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Abstract : we study the regularity of critical points of an energy which stems from
micromagnetism theory. First we show that in dimension two critical points are smooth in
B2, In the three dimensional case we prove that the stationary critical points of the energy
are smooth except in a subset of one dimensional Hausdorff measure zero. The particularity
of this work is the non local character of one term of the energy.

1 Introduction.

1.1 Micromagnetism theory.

In the micromagnetism theory, presented by J. Miltat in [19] and by W. F. Brown in
[6], a soft magnetic material is characterized by a spontaneous magnetization defined by
a magnetic moment per unit volume denoted M (x). This magnetic moment links the
magnetic field H and the magnetic induction B by the relation

B=H+4wM .

Furthermore the norm of M is constant and we write M (z) = Msu(z) where |u(z)| = 1.

The energy associated with a configuration M consists of the sum of five terms.

Eiotai(M) = Eeger, + En, + En, + Ex + Evg -

The first one is called the exchange energy. It comes from Heisenberg’s model of the
interaction energy between two spins :

1
Eemch = §/|VM|2

The two following terms are deduced from Maxwell’s equations :

curl H =3 divB=0.



We decompose H into two terms : H = H, + Hy. The applied field H, arises from external
current distributions j :
curl H, =3 div H, =0 .

The demagnetizing field satisfies :
curl H; =0 div (Hqg+47M)=0.

The energy induced by H, and H, are

1
EHa:—/HaM EHd:—§/HdM.

The last two terms pattern the relations between the magnetic properties and crystal
orientations. The anisotropy energy Ex reflects the existence of preferential axes of mag-
netization. The magnetoelastic energy Fjrp expresses the link between elastic strains and
the direction of M.

1.2 Statement of the results.

In this article we study critical points of an energy defined for u € H' (B3, S?) by

E(u):%/m |Vu|2—%/B3H.u+/BBF(u)

where H € L%(IR3, IR®) is the solution of the following non local problem:

> curl H =0
div (H +4) = 0 in D'(IR?)

where @ is equal to u in B® and is zero out of B3.
We assume that F' € C'(IR?, IR) and satisfies

VEe R |F(u)| < K[1+(¢%.

We denote
VF() = f(§) -

REMARK 1 : the energy F is obtained from the physical model taking all the physical
constants equal to 1. So the first term of F represents the exchange energy, the non
local term corresponds to the demagnetizing energy, and the local term contains applied,
anisotropy and magnetoelastic energies.

REMARK 2 : we will prove that the non local term of E satisfies :

- H.u:/ |H|? .
B3 R3

Hence with the hypothesis about F', the proof of the existence of minimizers of the energy
is obvious.



Critical points of F satisfy the Euler equation :
—Au—ul|Vul]> = H+ <u, H > u+ f(u)— <u, f(u) >u=0.

The first term of E is the Dirichlet energy, i.e. the energy which the critical points are
the harmonic maps with values in a riemannian manifold. In the next subsection we will
recall the regularity results concerning harmonic maps. We obtain in this article the same
results concerning now the critical points of F.

Our first result is a regularity theorem in dimension two.
THEOREM 1. Let u € H'(B?,5?) be a critical point of E. Then u is smooth on B2.

REMARK 3 : if we suppose that the domain is a cylinder B? x IR, we can consider a
magnetic moment per unit volume invariant by translations parallel to the z-axis (see [19]).
In this case we work with maps defined on a two dimensional domain.

The regularity theory for critical points of quadratic functionals in dimension two has
considerably progressed since the theorems of Morrey in 1948 (see [20]). One of the most
important results is proved in [15] by F. Hélein. It concerns the regularity of harmonic
maps defined in an open set of IR? and with values in a Riemannian manifold. One can find
a generalization of this result which concerns harmonic sections in [7]. Besides F. Bethuel
shows in [3] a result of regularity for the solutions of prescribed mean curvature surfaces
equation. For the interior regularity we use mainly here the works of F. Hélein about the
harmonic maps into the sphere (see [16]).

Our second result is the following

THEOREM 2. Assumeu € H'(B?,5?) is a stationary critical point of E. Then there
exists an open subset V. C B3 such that u is smooth in V and HY(B® — V) = 0, where H*
denotes one dimensional Hausdorff measure.

Note that a stationary critical point of F is a critical point of £ when we allow variations
both acting on the target manifold (as in the end of the section) and acting on the source
manifold. A precise definition will be given in section 3.

Theorem two is similar to the result of Evans concerning stationary harmonic maps with
values in a sphere (see [10]

We recall now the regularity results concerning weakly harmonic maps with values in a
riemannian manifold.

1.3 Harmonic maps.

Let M be a compact submanifold of IR". We consider the Dirichlet energy
Fw) = [ [Vul?
Q

defined for u € H'(Q, M) where € is an open set of IR"™.



