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Abstract - In this paper we study a model of ferromagnetic material governed by a nonlinear
Laudau-Lifschitz equation coupled with Maxwell equations. We prove the existence of weak
solutions. Then we prove that all points of the w-limit set of any trajectories are solutions of the
stationary model. Furthermore we derive rigourously the quasistatic model by an appropriate
time average method.

1 Introduction.

In this paper we study the following system

%+u/\%:2u/\He in R x Q, (1.1)
where H, = Au+ H — ¢(u),
8 _ . + 3
uoa(H—i—u)—i—curlE:Om]R x IR”, (1.2)
oF . + 3
EOE—CUTIH—FO']_Q(E—F!}C):OIHB x IR°, (1.3)
with the associated boundary conditions and initial data
% =0 on IRT x 01,
ov
u(0,x) = ug(x in £,
(0,.2) = uofa) »
E(0,7) = Eo(x) in IR?,
H(0,z) = Ho(z) in IR’
We assume that
fup )| = 1 in 2,
(1.5)

div (Ho +@g) = 0 in IR3.

In the above equations Q is a smooth bounded open domain of IR?, v the unit normal on
092, 1q is the characteristic function of 2, @ is the extension of u by zero outside €.

This system of equations which couples the Landau-Lifschitz equation with Maxwell’s equa-
tions describes electromagnetic waves propagation in a ferromagnetic medium confined to the
domain §2.

In the ferromagnetic model the magnetic moment denoted by w links the magnetic field H
with the magnetic induction B through the relationship B = puo(H + u). Moreover u is a vector
field which takes its values on S? the unit sphere of IR3. The conductivity of the body € is



denoted by o € IRT*, the anisotropic term is patterned by ¢(u) where ¢ : IR® — IR? is the
gradient of ® a positively defined quadratic form of IR?, f is a source term supported by IR x .
Finaly ¢ is the dielectric permittivity and pg is the magnetic permeability.

This model is described in detail in [3], [11] and [15].

Remark 1.1 When the solution of (1.1) is reqular enough, this equation is equivalent to

%:uAHe—uA(u/\He) in RT x Q. (1.6)

In [14] A. Visintin establishes the existence of weak solutions of the system (1.6),(1.2)-(1.5).
When H, reduces to Au, F. Alouges and A. Soyeur show in [2] the existence and the non
uniqueness of the solutions of (1.1). F. Labbé establishes in [10] the non uniqueness of the
solution for the quasistatic model. Numerical studies are carried on by P. Joly and O. Vacus in
[9], and by F. Alouges in the steady state case in [1]. At least in the case when H,. reduces to
H and Q = IR, J.L. Joly, G. Métivier and J. Rauch obtain existence and uniqueness results for
the solutions of (1.6), (1.2), (1.3), (1.4).

Notations : in the sequel we denote JH' = (H')? and IL? = (L?)3.

2 Statement of the results.

Let us assume that

ug € HY(Q) , Hy € L*(IR?), Fy € IL*(IR?), f € I*(IRT x ),
(H)
lug| = 1 a.e., div (Hy + ) = 0.

Definition 2.1 We say that (u, E, H) is a weak solution of (1.1)-(1.5) if

1. (u, E, H) verifies

Ou € L*(RT xQ), |u(t,z)| =1 a. e,
ot (2.1)

E ¢ L®(R"; L*(R?), H c L™®(IR"; L*(IR%)).

u € LR H'Y(Q)),

2. For all W € C®(IRT; IH' (1)),

/]R+XQ (%(t,x) +u(t,x) A %(t,x}) U(t,x)da dt =

- du oV
-2 /B+XQ; <U(t,:1:) N o (t,x)> 5 (b@)dedt (2.2)
+2 [ ultz) A (H(tvw) - w(u(t,x))) (¢, z)dz dt.
R™xQ

3. u(0,z) = up(x) in the trace sense.



. For all U € HY(RT x R?),

\\J
—/ (H(t,x) + ﬂ(t,a:)) . a—(t,w)alt dzr + E(t,z) - curl U (¢, x)dx dt =
Rt <R3 ot R+ % IR3

/ Hy(x) - ¥(0,z dac+/ uo(z) - U(0,x)dz.
(2.3)
. For all Ve HY(IRT x IR%),
G OV 1 ) di [ A o W) d
S @) oot x)de S ,x) - cur , x)dx
(2.4)
+a/ (E(t,x)+f(t,a:)) -\If(t,x)dxdt:/ Fo(x) - 9(0, 2)da.
Rt xQ R3
. For allt > 0, we have the following energy estimate :
//|—tx|dmdt+—//|Etx\da:dt<5()
(2.5)

o [t 9
+—/ / £ (¢, 2)|de dt
Ho Jo JQ
where

Et) = /Q (IVult, )2 + 20 (u(t,2))) dz + /IR3 <|H(t,x)|2 + %|E(t,x)2) da.

