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Abstract : we study the regularity of critical points of an energy which stems from
micromagnetism theory. First we show that in dimension two critical points are smooth in
B2. In the three dimensional case we prove that the stationary critical points of the energy
are smooth except in a subset of one dimensional Hausdorff measure zero. The particularity
of this work is the non local character of one term of the energy.

1 Introduction.

1.1 Micromagnetism theory.

In the micromagnetism theory, presented by J. Miltat in [19] and by W. F. Brown in
[6], a soft magnetic material is characterized by a spontaneous magnetization defined by
a magnetic moment per unit volume denoted M(x). This magnetic moment links the
magnetic field H and the magnetic induction B by the relation

B = H + 4πM .

Furthermore the norm of M is constant and we write M(x) = Msu(x) where |u(x)| = 1.

The energy associated with a configuration M consists of the sum of five terms.

Etotal(M) = Eexch +EHa +EHd
+EK +EME .

The first one is called the exchange energy. It comes from Heisenberg’s model of the
interaction energy between two spins :

Eexch =
1

2

∫

|∇M |2

The two following terms are deduced from Maxwell’s equations :

curl H = j div B = 0 .
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We decompose H into two terms : H = Ha +Hd. The applied field Ha arises from external
current distributions j :

curl Ha = j div Ha = 0 .

The demagnetizing field satisfies :

curl Hd = 0 div (Hd + 4πM) = 0 .

The energy induced by Ha and Hd are

EHa = −
∫

HaM EHd
= −1

2

∫

HdM .

The last two terms pattern the relations between the magnetic properties and crystal
orientations. The anisotropy energy EK reflects the existence of preferential axes of mag-
netization. The magnetoelastic energy EME expresses the link between elastic strains and
the direction of M .

1.2 Statement of the results.

In this article we study critical points of an energy defined for u ∈ H 1(B3, S2) by

E(u) =
1

2

∫

B3
|∇u|2 − 1

2

∫

B3
H.u+

∫

B3
F (u)

where H ∈ L2(IR3, IR3) is the solution of the following non local problem:

♦
{

curl H = 0
div (H + ū) = 0 in D′(IR3)

where ū is equal to u in B3 and is zero out of B3.
We assume that F ∈ C1(IR3, IR) and satisfies

∀ ξ ∈ IR3, |F (u)| ≤ K[1 + |ξ|6] .

We denote
∇F (ξ) = f(ξ) .

REMARK 1 : the energy E is obtained from the physical model taking all the physical
constants equal to 1. So the first term of E represents the exchange energy, the non
local term corresponds to the demagnetizing energy, and the local term contains applied,
anisotropy and magnetoelastic energies.

REMARK 2 : we will prove that the non local term of E satisfies :

−
∫

B3
H.u =

∫

IR3
|H|2 .

Hence with the hypothesis about F , the proof of the existence of minimizers of the energy
is obvious.
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Critical points of E satisfy the Euler equation :

−4 u− u‖∇u‖2 −H+ < u,H > u+ f(u)− < u, f(u) > u = 0 .

The first term of E is the Dirichlet energy, i.e. the energy which the critical points are
the harmonic maps with values in a riemannian manifold. In the next subsection we will
recall the regularity results concerning harmonic maps. We obtain in this article the same
results concerning now the critical points of E.

Our first result is a regularity theorem in dimension two.

THEOREM 1. Let u ∈ H1(B2, S2) be a critical point of E. Then u is smooth on B2.

REMARK 3 : if we suppose that the domain is a cylinder B2 × IR, we can consider a
magnetic moment per unit volume invariant by translations parallel to the z-axis (see [19]).
In this case we work with maps defined on a two dimensional domain.

The regularity theory for critical points of quadratic functionals in dimension two has
considerably progressed since the theorems of Morrey in 1948 (see [20]). One of the most
important results is proved in [15] by F. Hélein. It concerns the regularity of harmonic
maps defined in an open set of IR2 and with values in a Riemannian manifold. One can find
a generalization of this result which concerns harmonic sections in [7]. Besides F. Bethuel
shows in [3] a result of regularity for the solutions of prescribed mean curvature surfaces
equation. For the interior regularity we use mainly here the works of F. Hélein about the
harmonic maps into the sphere (see [16]).

Our second result is the following

THEOREM 2. Assume u ∈ H1(B3, S2) is a stationary critical point of E. Then there
exists an open subset V ⊂ B3 such that u is smooth in V and H1(B3 − V ) = 0, where H1

denotes one dimensional Hausdorff measure.

Note that a stationary critical point of E is a critical point of E when we allow variations
both acting on the target manifold (as in the end of the section) and acting on the source
manifold. A precise definition will be given in section 3.

Theorem two is similar to the result of Evans concerning stationary harmonic maps with
values in a sphere (see [10]

We recall now the regularity results concerning weakly harmonic maps with values in a
riemannian manifold.

1.3 Harmonic maps.

Let M be a compact submanifold of IRn. We consider the Dirichlet energy

F (u) =

∫

Ω
‖∇u‖2

defined for u ∈ H1(Ω,M) where Ω is an open set of IRn.
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DEFINITION : the critical points of F are called harmonic maps with values in M.
They satisfy the equation :

−4 u−Au(∇u,∇u) = 0 in D′(Ω)

where Au is the second fundamental form of the embedding of M in IRn.

For example when M = Sn−1, harmonic maps with values in Sn−1 satisfy

−4 u− u‖∇u‖2 = 0 .

One of the most interesting topic concerning harmonic maps is the problem of their
regularity. We recall that the standard elliptic estimates give an improvement of regularity
when the laplacian of u is in Lp with 1 < p < +∞. In the case of harmonic maps these
hypothesis are not satisfied since we obtain for example when M is the unit sphere

−4 u = u‖∇u‖2 ∈ L1 .

In fact the regularity of harmonic maps depends on the dimension of the domain Ω.

When Ω is two-dimensional harmonic maps defined on Ω with values in a compact
riemannian manifold are regular. It is a theorem proved by F. Hélein in [15].