DEFINITION : the critical points of F' are called harmonic maps with values in M.
They satisfy the equation :

— Au—Ay(Vu,Vu) =0 in D'(Q)

where A, is the second fundamental form of the embedding of M in IR".

For example when M = S"~! harmonic maps with values in S™~! satisfy

— Au—u||Vul*=0.

One of the most interesting topic concerning harmonic maps is the problem of their
regularity. We recall that the standard elliptic estimates give an improvement of regularity
when the laplacian of u is in LP with 1 < p < +o00. In the case of harmonic maps these
hypothesis are not satisfied since we obtain for example when M is the unit sphere

— Au=u||Vu|* € L.

In fact the regularity of harmonic maps depends on the dimension of the domain 2.

When () is two-dimensional harmonic maps defined on 2 with values in a compact
riemannian manifold are regular. It is a theorem proved by F. Hélein in [15].

When the dimension of the source is greater than three, harmonic maps are not regular.
A counter-example is given by 7, which is harmonic with values in the sphere.

The first results of partial regularity in dimension greater than two for the minima of
quadratic functionals have been obtained in the case of minimizing harmonic maps by R.
Schoen and K. Uhlenbeck (see [23]) and by Hardt, Kinderlerher, Lin (see [14]). Furthermore
Evans proves in [10] a result of partial regularity when u is only a stationary harmonic map
with values in S™~1. This result is generalized by Bethuel in [4]. Moreover T. Riviere builds
in [22] harmonic maps totally discontinuous.

1.4 Outline of the paper.

The paper is organized as follows :
In the end of this part we compute the Euler equations of the problem.

Theorem 1 will be proved in the second part. We shall use compensation results proved
by Wente and which enable the demonstration of the regularity in dimension two of harmonic
maps with values in a ”very symmetric” submanifold (see Hélein’s article [17]).

The third part is devoted to the proof of the partial regularity for the stationary critical
points of E in the three-dimensional case.

We follow in this part the ideas of L.C. Evans (see [10]). We first find a monotonicity
inequality. Afterwards we show a theorem of e-regularity: if E (zo,7) < go for r little enough
then u is smooth in a neighbourhood of x(, where

E(xg,7) = ! Vul? .
T JB(zo,r)

4



In order to prove this theorem one needs a result of compactness in the strong H'
topology which uses the H! — BMO duality. As it is remarked in Evans’ article (see [10])
these spaces play a very important role in the regularity problems. Lastly we conclude the
proof with a classical covering argument.

In the fourth part we give without proof further results about the minimizers of E.

Compared with the theorems relating to weakly harmonic maps, the second term of
the energy entails several difficulties. The first one is the non local character of this term
which keeps us from getting easily a monotonicity formula. The second difficulty is that
the homogeneity of the third term in the Euler equation is different from the homogeneity
of the two first terms. This fact carries away new technical difficulties for the proof of
the e-regularity. Last but not least, because of the term H the calculation of the equation
satisfied by stationary critical points of F is quite delicate since we have to write H in the
shape of a convolution of div v with a very singular kernel.

REMARK 4 : in a recent paper (see [13]) R. Hardt and D. Kinderlehrer establish the
partial regularity of the minima and study their singularities. The point of view and the
proofs of their article are very interesting and very different from the content of my work.

NOTATIONS :
« BN is the unit ball of R™.
% SP is the unit sphere of IRP*.
* B(x,r) is the ball centered in z of radius r.
s If © is an open set of IRY and M is a submanifold of IR™ we write

HY(Q,M) = {u € HY(Q,R") such that u(z) € M a.e.} )

« If Q is an open set of RY, D(Q,RY) is the space of the smooth function whose
support is a compact subset of Q with values in IR". We denote D’ (©2) the space of the
distributions on ).

1.5 Euler equations.
1.5.1 Study of H.

Let us first make two remarks about the map u +— H.

LEMMA 1. Let u € H (B?,5?). Let H € L*(IR3, IR®) be the solution of . Then

He () LP(R%).

1<p<oo

Proof : we note that u € L (IR?) hence div u € W5 . We consider ® € H'(IR?, IR?)
such that A® = —div u in IR3. We have that ® € Ni<p<oo WLP. Therefore since H = V&
we obtain -

He (] LP(IR).

1<p<oo



Furthermore we remark that for all p € (1,+00) there exists a constant K, such that

[1H][Le < Kpllullzr -

LEMMA 2. The map u — H where H is the solution of { is self-adjoint for the
L?-scalar product.

Proof : let u and v in H'(B?,5%). We consider ® (resp. ¥) in H'(IR?, IR®) such that
A® = —div u in R (resp. AV = —div v in IR?). We set H = V® and L = V¥. We have

/ U.H:/ v.V®
B3 R3

= —/ divov.® = — AU.P
R? R?