Theorem 2.1 Under the assumption (H), there exists at least one weak solution of (1.1)-(1.5).

This theorem is established in section 3 using a Galerkine approximation for a relaxed prob-

Definition 2.2 Let u be a weak solution of (1.1)-(1.5). We call w-limit set of the trajectory u
the following set

w(u) = {v € HY(Q),3 ty, limt, = +00,u(ty,.) — v in H(Q) weakly}

From the energy estimate (2.5), for any u, w(u) is non empty.

Theorem 2.2 Under the assumption (H), if v is a weak solution of (1.1)-(1.5), each point v
in w(u) is a weak solution of the steady state system

ve HYQ), [v] =1 ae., (2.6)
3
0 ov :
;8%( 8xl)+v/\(H o)) =0 inQ, (2.7)
H € IL*(IR%),
curl H =0 in D'(IR?), (2.8)

div (H +7) =0 in D'(IR?).



Remark 2.1 As v lies in IHY(Q), Av lies in HY(Q) so the product v A Av makes sense in
1 1 1
W=LH(Q) with =3 + 8 (see J. Simon [13]). Moreover from the equation (2.7) this product
belongs to IL?(Q).
Theorem 2.2 is proved in section 4. The limit process for v is carried out thanks to the
estimate

/+/\ (t,z)>dx dt < +oc.
R

On the other hand an averaging technique is used to justify the limit for H.

The last part of this article is devoted to the validation when ¢ and pg go to zero of the
quasi-stationary model. We suppose for this result that the source term f is zero.

Let us assume that
ug € HY(Q) , Hy € L*(IR?), Ey € IL*(IR?),

(Hq)
lugl = 1 a.e., div (Hy + up) = 0.

Definition 2.3 We say that u is a weak solution of the quasi-stationary model if

1. u satisfies

u e LOO(]R"‘; ]Hl(Q)) , 881: ]L2(]R+ « Q) ’ |u| =1a.e. (2.9)
2. For all U € C®(IR"; H'(Q)),
ou
[ (Grtn +utta) ) £ S o) wit e i
/ i t, ) gx ) - %(t,x)dm dt (2.10)
+2 u(t,z) N (H(t, z) — p(ult,z))) - V(t, z)dx dt,

RTxQ
3. u(0,z) = up(x) in the trace sense.
4. For allt € R, H(t,x) is the unique solution of
curl H(t,-) =0,
div (H(t,-) + a(t,-)) = 0, (2.11)
H(t,.) € L*(IR%).
5. For all t we have the following energy estimate
trou 9
t)+/ / 12 (1, @) Pda dt < &,(0), (2.12)
0 Jo Ot

where

€q(t):/Q(|Vu(t,:v)\2+2q)(u(t,x))) d:v—l—/R3 H (¢, 7)|da



Theorem 2.3 We consider two sequences (™), and (™), which tend to zero as n — 400 and
such that p™/e™ remains bounded.

Under the assumption (Hg) if u" denote a weak solution of (1.1)-(1.5) with g = €™ and
o = ', there exists a subsequence still denoted (u™), such that u™ tends to a limit u in
L®(IRT; HY(Q)) weak x where u is a solution of the quasi-stationary model (2.9)-(2.12).

This result is obtained via a time average process on H which avoid the high frequency
oscillations of H.

Proposition 2.1 Every point of the w-limit set of any trajectory of (2.9)-(2.11) is solution of
the steady state model (2.7).

This last result is straightforward from the estimate

ou 9
/R+/Q|E(t,x)| da dt < +o00

and from the continuity of the map u +— H given by (2.11).

3 Proof of the existence.

The main point is to establish that |u| = 1 almost everywhere. In order to construct a solution
which satisfies this condition we first solve a relaxed problem Py where u? takes its values in
IR®. The penalization term takes the form % (|u> — 1)u, A tends to 0.

In fact instead of (1.1) we solve the following equation

ou? ou? 1
8—“t — A 8—“t — 280 = 20(u?) + 5 (ju]? — Dt = 28. (3.1)
By a Galerkine process we construct a solution of (3.1) satisfying an energy estimate, that
allows us to pass to the limit as A\ goes to zero. This limit u takes its values on S? and by a
suitable test function we show that u satisfies (1.1).