When the dimension of the source is greater than three, harmonic maps are not regular.
A counter-example is given by x

|x| which is harmonic with values in the sphere.
The first results of partial regularity in dimension greater than two for the minima of

quadratic functionals have been obtained in the case of minimizing harmonic maps by R.
Schoen and K. Uhlenbeck (see [23]) and by Hardt, Kinderlerher, Lin (see [14]). Furthermore
Evans proves in [10] a result of partial regularity when u is only a stationary harmonic map
with values in Sn−1. This result is generalized by Bethuel in [4]. Moreover T. Rivière builds
in [22] harmonic maps totally discontinuous.

1.4 Outline of the paper.

The paper is organized as follows :
In the end of this part we compute the Euler equations of the problem.

Theorem 1 will be proved in the second part. We shall use compensation results proved
by Wente and which enable the demonstration of the regularity in dimension two of harmonic
maps with values in a ”very symmetric” submanifold (see Hélein’s article [17]).

The third part is devoted to the proof of the partial regularity for the stationary critical
points of E in the three-dimensional case.

We follow in this part the ideas of L.C. Evans (see [10]). We first find a monotonicity
inequality. Afterwards we show a theorem of ε-regularity: if Ẽ(x0, r) < ε0 for r little enough
then u is smooth in a neighbourhood of x0, where

Ẽ(x0, r) =
1

r

∫

B(x0,r)
|∇u|2 .
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In order to prove this theorem one needs a result of compactness in the strong H 1

topology which uses the H1 − BMO duality. As it is remarked in Evans’ article (see [10])
these spaces play a very important role in the regularity problems. Lastly we conclude the
proof with a classical covering argument.

In the fourth part we give without proof further results about the minimizers of E.

Compared with the theorems relating to weakly harmonic maps, the second term of
the energy entails several difficulties. The first one is the non local character of this term
which keeps us from getting easily a monotonicity formula. The second difficulty is that
the homogeneity of the third term in the Euler equation is different from the homogeneity
of the two first terms. This fact carries away new technical difficulties for the proof of
the ε-regularity. Last but not least, because of the term H the calculation of the equation
satisfied by stationary critical points of E is quite delicate since we have to write H in the
shape of a convolution of div u with a very singular kernel.

REMARK 4 : in a recent paper (see [13]) R. Hardt and D. Kinderlehrer establish the
partial regularity of the minima and study their singularities. The point of view and the
proofs of their article are very interesting and very different from the content of my work.

NOTATIONS :
∗ BN is the unit ball of IRN .
∗ Sp is the unit sphere of IRp+1.
∗ B(x, r) is the ball centered in x of radius r.
∗ If Ω is an open set of IRN and M is a submanifold of IRn we write

H1(Ω,M) =
{

u ∈ H1(Ω, IRn) such that u(x) ∈ M a.e.
}

.

∗ If Ω is an open set of IRN , D(Ω, IRN ) is the space of the smooth function whose
support is a compact subset of Ω with values in IRN . We denote D′(Ω) the space of the
distributions on Ω.

1.5 Euler equations.

1.5.1 Study of H.

Let us first make two remarks about the map u 7→ H.

LEMMA 1. Let u ∈ H1(B3, S2). Let H ∈ L2(IR3, IR3) be the solution of ♦. Then

H ∈
⋂

1≤p<∞
Lp(IR3) .

Proof : we note that u ∈ L∞(IR3) hence div u ∈W−1,∞ . We consider Φ ∈ H1(IR3, IR3)
such that 4Φ = −div u in IR3. We have that Φ ∈ ⋂1≤p<∞W 1,p. Therefore since H = ∇Φ
we obtain

H ∈
⋂

1≤p<∞
Lp(IR3) .
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Furthermore we remark that for all p ∈ (1,+∞) there exists a constant Kp such that

‖H‖Lp ≤ Kp‖u‖Lp .

LEMMA 2. The map u 7→ H where H is the solution of ♦ is self-adjoint for the
L2-scalar product.

Proof : let u and v in H1(B3, S2). We consider Φ (resp. Ψ) in H1(IR3, IR3) such that
4Φ = −div u in IR3 (resp. 4Ψ = −div v in IR3). We set H = ∇Φ and L = ∇Ψ. We have

∫

B3
v.H =

∫

IR3
v.∇Φ

= −
∫

IR3
div v.Φ = −

∫

IR3
4Ψ.Φ

=

∫

IR3
∇Ψ.∇Φ.

Hence we obtain that
∫

B3
v.H =

∫

B3
L.u

i.e. u 7→ H is self-adjoint in L2.

1.5.2 Euler equations.

We are going now to compute the Euler equation satisfied by the critical points of E. Let
ϕ be an element of D(B3, IR3). We set

ut =
u+ tϕ

|u+ tϕ| = u+ t(ϕ− <u,ϕ> u) + O(t2)

and we note
δu = ϕ− <u,ϕ> u .

Let Ht be the solution of ♦ associated with ut. We set now

E(ut) =
1

2

∫

B3
|∇ut|2 −

1

2

∫

B3
Ht.ut +

∫

B3
F (ut) .

We remark that
Ht = H + tδH + O(t2)

where δH satisfies
{

curl δH = 0

div (δH + δu) = 0 in D′(IR3)

Hence with these notations we obtain

E(ut) = E + tδE + O(t2)
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where

δE =

∫

B3
∇u∇δu − 1

2

∫

B3
δH.u − 1

2

∫

B3
δu.H +

∫

B3
f(u).δu .

∗ Computation of the first term :
∫

B3
∇u∇δu =

∫

B3
∇u∇(ϕ− <u,ϕ> u)

=

∫

B3
∇u∇ϕ−

∫

B3
∇u.∇u. <u, ϕ> −

∫

B3
∇u.u∇ <u,ϕ>

=

∫

B3
∇u∇ϕ−∇u.∇u. <u, ϕ>

since u is orthogonal to ∇u. Hence
∫

B3
∇u∇δu = D′< −4 u− u|∇u|2, ϕ >D .

