) = 1200 (), 220 4 P (P, 22
+divr,, fr (p(x% @) .

3

In addition, if & : I" x [0, k] — R, if we denote a(x)

2~
Aa(z) = L o7a

= 5% <P(x), @) + éGg,(w) (P(z))
+Ar,, @ (P(w% @> :

13

We plug the formal asymptotic expansions of u®, p®, v¢ and ¢° in System (3.1)
and we identify the different powers of €. Using this BKW method we can identify
the different profiles in the asymptotic expansions.
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3.1.1. Determination of U? and V?°

Writing (3.1.3) at order =2 we obtain that V2 = 0. With (3.1.6) at order e},
we obtain that V? = 0 for z = 0. Thus, since V%(z = k) = 0 we have

VY =o. (3.2)

Therefore, with (3.1.5) at order £°, we know that U = 0 on I'. Writing (3.1.1),
(3.1.2), (3.1.8) and (3.1.9) at order € we characterize U° by

ou’ 0 0 0 0 -
W—AU +(U V)U +Vp :f IHQeXt7
. 0 __ .
divU” =0 in Qexs, (3.3)
U=0 onTUHO,
UO (t = 0) = Uop,
that is, (U, p°) is our regular solution of (1.3)—(1.4).
3.1.2. Order &' terms
With (3.1.4) at order €°, and with (3.1.7) we obtain that
Va =0. (3.4)
Now we write (3.1.3) at order 1. We obtain that
o*vlt  9q°
- 922 + gn =0. (35)
Taking the normal part of (3.5) we obtain that
Oq°
— =0 3.6
i, (35)

and with the tangential part of (3.5) we obtain that Vj} is an affine map with
respect to the variable z.

Equation (3.1.6) at order £° gives that

0 1
—aaln +p0n:—aalz+q0n for z = 0. (3.7)
0

Taking the normal part, since o is tangential at the boundary, since V! is
n

tangential, we obtain that p® = ¢ on T, and with (3.6) we obtain that
¢(t,0,2) = p°(t, 0). (3.8)

With the tangential part of (3.7), since V(2 = k) = 0 and since V7 is affine, we
obtain that
UO

Vi(t,o,2) = (2 — K)W

(t,0). (3.9)
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We can then determine U! with (3.1.1), (3.1.2), (3.1.5), (3.1.8) and (3.1.9) at
order

aa—U;‘l—AUlJr(UO.v)U%L(Ul-V)U°+Vp1 =0 in Qext,
divU' =0 in Qext,
Ul n on, (3.10)
Ul=0 on 00,
Ult=0) =0 on Qext-

3.1.3. Determination of the order £2 terms

AU
Writing (3.1.4) at order ¢! we obtain that 5‘N +div pV4 = 0 and since
z

V2(z = k) = 0 we have

1 0
Vi(t,o,2) = 75(2 — k)2div (aainu“) (t,0). (3.11)
With (3.1.3) at order € we have
ovt 9z . 0¢ 0
—_— = - =0. 12
"0z 022 v +azn+qu 0 (812)
With (3.1.6) at order ¢! we obtain
1 V2
—%Ln —ﬁ—pln:—aa—z—}—qln for z =0. (3.13)
Taking the normal parts of (3.12) and (3.13) we obtain that

¢ (t,o,2) = p*(t,o) — (%—T)N (t,0) + (k — 2)div p (%—TQ (t,o0). (3.14)

Taking the tangential part of (3.12) and (3.13) we characterize V2 by

on on

U\ K2 OUO e _
+(Z — H) ((W)T_ 7%4— K <_GOW + Vp )) (t,O’).

(3.15)
Taking the value of V2 for z = 0, taking (3.1.2) and (3.1.5) at order £? we
prescribe U? by

0 0
VR(0:2) = (= 00t + 5~ n (<GaT -+ V) t.0)

divU? =0 in Qexe,
U =0 on 90, (3.16)
U%(t,o0) = V3(t,o) for o €T.
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3.2. Existence and regularity for the profiles

In this subsection we prove the existence of regular profiles satisfying the equations
found by the BKW method.

We recall that (U°, p°) is a regular solution of the Navier-Stokes system (1.3)
defined in [0, T*[x e, with initial data UO(t = 0) = ug.

The existence of the profile U' is claimed in the following

Proposition 3.1. There ezists (U, pt) solution of equation (3.10) on [0, T*[X Qext
and satisfying that for all T < T,
o'Ut
ot
aipl

S € L®(0,T; H* 2 (Qext)) N L*(0, T; H* 2" (Qeyt))  fori =0, 1.

€ L0, T; H* % (Qext)) N L2(0, T; H 72 (Qeyt)) fori=0,1,2,
(3.17)

Sketch of the proof. We consider a relevement T! of the boundary condition, which
satisfies

%Z; € L>®(0,T; H> % (Qoxt))
NL2(0,T; H*=21(Qeyt)) fori=0,1,
div Y! =0,
AT =0,
T =0 on 90,
T! = 9 onl.

on

Writing U' = Z' 4+ Y, we are led to prove the existence of a sufficiently regular
solution for the following equation:

YA
o AZY + (U Z (2 - VU + V¢t = QL
div Z! = 0, (3.18)
Zl =0 on 8Qext’
1 6T1 0 1 1 0

We build a regular solution Z! as we build a regular solution for Navier-Stokes
equation (see [4] or [10]). In particular we obtain more regularity derivating the
Galerkin approximation of equation (3.18) with respect to t.

