Time Average in Micromagnetism.

Gilles Carbou, Pierre Fabrie

Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la libération, 33405 Talence cedex, France.

Abstract - In this paper we study a model of ferromagnetic material governed by a nonlinear Laudau-Lifschitz equation coupled with Maxwell equations. We prove the existence of weak solutions. Then we prove that all points of the ω -limit set of any trajectories are solutions of the stationary model. Furthermore we derive rigourously the quasistatic model by an appropriate time average method.

1 Introduction.

In this paper we study the following system

$$\frac{\partial u}{\partial t} + u \wedge \frac{\partial u}{\partial t} = 2u \wedge H_e \text{ in } \mathbb{R}^+ \times \Omega, \tag{1.1}$$

where $H_e = \Delta u + H - \varphi(u)$,

$$\mu_0 \frac{\partial}{\partial t} (H + \bar{u}) + \text{curl } E = 0 \text{ in } \mathbb{R}^+ \times \mathbb{R}^3, \tag{1.2}$$

$$\varepsilon_0 \frac{\partial E}{\partial t} - \operatorname{curl} H + \sigma \mathbf{1}_{\Omega}(E + f) = 0 \text{ in } \mathbb{R}^+ \times \mathbb{R}^3, \tag{1.3}$$

with the associated boundary conditions and initial data

$$\begin{cases} \frac{\partial u}{\partial \nu} = 0 & \text{on } \mathbb{R}^+ \times \partial \Omega, \\ u(0, x) = u_0(x) & \text{in } \Omega, \\ E(0, x) = E_0(x) & \text{in } \mathbb{R}^3, \\ H(0, x) = H_0(x) & \text{in } \mathbb{R}^3. \end{cases}$$

$$(1.4)$$

We assume that

$$|u_0(x)| = 1 \text{ in } \Omega,$$

$$\operatorname{div}(H_0 + \bar{u}_0) = 0 \text{ in } \mathbb{R}^3.$$
 (1.5)

In the above equations Ω is a smooth bounded open domain of \mathbb{R}^3 , ν the unit normal on $\partial\Omega$, $\mathbf{1}_{\Omega}$ is the characteristic function of Ω , \bar{u} is the extension of u by zero outside Ω .

This system of equations which couples the Landau-Lifschitz equation with Maxwell's equations describes electromagnetic waves propagation in a ferromagnetic medium confined to the domain Ω .

In the ferromagnetic model the magnetic moment denoted by u links the magnetic field H with the magnetic induction B through the relationship $B = \mu_0(H + \bar{u})$. Moreover u is a vector field which takes its values on S^2 the unit sphere of \mathbb{R}^3 . The conductivity of the body Ω is

denoted by $\sigma \in \mathbb{R}^{+*}$, the anisotropic term is patterned by $\varphi(u)$ where $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ is the gradient of Φ a positively defined quadratic form of \mathbb{R}^3 , f is a source term supported by $\mathbb{R}^+ \times \Omega$. Finaly ε_0 is the dielectric permittivity and μ_0 is the magnetic permeability.

This model is described in detail in [3], [11] and [15].

Remark 1.1 When the solution of (1.1) is regular enough, this equation is equivalent to

$$\frac{\partial u}{\partial t} = u \wedge H_e - u \wedge (u \wedge H_e) \text{ in } \mathbb{R}^+ \times \Omega.$$
(1.6)

In [14] A. Visintin establishes the existence of weak solutions of the system (1.6),(1.2)-(1.5). When H_e reduces to Δu , F. Alouges and A. Soyeur show in [2] the existence and the non uniqueness of the solutions of (1.1). F. Labbé establishes in [10] the non uniqueness of the solution for the quasistatic model. Numerical studies are carried on by P. Joly and O. Vacus in [9], and by F. Alouges in the steady state case in [1]. At least in the case when H_e reduces to H and $\Omega = \mathbb{R}^3$, J.L. Joly, G. Métivier and J. Rauch obtain existence and uniqueness results for the solutions of (1.6), (1.2), (1.3), (1.4).

Notations: in the sequel we denote $\mathbb{H}^1 = (H^1)^3$ and $\mathbb{L}^2 = (L^2)^3$.