First step. Resolution of (3.1).
Let us recall that the eigenfunctions of the operator A = —A 4+ I with domain
2 (9u
D(A) ={ue H* (), v 0 on 0}
build an orthonormal basis {¢}x in L?(Q) and an orthogonal basis in IH'(2) and H?(Q).
We denote Vi the N dimensional vector space spaned by {¢}1<r<n.
Now we introduce the Hilbert space

H,. 1 (R = {y e L*(IR?),curl ¢ € L?(IR?)}

curl

We denote {t}x an hilbertian basis of IH ., (
dimensional vector space spaned by {¢; h1<k<n-

IR3) orthonormal in IL?(IR?) and Wy the N



In the approximate problem we seek (uy, Hy, En) in Vy x Wy x Wy such that

N
un(t,x) =Y vp(t)pr(x),
k=1
N
Hy(t,x) =) hi(t)ir(z),

N
En(t,z) =) er(t)n(z),

k=1
which satisfies
1. For any ® in Vy,
oun oun
/ UN 4 ) —un(t,2) A 2N (1 2 ) - D ()dar + 2 / Vuy(t,7) - VO (2)dz
o\ Ot ot Q

_|_§ /Q(|uN(t,m)|2 — Dun(t,z) - ®n(z)dx

—2/Q (HN(t, 2) — olun(t, :@)) By (2)dz = 0.
2. For any ¥ in Wy,
o /]RS % (Hn(t,2) + iy (L, 7)) - U (2)de + /133 En(t,2) - curl Uy (z)da = 0.

3. For any Oy in Wy

50/ 8&(@@ -On(z)dx — / Hy(t,x) - curl Oy (z)dz
w3 Ot R?

+a/ (Ex(t,) + f(t,7)) - On(z)dz = 0.
Q

4. With the initial data
UN(O) = HVN (’LL()),

En(0) = Hwy (Eo),

Hy(0) = Ty (Ho),

where IIy,, (resp. Ily, ) denotes the orthogonal projection on Vi (resp. Wy).

(3.3)

(3.4)

Let us remark that v — v —uAw is one to one in IR? so the equation (3.2) can be solve for the
derivative in time. Then by Cauchy Picard theorem there exists a local solution of (3.2)-(3.5).

The following a priori estimates show that, in fact, the approximate solution is global in

time.



0
Taking &y = UN

5 B (3.2) one has

/| t,2)| da:—l—dt/ Vun(t, 2)2de + )\dt/(|uN(t,x)| —1)2de
(3.6)

+2—/q)uNtx x) - Hy(t, x)

o 8t —=(t,
Now we put ¥,, = Hy in (3.3)

oun

Ho d
T (t,

5 dt/ |HN(t,x)|2d:r+/,curl En(t,z) - Hy(t,x)dz = —pg
Rd

x) - Hy(t,x)dx (3.7)

In the same way taking Oy = En in (3.4),

1

d
—€0— / |En(t, z)|?dx —/ Hy(t,z) - curl En(t,z)dx
2 7dt R?

(3.8)
—i—a/Q ( |En(t,z)]> + f(t, ) - EN(t,x)> dx =0

Combining (3.6), (3.7) and (3.8) we derive the following estimate through Young inequality

%{/Q|Vuzv(t,x)l2dw+%/Q(‘“N(t’xw - 1)2da:+/Q‘I>(UN(t7x))dx}

1d €
53 L LR + i) s

+/|auNtx|da:+—/|EN(tac)|da:<—/\ftxdm

As ®(uy) is non negative we obtain the following bound for ug in IH(Q), Ey and Hy in
L2(IR?) and f in L?(IRT x Q) :
There exists constants k; independant of N and A such that

8uN

IVun|l oo (r+; £2(0)) < K1, H HJL2 (Rrx0) < k2, [[unll oo (m+n1)) < ks,

|’ENHL°°(R+;L2(R3)) < bty N[ rt; n2(m3)) < Fs-

So we can suppose that there exists a subsequence still denoted (uy, Hy,Exn) such that
when N goes to 400,

uy — ut in  L®(R'; H'(Q)) weak

A
8g—tN — % in  L2(IRT; IL?()) weak ,
En — EX in  L®(R'; L*(IR?)) weak x,

Hy — H? in  L®(RY; L*(IR?)) weak *.



And according to Aubin’s Lemma
uy — v in L*(0,T; ILY(Q)) strong for all T,
Taking the limit in the equation (3.2)-(3.5) we obtain
1. For any ® in IH()

u)‘ u)‘
[ 88—t(t,:v) D (2)da — /Qu’\(t,x) A aa—t(t 2) - ®(x)dx
+2/Qvu*(t,x) VO (z)dx + % /Q(]u)‘(t,x)IQ — D)t z) - B(x)dx (3.9)

—2/Q (H(t.2) — o (t.2))) - D(a)dw = 0 in L*(IRY).

2. For any W in IH .1 (IR3),
H)\
po < —— 0 + — o U > —I—/ EAt,z) - curl ¥(z)dz = 0 in D'(IRT). (3.10)
ot ot R?
3. For any © in IH ;] (IR3)
A
g0 < %,@ > —/ , H*(t,z) - curl ©(z)dx
f (3.11)
+a/ (B t.2) + f(t.2)) - O(a)dz = 0 in D'(IR")
Q
4. With the initial data
u*(0) = ug in L3(Q),
(3.12)

EXN0) = Eo, HA0) = Hy in (Heyg ().