We can deduce from Proposition 3.1 the regularity for the other profiles:
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Proposition 3.2. Under condition (1.4) on U° and under hypothesis of Proposi-

tion 3.1, we have the following regularity results: for T < T*,
o V1 defined by (3.4) and (3.9) satisfies

vt

ott

o ¢ defined by (3.8) satisfies

aiqo

ot

o V2 defined by (3.11) and (3.15) satisfies

o'v?

ott

o ¢! defined by (3.14) satisfies

8iq1

ot

o U? defined by (3.16) satisfies

0'U?

ot

€ L>(0,T; H22(T") ® C(0,x)) N L2(0,T; H2~2/(T) ® C*(0, k),

€ L>®(0,T; H22(T") ® (0, k) N L2(0, T; H2~2/(T") ® C>(0, k),

€ L=(0,T; H>~2(I') @ C>(0,x)) N L*(0, T; H>~2(T") @ C>(0, r)),

€ L=(0,T; H32(I') ® €=(0,x)) N L*(0, T; H2~2(I") @ C=(0, k),

€ L0, T; H3 2 (Qex)) N L2 (0, T; H72H(Qexs))-

3.3. Estimate of the remainder term for Theorem 1.3

We define U, (resp. V;) and p, (resp. ¢,) the approximations of u® and p° in Qe
(resp. we) given by

Uu(t,z)=U"®t,z) + eU(t, z) + e2U?(t, ) for (¢,x) €0, T*[X Qext,

Va(t,x)=eV? (t, P(2), @) +£%V? (t, P(x), %@) for (t,2) €0, T*[xwe,

pa(t, x) :po(t, x)+ ept (t,z) for (t,z) €0, T*[XQeoxt,

qa(t,z)=q° (t7 P(z), %x)) +eqt <t, P(x), @) for (¢t,2) €0, T*[Xwe.
Applying Proposition 2.3, we consider W& € L>(0,T; H}(w.)) satisfying

1
div V¢ = ——div V.
£2
We remark that
div V, = ¢ (divrp,,, V} — divp, Vi) + divr,,, VZ.

With the estimates performed on the different terms of the ansatz we remark that

w(x) p(x)

1
-3 div Va

£2

< Ck,
L2(w.)
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and then, with Proposition 2.3, we can assume that
1| 1.y < C. (3.19)
and with the Poincaré inequality in the domain w,, we have
||\I/s||L2(wE) < Ce. (320)
We define now the remainder term ¢ by
Ua(t,z) + egre(t,x) for z € Qext,
u’ (ta I) = 5 5
Val(t,x) +e2¢%(t,x) + €27 (t,z) for z € w,.
We remark that r¢ € H} (92%;,,) and div r® = 0 on Q%,,. We take 7° as a test
3
function in the weak formulation of (1.2). Dividing by €2 we obtain that

1d

1
2 2 2 _
§E||T’EHL2(QM) HIVriliz e, ) + z [re" =T +...+ 15, (3.21)

We

with

1
Ty :—E%/ (7’5~V)7’E-7‘€—|——€%/|r€|2(r€'n)7
Qext 2 r

n=L|of Y [ gy, v
5 0
€2 Q t Q Q

Uy - VYU, - ra}

1 1
—|——3[—|—/ fre — VVG-VTE——/ Vars],
g2 Qeoxt We € We
1
T3 =— VU . Vre — - W re,
We € We

T4:7/ (rﬁ-V)Ua.rt/ (U, - V)< -1,
Qext Q

1
Ty = —— /|Ua|2r€'nf/(Ua~r5)r50n.
2¢2 Jr r

We remark first that 77 = 0. Indeed,

ors 1 o 9
€ . €. .E _ O e 1 . .
/Qext e /Q 2 dz; 7 2 zzj: /sz " o, (r3)

ext g j ext

_ 1 67”16 e\2 1 €12(,.€ .
——ag/g ) g [T

ext

1
— 5 [1Pem
2Jr

The estimates of the other terms are given by the following lemmas:
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Lemma 3.3. For all n > 0 there exists a constant C(n) such that

IT>| < 77||vr8||L2(QE oyt ||7“ 1720y + C) (1 + 1711220 -
Proof. We first remark that

/ VU, Vr® _/ (VU0+5VU1)VTE—/ (p° + ept)div r€ + ¢ / VU?Vre,
ext Qext ext

ext

since div r® = 0. We integrate by part the two firts integrals and we obtain that

/ VU, Vre :—/
ou’ out .