2 Statement of the results.

Let us assume that

$$u_0 \in \mathbb{H}^1(\Omega) , H_0 \in \mathbb{L}^2(\mathbb{R}^3) , E_0 \in \mathbb{L}^2(\mathbb{R}^3) , f \in \mathbb{L}^2(\mathbb{R}^+ \times \Omega),$$

 $|u_0| = 1 \text{ a.e. } , \text{ div } (H_0 + \bar{u}_0) = 0.$

Definition 2.1 We say that (u, E, H) is a weak solution of (1.1)-(1.5) if

1. (u, E, H) verifies

$$u \in L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega)), \frac{\partial u}{\partial t} \in \mathbb{L}^2(\mathbb{R}^+ \times \Omega), \quad |u(t, x)| = 1 \quad a. \quad e.,$$

$$E \in L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3)), \quad H \in L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3)).$$

$$(2.1)$$

2. For all $\Psi \in \mathcal{C}^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$,

$$\int_{\mathbb{R}^{+} \times \Omega} \left(\frac{\partial u}{\partial t}(t, x) + u(t, x) \wedge \frac{\partial u}{\partial t}(t, x) \right) \cdot \Psi(t, x) dx dt =$$

$$-2 \int_{\mathbb{R}^{+} \times \Omega} \sum_{i=1}^{3} \left(u(t, x) \wedge \frac{\partial u}{\partial x_{i}}(t, x) \right) \cdot \frac{\partial \Psi}{\partial x_{i}}(t, x) dx dt \qquad (2.2)$$

$$+2 \int_{\mathbb{R}^{+} \times \Omega} u(t, x) \wedge \left(H(t, x) - \varphi(u(t, x)) \right) \cdot \Psi(t, x) dx dt.$$

3. $u(0,x) = u_0(x)$ in the trace sense.

4. For all $\Psi \in \mathbb{H}^1(\mathbb{R}^+ \times \mathbb{R}^3)$

$$-\int_{I\!\!R^+\times I\!\!R^3} \bigg(\, H(t,x) + \bar u(t,x) \bigg) \cdot \frac{\partial \Psi}{\partial t}(t,x) dt \, dx \, + \int_{I\!\!R^+\times I\!\!R^3} E(t,x) \cdot \mathrm{curl} \, \Psi(t,x) dx \, dt =$$

$$\int_{\mathbb{R}^3} H_0(x) \cdot \Psi(0, x) dx + \int_{\Omega} u_0(x) \cdot \Psi(0, x) dx.$$
(2.3)

5. For all $\Psi \in \mathbb{H}^1(\mathbb{R}^+ \times \mathbb{R}^3)$,

$$-\int_{\mathbb{R}^{+} \times \mathbb{R}^{3}} E(t,x) \cdot \frac{\partial \Psi}{\partial t}(t,x) dx dt - \int_{\mathbb{R}^{+} \times \mathbb{R}^{3}} H(t,x) \cdot \operatorname{curl} \Psi(t,x) dx dt$$

$$+\sigma \int_{\mathbb{R}^{+} \times \Omega} \left(E(t,x) + f(t,x) \right) \cdot \Psi(t,x) dx dt = \int_{\mathbb{R}^{3}} E_{0}(x) \cdot \Psi(0,x) dx.$$

$$(2.4)$$

6. For all t > 0, we have the following energy estimate:

$$\mathcal{E}(t) + \int_0^t \int_{\Omega} \left| \frac{\partial u}{\partial t}(t, x) \right|^2 dx \, dt + \frac{\sigma}{\mu_0} \int_0^t \int_{\Omega} |E(t, x)|^2 dx \, dt \le \mathcal{E}(0)$$

$$+ \frac{\sigma}{\mu_0} \int_0^t \int_{\Omega} |f(t, x)|^2 dx \, dt$$
(2.5)

where

$$\mathcal{E}(t) = \int_{\Omega} \left(|\nabla u(t,x)|^2 + 2\Phi(u(t,x)) \right) dx + \int_{\mathbb{R}^3} \left(|H(t,x)|^2 + \frac{\varepsilon_o}{\mu_0} |E(t,x)|^2 \right) dx.$$

Theorem 2.1 Under the assumption (\mathcal{H}) , there exists at least one weak solution of (1.1)-(1.5).

This theorem is established in section 3 using a Galerkine approximation for a relaxed problem.