- / V.V,
RB

/ v.H = L.
B3 B3

Hence we obtain that

ie. u— H is self-adjoint in L2.

1.5.2 Euler equations.

We are going now to compute the Euler equation satisfied by the critical points of E. Let
¢ be an element of D(B3, IR?). We set

u—+tp

= =u+t(o— <u,p>u) + O(t?
e = u o <u.p> ) + O

Ut
and we note
ou=p— <u,p>u.

Let H; be the solution of <} associated with u;. We set now

1 1
E(Ut):5‘/Bg‘vut|2_§/BSHt.Ut+/BBF(Ut) .

We remark that
H; = H +t6H + O(t%)

where 0 H satisfies
{ curl 6 H =0

div (§H + du) = 0 in D'(IR?)
Hence with these notations we obtain

E(u;) = E+t0E + O(t?)



where 1 !
6E= | Vuvéu — = [ SHu — - / suH + | f(u).bu.
B3 2 B3 2 B3 B3

x Computation of the first term :

VuVéu = VuV(p— <u, o> u)
B3 B3

:/ Vquo—/ Vu.Vu. <u,p> —/ VuuV <u,p>
B3 B3 B3

:/3VuV<p—Vu.Vu. <u,p>
B

since u is orthogonal to Vu. Hence

/3 VuVou = p< — Au—u|Vul?, ¢ >p .
B

x+ Computation of the second term :
From the second lemma we know that v +— H is self-adjoint hence

1 1 1
—= Hu=—= ou.H = —= <o, H— <u,H>u> .
2 Jps3 2 Jps3 2 /B3

The computation of the last two terms is obvious.

Therefore the critical points of E satisfy the following Euler equation

— ANu—u|Vul]* = H+ <u, H> u+ f(u)— <u, f(u)>u =0 in D'(B?).

2 Proof of theorem 1.

2.1 Compensation result.

We shall use in this part a result of Wente. It is proved in detail in [5] :
THEOREM 3. Let Q be an open set of IR%. Let u € H'(Q) such that
Au = agby — ayby
where a and b are in H'(QY). Then u is continuous in B>,

REMARK 5 : using this result the proof of the regularity of harmonic maps in di-
mension two with values into S™ is quasi immediate.

REMARK 6 : with these hypothesis the result of Wente gives us an estimate of the
form :
[ull Lo @) < C(Q)IVal p2(q)- IV L2 @)
where C'(Q2) is a constant which only depends on the conformal class of the open set .
Sami Baraket studies in [2] the best constant in this inequality.



2.2 Proof of theorem 1.

We shall write the Euler equation on the form of a conservation law in order to put in
evidence curls and to be able to apply Wente’s theorem.

Since > Vu? ./ = 0, we can write the Euler equations verified by u on the form
— At = V! (u'Vu! — V') + oy

where ' ' ' ‘
vi=H'—u' <H,u>—f"(u) +u' <f(u),u> .

We know that u is uniformly bounded by 1. Furthermore
H € L*(B?) and f(u) € L™ .
We remark then that
div (u' V! — ! Vu') = —u'yp? +uly' € L*(B?) .
Let b € W2(B?) be a solution of
div b9 = —ulpd + iyt
In particular b € L°(B2).
Since . . . . ..
div (u'Vv) —w/Vu' —b7) =0
there exist ¢;; € H*(B?) such that
w'Viul — Vil — b9 = curl Cij -

—Au' =Vl curl ¢j — Vud. b7 44

We decompose u' in two parts : u’ = o} + o} where
—Adl =V curl ¢4
—Aah=-Vul. b 4 € L? with ab =0on dB? .

Using theorem 3 we obtain that af is continuous. Furthermore we know from standard
elliptic estimates that af is in W2’%(B2) and from the Sobolev embedding that o € C%.

So u is continuous and we conclude the proof by a result of Ladyzenskaya and Ural’ceva
(see [18]).

3 Proof of theorem 3.

We recall that we are in the case u € H(B3, 9?).



3.1 Stationary critical points of E.

Roughly speaking a stationary critical point of F is a critical point of E when we allow
variations both acting on the target manifold and also on the source manifold :

DEFINITION : a map u € H'(B?,5?) is a stationary critical point of E if u is a
critical point of E which satisfies the following property. If x+ is a smooth one-parameter
family of diffeomorphisms of B? satisfying xo = Idgs and Xtjops = Id|pps then

%E(U o Xt)jt=0 = 0.
Let u be a stationary critical point of . We shall compute the equations verified by u.
Let ¢ be a smooth vectors field with compact support in B3. We set
u(z) = u(z + t€(x))
where ¢ is little enough. We consider ®; € H'(IR?) the solution of
AP, = —div uy

when 1; = u; in B? and zero out of B3. We remark that for all ¢, the map ®; is in WP (IR?)
for 1 < p < oo and from the Sobolev embedding ®; € L>®(IR?).