In the same way,

VvV, Vre = / (AV, — Vq,)r —/ {58‘/‘1 —qan] re.
We We T 871

Thus, using the equations satisfied by the profiles, To = T5 + Too with

2
Ty = — (/ %r +/ (U°-V)U?+ (U"-V)U' + (U*-V)U?] re)
ext Qext

[(AU0 Vp?) + e(AU =Vph)] r —i—e/ VU2Vre

(3.22)

Nlw

—e/ ((U V)U? 4+ (U?-V)U' +e(U? - V)U?) r¢

%/ VU2 . Ve,

1
Tho = —1/ K. (tP(w), M) ré(x),
€2 Ju, g
where
1 1 2
K.(t,0,2) = =(G., — Gy )al +Ar, V! +G5zav +eAr, V? V2
5 0z 0z °*
1

+-(Vr.. - V)¢’ + Vr..q".
With the estimates obtained for the profiles,

1 1
|To1| < e2C|r¢||L2(0) T2 IVre L2

ext)

< Vel + COD (L + llvelZ2opn))-

Since s — G4 and s — Vr, are regular, since the profiles ¢° and V' are
polynomial in the variable z and are in L>(0,T; H2(T')) in the variable o € T', we
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have

1
< Ce?,
L= (0,T;L%(we))

|60 . (1. P(@), 22

e

thus there exists a constant C' such that |Tia| < C||r°||12(,.) and absorbing
1751l 2 (w.) if we fix 7 > 0 there exists C'(n) such that

n
|Toa| < g||7"8||2L2(w£) +C(n).
Adding the two previous inequality we conclude the proof of Lemma 3.3. [
Lemma 3.4. For n > 0 there exists a constant C(n) such that
Mi.en2 €112
ITs] < Zllrllze ) + 2l VTElz2,) + C0)-

Proof. We remark that

1
IT5] < IV¥ellz2@n IVrilizan + ZIWellzz@a Irllza)
n
< g|\7"5||2L2(w5) + Vel 22 + Cn),
with (3.19) and (3.20). O

Lemma 3.5. For n > 0 there exists a constant C(n) such that
ITal < 0lIVrelliz (. + CODIrIILz @)

Proof. We estimate Ty in the following way:

ITal < IVUal| £ (@) 171 28 (0e) 1 V77| 22 (@)
HNUall 6 (@) 17128 (@) 1 VTN 22 (9200

3 1
< C‘|VTEHE2(Q )”TE”zz(cht) + CHTEHzL?(cht)

ext
2 2
<nlIVrellzzau.) + CODIr 2
using the Sobolev inequalities, the estimates performed on U, and using Young
inequalities. O
Lemma 3.6. There exists a constant C such that for n > 0 there exists g > 0

such that if € < gy then

IT5] < 0llVre 720, + C(1+ 1172 0,,,))-
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Proof. We have
1 2 € €112
75| < €z 1UallzsylIrllzs@y + CllUallzs @ Iz oy

1
< Ce? ||r¥ | i1 (e + Cellr®lin o

ext)

since [|U,||z3(ry < Ce and since [|7€|| sy < CHTEHH%(F) S Orf a1 Qo) -
We fix n > 0, and for € small enough, we obtain that
I T5] < 0|Vl 22, + C 1+ 122 qu))- O

End of the proof of Theorem 1.3. Adding the different estimates on T, ..., T5, we
obtain that there exists a constant K () such that:

1
57 ‘7”5”%2(99,“) + ||V7"€||%2(Q;lu) + g”rsHiz(wg)

2
< ;Hrgllia(%) +AnlIVrellz0s, ) + K0 (L + 17720, -

lu

1
Taking n = 3 there exists a constant K such that:

d 1
I ) T 1V M0, + 217 N2y < OO+ 171720

and we conclude the proof with the Gronwall Lemma.

4. BKW Method for equation (1.1)
4.1. Characterization of the profiles

We denote by v° (resp. w®) the restriction of u° in w. (resp. ). Furthermore the
pressure 7€ is denoted by

pe(t,x) if & € Qext,
7 (t,x) = ¢ ¢(t,z) if x € we,

re(t,x) if x € Q..

Equation (1.1) is equivalent to the following system:



G. Carbou

£

8(;; — Auf + (uf - V)u® + Vp©
div u®

ov® 1
;t — Av® + (v° - V)o° + V¢ + gva
div v®

ow* 1

5 Aw® + (w® - V)w® + Vr® 4+ E—2ws
div w®
US
,UE
_ouw® 4o

on p

ove g
- n

on a4

with the initial data

ut(t=0) = ugp

v (t=0)=0

w(t=0) =0

= f in cht
=0 in Qext
=0 in we
=0 in we
=0 in Q.
=0 in Q.
= 0° on I
= w® on I'.

.. €
= —%Ln +¢n onl

=

= - aalfb +7r°n on I';
in Qexta
in we,
in Q..

For z € Qo we perform an asymptotic expansion on the form:

ut(t,x) = Ut ) + UMt z) + ...

Pt ) = p°(t,x) +ept(t) + ... .

For x € w. the asymptotic expansion will be described by

Ve (t,x) = VO (t,P(x), @) +eV! (t,P(m)7 @) + ...

¢ (t,x)=¢° (t,P(x), @) +eq! (t7P(l‘), %x)) ...,

JMFM

(4.1.11)
(4.1.12)
(4.1.13)

where the different profiles are defined on R;” x T' x [0, k], and where P(z) (resp.
©(z)) denote the orthogonal projection of x onto I' (resp. the distance from z

to I').
For x € Q. we write

we(t,z) = W (t,:c, @) + eW! (t,x, @) +...
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re(t,x) =10 (t,x, @) + ert (t,x, @) +...,

where ¥ (z) is the distance from z to I';.
Here the profiles are defined on R} x Q. x Rgr and can be split in two terms:

Wit 2, €) = W (t,2) + W (t, 2, £),

where we suppose that W* and all its derivatives with respect to 2 and ¢ tend to

zero when ¢ tends to +o0o. The boundary layer is described by this term W*.