Definition 2.2 Let u be a weak solution of (1.1)-(1.5). We call ω -limit set of the trajectory u the following set

$$\omega(u) = \left\{ v \in \mathbb{H}^1(\Omega), \exists t_n, \lim t_n = +\infty, u(t_n, .) \rightharpoonup v \text{ in } \mathbb{H}^1(\Omega) \text{ weakly} \right\}$$

From the energy estimate (2.5), for any u, $\omega(u)$ is non empty.

Theorem 2.2 Under the assumption (\mathcal{H}) , if u is a weak solution of (1.1)-(1.5), each point v in $\omega(u)$ is a weak solution of the steady state system

$$v \in H^1(\Omega), |v| = 1 \ a.e.,$$
 (2.6)

$$\sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(v \wedge \frac{\partial v}{\partial x_i} \right) + v \wedge (H - \varphi(v)) = 0 \quad in \ \Omega, \tag{2.7}$$

$$\begin{cases}
H \in \mathbb{L}^{2}(\mathbb{R}^{3}), \\
\operatorname{curl} H = 0 & in \mathcal{D}'(\mathbb{R}^{3}), \\
\operatorname{div} (H + \overline{v}) = 0 & in \mathcal{D}'(\mathbb{R}^{3}).
\end{cases}$$
(2.8)

Remark 2.1 As v lies in $\mathbb{H}^1(\Omega)$, Δv lies in $\mathbb{H}^{-1}(\Omega)$ so the product $v \wedge \Delta v$ makes sense in $W^{-1,t}(\Omega)$ with $\frac{1}{t} = \frac{1}{2} + \frac{1}{6}$ (see J. Simon [13]). Moreover from the equation (2.7) this product belongs to $\mathbb{L}^2(\Omega)$.

Theorem 2.2 is proved in section 4. The limit process for v is carried out thanks to the estimate

$$\int_{I\!\!R^+} \int_{\Omega} |\frac{\partial u}{\partial t}(t,x)|^2 dx \, dt < +\infty.$$

On the other hand an averaging technique is used to justify the limit for H.

The last part of this article is devoted to the validation when ε_0 and μ_0 go to zero of the quasi-stationary model. We suppose for this result that the source term f is zero.

Let us assume that

$$\begin{aligned} u_0 \in I\!\!H^1(\Omega) \;,\; H_0 \in I\!\!L^2(I\!\!R^3) \;,\; E_0 \in I\!\!L^2(I\!\!R^3), \\ |u_0| = 1 \; a.e. \;,\; {\rm div} \; (H_0 + \bar{u}_0) = 0. \end{aligned} \right\} (\mathcal{H}_q)$$

Definition 2.3 We say that u is a weak solution of the quasi-stationary model if

1. u satisfies

$$u \in L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega)), \quad \frac{\partial u}{\partial t} \in \mathbb{L}^2(\mathbb{R}^+ \times \Omega), \quad |u| = 1 \text{ a.e.}$$
 (2.9)

2. For all $\Psi \in \mathcal{C}^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$,

$$\int_{\mathbb{R}^{+} \times \Omega} \left(\frac{\partial u}{\partial t}(t, x) + u(t, x) \right) \wedge \frac{\partial u}{\partial t}(t, x) \cdot \Psi(t, x) dx dt =$$

$$-2 \int_{\mathbb{R}^{+} \times \Omega} \sum_{i=1}^{3} u(t, x) \wedge \frac{\partial u}{\partial x_{i}}(t, x) \cdot \frac{\partial \Psi}{\partial x_{i}}(t, x) dx dt \qquad (2.10)$$

$$+2 \int_{\mathbb{R}^{+} \times \Omega} u(t, x) \wedge (H(t, x) - \varphi(u(t, x))) \cdot \Psi(t, x) dx dt,$$

- 3. $u(0,x) = u_0(x)$ in the trace sense.
- 4. For all $t \in \mathbb{R}^+$, H(t,x) is the unique solution of

$$\begin{cases} \operatorname{curl} H(t, \cdot) = 0, \\ \operatorname{div} (H(t, \cdot) + \bar{u}(t, \cdot)) = 0, \\ H(t, \cdot) \in \mathbb{L}^{2}(\mathbb{R}^{3}). \end{cases}$$
 (2.11)

5. For all t we have the following energy estimate

$$\mathcal{E}_{q}(t) + \int_{0}^{t} \int_{\Omega} \left| \frac{\partial u}{\partial t}(t, x) \right|^{2} dx \, dt \le \mathcal{E}_{q}(0), \tag{2.12}$$

where

$$\mathcal{E}_q(t) = \int_{\Omega} \left(|\nabla u(t,x)|^2 + 2\Phi(u(t,x)) \right) dx + \int_{\mathbb{R}^3} |H(t,x)|^2 dx.$$

Theorem 2.3 We consider two sequences $(\varepsilon^n)_n$ and $(\mu^n)_n$ which tend to zero as $n \to +\infty$ and such that μ^n/ε^n remains bounded.