As the L? (resp. L) norm is lower semi continuous for the weak (resp. weak %) topology
we obtain the energy estimate

V>0, Et +//|—t9c|dxdt+ //\E)‘tx)| dz dt
(3.13)

<—//|ftx|dxdt+€x()

where

:/Q|Vu>‘(t,x)]2dm+%/Q(IUA(t,x)]Q—1)2dx+/ﬂq)(ul(t,x))d:c

1 50 A 2
+—/ (H)‘t, 24 2 EMt )da:.
3 Js [H"\(t, z)| Mo' (t, z)|

Second step. Limit as A\ tends to 0.



We first note that as |ug| = 1, £4(0) does not depend on .
The estimate (3.13) allows us to suppose via the extraction of a subsequence that when A

goes to 0
ud —u in L®°(IR"; H'(Q)) weak x,

88—1? — % in L2(IRT x Q) weakly,

u —u in L2((0,T); IL*(2)) strongly for all T > 0 and a.e.,
E* ~E  in L®(IR"; L?(IR3)) weak x,

H* =~ H in L®(R"; L*(IR?)) weak .

e We remark, and it is the main point of the proof, that |u| = 1 a.e. in IRT x, as ur = uae.

e Now we derive the equation satisfied by u by taking in (3.9) ® = u(¢,z) A £(t, ) where ¢
is any test function given in L7 (IRT; H*(Q)).

T r ou \
/0 /Q W(t’x) S(ut(t ) NE(t x))de dt

T 8’LL)‘
—/ / Pt x) AL (1) - (WMt @) A E(x))da dt
0 JQ ot

I /oT /Q i gﬁ (t,z) - ai (“A(tv x) NE(E, x)) dz dt (3.14)
=1 ? )

—Z/OT/Q (B (t.2) — (1)) - (b, 2) A () ) drdit

+§ /OT /Q(|u)‘(t,x)|2 1) - (uA(t,x) A g(t,a:)) dxdt =0

The last term of the left-hand side of (3.14) vanishes identically. Furthermore we remark

that
ot 0 our . O

ox; ‘ ox; 0x; ) ox;’

Now we can take the limit when A goes to 0 to obtain

(W N E) = —(u A

/OT/Q <%(t,x) —u(t,x) A %(t,x)) (u(t, ) AE(E ) da dt

2 /()T/Qg1 ;i (t,7) (u(t,x) A g—;(t,x)) da dt

_2/0T/Q (H(t,:p) _ cp(u(t,x))) (ut,z) At @) da dt = 0,



that is

/OT/Q (%(t,x) + u(t,x) A %(t,;g)) E(t, z)da dt

T > ou )
+2/0 /Q;(U(tvw) N g o)) afi (t,x)dz dt (3.15)

T
2 /0 /Q u(t,z) A (H(tx) — p(ult, x))) - €(t, 2)dz dt = 0
s ou ou
E'(U/\ﬁ) = —(U/\a

since |u| = 1 a.e. in IRT x Q.

ou ou
)€ and = (un ) (ung) =~ ¢

e Moreover as the L? (resp. L™) norm is lower semi continuous for the weak (resp. weak x)
the energy estimate (3.13) remains valid for |ug| = 1.

e Next from (3.15) we derive that

) belongs to L7, .(IR"; IL%(2))

23: 0 (wn ou
=1 8% 8%

SO u A % makes sense in L7, (IR*; H~Y2(5Q)).

ou
Moreover as |u|? = 1, one has u - — = 0. So from the equality

ov

@— <u %)u—ku/\ (u/\%) —@
ov ov ov) ov
which is valid in H~1="(9Q) for any i > 0 according to the product of function in sobolev spaces
(see L. Hormander [6] ) so in fact
ou

9 makes sense in L7,.(RT; H™177(9Q)) for any 1 > 0.

e As the Maxwell equations are linear, it is straightforward to take the limit in (3.10) and
(3.11) to obtain (2.3) and (2.4).

4 Description of the w-limit set.

Consider a weak solution w of (1.1)-(1.5). From the energy estimate (2.5), the w-limit set w(u)
is not empty. We denote u, a point of this set.

Hence there exists a sequence (t,)n>1, with lim, .4 ¢, = 400 such that u(t,,.) tends
to U in IHY(Q) weak, in IL?(Q2) strong, and almost everywhere in Q. In particular one has
lu| =1 a.e. in Q.

First step. Let be a a non negative real number. For s in (—a,a) and z in Q2 we define for
n large enough
Un(s,z) = u(ty, + s, x).