Determination of order 0 terms. At order £~ 2 in (4.1.5) we obtain that
W

— 9¢? + WY = 0. Taking the limit when ¢ tends to +o0o we obtain that

w0 = 0,

and that there exists a function K° : Q. — R® such that:

WO(z, &) = KO(z)e . (4.2)
At order €72 in (4.1.3) we obtain that
2770
_a(’“)% =0in T x [0, &]. (4.3)

0

A%
With (4.1.9) at order e~! we have that —aa— =0 for z = 0 and thus V° does
z

not depend on z.
W' ov°
Now with (4.1.10) at order ¢! we have o (&E=0)=- 3
z

With (4.2) we obtain that

(z =k) =0.

w? = 0. (4.4)

Writing (4.1.8) at order 0 we obtain that V? = 0 for z = x and since V° does
not depend on z we have
vl =o0. (4.5)

We are now able to characterize U° with (4.1.1), (4.1.2), (4.1.7) and (4.1.11) at
order 0, and with (4.5), we see that (U°, p°) is our regular solution of Navier—Stokes
equation (1.3) in Qext-

oWy _,

23

Determination of order 1. Writing (4.1.6) at order £ we obtain that

and since W, tends to zero when ¢ tends to +oo we have:

WL = 0. (4.6)
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With (4.1.5) at order e~ ! we get

PWL o0 L
—— + = W =0. 4.7
oez + o€ n+ (4.7)

Performing the limit when £ — +o00 we have:
w!=o. (4.8)

. : or° .
With (4.6) the normal part of (4.8) gives us that % 0 that is

r0 =0, (4.9)

and there exists K1 : Q. — R3, a tangential vector field, such that

\/7\\7/1(% €) = K'(z)e 5. (4.10)

oV
Writing (4.1.4) at order 0 we obtain that GZN = 0. With (4.1.9) at order &?,

Vi(z=r) = Wx(£=0).

Since {VV}V =0and W! = 0, we obtain that

Vi =0. (4.11)
With (4.1.9) at order €°, we have
ou’ ovt
__— = =0. 4.12
on +pn ER +qgnatz=0 ( )

ou’
Taking the normal part of this equation, since V! and o are tangential on T,
n

we obtain the continuity of the pressure:

(0,2 =0) = p°(0), (4.13)
and with the tangential part we have:
ov'! oU°
52 (0,2=0) = W(J)' (4.14)
PPV 0g°
Equation (4.1.3) at order ¢! gives 5.2 + 8_qzn =0on I x[0,k]. Taking the
0
scalar product with n since V! is tangential, we obtain that %i = 0 and with
z
(4.14) we have:
¢°(0,2) = p°(0) on T x [0, K], (4.15)
and then ot
0°V
= (4.16)

822
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With (4.1.10) at order £° we have

(aa_‘; + qon) (z=k) = ( 8;7:1 + 'ron) (€ =0). (4.17)

With the normal part we have:
¢° = r% = p° at the boundary,

and with the tangential part:

ovt  ow!
. T o at the boundary. (4.18)
Thus with (4.14) and (4.16) we have:
ov! ou°
W(O’,Z) = W(O’), (419)
1 0
and with (4.18) 8&(@",5) = 8L(P(a:)) We know then that:
o€ on
N 0
W(t2,6) =~ 2 (1, Pa))e ™, (4.20)
n

and using (4.14), (4.16) and (4.1.9) at order &' (since w! = 0), we have:

Vit,o,2)= (2 — Kk — 1)68—(20(@0). (4.21)
We can then define U' with (4.1.1), (4.1.2), (4.1.7) and (4.1.11) at order &':
ou! 1 0 1 1 0 1
5 AU +(U°-V)U'+ (U V) U +Vp'=0 on Qeyt,
div U'=0 on Qext,
Ul=0 on 00, (4.22)

n

Ul=(—k-1) (8_(10)N on T,

Ul(t =0)=0 on Qext.

Determination of the order 2 terms. Equation (4.1.6) at order &' gives n -

W2
88—5 + div W! = 0. Integrating this equality in the variable ¢ we obtain the

expression of W3;:

13 AU

W2, (t,2,€) = —/ div Wi(t, ¢, 7)dr = —div (a—n(t,P(x))> e~ (4.23)

—00
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Writting (4.1.5) at order £° we have

2 ) 1 1 1
_8_8‘;7 —Q(n-V)agz —Awagz +Vr0+aa%n+W2=0- (4.24)

Taking the limit when ¢ tends to 400 we obtain that

V0 + W2 = 0. (4.25)
3

We remark that with (4.1.6) at order €2 we have n - + div W? = 0 and

taking the limit when £ — 400 we obtain that:

div W2 = 0.
Taking the divergence of (4.25) we have then Ar® = 0 and since r = p® at the
boundary, r° and W? are totally determined by

Ard =0 in .,
r0 = p° on I, (4.26)
W? = —vr0,

Taking the scalar product of (4.24) with n we can express 6L§1 and integrating

between 400 and £ we obtain that:

Fi(t,z, &) = (div (%T) +2(n-V) (aa_zf) n) (t, P(z))e*. (4.27)

2

oV
With (4.1.4) at order €°, we have 8zN +divp Ve = 0.