We set H; = VP, and we have

1 1
E(u) = §/Bd |V || - 5/35 Hyuy +/B3 F(uy) .

Let us compute %E(Ut)\t:o-

First part of the energy.
The computation of A = %(% I3 [[Vug||*)p= is classical (it concerns stationary har-

monic maps). One obtains :

_ 1 21 i i B
A= 5 /o |V d1v£+/]33i%:ﬁuxauxﬁ§%.

Second term of the energy.
Let us compute 4 (—3 [jzs w.Hy)j—o = 0.

We consider G(r) the Laplace kernel in IR? :
C
Let ¢ € H'(IR?, R) be the solution of
A¢ = div o in D'(IR?)



where ¥ is equal to v in B? and is zero out of this ball. We have
= [ Gle = yhdivoy — [ Gz~ y) < o(y).nly) > doy)
B3 oB3

This expression is right in the 3-dimensional case since the laplace kernel in IR is in L?(B?),
hence the previous integral exists.

We note that

div u(z) = div u(x + t&(x)) + t Z (@ + ())& ().
=1

We obtain

1 1 . 1
Bt — _5 s ut-Ht = 5 /B5 div Ut.q)t - 5 Y (ut.n)@tda )

now we remark that us(x) = u(z) on B> hence with the previous integral formulation of
®; we deduce the formula

Bt:%//gc,yeBSG(|$_y|) (dlvu( +t&) +t Z (- +t)&; )( )

1,j=1

3
. (div u(.+tE) +t u;]( + t{)gu{,i)(y) dx dy
ij=1

1
5| /yeaBS (dlv u(.+t&) +t Z (.+t&).8. )( ) G(lz — y])(u(y),n(y)) dz do(y)

2 1,j=1

1
7 P (dwuutut; +t£>§zz)<> Gl = yl)(u(a).n(z)) do(@) dy

1

+3 o /yeaB3 G(lz —y]) (u(z),n(2)) (uly),n(y)) do(z) do(y)

We note that we have used the Fubini theorem which is valid in this case since the map
G(|. —y|) is in L?(B3) for all y in B3.
We now do a change of chart in the integrals on B? setting

X=z+t(z) (andY =y +t&(y)) .

The jacobian of this change of chart in z is equal to 1 + tdiv &(x) + O(t?) (and the same
for y).
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After a somewhat long computation we get

dB;

g \to /Bgdlvﬁdwu<1>+/ @Zu%z

1 ) )
+§ /z,yeB3 div u(z)div u(y)G (]a;—y|)(| ,f( )—&(y)) dx dy .

We need to study the last term of this expression :

1 . . Ty
C=z[  divul@)divu)@ (o — ), &) — &(y)) dar dy -
2 z,yeB3 |33 - y|
We note that this integral exists because £ is smooth and so ﬂ@:i@ is uniformly bounded

in B3 x B3. In return we can not split C' because we are not sure that the integral

2/%33 div u(z)div u(y)C (|7 — y)) (Y &(x)) de dy

| — |
exists. Hence we will use singular integrals theory (Cf [24]).

We write for € > 0
M. = B*x B3\ {(a,b) s. t. |la—b| < ¢}

and we have

¢ = zlim ([ div u@aiv w6 (o — (=4

Now we can cut this integral in two terms and we obtain

() — £(y)) de dy) .

C = lim (/ E(z)div u(z ‘ : ] /(|$—y|)divu(y)dyd:c)

l.e.

L . =Y . .
C= ;1_% [/:ceBS &(z)div u(z) </yeB3\B(x,s) P y]G (|lz — y|)div u(y)dy) da:} .

We set now

xr —
L —/ Y&/ (|z — y)d dy |
@)= [ G sl )y

we set L(x) = lim._,0 Lc(z) and we know from a result of Stein (see [24]) that L. converges
to L in L?(B3).
Furthermore we know that o — &(2)div u(z) is in L?(B?) so we get that

C= [ &x)divu(z)L(x)dx .
B5

11



Last term of E.
% (/33 F(ut)) _ /33 Flu(z + t(2)). [Vu(z + t6(x)).£(2)] .

We do the change of chart X = x + t£(x) and we obtain that

% ( B3 F(Ut)) [t=0 N [33 fu(z)). [Vu(z).£(z)] -

As a conclusion the stationary critical points of E satisfy

1 27 i i B . .
3 |Viu|*div € + /B3 i%uxauxﬁﬁxa - /B3 div £.div u.®

+ /B3<I>Zu§cj fcl + /BB &(x)div u(z)L(x)dx + /B3 fu(z)). [Vu(z).£(z)] =0
for all ¢ € D(B3, IR3).