∗ Computation of the second term :
From the second lemma we know that u 7→ H is self-adjoint hence

−1

2

∫

B3
δH.u = −1

2

∫

B3
δu.H = −1

2

∫

B3
< ϕ,H− <u,H> u > .

The computation of the last two terms is obvious.

Therefore the critical points of E satisfy the following Euler equation

−4 u− u‖∇u‖2 −H+ <u,H> u+ f(u)− <u, f(u)> u = 0 in D′(B3) .

2 Proof of theorem 1.

2.1 Compensation result.

We shall use in this part a result of Wente. It is proved in detail in [5] :

THEOREM 3. Let Ω be an open set of IR2. Let u ∈ H1(Ω) such that

4u = axby − aybx

where a and b are in H1(Ω). Then u is continuous in B2.

REMARK 5 : using this result the proof of the regularity of harmonic maps in di-
mension two with values into Sn is quasi immediate.

REMARK 6 : with these hypothesis the result of Wente gives us an estimate of the
form :

‖u‖L∞(Ω) ≤ C(Ω)‖∇a‖L2(Ω).‖∇b‖L2(Ω)

where C(Ω) is a constant which only depends on the conformal class of the open set Ω.
Sami Baraket studies in [2] the best constant in this inequality.
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2.2 Proof of theorem 1.

We shall write the Euler equation on the form of a conservation law in order to put in
evidence curls and to be able to apply Wente’s theorem.

Since
∑

j ∇uj.uj = 0, we can write the Euler equations verified by u on the form

−4 ui = ∇uj(ui∇uj − uj∇ui) + ψi

where
ψi = Hi − ui <H,u> −f i(u) + ui <f(u), u> .

We know that u is uniformly bounded by 1. Furthermore

H ∈ L2(B2) and f(u) ∈ L∞ .

We remark then that

div (ui∇uj − uj∇ui) = −uiψj + ujψi ∈ L2(B2) .

Let bij ∈W 1,2(B2) be a solution of

div bij = −uiψj + ujψi .

In particular bij ∈ L6(B2).
Since

div (ui∇uj − uj∇ui − bij) = 0

there exist cij ∈ H1(B2) such that

ui∇uj − uj∇ui − bij = curl cij .

Hence
−4 ui = ∇uj. curl cij −∇uj. bij + ψi

We decompose ui in two parts : ui = αi
1 + αi

2 where

−4 αi
1 = ∇uj . curl cij

−4 αi
2 = −∇uj. bij + ψi ∈ L

3
2 with αi

2 = 0 on ∂B2 .

Using theorem 3 we obtain that αi
1 is continuous. Furthermore we know from standard

elliptic estimates that αi
2 is in W 2, 3

2 (B2) and from the Sobolev embedding that αi
2 ∈ C0,α.

So u is continuous and we conclude the proof by a result of Ladyzenskaya and Ural’ceva
(see [18]).

3 Proof of theorem 3.

We recall that we are in the case u ∈ H1(B3, S2).
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3.1 Stationary critical points of E.

Roughly speaking a stationary critical point of E is a critical point of E when we allow
variations both acting on the target manifold and also on the source manifold :

DEFINITION : a map u ∈ H1(B3, S2) is a stationary critical point of E if u is a
critical point of E which satisfies the following property. If χt is a smooth one-parameter
family of diffeomorphisms of B3 satisfying χ0 = IdB3 and χt|∂B3 = Id|∂B3 then

d

dt
E(u ◦ χt)|t=0 = 0 .

Let u be a stationary critical point of E. We shall compute the equations verified by u.

Let ξ be a smooth vectors field with compact support in B3. We set

ut(x) = u(x+ tξ(x))

where t is little enough. We consider Φt ∈ H1(IR3) the solution of

4Φt = −div ūt

when ūt = ut in B3 and zero out of B3. We remark that for all t, the map Φt is in W 1,p(IR3)
for 1 < p <∞ and from the Sobolev embedding Φt ∈ L∞(IR3).

We set Ht = ∇Φt and we have

E(ut) =
1

2

∫

B3
‖∇ut‖2 − 1

2

∫

B3
Ht.ut +

∫

B3
F (ut) .

Let us compute d
dt
E(ut)|t=0.

First part of the energy.
The computation of A = d

dt
(1
2

∫

B3 ‖∇ut‖2)|t=0 is classical (it concerns stationary har-
monic maps). One obtains :

A = −1

2

∫

B3
|∇ut|2div ξ +

∫

B3

∑

i,α,β

ui
xα
ui

xβ
ξβ
xα
.

Second term of the energy.
Let us compute d

dt
(−1

2

∫

IR3 ut.Ht)|t=0 = 0.

We consider G(r) the Laplace kernel in IR3 :

G(r) =
C

r
.

Let φ ∈ H1(IR3, IR) be the solution of

4φ = div v̄ in D′(IR3)
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where v̄ is equal to v in B3 and is zero out of this ball. We have

φ(x) =

∫

B3
G(|x− y|)div v(y)dy −

∫

∂B3
G(|x − y|) < v(y), n(y) > dσ(y) .

This expression is right in the 3-dimensional case since the laplace kernel in IR3 is in L2(B3),
hence the previous integral exists.

We note that

div ut(x) = div u(x+ tξ(x)) + t
3
∑

i,j=1

ui
xj

(x+ tξ(x)).ξj
xi

(x).