Equation (4.1.8) at order £ gives: Vi = W34 on I'.. In addition, W3 is
totally defined and we have

. (oU° or°
V3 (t,0,2 = k) = —div (W) (t,o) — %(t,a + ren(o)),
thus
1 1 0
Vi(t,o,2)= (22— (k+1)z— 14 =K%+, | divp ou” (t, o)
2 2 on (4.28)
_8_7“0(t + ken(o))
5 (60 a)).
With (4.1.8) at order ! we have
1 2
_8U +pln = —ﬂ +q¢'nonT. (4.29)

on 0z
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The normal part of this equation gives that

1 0
¢ (t,o,2=0) = — <88£n)N (t,o) +p'(t,0) + (k + 1)divp <88Ln> (t,0). (4.30)

Writing (4.1.3) at order € we obtain that:

*V? ov! dq*
—W — GOW + Vroqo —+ ETL + Vl = 0 (431)
dqt  0*V3
The normal part of this equation gives 2 = 8—2N7 and using (4.28) and (4.30)
z z

we obtain that

1 0
¢ (t,z,0) = — (aa[:; >N(t,a)—l—pl(ta)—f—(f<;+1—z)din (%)T(t,o). (4.32)

The tangential parts of (4.31) and (4.29) give:

2 1 0
oV (t,o,2) = ou (t,0) + 2Go(0) ai (t,0) — 2Vrd’(t, o)
0z on ) on )rp
(4.33)
— i — — 3_UO (t )
g THE— 2 on )., ,0).
2 2
The tangential part of (4.1.10) at order ! gives: a;ZT = a;/T on I';, thus
z
oW ou' ouU°
(e, £ =0) = (t, P(x)) + £Go(P(x))——(t, P(z))
o€ on ), on
(4.34)
—kVrg®(t, P(x)) — Kk — ,{_2 a—UO(t P(x))
rq 9 2 on ) ’
and since with the tangential part of (4.24) we have
PW2L  — aW! IWL
T = . . 4.
g W =2 (V) T+Aw 5 (4.35)

Therefore, W? is totally determined. Integrating (4.31), V2 is totally determined.
We consider then an extension of V|2F in Qe denoted by U?.

We write now the normal part of (4.1.10) at order &'

5. 1T T T

1 2
Now, with (4.20) ag: = 0, with (4.23) 8??

COVY aw?v_(aV\ﬂ) on ..
on )y

(€ =0) = div (a—(P(””))>’ and
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2 0
with (4.28) Vi (z = k) = —divr, <68i). We obtain then using (4.32) that:
4 n
1 0
Ay =, P) — (22} Pe) +div (2L P@))) forzer..
on )y on

o (4.36)
With (4.27) we introduce the extension r! : . — R such that

(1, 2) = pM(t, Pla)) — (651>N 7 <(” V) (%))N (Pla)) for & € T
(4.37)

4.2. Regularity of the profiles

We recall that (U°, p°) is our given regular solution of Navier—Stokes equation (1.3)
with the regularity property (1.4). This U° is defined in the time interval [0, T*[.
The existence of a regular profile U satisfying (4.22) is given by Proposition 3.1
replacing the coefficient k by x + 1.

For the other profiles, under the regularity asumptions on UY we have the
following propositions:

Proposition 4.1. We define V' and W' by (4.20) and (4.21).
Then for all T <T* and fori=0...1 we have

ivrl

aaz € L0, T; HZ () © C*([0, 5])) N L*(0,T; H3 =% () ® ([0, 1)),
OW! o 7_g 0o [T+ 2 9_9; 0o (ot
s € L0, T HE2H(Q0) @ € (RY) N L2(0, T3 HE () @ € (R ).

Using Proposition 2.4 and the estimate on p® in (1.4) we obtain the following

Proposition 4.2. We define r0 : [0, T*[xQ. — R and W? : [0,T*[xQ. — R3
by equation (4.26).

Then for oll T < T*, there exists a constant C' (which does not depend on €)
such that fori=0...1

airo

ot
W2

ott

<C,
Lo (0,75 HA(92:))NL2(0,T;H (2e))

< C.

Le=(0,T;H?(Q2:))NL2(0,T5H3(Q:))
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Proposition 4.3. We define V2 : [0, T*[xT x [0,x] — R3 by (4.28) and (4.33),
W2 [0, T*[x Q. xRT — R3 by (4.23), (4.34) and (4.35), r1: [0, T*[x Q. x RT — R3
by equations (4.27) and ¢* : [0, T*[xT x [0,x] — R by (4.32).