Under the assumption (\mathcal{H}_q) if u^n denote a weak solution of (1.1)-(1.5) with $\varepsilon_0 = \varepsilon^n$ and $\mu_0 = \mu^n$, there exists a subsequence still denoted $(u^n)_n$ such that u^n tends to a limit u in $L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$ weak \star where u is a solution of the quasi-stationary model (2.9)-(2.12).

This result is obtained via a time average process on H which avoid the high frequency oscillations of H.

Proposition 2.1 Every point of the ω -limit set of any trajectory of (2.9)-(2.11) is solution of the steady state model (2.7).

This last result is straightforward from the estimate

$$\int_{\mathbb{R}^+} \int_{\Omega} |\frac{\partial u}{\partial t}(t,x)|^2 dx \, dt < +\infty$$

and from the continuity of the map $u \mapsto H$ given by (2.11).

3 Proof of the existence.

The main point is to establish that |u| = 1 almost everywhere. In order to construct a solution which satisfies this condition we first solve a relaxed problem \mathcal{P}_{λ} where u^{λ} takes its values in \mathbb{R}^3 . The penalization term takes the form $\frac{1}{\lambda}(|u|^2 - 1)u$, λ tends to 0.

In fact instead of (1.1) we solve the following equation

$$\frac{\partial u^{\lambda}}{\partial t} - u^{\lambda} \wedge \frac{\partial u^{\lambda}}{\partial t} - 2\Delta u^{\lambda} - 2\varphi(u^{\lambda}) + \frac{1}{\lambda}(|u^{\lambda}|^2 - 1)u^{\lambda} = 2H. \tag{3.1}$$

By a Galerkine process we construct a solution of (3.1) satisfying an energy estimate, that allows us to pass to the limit as λ goes to zero. This limit u takes its values on S^2 and by a suitable test function we show that u satisfies (1.1).

First step. Resolution of (3.1).

Let us recall that the eigenfunctions of the operator $A = -\Delta + I$ with domain

$$D(A) = \{u \in \mathbb{H}^2(\Omega), \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega\}$$

build an orthonormal basis $\{\varphi_k\}_k$ in $\mathbb{L}^2(\Omega)$ and an orthogonal basis in $\mathbb{H}^1(\Omega)$ and $\mathbb{H}^2(\Omega)$.

We denote V_N the N dimensional vector space spaned by $\{\varphi_k\}_{1 \le k \le N}$.

Now we introduce the Hilbert space

$$I\!H_{\text{curl}}(I\!\!R^3) = \{ \psi \in I\!\!L^2(I\!\!R^3), \text{curl } \psi \in I\!\!L^2(I\!\!R^3) \}$$

We denote $\{\psi_k\}_k$ an hilbertian basis of $I\!\!H_{\rm curl}(I\!\!R^3)$ orthonormal in $I\!\!L^2(I\!\!R^3)$ and W_N the N dimensional vector space spaned by $\{\psi_k\}_{1\leq k\leq N}$.

In the approximate problem we seek (u_N, H_N, E_N) in $V_N \times W_N \times W_N$ such that

$$u_N(t,x) = \sum_{k=1}^{N} v_k(t)\varphi_k(x),$$

$$H_N(t,x) = \sum_{k=1}^{N} h_k(t)\psi_k(x),$$

$$E_N(t, x) = \sum_{k=1}^{N} e_k(t) \psi_k(x),$$

which satisfies

1. For any Φ_N in V_N ,

$$\int_{\Omega} \left(\frac{\partial u_N}{\partial t}(t, x) - u_N(t, x) \wedge \frac{\partial u_N}{\partial t}(t, x) \right) \cdot \Phi_N(x) dx + 2 \int_{\Omega} \nabla u_N(t, x) \cdot \nabla \Phi_N(x) dx
+ \frac{4}{\lambda} \int_{\Omega} (|u_N(t, x)|^2 - 1) u_N(t, x) \cdot \Phi_N(x) dx
-2 \int_{\Omega} \left(H_N(t, x) - \varphi(u_N(t, x)) \right) \cdot \Phi_N(x) dx = 0.$$
(3.2)