We obtain

Bt = −1

2

∫

B3
ut.Ht =

1

2

∫

B3
div ut.Φt −

1

2

∫

∂B3
(ut.n)Φtdσ ,

now we remark that ut(x) = u(x) on ∂B3 hence with the previous integral formulation of
Φt we deduce the formula

Bt =
1

2

∫ ∫

x,y∈B3
G(|x− y|)



div u(.+ tξ) + t
3
∑

i,j=1

ui
xj

(.+ tξ)ξj
xi



(x)

.



div u(.+ tξ) + t
3
∑

i,j=1

ui
xj

(.+ tξ)ξj
xi



(y) dx dy

−1

2

∫

x∈B3

∫

y∈∂B3



div u(.+ tξ) + t
3
∑

i,j=1

ui
xj

(.+ tξ).ξj
xi



(x) G(|x − y|)(u(y), n(y)) dx dσ(y)

−1

2

∫

x∈∂B3

∫

y∈B3



div u(.+ tξ) + t
3
∑

i,j=1

ui
xj

(.+ tξ).ξj
xi



(y) G(|x− y|)(u(x), n(x)) dσ(x) dy

+
1

2

∫

x∈∂B3

∫

y∈∂B3
G(|x− y|) (u(x), n(x)) (u(y), n(y)) dσ(x) dσ(y) .

We note that we have used the Fubini theorem which is valid in this case since the map
G(|. − y|) is in L2(B3) for all y in B3.

We now do a change of chart in the integrals on B3 setting

X = x+ tξ(x) (and Y = y + tξ(y)) .

The jacobian of this change of chart in x is equal to 1 + tdiv ξ(x) + O(t2) (and the same
for y).
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After a somewhat long computation we get

dBt

dt |t=0
= −

∫

B3
div ξ.div u.Φ +

∫

B3
Φ
∑

i,j

ui
xj
ξj
xi

+
1

2

∫

x,y∈B3
div u(x)div u(y)G′(|x− y|)( x− y

|x− y| , ξ(x) − ξ(y)) dx dy .

We need to study the last term of this expression :

C =
1

2

∫

x,y∈B3
div u(x)div u(y)G′(|x− y|)( x− y

|x− y| , ξ(x) − ξ(y)) dx dy .

We note that this integral exists because ξ is smooth and so ξ(x)−ξ(y)
|x−y| is uniformly bounded

in B3 ×B3. In return we can not split C because we are not sure that the integral

1

2

∫

x,y∈B3
div u(x)div u(y)G′(|x− y|)( x− y

|x− y| , ξ(x)) dx dy

exists. Hence we will use singular integrals theory (Cf [24]).

We write for ε > 0

Mε = B3 ×B3 \ {(a, b) s. t. ‖a− b‖ ≤ ε}

and we have

C =
1

2
lim
ε→0

(∫

Mε

div u(x)div u(y)G′(|x− y|)( x− y

|x− y| , ξ(x) − ξ(y)) dx dy

)

.

Now we can cut this integral in two terms and we obtain

C = lim
ε→0

(∫

Mε

ξ(x)div u(x)
x− y

|x− y|G
′(|x− y|)div u(y)dy dx

)

i.e.

C = lim
ε→0

[

∫

x∈B3
ξ(x)div u(x)

(

∫

y∈B3\B(x,ε)

x− y

|x− y|G
′(|x− y|)div u(y)dy

)

dx

]

.

We set now

Lε(x) =

∫

y∈B3\B(x,ε)

x− y

|x− y|G
′(|x− y|)div u(y)dy ,

we set L(x) = limε→0 Lε(x) and we know from a result of Stein (see [24]) that Lε converges
to L in L2(B3).

Furthermore we know that x 7→ ξ(x)div u(x) is in L2(B3) so we get that

C =

∫

B3
ξ(x)div u(x)L(x)dx .
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Last term of E.

d

dt

(∫

B3
F (ut)

)

=

∫

B3
f(u(x+ tξ(x)). [∇u(x+ tξ(x)).ξ(x)] .

We do the change of chart X = x+ tξ(x) and we obtain that

d

dt

(∫

B3
F (ut)

)

|t=0
=

∫

B3
f(u(x)). [∇u(x).ξ(x)] .

As a conclusion the stationary critical points of E satisfy

−1

2

∫

B3
|∇tu|2div ξ +

∫

B3

∑

i,α,β

ui
xα
ui

xβ
ξβ
xα

−
∫

B3
div ξ.div u.Φ

+

∫

B3
Φ
∑

i,j

ui
xj
ξj
xi

+

∫

B3
ξ(x)div u(x)L(x)dx +

∫

B3
f(u(x)). [∇u(x).ξ(x)] = 0

for all ξ ∈ D(B3, IR3).

Let us study L with more precision. We are going to show that L belongs to all the Lp

spaces for 1 < p <∞. We have

L(x) = −H(x) +

∫

∂B3

x− y

|x− y|G
′(|x− y|)(u(y), n(y))dσ(y) = −H(x) + v(x) .

We already know that H is in all the Lp spaces for 1 < p <∞. We have now

∀x ∈ B3, |v(x)| ≤ K

∫

∂B3

dσ(y)

|x− y|2 ≤ K log (1 − ‖x‖)

and we know that this last map is in all the Lp spaces for 1 < p <∞ on B3.

3.2 Monotonicity formula.

Let u be a critical stationary point of E. We shall prove that u satisfies a monotonicity
formula similar to the inequality satisfied by stationary harmonic maps (see [10]).

We set

Ẽ(x, r) =
1

r

∫

B(x,r)
|∇u|2 .

PROPOSITION 1. There exists a constant Γ such that for all x ∈ B3, for all r such
that 0 < r < dist(x, ∂B3), for all r′ with 0 < r′ < r we have

Ẽ(x, r′) ≤ Ẽ(x, r) + Γ
√
r .
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Proof : we prove the proposition with x = 0 and we denote Br = B(0, r), Sr = ∂Br

and Ẽ(r) = Ẽ(0, r).

We set ξh(x) = xϕh(|x|) where

ϕh =











1 on [0, r]
0 on [r + h,+∞)
is affine on [r, r + h]

We shall use this vector field ξ as a test function in the equation verified by u and we will
compute the limit when h tends to zero of the expression we obtain. We remark that if
g ∈ L1(B3),

∫

B3
gξh −−−→

h→0

∫

B(0,r)
xg

∫

B3
gξj

hxi
−−−→
h→0

δi,j

∫

B(0,r)
g − 1

r

∫

∂B(0,r)
yiyjgdσ

∫

B3
gdiv ξh −−−→

h→0
3

∫

B(0,r)
g − r

∫

∂B(0,r)
g dσ .