Then for all T < T* there exists a constant C' such that fori=0...1,

H AV

<
ot =6

Lo0(0,T3H 3 =2 (1)@ ([0,1])NL2 (0,75 H 2 2 (M)@C> ([0,x]))

< C,
Loo(0,T3H 32 (Q.) @0 (RH)NL2(0,T5H 3~ (Q.) @ (R+))

lal

g

W2
ot

5 z < C,
L>°(0,T;H 2 (Q:)®C>(RT))NL2(0,T;H 2 (Q.)QC>(RT)) —

5 7 < C.
L (0,T;H 2 (I")®C>([0,x]))NL2(0,T;H 2 (I')®C>([0,x])) —

The term U? is an extension of V‘zp in Qext, then we have
Proposition 4.4. There exists U? satisfying U? = V2 on T and div U? = 0 in
Qext, such that

9iU?
ot

€ L>®(0,T; H* ' (Qext)) N L*(0, T5 H*?(Qexy)) fori=0,1.

The inside term 7! is obtained by extension of a boundary value, so its regu-
larity is deduced from classical trace relevements theorems and is described by the
following

Proposition 4.5. There exists r1 : [0, T*[xQ. — R satisfying (4.37) such that
for all T < T* there exists a constant C' independent on € with

17| o< 0,7: 103 (@) L2 (0,131 (20)) < C-

4.3. Estimate for the remainder term

We define U, and p, the approximations of u and p® given by
UC(t,z) + U (t, ) + 2U(t, x) for x € Qext,

% (t, P(x), @) +e2Vv? (t, P(x), @) for x € we,

=0(z)W' (t,x, @) 2 W? (m wi@)

+e2W2(t, ) for x € Q.,

U,(t,x)
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p°(t,z) +epl(t, ) for £ € Qext,
¢ (t,P(z) ¢lz) +eq* [ t, P(x) #(@) for x € w
pa(t’ .T) — ) 9 c ) ) c >8]

rO(t, ) + erl <t,x, @) + erl(t, z) for x € Q..

We consider U¢ € L>(0,T; Hg (9)) satisfying

1
div ¥¢ = ——div U,,.
)

We remark that

e(div F¢<I)V1T —divp, V7) + EQdinw(w)V% if z € we,
divU, = _ __ __
VO - (eW! + 2W?) + 20div W? if z € Q..

With the estimates performed on the different terms of the ansatz we remark

that

1
—Sle Ua < Ce

€2 £2(9)

and then we can assume that
owe
€| 1y + H—a < Ce.
t L2
We define now ¢ by
(u®(t,z) — Ugy(t,x)) for z € Qext,

re(t,z) =
(u®(t,x) — Ugy(t,x)) — Oe(¢t,z) for x € Q.

m m
wm‘ = wm‘ =

We remark that r¢ € H}(O) and div r® = 0 on O. We take r¢ as a test function
in the weak formulation of (1.1). We obtain that:

1d 1 1
e R I R I I R SR PR (e

with
O [/ aU“rer/ VUaVrE—k/(Ua-V)Ua-rE—kl/ Uarf}
£2 o ot o o g We

1 1
Jr_3[_2/ UaTEJF/ frs}a
ez €% Ja. Qoxt

WE
Tz:/ 0 re+/ wewu/ (U5 - VYU, + (U, - V)¥) - °
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1 1
Q € Juw. €% Ja.

Ty :—/O ((rs-V)(Ua+a%\I/€)+ ((Ua+s%\1/€)-V)r5) 7,

/0(7"E -V)re-re.

Lemma 4.6. For n > 0, there exists a constant C(n) such that

M)

111 =—E£

g 1 g 15
T3] < nlVre|I2a +alr 720,y + Cn) (14 1Ir°]172) -

Proof. Since div ¢ = 0 we can add to 77 the term — [ p.div r*. We split the

o
integrals in 7} in 3 terms writing that / = / + / + / , and we have
(@ Qext We Qe

| —

T) = — (T + Tho + Thg),

e

5
with

Tll - / 6Ua + (Ua N V)Ua + f : TE + / (VUU/VTE — pale ’I"s) y
Qo \ O Qoxt

ou, 1

T = R . L€ —

12 /ws ( ot + (Ua V)Ua) re+ -

U, 1 .
Ty = / <8 + (U, - V)Ua> R —2/ U,r® +/ (VU V7r® — podiv rf).
a. \ Ot e Ja. Qe

In each domain we integrate by part the last term.
For T}1 we obtain that

ou, U, e
T11=/ (W—AUa—l—(UmV)Ua—&-Vpa—f)'TE+/(a —pan)-r
Qext r n

2
= 52/ (86% — AU+ (U°-V)U? 4 (UL V)U + (U?- V)U°> e
Qext

U,r® + / (VU,Vr® — p,div re),
w

We B

+53/ (U'-w)U? + (U2 - V)U' +e(U?-V)U?) -r*
Qext

oue out E
—i—/r[(m—pn)—&-s( 5, P ny|-r
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. ou° ou? N
—0E e + [ (G 1) +e (G —on)] 7

since we know from the regularity theorems proved in Section 3 that for a fixed
T < T* there exists a constant C independent on € such that

2
H U _ Ap? +(U°-WV)U? + (UL - V)U + (U2 - W)U + (U - V)U?

+e(U VU + 202 V)02 <c
L>(0,T;L?(Qext))