10



The sequence (U, ),>1 tends to us in IL?((—a, a) x Q) strongly and in L2((—a, a); H'(Q)) weakly.
In fact following [12], we have the estimate

2a/_a/ Un(s,2) — u(ty,z)>deds = 2a/_a/ ; t + 71, z)dT dmds
+oo
< / ||// auTx drdx ds
2(1 —a tn
< (1,7) da:dT.
tn

Now, as % lies in IL2(IR* x Q), one gets

nEI}rloo % /_a/ Uy (s, ) — u(ty,z)|? deds = 0.
Since u(ty,.) tends to u in IL2(RQ) strongly, U, tends to ue, in L*((—a,a); L?(Q)) strongly.

Moreover we obviously see that the sequence (VU,),>1 is bounded in IL*((—a,a) x Q) so
there exists a subsequence still noted (U, ),>1 such that U,, tends to ue, in L?((—a,a); H'(2))
weakly, in L?((—a, a); IL?(2)) strongly and almost everywhere in €.

Second step. We consider a C* non negative function p, supported by (—a,a) satisfying

pa(t)=1for 7€ (—a+1,a—1),

0<pa(T) <1, [pa(r)] < 2.

We set
1 a

H](z) = % | H(ty, + s,2)pa(s)ds

a

and
a

E(x) = 2i E(tn, + s,x)pa(s)ds.

a J—qa

From the estimate (2.5), E and H are bounded in L®(IR"; IL?(IR?)). Then H? and E! are
bounded in IL? (R3) independently of n and a. So by extracting a subsequence we may suppose
that (E", H?),>1 converges in IL?(IR3) weakly to (E,, H,) when n goes to +oo.

Third step. In the weak formulation (2.2) we take as test function p4(t —t,)¥(z) where ¥
is a function lying in D(£2). We obtain after the change of chart s =t — ¢,

L (G

+2— /_/ Z( Z’?(s,x)) -(%Ppa(s)dxds (4.1)

)

)+ Un(s,z) A %(s,x)) - U(x)pa(s)dzds

—2— /_a/ U, A < (tn+s,2) — go(Un(s,a;))> -U(x)pa(s)drds = 0.

To pass through the limit in (4.1) we bound separately each term of (4.1).

11



e First term.

U (z)pa(s)dzds

T (s,z) 2da:> v </Q | (z))? da:) v ds

1/2 1/2
< (/ |V (x |da:> < dmds)
V2a

ou
Since — belongs to E2(]R+ x 1), this last term tends to zero as n goes to +00. In the same

ot

way, as U, takes its values on S2, one also has

2a

—a JQ

< 2 " g ([ |22
=9, _apa 0

tn+a
S a;

tn

lim /_a/ Un(s,z) (s x)pa(s) - V(x)drds =0

n—+o00 2a

e Second term.

As (Up)n>1 tends to ue strongly in L2((—a,a) x Q), as (%)n>l tends to &;OO weakly in

belongs to IL*°((—a,a) x Q), the second term of (4.1) tends to

L*((—a,a) x Q)

2—@ _a,oa ds/ Z(uoo 85;0;(3:)) g:i( )dx.

e Third term.

% /—Z/Q Un(s,2) N H(ty + s,x) - U(x)pe(s)dx ds
= 2_1(1 /—Z/Q ( Un(s,z) — uoo(:r)) NH(t, + s,2) - VU(x)pa(s)drds (4.2)

+% /_aa/guoo(a:)/\H(tn—i-s,x)-\I/(a:)pa(s)da:ds.

The first term of (4.2) goes to zero as (U, — uso)n tends strongly to zero in IL%((—a, a) x Q) and
as H is bounded in L>®(IR*; IL?(IR?)). The second term is equal to

/Q (uoo(:r) A H:(;p)) - U(2)dz,

/Q (uoo(m) A Ha(g;)) U (z)dx.

As @ is linear, it is straightforward to take the limit in the last term.
So from equation (4.1) we derive that u solve the equation

and tends obviously to

(4.3)
2a

m/Q (uoo(:r) A Ha(:v)) U (z)dz = 0.

12



Forth step. In order to obtain the desired result it remains to take the limit in (4.3) when
a tends to +oo.
We first remark that

lim 27(1:1.

o= T7, p(s)ds

Through estimate (2.5) and by definition of H,, (H,)q>1 is uniformly bounded in IL*(IR®).
Hence, by extraction we can suppose that H, tends to H,, weakly in E2(1R3). So at the limit
one has

- g(uOO(x)A%fj(x)) @)+ [ (o) A (Hoole) = olune () ) - Wla)do =0

Fifth step. In order to derive the equation satisfied by H., we first recall the equation
verified by H]' and E .
In equation (2.3) we take W(t,z) = 0,(t — t,)V&(x) with £ in D(IR?) and 6, is defined by

= /at pa(s)ds
We obtain that for every £ in D( JR3)
_ /_aa /IR3 <H(tn +s,2) + ulty, + s, a;)) -VE(x)pa(s)ds = /IR3 (Ho(x) + uo(g;)) VE(2)d20,(0).