Hence we get the formula :

−3

2

∫

Br

|∇u|2 +
r

2

∫

Sr

|∇u|2dσ +

∫

Br

|∇u|2 − 1

r

∫

Sr

|∇u.y|2dσ − 3

∫

Br

Φdiv u

+r

∫

Sr

Φdiv u+

∫

Br

Φdiv u− 1

r

∫

Sr

Φ < ∇u.y, y > dσ(y)

+

∫

Br

xL(x)div u(x) dx +

∫

Br

f(u(x)).(∇u(x).x) dx = 0 .

We divide the previous formula by r2, we use that |div u| ≤ 3|∇u| and we obtain

0 ≤ d

dr

(

Ẽ(r)
)

+ 12‖Φ‖L∞

1

r2

∫

Br

|∇u| + 6

r

∫

Br

|L||∇u|

+ 4‖Φ‖L∞

1

r

∫

Sr
|∇u|dσ +

1

r

∫

Br

|f(u(x))||∇u| .

We set now

V (r) =
1

r

∫

Br

|∇u| .

We have

V ′(r) =
1

r

∫

Sr
|∇u|dσ − 1

r2

∫

Br

|∇u| .
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Therefore the previous inequality implies that

0 ≤ d

dr

(

Ẽ(r) + 4‖Φ‖L∞V (r)
)

+16‖Φ‖L∞

1

r2

∫

Br

|∇u| + 6

r

∫

Br

|L||∇u| + 1

r
‖f‖∞

∫

Br

|∇u| .

We know that L ∈ L3(B3) so |L||∇u| ∈ L
6
5 (B3). Hence with the Hölder inequality we

obtain that there exists a constant K such that

0 ≤ d

dr

(

Ẽ(r) + 4‖Φ‖L∞V (r) +K
√
r
)

.

Therefore the map
r 7→ Ẽ(r) + 4‖Φ‖L∞V (r) +K

√
r

is a non decreasing map.

Now we have

V (r) ≤ C

r
‖∇u‖L2(B3).r

3
2

i.e. there exists a constant Γ such that

4‖Φ‖L∞V (r) +K
√
r ≤ Γ

√
r .

Therefore for all r′ such that 0 < r′ < r

Ẽ(r′) ≤ Ẽ(r) + Γ
√
r .

REMARK 7 : the map r 7→ Ẽ(r) + 4‖Φ‖L∞V (r) + K
√
r is non decreasing hence it

has a limit when r tends to zero. Moreover the map r 7→ 4‖Φ‖L∞V (r)+K
√
r tends to zero

when r tends to zero, so Ẽ(r) has a finite limit when r tends to zero.

REMARK 8 : the constant Γ does not depend on the point x.

3.3 ε-regularity theorem.

We will prove the following

THEOREM 4. There exist ε1, η, θ such that for all x ∈ B3 and for all r > 0 then

(

Ẽ(x, r) < ε1
)

=⇒
(

Ẽ(x, θr) ≤
√
θ max{Ẽ(x, r), η

√
r}
)

.

Proof : we follow in this proof the ideas of L.C. Evans (see [10]).
Assume that the theorem is wrong i.e that there exist a sequence (xk)k∈IN of points of

B3 and a sequence (rk)k∈IN ∈ (0, 1)IN such that

14

























































limk→+∞ rk = 0

Ẽ(xk, rk) → 0

Ẽ(xk, θrk) ≥
√
θẼ(xk, rk)

Ẽ(xk, θrk)√
rk

→ +∞

We denote
λ2

k = Ẽ(xk, rk) and W = H−f(u).

First step : scaling method. We set

vk =
u(xk + rkz) − ak

λk

where ak is the mean value of u on B(xk, rk). We remark that

∀ k,
∫

B3
|∇vk|2 = 1 and

∫

B3
vk = 0

hence (vk)k∈IN is bounded in H1/IR and we may choose a subsequence such that

vk ⇀ v in H1 weak, L2 strong and almost everywhere.

Second step : v is real harmonic in B3.
Let w be an element of D(B3). We set wk(y) = w( y−xk

rk
), we multiply by wk the equation

verified by u and we obtain :
∫

B3
∇vk.∇w −

∫

B3
(λkvk + ak)λk|∇vk|2.w

+
r2k
λk

∫

B3
(−W + u <u,W >)(xk + rkz)w(z)dz = 0 .

∗ The first term tends to
∫

B3
∇v.∇w .

∗ We know that














































lim
k→+∞

λk = 0

w ∈ D(B3) so it is uniformly bounded in B3

ak is bounded by 1

|∇vk|2 is bounded in L1(B3)

15



Therefore the second term tends to zero when k tends to +∞.

∗ Lastly the third term tends to zero also :

REMARK 9 : in this step the assumption Ẽ(xk,θrk)√
rk

→ +∞ is crucial.

∣

∣

∣

∣

∣

r2k
λk

∫

B3
(−W + u <u,W >)(xk + rkz)w(z)dz

∣

∣

∣

∣

∣

≤ 2‖w‖∞
√
rk
λk

(

∫

B(xk,rk)
|W |2

)
1
2

,

furthermore

Ẽ(xk, θrk) =
1

θrk

∫

B(xk ,θrk)
|∇u|2 ≤ 1

θrk

∫

B(xk ,rk)
|∇u|2 =

λ2
k

θ

and since Ẽ(xk,θrk)√
rk

→ +∞ we obtain that
λ2

k√
rk

→ +∞. So

√
rk
λk

(

∫

B(xk ,rk)
|W |2

) 1
2

tends to zero.

Hence we see that for all w in D(B3)

∫

B3
∇v.∇w = 0

Therefore v is a real harmonic map on B3.

Third step : vk tends strongly to v in H1.
We shall prove this result in the next subsection.

Fourth step : end of the proof. For ν ∈ (0, 1), for w in H 1(B3, IR3), we denote

Eν(w) =
1

ν

∫

B(0,ν)
|∇w|2 .