Let us study L with more precision. We are going to show that L belongs to all the L?
spaces for 1 < p < co. We have

Le) = —H(x) + [ 2 (= y)uly), nly))doly) = —H(x) +v(r)

We already know that H is in all the LP spaces for 1 < p < co. We have now

do(y)

Vo e B3, ju(z)| < K —
v(z)] < s T2 — g2

< K log (1—|lz[))
and we know that this last map is in all the LP spaces for 1 < p < oo on B3.

3.2 Monotonicity formula.

Let u be a critical stationary point of . We shall prove that u satisfies a monotonicity
formula similar to the inequality satisfied by stationary harmonic maps (see [10]).
We set

. 1
Bla,r) = —/ Vaul? .
T JB(z,r)
PROPOSITION 1. There exists a constant I such that for all x € B3, for all r such
that 0 < r < dist(x,0B3), for all v’ with 0 < r' < r we have

E(z,r") < E(x,r) +T\/r .



Proof : we prove the proposition with z = 0 and we denote B, = B(0,7), S, = 0B,
and E(r) = E(0,r).

We set &,(z) = xpp(|z]) where
1 on [0,7]
op =4 0on [r+h,+00)

is affine on [r,r + h]

We shall use this vector field £ as a test function in the equation verified by v and we will
compute the limit when A tends to zero of the expression we obtain. We remark that if
g € LY(B?),

/ 9&p —— xg
B3 h—0 JB(0,r)

: 1
/ 98— dij g- —/ yiyjgdo
B3 i h—0 B(0,r) r JoB(o,r)

/ gdiv &, —— 3 g—r/ gdo .
B3 h—0  JB(0,r) 8B(0,r)

Hence we get the formula :

—3 \Vu]2+ / |Vul da—l—/ |Vu|2——/ |Vu.y| da—3/ Odiv u

1
—|—r/ &div u + ddivu — — ® < Vu.y,y > do(y)
r BT r ST

+ | xzL(z)divu(z)de + [ f(u(z)).(Vu(z).x)de =0.
By Br

We divide the previous formula by r2, we use that |div u| < 3|Vu| and we obtain
d /- 1 6
0< 4 (Bw) + 120~ [ V0l 47 /B Ll|Vu

+4||<1>”Loo_/ Vuldo + = / |Vl .

We set now

Vo) =1 [ 1val.

We have ! 1
v =+ [ |Vu|da—r—/ Val .

13



Therefore the previous inequality implies that

0< 2 (Br) +412] V()

1 6 1
#1610 [ Va2 [ (LIVUl+ 1l [ [Vl
r B, T JB, r B,

We know that L € L3(B3) so |L||Vu| € Lg(B?’). Hence with the Holder inequality we
obtain that there exists a constant K such that

d /=~
0< = (B(r) + 4|2 =V (r) + K V7).
Therefore the map 3
r— E(r) +4]|®|| 1=V (r) + K1
is a non decreasing map.

Now we have
3
3

V(r) <

5 Q

||VU||L2(BS)-7"
i.e. there exists a constant I' such that
A @[V (r) + K/r <T/r .
Therefore for all ' such that 0 <7’ <r
E(') < E(r) +Tr.

REMARK 7: the map r — E(r) + 4||®||~V(r) + K\/r is non decreasing hence it
has a limit when r tends to zero. Moreover the map r +— 4(|®|| V(1) + K/r tends to zero
when r tends to zero, so E(r) has a finite limit when 7 tends to zero.

REMARK 8 : the constant I' does not depend on the point z.

3.3 ce-regularity theorem.

We will prove the following
THEOREM 4. There exist €1,1,0 such that for all x € B and for all r > 0 then

(E(w,r) < 51) = (E(w,&r) < \/gmax{E(x,r),n\/F}) )

Proof : we follow in this proof the ideas of L.C. Evans (see [10]).
Assume that the theorem is wrong i.e that there exist a sequence (xy)kepy of points of
B3 and a sequence (r)renv € (0,1)% such that

14



limk_>+oo Tk = 0

E(:Iik,Tk) — 0

E(:Iik, 9rk) > \/EEN(«TIw Tk)

E(xy, 0ry,)
NG

— +00

We denote .
A2 = E(zy,7) and W = H— f(u).
First step : scaling method. We set

u(zp +rpz) — ag
Ak

Vi =

where ay, is the mean value of u on B(x, 7). We remark that

Vk:,/ |Vup|? =1 and / v =10
B3 B3

hence (vj)repv is bounded in H!/IR and we may choose a subsequence such that
v, — v in H' weak, L? strong and almost everywhere.
Second step : v is real harmonic in B3.