As div (Hy + ) = 0 in D'(IR?), we obtain after dividing by 2a

/Bg (HZZ(@“) + Qi / Caltn + s, w)pa(S)d$> - VE(z)dz = 0.

a J—qa

When n goes to +00 we obtain that

/IR3 (Ha(x) + uoo(a:)) VE(x)dz = 0,
and so when a goes to infinity we get
div (Heo + Tiee) = 0 in D'(IR?).
Now we take V(t,z) = pq(t — tn)&(x) in (2.4). We obtain that

1 fe ) .
% /_a - E(ty, + s,2) - pl(s)é(x)dx ds — /1R3 H"(z) - curl £(z)dx
v [ Bite)-e)de + o /_a/ F(tn + 5,) - pals)€(x)da ds (4.4)

—/ Eo() - £(2)da pa(—tn).

For n large enough, the righthand side of (4.4) vanishes identically.
Let us bound the first term of (4.4). As p!, is identically zero on (—a + 1,a — 1) and is
bounded by 2, one has

1 f[e 1
%/_a s E(ty +s,x) - py(s)é(x)dx| < a||§||ILQ(1R3)||E||L°°(1R+;L2(1R3))' (4.5)
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Moreover

2_1a /_aa /133 Fltn + s,2) - pa(s)E(x)da ds

1 / fatin , 12, ra L \V?
S 2_(1 </ : Hf(S)HEQ(Q)) < pa(S) dS) Hg”LQ(Q)?

—a+tn —a

that is

1 attn 1/2
= E (/_ ||f(3)|212(9)) ||§||L2(Q) (4.6)

a+tn

2_1(1 /_aa R3 f(tn +s,7) - pa(s)é(x)dz ds

since 0 < pq(s) < 1.
When n goes to infinity, by extraction of a subsequence the first term of the left-hand side
of (4.4) tends to a real o, satisfying

1
|| < %||E||L°°(R+;E2(R3))||§||LQ(Q) (4.7)
Due to (4.6), the fourth term of the left-hand side of (4.4) goes to zero as

/1R+ /Q |f(t’5”)\2d:ndt < +00.

Hence we obtain
Qg — / , H,(x) - curl {(z)dz + U/ E.(z)-&(z)dr = 0.
R Q
Then taking the limit as a goes to infinity, one has from (4.7)
/ ) Hyo(x) - curl {(x)dx = a/ Eoo(x) - &(x)de. (4.8)
R Q
In the same way, taking U (¢, x) = p,(t, — t)&(x) in (2.3) we derive that
/ Ex(z) - curl £(x)dz =0,
R3
that is curl Eo, = 0. So it is valid to take £(z) = E(z) in (4.8) which leads to
a/ | En(2)2d = 0.
Q
This (4.8) gives curl Hy, = 0. Finaly H,, is uniquely determined by
div (Hao + fise) = 0 in IR,
curl Hy, = 0 in IR3,
H,, € L*(IR%).

Therefore u, is a solution of the stationary model (2.6)-(2.8).

Remark 4.1 Following an idea of G. Métivier, it is possible to prove Theorem 2.2 without
average Maxwell Equations. This is due to the fact that H(t,.) — H(u(t)) tends to zero in L2 |
when ¢ tends to +o0o (see [8]).
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5 Quasi-stationary model

The last part of this paper is devoted to the justification of the quasi-stationary model.

We recall that we suppose f = 0.

We consider " and p™ such that ™, p™ and €"/u™ tend to zero. In the sequel we denote
(u", H", E™) a family of weak solutions of (1.1)-(1.5) with g9 = " and pg = p".

We recall the energy estimate satisfied by (u", H", E™).

En(t)—i—/ot/ﬂ\%(t,xwdxdt—i—%/Ot/Q|E”(t,x)]2dxdt < £"(0) (5.1)
where
En(t) :/Q(\Vu”(t,x)]Q+2<I>(u"(t,x))) da:—i—/]RS (|H”(t,x)12+;—Z|E"(t,x)12> da.

Since £"/p" remains bounded, the right hand-side term of (5.1) remains bounded uniformly
8 n
in n. Therefore, by the energy estimate (5.1), u™ is bounded in L°(IR"; IH'(Q)) and %

is bounded in IL?(IRT x Q) uniformly in n. Furthermore H™ and \/e"/um E" are uniformly
bounded in L®(IRT; L2(IR?)). Extracting a subsequence we can suppose that

u —u in L®°(IRT; HY()) weak x,
u —u in L2((0,T); IL*(R2)) strong for all T > 0,
ou™  Ju

N N )
Y 5 B L*((0,T); IL*(92)) weak for all T" > 0.