We remark that Ẽ(xk, θrk) = Eθ(vk). From the third step we obtain that Ẽ(xk, θrk) ( resp.
Ẽ(xk, rk) ) tends to Eθ(v) ( resp E1(v) ).

Now v is a real harmonic map. So there exists an universal constant C such that

∀ τ ∈ (0,
1

2
),

1

τ

∫

B(0,τ)
|∇v|2 ≤ Cτ2 .

We remark that C can be chosen independent from the sequence (xk, rk)k∈IN because v is
a real harmonic map, its mean value is zero and ‖∇v‖L2(B3) = 1.

With the conditions satisfied by the sequence (xk, rk)k and from the result of the third
step we obtain that

Eθ(v) ≥
√
θE1(v) .

If we choose an a priori θ such that Cθ2 <
√
θ we obtain a contradiction.
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Hence Theorem 4 is proved.

We are now able to prove the following result :

THEOREM 5. (ε-regularity) There exists ε0, there exists r0 > 0 such that

(

∃ r, 0 < r < r0, Ẽ(x, r) ≤ ε0
)

=⇒
(

∃ Λr,∀ s < r, Ẽ(x, s) ≤ Λr

√
s
)

.

The previous Λr depends continuously on r in (0,1).

Proof : we set ε0 = ε1
2 and we fix r0 > 0 such that Γ

√
r0 ≤ ε1

2 . Let x in B3 and assume

that there exists r, 0 < r < r0 such that Ẽ(x, r) ≤ ε0. From the monotonicity formula we
note that for all s < r we have Ẽ(x, s) ≤ ε1 and we can use theorem 4 : we obtain that

∀n ∈ IN, Ẽ(x, θnr) ≤
√
θn max{Ẽ(x, r), η

√
r} .

Let s ∈ (0, r) and let n such that θnr ≤ s < θn−1r. From the monotonicity formula we
deduce that

Ẽ(x, s) ≤ Ẽ(x, θn−1r) + Γ
√
rθn−1

i.e.

Ẽ(x, s) ≤ 1√
θ

√
θn
(

Γ
√
r +max{Ẽ(x, r), η

√
r}
)

hence

Ẽ(x, s) ≤
√
s

(

Γ + η +
ε0√
r

)

.

We set Λr = Γ + η + ε0√
r

and the theorem is proved.

3.4 Compactness result.

We prove now the third step of the previous part. This result of compactness is based
on the duality H1 −BMO. For more details about these spaces one can see [11]. We know
for example that

THEOREM 6. If f ∈ L∞(IRN ), g ∈ H1(IRN ),

∣

∣

∣

∣

∫

IRN
fg

∣

∣

∣

∣

≤ C2‖f‖?‖g‖H1(IRN )

where

‖f‖? = sup
x∈IRN ,r>0

{

−
∫

B(x,r)
|f − fx,r|

}

.

Let ξ ∈ D(R3) which satisfies











0 ≤ ξ ≤ 1
ξ = 1 on B(0, 1

2 )
ξ = 0 out of B(0, 5

8)
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In 3.4.3 we shall multiply by ξ2(vk − v) the Euler equation satisfied by vk − v in order
to show that ‖∇(vk −v)‖L2 tends to zero. The most important difficulty will arise from the
term

= λk

∫

B(0, 1
2
)
ξ2|∇vk|2(ak + λkvk)(vk − v) .

We will show that ξ2|∇vk|2(ak + λkvk)(vk − v) is bounded in L1 writing this term as a
product of a BMO function (see section 3.4.1.) by a H∞ function (see section 3.4.2.), and
using the H∞ − BMO duality.

3.4.1 (ξvk)k∈IN is bounded in BMO(IR3, IR3).

Let z0 ∈ B(0, 7
8) and let r ∈ (0, 1

8 ). We set yk = xk + rkz0 ∈ B(xk,
7
8rk). We remark

that
1

r

∫

B(z0,r)
|∇vk|2 =

1

λ2
k

1

rrk

∫

B(yk ,rrk)
|∇u|2

By the monotonicity formula :

1

rrk

∫

B(yk,rrk)
|∇u|2 ≤ 1

rk

8

∫

B(yk ,
rk
8

)
|∇u|2 + (

rk
8

)
1
2 Γ

≤ 8

rk

∫

B(xk ,rk)
|∇u|2 + (

rk
8

)
1
2 Γ

≤ 8λ2
k + (

rk
8

)
1
2 Γ .

Hence
1

r

∫

B(z0 ,r)
|∇vk|2 ≤ 8 + Γ

√
rk

8λ2
k

.

Now
√

rk

λ2
k

tends to zero when k tends to +∞ so there exists a constant C3 such that

∀ k,∀ r ∈ (0,
1

8
),∀ z0 ∈ B(0,

7

8
),

1

r

∫

B(z0 ,r)
|∇vk|2 ≤ C3 .

Therefore with an inequality of Poincaré there exists a constant C4 such that

(i) ∀ k,∀ r ∈ (0,
1

8
),∀ z0 ∈ B(0,

7

8
),−
∫

B(z0 ,r)
|vk − (vk)z0,r|dz ≤ C4 < +∞

where (vk)z0,r is the mean value of vk on B(z0, r).

Using John-Nirenberg inequality we see that (vk)k∈IN is bounded in Lp(B(0, 7
8), IR3) for

all p in [1,+∞).

Now let z0 ∈ B(0, 3
4 ) and r ∈ (0, 1

8 ].
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We have

−
∫

B(z0,r)
|ξvk − (ξvk)z0,r|dz ≤ −

∫

B(z0,r)
|ξvk − ξ(vk)z0,r| + −

∫

B(z0,r)
|ξ(vk)z0,r − (ξvk)z0,r|

≤ −
∫

B(z0,r)
|vk − (vk)z0,r| + −

∫

B(z0,r)
|ξ(vk)z0,r − (ξvk)z0,r|

∗ The first term is bounded by C4 from (i).