Let w be an element of D(B?). We set wy(y) = w(y;:k ), we multiply by wy, the equation
verified by v and we obtain :

/, V. Vw — / ()\k'Uk: + ak))\k|Vvk|2.w
B3 B3

2
+ T_k/ (=W +u <u, W>)(xp +rpz)w(z)dz =0.
. /B3

* The first term tends to

Vo.Vw .
B3

* We know that

lim A, =0
k—+o00

w € D(B?) so it is uniformly bounded in B3

ag, is bounded by 1

|V |? is bounded in L'(B3)

15



Therefore the second term tends to zero when k tends to +oo.

* Lastly the third term tends to zero also :

REMARK 9 : in this step the assumption % — +00 is crucial.

=

2 2
r—k/ (=W +u <u,W>)(z + rpz)w(z)dz| < 2HwHoo@ / |I/V]2 ,
)\k B3 )\k B(xk,rk)
furthermore
E(zg, Ory) = —/ [Vul? < —/ IVul? = Zk
and since Bax bry) — +00 we obtain that A — 4+00. So
VTE N :

1

3
VT </ |W|2> tends to zero.
Ae \JBarm)

Hence we see that for all w in D(B?)

Vo.Vw =0
BB

Therefore v is a real harmonic map on B3.

Third step : v, tends strongly to v in H'.
We shall prove this result in the next subsection.

Fourth step : end of the proof. For v € (0,1), for w in H'(B3, IR?), we denote

1
Bw = [ A

14

We remark that E(x1,0r;) = Eg(vy). From the third step we obtain that F(xy, 0ry,) ( resp.

E(xg, 1) ) tends to Ep(v) (resp Eq(v) ).
Now v is a real harmonic map. So there exists an universal constant C' such that
1.1
Vre(0,2), —/ Vo2 < Cr? .
27 7 JB(0,7)
We remark that C' can be chosen independent from the sequence (z,7k)key because v is
a real harmonic map, its mean value is zero and ||[Vov||z2(ps) = 1.
With the conditions satisfied by the sequence (z,rg)r and from the result of the third
step we obtain that

Ey(v) > VOE(v) .

If we choose an a priori # such that C62 < v/ we obtain a contradiction.
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Hence Theorem 4 is proved.

We are now able to prove the following result :

THEOREM 5. (e-regularity) There exists co, there exists ro > 0 such that
(EI r0<r<ry E(x,r) < 60) = (3 ALY s <r E(x,s) < AM/E) .

The previous A, depends continuously on rin (0,1).

Proof : we set 9 = & and we fix 79 > 0 such that I'y/rg < &. Let x in B3 and assume
that there exists 7,0 < r < ro such that E(x,7) < €. From the monotonicity formula we
note that for all s < r we have E(x,s) < ¢; and we can use theorem 4 : we obtain that

Vn € IN, E(x,0"r) < V" maz{E(x,r),n\/r} .

Let s € (0,7) and let n such that 6" < s < " !r. From the monotonicity formula we
deduce that . .
E(z,8) < E(z,0" 'r) + TVron-1

ie. ) 1 ~
E(z,s) < %\/9—” (F\/F + maz{E(z,r), U\/F})

hence

E(m,s)§ﬁ<F+7]+%> :

We set A, =T +n+ % and the theorem is proved.

3.4 Compactness result.

We prove now the third step of the previous part. This result of compactness is based
on the duality H! — BMO. For more details about these spaces one can see [11]. We know
for example that

THEOREM 6. If f € L®°(IRN), g € H'(IRN),

[ 15] < Call 1l g

where

7l = sup {f |f—fz,r\}.
zeRN r>0 |/ B(z,r)

Let ¢ € D(R?) which satisfies



In 3.4.3 we shall multiply by (v, — v) the Euler equation satisfied by vy — v in order
to show that ||V (v —v)||12 tends to zero. The most important difficulty will arise from the
term

— / Vol (ar + Mvw) (v — v) .
B(0,

’2

We will show that &2|Vug|?(ag + Axvg)(vp — v) is bounded in L! writing this term as a
product of a BMO function (see section 3.4.1.) by a H* function (see section 3.4.2.), and
using the H* — BMO duality.

3.4.1 (fvp)renv is bounded in BMO(IR?, IR?).

Let zy € B(0, %) and let r € (0, %) We set yp = x + 1120 € By, %rk). We remark

that 1 11
L vl [ P
T JB(zo,r) A TTk J B(yg.rry)

By the monotonicity formula :

1
" Vol [ Vel (AT
Tk J B(yk,rre) yk:8 8
8
<= Vul2 + (2)er
Tk JB(ari) 8

[N

gsxiﬂ%’“)r.

Hence
1

—/ \Vvk\2<8+r\/_
r B(Z()v)

82

Now \f\; tends to zero when k tends to +o00 so there exists a constant Cs3 such that

1
WEY e (0,2), 2 € B(0, 1), 1 / Vo2 < Cs .
8 8 B(zo,r)

Therefore with an inequality of Poincaré there exists a constant Cy such that
. 1 7
(i) YV kY 7€ (0,2),Y 2 € B0, —),][ ok — (08)s9.rldz < Ca < +00
8 8 B(zo,r)

where (vg),,r is the mean value of vi, on B(zp, 7).