For Ti5 we have

U, 1
T12:/ <88t AUaJr(Ua'V)UaJFVPaJFEUa)'TE

ou, . ou, .
_/1‘ on nj-r —|—/F an —Pan | -7

that is, using the equations satisfied by the profiles,

ov'!
T12 :/ [(GV,(%) + GO)W + (VF¢<1) _ VFO) QO] e

ov?! ov?
+ 6/w (— —Ar <z)V1 - Gw(z)ﬁ + sta(ac)ql + V2> -

2 av? 2 1 2 1 2 e
+ ¢ —— —Ar_ V + (VI +eV?) V) (VI +eV?) | -r
7/ a—\[lf 0 + a_\ﬂi 1 L E

g 5, —dn|tel 5 —an r
+/ 8V1 _qon +e 8_\,2_(]1,” €

r. 0z 0z ’

Now we know that, since p(z) < ke, there exists a constant C' such that for all
T € we,

|-Gz + Go| < Ce and  |Vr, ., — Vr,| < Ce.

e (z)

Furthermore with Proposition 4.1 we know that for T' < T™ there exists C such
that

V!
H + IV’ | L= o.rixw.) < C
L>(]0,T[xwe)

and since meas(we) < Ce we obtain that

1

i

< Cex.
L>°(0,T;L?(we))

oV
H (—Gy() + Go)

Ep + (VFM@ - Vpo)qo
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In the same way we know that

ov! A%
—— —Ar_ . V'~ G o)—=— +Vr_, ¢ +V? <C,
H ot 7 P . L>(]0,T[xwe)
and thus
aVl 1 8V2 2 3
€ —Ar, V' =Gy 5~ +Vr,,,d" +V < Ce>.
ot v R () Lo (0,512 (w.)
For the last inside term, we know that
ov? 2 1 2 1 2
—— —Ar_ V' + (V' +eV?)-V)(V' +eV7) <C,
ot Lo0(0,T5L2 (w.))

so we obtain that

R ov* ov? .

T12 = 0(62)“7“ ||L2(w5) —/F << az — q0n> +€ (W — qln)) -r
_|_/ a_\/l —q'n) + ov? —aln €
. 9. 1 o 1 '

For the third term we have

U, 1
T13 = / ( 3t — AUa + (Ua . V)Ua + Vpa + E—2Ts> . T'E
Qe

oU, _
_/ ( an — pan> .
r.

= Tiz1 + Tizg + T3z + T34,

with

ow' IW? ow?  _ |\ .
T131—E/sse< ot — AW —Q(RV) ag —A’(ﬂ aé_ + Vr -

— _
+52/ 9(627 —AW2> e
Q.

+ 52/ ((95\71 +eOW? + W2) . V) (GW! + cW? +W?)) e
Q

=

o
- (8;3 _sz)
QE

Ti30 = — / (Ae(engl + 52\/7\72) — (V8- Vp)(W! + E@)) re
Q

€

. 5/ (VO- V) (WL 4 eW2),
Q.
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OW? OW?
_ 277 2 L€
Thas = /I‘E <E on te on > "

ol 2
T134:_/r5<<6¥ —r0n>+6<8¥ —r1n>>-rs.

With the estimates concerning the profiles, we know that

JMFM

T31 + Tizz = O(e) |7 || L2y + O(EQ)HTEHH(FE)'

Concerning T3, we know that W' is exponentially decreasing in the variable z.
Since VO = 0 in a neighbourhood of I", we obtain then that

Tiz2 = O(e) 17| L2 (0.)-

Hence we have

. . oW! .
Tiz = O(e)||Ir* | 2.y + OE))|Ir¥| 2(r.) _/r (8—5 - TO”) T

7/ € a—Vf‘}Efrln €
NS '

Summing these three equalities, since the integrals on I" and I'. cancel by con-
struction of the ansatz, we obtain that

1
2

1 1 1 1
T]_ = O(1>||T€||L2(O) + O (5—) H"“E||L2(QE) + 0(52)HVTEHEQ(O)||7“5H[2/2(O).

We fix now n > 0. We have

g C £ 1) 3 g 3
T3] < Cllrtllzzco) + Tl llzzgn) + ClUVIllza0) 171122 0):

and with Young Inequality we obtain that

1
Tl < 051 ey + IV o) + CO) (14 1°132(0) -

Lemma 4.7. For n > 0 there exists a constant C(n) such that

1
Tl < n5llrfl72 . +nllVrellze + Cn) (14 [r°]172)
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Proof. We estimate T5 in the following way:

oV,
ot

+ (1% s @) IVUallzae) + 1Uallis o IV N2y ) I Lo

e

L 75l 22 () + 1| @) IVl 220

3 I I £ 1 £ £

+e2 [ Lo IV N2 Irllze ) + 219 n2 oo 7l p2 o)
1

+E—2||‘I’E||L2<QE)||7“6HL2(QE)~

Using that there exists C' such that [|¥¢||1q) < Ce we obtain then that:

C
|T2| < Cel|r||2() + CellVre|L2) + Cllr° |l 2(w.) + ;HTEHL%QE)-

We fix then n > 0 and using Young Inequality we obtain that there exists a
constant C(n) such that

1
Tl < 0lIVrBao) + 15 I Beay + CO) (14 1M300) - O

Lemma 4.8. For n > 0 there exists a constant C(n) such that
T3] < nllr 30y + C) (14 17 132(0))
Proof. We have

15 3 g (>
ITs| < ||r¥]| s (o) || VUL + €2V ||Lz(o)||7“ s 0)
3
+1Ua + 29| £o(0) V7| L2(0) 7 2 (0)

< Cllrfllzs o) IVre Lo
1 3
< C”TEHLZ’(O)HVTEHLZ’(O) + CHTE”zz(o)||V7"E||22((9)'

We fix n > 0 and using Young Inequality we obtain that there exists a constant
C(n) such that

T3] < 0V 1320y + C) (14 17320 O

Lemma 4.9.
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Proof. We perform the following classical computation
1 2
—ghi= /237 Z/ .