∗ Let us study the second term : we know that ξ ∈ D(IR3) hence

|ξ(vk)z0,r − (ξvk)z0,r|(t) ≤
1

r3

∫

B(z0 ,r)
|ξ(t) − ξ(s)|vk(s)|ds

≤ Lr −
∫

B(z0,r)
|vk|

since ξ is a Lipschitz map and where L is the Lipschitz-coefficient of ξ.

Therefore

−
∫

B(z0,r)
|ξvk − (ξvk)z0,r|dz ≤ C4 +

L

r2

∫

B(z0 ,r)
|vk| .

We have already seen that (vk)k∈IN is bounded in Lp(B(0, 7
8), IR3) for all p in [1,+∞)

and in particular in L3(B(0, 7
8), IR3) by a constant C5. Hence

∫

B(z0,r)
|vk| ≤

(

∫

B(z0,r)
|vk|3

) 1
3

.(ω3r
3)

2
3

≤ C5(ω3)
2
3 r2

(ω3 is the volume of the unit ball of IR3).
So there exists a constant C6 such that

∀ k ∈ IN,∀ r ∈ (0,
1

8
),∀ z0 ∈ B(0,

3

4
),−
∫

B(z0 ,r)
|ξvk − (ξvk)z0,r|dz ≤ C6 .

Now since ξ = 0 out of B(0, 5
8), the same inequality is true for all z0 ∈ IR3 and for all

r ∈ (0, 1
8 ].

Therefore (ξvk)k∈IN is bounded in BMO(IR3, IR3).

3.4.2 H1 boundness.

We recall a result of Coifman, Lions, Meyer and Semmes (see [9] and [10]).

PROPOSITION 2. Assume u ∈ H1(IRN ), v ∈ L2(IRN , IRN ) and div v = 0 in D′.
Then ∇u.v ∈ H1 and

‖∇u.v‖H1(IRN ) ≤ C7

(

‖u‖2
H1(IRN ) + ‖v‖2

L2(IRN ,IRN )

)

.
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We set
bijk,l = vj

k,xl
(ai

k + λkv
i
k) − vi

k,xl
(aj

k + λkv
j
k) .

First step : let us compute div bijk,l.

Let φ ∈ D(B3).
∫

B3
φxl

bijk,l = −
∫

B3
φ
[

vj
k,xlxl

(ai
k + λkv

i
k) − vi

k,xlxl
(aj

k + λkv
j
k)
]

= −
∫

B3
φ
[

4vj
k(a

i
k + λkv

i
k) −4vi

k(a
j
k + λkv

j
k)
]

Now

4vj
k = −λk‖∇vk‖2(aj

k + λkv
j
k) +

r2k
λk

(

uj<u,W > −W j
)

(xk + rkz) .

Hence if we denote div bijk,l = γij
k , we obtain

γij
k = − r2k

λk

[

(W j − uj<u,W >)ui
k − (W i − ui<u,W >)uj

k

]

xk+rkz
,

(we recall that W = H − f(u)).
Second step : estimation of ‖γ ij

k ‖L2 .

‖γij
k ‖2

L2 ≤ 16(
r2k
λk

)2
∫

B3
|W (xk + rkz)|2dz

≤ 16
rk
λ2

k

∫

B(xk ,rk)
|W (y)|2dy

and since
√

rk

λ2
k

tends to zero when k tends to +∞ we obtain that ‖γ ij
k ‖L2 is bounded.

Third step : Let ϕij
k ∈ H1

0 (B3) be the solution of

4ϕij
k = γij

k

We know by standard elliptic estimates that there exists a constant C8 such that

∀ k ∈ IN,∀ (i, j) ∈ {1, 2, 3}2 , ‖ϕij
k ‖H2(B1) ≤ C8 .

We set ψij
k,l =

∂ϕij
k

∂xl

and we have

‖ψij
k,l‖H1(B3) ≤ C8 and div (ψij

k,l) = γij
k .

We write βij
k,l = bijk,l − ψij

k,l. We have

div (βij
k,l) = 0 and βij

k,l ∈ L2(B3) .

Fourth step : now with the proposition of Coifman, Lions, Meyer and Semmes, we
obtain that (ξvj

k)xl
βij

k,l is bounded in H1.
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3.4.3 Compactness.

We are going to prove that (∇vk)k∈IN is relatively compact in L2(B(0, 1
2)) for the strong

topology. Let w be in H1
0 (B(0, 1

2)). We multiply by w the equation satisfied by vk and since
v is real harmonic we obtain

∫

B(0, 1
2
)
(∇vk −∇v)∇w − λk

∫

B(0, 1
2
)
|∇vk|2(ak + λkvk)w(z)dz

+
r2k
λk

∫

B(0, 1
2
)
(−W + u <u,W >)(xk + rkz)w(z)dz = 0 .

We set w = ξ2(vk − v) where ξ is a smooth cut-off function which satisfies











0 ≤ ξ ≤ 1
ξ = 1 on B(0, 1

2 )
ξ = 0 out of B(0, 5

8)

After a computation we get that the sum of four terms I + II + III + IV is zero.

First term :

I =

∫

B(0, 1
2
)
ξ2|∇vk −∇v|2

Second term :

II =

∫

B(0, 1
2
)
(vk − v)∇(ξ2)(∇vk −∇v)

This term tends to zero because










































∇(ξ2) is uniformly bounded

vk − v
L2

−−−→
k→+∞

0 strongly

∇vk −∇v
L2

−−−→
k→+∞

0 weakly

Third term :

III = λk

∫

B(0, 1
2
)
ξ2|∇vk|2(ak + λkvk)(vk − v)

= λk

∫

B(0, 1
2
)
ξ2
∑

i,j,l

vj
k,xl

vj
k,xl

(ai
k + λkv

i
k)(v

i
k − vi)

and since ∇u is orthogonal to u

= λk

∫

B(0, 1
2
)
ξ2
∑

i,j,l

vj
k,xl

bijk,l(v
i
k − vi)

= λk(A+B)
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with

A =

∫

IR3
(ξvj

k)xl
bijk,lξ(v

i
k − vi)

and

B = −
∫

IR3
ξxl
vj
kb

ij
k,l[ξ(v

i
k − vi)] .