Using John-Nirenberg inequality we see that (vj)gev is bounded in LP(B(0, L), IR?) for
all p in [1, 4+00).

Now let zg € B(0,2) and r € (0, ].

18



We have

£l @ardds < £ Jen = E@arl £ €0 — (€0
B(zo,r) B(zo,r) B(zo,r)

g][ |vk—<vk>z0,r|+][ 1€ () s — (€0)s0r]
B(zo,r) B(zo,r)

« The first term is bounded by Cy from (7).
% Let us study the second term : we know that ¢ € D(IR?) hence

€00~ (€0l < 5 [ )~ E(o) (o)l

<Lr ][ v |
B(zo,r)

since £ is a Lipschitz map and where L is the Lipschitz-coefficient of &.

Therefore

L
][ |£'Uk - (gvk)zo,rwz <Cy+ —2/ |Uk| .
B(Z()’T) r B(

Z07T)

We have already seen that (vg)repv is bounded in LP(B(0, £), IR?) for all p in [1,+00)
and in particular in L3(B(0, %), IR?) by a constant C5. Hence

=

3
/ log| < </ \vk\3> (wyrd)}
B(zo,r) B(zo,r)

< Cs(ws) 37?2

(w3 is the volume of the unit ball of IR?).
So there exists a constant Cg such that

1 3
VkeN,Vre(0,-),Y 2 e B, —),][ €0 — (Evp)agr|dz < Cg -
8 4 B(zo,r)

Now since £ = 0 out of B(0, %), the same inequality is true for all zg € IR® and for all
re (0, 4]

Therefore (£vy)pen is bounded in BMO(IR?, IR3).

3.4.2 H! boundness.

We recall a result of Coifman, Lions, Meyer and Semmes (see [9] and [10]).

PROPOSITION 2. Assume v € H'(IRY), v € L* (RN, R™) and divv = 0 in D'.
Then Vu.v € H' and

190l gy < Cr (Il (RY) 4 ol v v)) -
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We set
o i i i J J
bt = Vi, (@k + ARVE) — Uk o, (@, + Apy) -

First step : let us compute div szl.
Let ¢ € D(B3).

L enbidi == [ 6 [vh e (ah+ Mth) = v ]+ M)

= — /33 0] [Avi(ai + )\kv};) — Av,ﬁj(a{; + )\kvi)}

Now
2

Avl = =Nl Vorl2(al, + Apod) + ;—k (v <uW > =W (w, +12) -
k

Hence if we denote div bk = 'y,ij , we obtain

i = TR (W od <, WY, — (W=l <, W)

)
Tp+TrE2

(we recall that W = H — f(u)).
Second step : estimation of ||7 gz

2
1913 < 165202 [ | W (an +rez) Pz
k B3

<16 [ WPy
N JBagri)
.

and since '3 tends to zero when k tends to +00 we obtain that ny || 2 is bounded.

Third step : Let goz,j € H}(B?) be the solution of

Aﬁok = ’)’k
We know by standard elliptic estimates that there exists a constant Cg such that

Vke N,V (i,5) €{1,2,3}%, 07|12 (p1) < Cs .

opy
We set wkl = 2m and we have
z;

||7/’kl||H1(B3 < Cg and div (@Z’ ) ’Yk .
We write ﬂ,’gl = b?;l — zp,i];l. We have
div (8,) = 0 and 8, € L*(B%) .

Fourth step : now with the proposition of Coifman, Lions, Meyer and Semmes, we
obtain that (£v1),/37; is bounded in H!.
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3.4.3 Compactness.

We are going to prove that (Vv )rev is relatively compact in L%(B(0, %)) for the strong
topology. Let w be in HE(B(0, %)) We multiply by w the equation satisfied by vy and since
v is real harmonic we obtain

/ (Vo — Vo)Vuw — )\k/ (Vo2 (ar + Mpog)w(z)dz
B(0,3) B(0,3)
2

4ok / (=W 4+u <u,W>)(xp +rpz)w(z)dz = 0.
Me JB(0,3)

We set w = &2(vy — v) where € is a smooth cut-off function which satisfies

After a computation we get that the sum of four terms I + I1 + 111 + IV is zero.