First step.
For any a > 0 we set

1 a
up (t,x) == —/ u"(t + s, x)ds,
a Jo
n 1 . n
H}(t,x) = 5/ H"(t+ s,z)ds, (5.2)
0

1 a
El(t,7) = 5/0 E™t + s, 2)ds.

Lemma 5.1 For each n € IN and a > 0, (ull, H?, EI') satisfies the following estimates.

ugll oo (m; m () < 1"l poe (mt; B () (5.3)
P L (5.4
1HE | oo (mt 2 (mey) < H" | oo (r+; m2 (1)) (5.5)
1EG | oo (s m2(mey) < B Loo(mt; 2 (m3)) - (5.6)
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Proof. The estimates (5.3), (5.5) and (5.6) follow directly from the definition (5.2).
For (5.4) we write

ouy 1, ., n _tou”
P (t,x) = a(u (t+a,z)—u"(t,x)) = . o0 —(t + fa, x)do,
S0 )
oul L ou™ ou" 9
< —_— .
/ P 4 (s 2)|%ds < /1R+ ( ST —— (t + b, x)d@) dt < /IR+| Y (s,2)|°ds
That is

ouy ou”
/IR+XQ ot a (s, 2)|*ds dz </ o — (s, z)|?ds dz.

Lemma 5.2 For every a > 0 we have the following estimate

lug = u" || oo (m+; L2 (02)) <\/_” ”LQ(R“'XQ)

Proof. From the definition (5.2) one gets

W) — ut(tz) = é/oa(u”(s—i-t,x)—u”(t,x))ds

1 fo s ou”
= = — (¢t dr d
a/o /0 8t( + 7, 2)dT ds,

SO
2
|ul(t, ) — u™(t, x| //|—t+7‘:n)\d7ds
2
‘/ \— (t+ 7,z)|dr
t+a Py
<
_a/t Y — (s, z)|?ds,
hence

/|utw)—u(tw|d:p<a/ /| (s,x)|?ds dz.

Second step. We choose a,, = (6”,u”)i, and we denote in the sequel
Up :=u, , Hp:=H;, and E, :=E .

an

Thanks to the energy estimate (5.1) and Lemma 5.1, we can suppose after extraction of a
subsequence that

Up — u™ in L®(IR"; HY(Q)) weak «,
Uy — U™ in L2((0,T); IL*(Q2)) strong for all T > 0,
H, — H*® in L®(R*; IL*(IR?)) weak x,

ouy, N ou™

OUn  OU " . 52 mt
ot 5 B L*(IR™ x Q) weak.
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Furthermore Lemma 5.2 ensures that «™ = u and u, (0, ) — ug(-) in L?(2) strong.

Third step. For ¢ given in IR" we take W(s,z) = 141 4(s)é(z) in (2.1). After dividing by
a, we obtain that

au"( da:—l—/ / "t + s,x) Addtu™ (t + s,2)) - £(x)ds dx
Q Ot Q ap
oun o¢
+2/Qan/ Z( (t+s,x) A aﬂjé(t—f—s,az)).axi(a:)dsda:

—2/Q an/ "t +s,x) (H”(t+s,:1:) —@(u”(t+s,x))) -&(z)ds dx = 0.

Multiplying this last formula by a test function p(¢), we obtain after integration

[ S @l dr
R

+xq Ot

t [ [T (s n G sn) - ewprds do de

+xQ An

\ ) (5.7)

8u o
/R+XQ Qn, /0 Z ( (t+s,2) 83:2- (t+ s,x)) O, (x)p(t)ds dx dt

—f—n /IR+XQ /tt+an u"(s,x) A (H”(s,x) - cp(u"(s,x))) -&(x)p(t)ds dx dt = 0.

ouy, ou™
A RS L N
ot ot

in IL?(IRT x Q) weakly, the first term of (5.7) tends to

/]R+ /Q 8:;—?(@ x) - &(x)p(t)dx dt.

Let us now study the second term.

1 o ou™
/+x9a ; u (t—I—s,a:)/\W(t—i—s,x)-§(:1:)p(t)ds dx dt =

/JR+XQ p(t)E(x) - u"(t, ) A (% /Oan 8;; (t+s :E)ds) dz dt

1 [on ou”
+/ p(t)é(z) - — (u"(t +s,x) — u"(t,w)) A i(s,w)ds dt dz.
Rt xQ an Jo ot
The definition of u,, shows that this is equal to

n

/]R 1 Oan ( "t4s,x) A ai(154—5 x)) ~&(x)p(t)ds dx dt =

+xQ An ot

/]R+m p(t)é(x) - (U”(t,w) A %(t,x}) dt dx (5.8)

n

0@ [ (e ) ) ) A S s w)ds de

Qn
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The first term of (5.8) tends to

(e e}

[ ottrete) () n G ) )t

u" — u™ in L3, (IRT; IL*()) strongly

as

and
ouy, N ou™

ot ot
Now we prove that the second term goes to zero. We use the Cauchy-Schwarz inequality to
obtain

in L*(IRT x Q) weakly.