B is bounded by a constant independent of k because















































ξxl
is uniformly bounded

(vj
k)k∈IN is bounded in L4

(bijk,l)k∈IN is bounded in L2

[

ξ(vi
k − vi)

]

k∈IN
is bounded in L4

Let us study A :

A =

∫

IR3
(ξvj

k)xl
βij

k,lξ(v
i
k − vi) +

∫

IR3
(ξvj

k)xl
ψij

k,lξ(v
i
k − vi) .

The first term is bounded because (ξvj
k)xl

βij
k,l is bounded in H1 and ξ(vi

k−vi) is bounded
in BMO and these two spaces are in duality.

The second term is bounded because (ξvj
k)xl

is bounded in L2, ψij
k,l is bounded in L6

and ξ(vi
k − vi) is bounded in L3.

Now it is clear that III tends to zero when k tends to +∞.

Fourth term :

IV =
r2k
λk

∫

B(0, 1
2
)
(−W + u <u,W >)(xk + rkz)ξ

2(vk − v)

hence

|IV | ≤ 2
r2k
λk

‖W (xk + rkz)‖L2(B(0, 1
2
)).‖vk − v‖L2(B(0, 1

2
))

so

|IV | ≤ 2

√
rk
λk

‖W‖L2(B(xk ,rk)).‖vk − v‖L2(B(0, 1
2
)) .

This term tends to zero since vk tends to v in L2 strong and since
√

rk

λk
tends to zero.

As a conclusion we obtain that

∇vk −−−→
k→+∞

∇v in L2 strong

and the result is proved.
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3.5 End of the proof of Theorem 3.

We set
A =

{

x,∃ r, 0 < r < r0, Ẽ(x, r) < ε0
}

.

For all r > 0, x 7→ Ẽ(x, r) is a continuous map, hence A is an open set of B3.

Now by a standard covering argument we know that H1(B3 \ A) = 0 (see [14]).

Finally if x1 ∈ A, we fix r1 < r0 such that Ẽ(x1, r1) < ε0. Using the continuity of
x 7→ Ẽ(x, r1) we know that there exists µ > 0 such that for all x ∈ B(x1, µ), Ẽ(x, r1) < ε0.
From the theorem of ε-regularity we know that for all s < r1, for all x ∈ B(x1, µ),

Ẽ(x, s) ≤ Λr1

√
s

and with the integral characterization of the Hölder continuous maps we obtain that u ∈
C0, 1

2 (B(x1, µ)).
Therefore if x ∈ A then u is Hölder continuous in a neighbourhood of x and theorem 3

is proved.

4 Further results about the minimizers of E.

In conclusion we mention in this part any results which concern the minimizers of the
micromagnetism energy.

Let g ∈ H
1
2 (∂B3, S2). We write H1

g (B3, S2) the set of the maps v in H1(B3, S2) such
that v = g on ∂B3. We consider u ∈ H1

g (B3, S2). Let us assume that u is a minimizer of E
on H1

g (B3, S2).
We already know that u is regular on B3 \ V , where H1(V ) = 0, since u is also a

stationary critical point of E.

First we can prove that u satisfies monotonicity formulae better than in the stationary
case.

PROPOSITION 3. For all α in (0, 2) there exists a constant Γα such that

r 7→ Ẽ(x0, r) + Γαr
α

is a non decreasing function of r.

Sketch of the proof : we proceed like in the minimizing harmonic maps case. We fix
x in B3 and r ∈ (0, 1 − |x|), we set

v(y) =

{

u(x+ r y−x
|y−x|) if y ∈ B(x, r)

u(y) if y /∈ B(x, r)

Since u is a minimizer of E we write

E(u) ≤ E(v) .
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We obtain then that there exists a constant Γα such that

0 ≤ d

dr

(

Ẽ(x, r) + Γαr
α
)

.

The term d
dr
Ẽ(x, r) comes from the Dirichlet energy. The perturbation d

dr
(Γαr

α) is due to
the last two terms of E.

REMARK 10 : in order to treat the non local term we remark that

‖u− v‖L2(B3) ≤ Kr
3
2 hence ‖Hu −Hv‖L2(B3) ≤ Cr

3
2 .

Like in the case of minimizing harmonic maps, we show that the singularities of u are
isolated.

THEOREM 7. Assume u ∈ H1(B3, S2) is a minimizer of E. Then the singularities
of u are isolated.

Sketch of the proof : assume that for example zero is a non isolated singularity of u.
We set

uσ(x) = u(σx) .

We remark that
∫

B(0,1)
|∇uσ|2 =

1

σ

∫

Bσ

|∇u|2

and the last term is bounded thanks to the monotonicity formula. Then we can extract a
subsequence (uσn)n which converges to u0 in H1 weak, L2 strong and almost everywhere.

Then we prove that we can extract this subsequence such that the convergence is in H 1

strong and u0 is a radial minimizing harmonic map.

Now the idea underlying the proof is that if there is a sequence of singularities which
converges to zero, then u0 has a line of singularities, and this is impossible (see [14]).

REMARK 11 : these results are proved at length in [8]. I recall that similar results
about the minimizers of E are obtained by Hardt and Kinderlehrer in [13], with a very
different and very interesting approach.
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[4] F. Bethuel : On the Singular Set of Stationary Harmonic Maps, Manuscripta Math.
78 (1993), 417-443.

[5] H. Brezis, J. M. Coron : Multiple Solutions of H- Systems and Rellich’s Conjecture,
Comm. Pure Appli. Math., 37 (1984), 149-187.

[6] W. Fuller Brown, Jr. : Micromagnetics, interscience publishers, 1963.

[7] G. Carbou : Regularity for a non linear variational problem : Manuscripta Math. 78
(1993), 37-56.
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