First term :

1:/ 2|V — Vol?
BO,1)

2
Second term :

= [ (= 0)VE) (Vo - Vo)
B(0,1)

This term tends to zero because

V(£2) is uniformly bounded

2

v — v —— 0 strongly
k—+o00

2

L
Vo — Vv —— 0 weakly
k—-+o00

Third term :
IIT = )\ / €2V 2 (ag + Mpvr) (v, — v)
B(0,1)

’2

= [0 €Dtk ek + M) o)

’2 1,7,0

and since Vu is orthogonal to u

_ 2 Jo B (o ‘
=\ X £ kambw(v,ﬁ; —v")
B(07§) i,j,l

= M\:(A+ B)
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with
A= [ (o)t~ )

and

B is bounded by a constant independent of k£ because

&z, is uniformly bounded
(Ui)keﬁv is bounded in L*

(bgl)keﬂv is bounded in L?

[€(v}, — v")] e pv 18 bounded in L*

Let us study A :
A= [ easleh— o)+ [ (eDavilih—v) .

The first term is bounded because (§ vi)wl ﬁ,ij ; is bounded in H! and &(v}, —v") is bounded
in BMO and these two spaces are in duality. 7 N

The second term is bounded because (£v7,),, is bounded in L2, 1/};3 ; is bounded in LS
and &(vi — ') is bounded in L3.

Now it is clear that I1I tends to zero when k tends to +oo.

Fourth term :

2
Tk

IV = _/ (=W +u <u, W>)(z + r12)& (v — v)
Ak JB(0,3)
hence

2
r
V| < 2>\—i||W(ka + Tkz)HL?(B(o,%))-HUk - U||L2(B(o,%))
SO

Tk
TV 2525 W g3 o = w30 -

This term tends to zero since vy, tends to v in L? strong and since )\ﬂ: tends to zero.

As a conclusion we obtain that

Vu, —— Vo in L? strong
k——+oc0

and the result is proved.
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3.5 End of the proof of Theorem 3.

We set .
A= {x,EI r,0<r<rg Ex,r) <50} .

For all r > 0, x — E(m, 7) is a continuous map, hence A is an open set of B3.
Now by a standard covering argument we know that H!(B3\ A) = 0 (see [14]).

Finally if 1 € A, we fix 711 < 7o such that E(ajl,rl) < go. Using the continuity of
x +— E(x,r1) we know that there exists p > 0 such that for all z € B(xq, ), E(x,r1) < €p.
From the theorem of e-regularity we know that for all s < rq, for all x € B(z1, p),

E(x,s) < Ap /s

and with the integral characterization of the Holder continuous maps we obtain that u €
CO%(B(x1, 1))

Therefore if x € A then u is Holder continuous in a neighbourhood of z and theorem 3
is proved.

4 Further results about the minimizers of F.

In conclusion we mention in this part any results which concern the minimizers of the
micromagnetism energy.

Let g € H%((‘)B3,S2). We write Hgl(B3,S2) the set of the maps v in H'(B3,5?%) such
that v = g on B>. We consider u € H gl (B3,8?). Let us assume that u is a minimizer of F
on H}(B3,5?).

We already know that u is regular on B3\ V, where H'(V) = 0, since u is also a
stationary critical point of E.

First we can prove that u satisfies monotonicity formulae better than in the stationary
case.

PROPOSITION 3. For all o in (0,2) there exists a constant ', such that
i E(xg,7) 4 Tar®

is a mon decreasing function of r.

Sketch of the proof : we proceed like in the minimizing harmonic maps case. We fix
xin B® and r € (0,1 — |z|), we set

ole) = u(:v—l—r‘y:”;‘) if y € B(x,7r)
®) { uly) iy ¢ Bla,v)

Since u 1s a minimizer of E we write

E(u) < E(v) .
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We obtain then that there exists a constant I', such that

0< di (E(w,r) + Faro‘) .

r

The term d%EN(a;, 7) comes from the Dirichlet energy. The perturbation 4 (I',7®) is due to
the last two terms of E.

REMARK 10 : in order to treat the non local term we remark that

llu — UHL2(B3) < Kr2 hence \|H, — HUHLQ(B3) < Crs .

Like in the case of minimizing harmonic maps, we show that the singularities of w are
isolated.

THEOREM 7. Assume v € H'(B3,5?) is a minimizer of E. Then the singularities
of u are isolated.

Sketch of the proof : assume that for example zero is a non isolated singularity of w.
We set
Ug(x) = u(ox) .

We remark that

)

1
Lo vl == [ vup
B(0,1) o JB,

and the last term is bounded thanks to the monotonicity formula. Then we can extract a
subsequence (g, ), which converges to ug in H! weak, L? strong and almost everywhere.

Then we prove that we can extract this subsequence such that the convergence is in H'*
strong and ug is a radial minimizing harmonic map.

Now the idea underlying the proof is that if there is a sequence of singularities which
converges to zero, then ug has a line of singularities, and this is impossible (see [14]).

REMARK 11 : these results are proved at length in [8]. T recall that similar results
about the minimizers of E are obtained by Hardt and Kinderlehrer in [13], with a very
different and very interesting approach.
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