A= | [ 0@ [ 0 = (60) A T4, e |

1
3
A < €l ze (o) ||P||1Loc>(]R+ {/IR+XQ/ (/ (t+, ZE)dT) dx dt ds} X
1
{/ /n|8it+sx)| dsdwdt}2.
Rt xQ

Now by the Cauchy-Schwarz inequality and Fubini theorem we get

1
an Ou™ 2 Ou”
A< el = { [, o [0 [T 15 r i s at e} 15 e o

So after integration

ou™
A < el ol | g Ve ey

Hence by the energy estimate (5.1), A tends to zero as a,.

In the same way as in the previous section we obtain finally

/IR+><Q (82—:0@,1?) + uoo(t7x) A 8;—:0@,1;)> 'f(w)p(t)dx dt

3 o0
+2 /1R+ 3 <u°°(t,x) A %(t,x)) : ;f. (@)p(t)da dt (5.9)
Xi=1 i i
) . u™(t,z) A (HOO(@a;) — (P(Uoo(t,x))) - &(2)p(t)dz dt = 0.
IR™xQ

Fourth step. As for the study of the w-limit set we can prove that

div (H* + ™) = 0.

Now it remains to obtain
curl H* = 0. (5.10)
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We recall that for all ¢ in D(IR?®) and p in D([0, +00)) we have according to (2.4) that

[ e ) Leladds do— [ Hs.0) - curl €@)pls)d ds

(5.11)
+o /R+XQ E"(s,z) - p(s)¢(x)ds dx = /]R3 Eo(z) - £(z)p(0)dz.

Formally, the identity (5.10) is obtained taking p = 1(;;14,) in (5.11). Unfortunately this
function is not regular enough, so we introduce a regularised function ps.
For each § > 0 given, 0 < § < a,, we denote

1 i<s<a,—90
ps(s) =< 0 s<0or s>a,
linear 0<s<danda,—90<s<a,

Now, for p = ps(s — t) equation (5.11) gives

en t+9 . 8/)5
o, 1R3E (s,a;)ﬁ(s—t)f(a:)dsdx
n t+an
. E"(s, aj)%(s —t)-&(x)dsdx — / H](z) - curl £(x)dx
an Jitan,—5 JIR3 ot R
(5.12)
o t+an
+— / ps(t —s)E"(t,x) - &(x)dx ds
An Jt Q
1 t+an
=—— H"(s,x) - (1 — ps(s —t))curl {(z)dx ds.
an Jt R3
The two first terms of the left-hand side of (5.12) are bounded by
"
2 E" | oo (s 2oy 1€ 2 o) - (5.13)
The last term of the left-hand side of (5.12) is bounded by
|| E™| Lo (r+; m2) Il 22 (0)- (5.14)
The right-hand side of (5.12) is bounded by
5 n
2a—||H ||L°°(B+,E2(B3))||CurlgHILQ(]R3) (515)

According to the energy estimate (5.1) we have

A
?TA
E

IE™ | oo (m+; 2 (%)

IE" oo (mt; 2y < kVHT
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for some constant k )
So by choosing a,, = (" ™)1 and § = a2 we get, for any test function ¢

/ H™>(t,x) - curl £(x)p(t)dz dt = 0.
RS

Fifth step. Energy estimate.
By convexity and thanks to the definition (5.2), one has

/\vug(t,x)deHz/ @(ug(t,x))+/ \H" (¢, 2)[2da
Q Q R3

< 1/ (/ |Vu”(t+s,a:)\2dx+2/ q)(u"(t—i—s,x))—i—/ |H”(t—|—s,x)2dx)
aJo Q Q R?
1 a
< —/ E"(t+ s)ds
aJo

On the other hand
t 2
J

(T + s,x)dr| dxds

0

t+s
/ / /| (7, z)|?dr dx ds.

[1vuzta)Pae 2 [ o@ita) + [ 1
Q Q R3
1 t+s
Sa/ (5"t+s +/ /| T:U|d7'dw>ds<€”()
0

Since €"/u™ tends to zero, £™(0) tends to &;(0). Therefore using the semi continuity of the
norms for the weak topology, we derive the desired energy estimate (2.12).

Hence

agt“ (s,z)|>dz ds

Acknowledgements: The authors wish to thank professors T. Colin, J.L. Joly, M. Langlais,
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