£2
%) :——/\T|dlv7“€

= 0 since d1V re =0. O

Remark 4.10. The corrective term W€ is useful to obtain that div ¢ = 0. So
we can use r° as a test function in (1.1). In addition the divergence free property
ensure that T, = 0, thus the bilinear term in the Navier—Stokes equation does not
provoke a blow up for the weak solutions.

1
End of the proof. We take n = 5 in Lemmas 4.6, 4.7 and 4.8. Adding up the

obtained inequalities we obtain from (4.38) that there exists a constant C' such
that

1d 1 1
e R e B s

QE

1 11
< §||V7“6||%2(O) + 56_2 /QE |7~5‘2 +C (1 + ||’r‘5||%2(0)) 5
that is

d 1 1
il Vo £ 190 oy 2 [ 1 5 [P <20 (1Ll

We

and we conclude the proof with Gronwall’s Lemma.

References

[1] R. A. Apawms, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press,
New York—London, 1975.

[2] PH. ANGOT, Analysis of singular perturbation on the Brinkman problem for fictitious do-
main models of viscous flow, Math. Methods Appl. Sci. 22 (1999), 1395-1412.

[3] E. ArQuis and J. P. CALTAGIRONE, Sur les conditions hydrodynamiques au voisinage d’une
interface milieu fluide-milieu poreux: application a la convection naturelle, C. R. Acad. Sci
Paris, Série II 299 (1984), 1-4.

[4] F. BoYER and P. FABRIE, Eléments d’analyse pour D’étude de quelques modeles
d’écoulements de fluides visqueux incompressibles, Cours de D.E.A. de Mathématiques
appliquées et Calcul scientifique, Université Bordeaux 1.

[5] CH.-H. BRUNEAU, Numerical Simulation and Analysis of the Transition to Turbulence,
Lecture Notes in Physics 490, 1997.

[6] CH.-H. BRUNEAU and P. FABRIE, Effective downstream boundary conditions for incom-
pressible Navier—Stokes equations, Int. J. Numer. Methods in Fluids 19 (1994), 693-705.

[7] Cu.-H. BRUNEAU and P. FABRIE, New efficient boundary conditions for incompressible
navier-Stokes equations: a well-posedness result, M2AN 30 (1996), 815-840.



Vol. 8 (2006) Double Penalization 33

(8]
(9]
[10]
(11]

(12]

(13]

(14]

(15]
(16]
(17]
(18]

(19]

CH.-H. BRUNEAU and I. MoRTAZAVI, Controle passif d’écoulements incompressibles autour
d’obstacles & l'aide de milieux poreux, C. R. Acad. Sci. Paris, Série 1Ib 329 (2001).

G. CARBOU, Penalization method for viscous incompressible flow around a porous thin
layer, Nonlinear Anal. Real World Appl. 5 (2004), no. 5, 815-855.

G. CARBOU and P. FABRIE, Boundary layer for a penalization method for viscous incom-
pressible flow, Adv. Differential Equations 8 (2003), no. 12, 1453-1480.

D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order,
Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

V. GIRAUT and P. A. RAVIART, Finite element methods for Navier—Stokes equations. The-
ory and algorithms, Springer Series in Computational Mathematics 5, Springer-Verlag,
Berlin, 1986.

K. KHADRA, S. PARNEIX, PH. ANGOT and J. P. CALTAGIRONE, Fictitious domain approach
for numerical modeling of Navier—Stokes equation, Int. J. Numer. Meth. in Fluids 34
(2000), 651-684.

N. KEVLAHAN and J. M. GHIDAGLIA, Computation of turbulent flow past an array of
cylinders using a spectral method with Brinkman penalization, Fur. J. Mech., B. Fluids
20 (2001), No. 3, 333-350.

J. LERAY, Essai sur les mouvements plans d’un liquide visqueux que limitent des parois, J.
Math. Pures Appli. 13 (1934), 331-418.

C. PEsKIN, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977),
220-252.

C. PESKIN, The fluid dynamics of heart valves: experimental, theoretical and comptuta-
tional method, Annu. Rev. Fluid Mech. 14 (1982), 235-259.

E. M. SAIKI and S. BIRINGEN, Numerical simulation of a cylinder in uniform flow: applica-
tion of a virtual boundary method, J. Comput. Phys. 123 (1996), 450-465.

D. SANCHEZ, Thin Layer for Landau—Lifschitz Equation, Preprint MAB U-03.04, 2003.

Gilles Carbou

MAB UMR 5466

Université Bordeaux 1

351, cours de la Libération

33405 Talence cedex

France

e-mail: carbou@math.u-bordeauxl1.fr

(accepted: March 29, 2006)

To access this journal online:
http://www.birkhauser.ch