2. For any Ψ_N in W_N ,

$$\mu_0 \int_{\mathbb{R}^3} \frac{\partial}{\partial t} \left(H_N(t, x) + \bar{u}_N(t, x) \right) \cdot \Psi_N(x) dx + \int_{\mathbb{R}^3} E_N(t, x) \cdot \operatorname{curl} \Psi_N(x) dx = 0.$$
 (3.3)

3. For any Θ_N in W_N

$$\varepsilon_0 \int_{\mathbb{R}^3} \frac{\partial E_N}{\partial t}(t, x) \cdot \Theta_N(x) dx - \int_{\mathbb{R}^3} H_N(t, x) \cdot \operatorname{curl} \Theta_N(x) dx
+ \sigma \int_{\Omega} (E_N(t, x) + f(t, x)) \cdot \Theta_N(x) dx = 0.$$
(3.4)

4. With the initial data

$$\begin{cases} u_N(0) = \Pi_{V_N}(u_0), \\ E_N(0) = \Pi_{W_N}(E_0), \\ H_N(0) = \Pi_{W_N}(H_0), \end{cases}$$
(3.5)

where Π_{V_N} (resp. Π_{W_N}) denotes the orthogonal projection on V_N (resp. W_N).

Let us remark that $v \mapsto v - u \wedge v$ is one to one in \mathbb{R}^3 so the equation (3.2) can be solve for the derivative in time. Then by Cauchy Picard theorem there exists a local solution of (3.2)-(3.5).

The following *a priori* estimates show that, in fact, the approximate solution is global in time.

Taking $\Phi_N = \frac{\partial u_N}{\partial t}$ in (3.2) one has

$$\int_{\Omega} \left| \frac{\partial u_N}{\partial t}(t,x) \right|^2 dx + \frac{d}{dt} \int_{\Omega} |\nabla u_N(t,x)|^2 dx + \frac{1}{\lambda} \frac{d}{dt} \int_{\Omega} (|u_N(t,x)|^2 - 1)^2 dx + \frac{d}{dt} \int_{\Omega} \Phi(u_N(t,x)) dx + \int_{\Omega} \frac{\partial u_N}{\partial t}(t,x) \cdot H_N(t,x) dx \right]$$
(3.6)

Now we put $\Psi_n = H_N$ in (3.3)

$$\frac{\mu_0}{2} \frac{d}{dt} \int_{\mathbb{R}^3} |H_N(t,x)|^2 dx + \int_{\mathbb{R}^3} \operatorname{curl} E_N(t,x) \cdot H_N(t,x) dx = -\mu_0 \int_{\Omega} \frac{\partial u_N}{\partial t} (t,x) \cdot H_N(t,x) dx \quad (3.7)$$

In the same way taking $\Theta_N = E_N$ in (3.4),

$$\frac{1}{2}\varepsilon_0 \frac{d}{dt} \int_{\mathbb{R}^3} |E_N(t,x)|^2 dx - \int_{\mathbb{R}^3} H_N(t,x) \cdot \operatorname{curl} E_N(t,x) dx
+ \sigma \int_{\Omega} \left(|E_N(t,x)|^2 + f(t,x) \cdot E_N(t,x) \right) dx = 0$$
(3.8)

Combining (3.6), (3.7) and (3.8) we derive the following estimate through Young inequality

$$\frac{d}{dt} \left\{ \int_{\Omega} |\nabla u_N(t,x)|^2 dx + \frac{1}{\lambda} \int_{\Omega} (|u_N(t,x)|^2 - 1)^2 dx + \int_{\Omega} \Phi(u_N(t,x)) dx \right\}
+ \frac{1}{2} \frac{d}{dt} \left\{ \int_{\mathbb{R}^3} (|H_N(t,x)|^2 + \frac{\varepsilon_0}{\mu_0} |E_N(t,x)|^2) dx \right\}
+ \int_{\Omega} |\frac{\partial u_N}{\partial t}(t,x)|^2 dx + \frac{\sigma}{\mu_0} \int_{\Omega} |E_N(t,x)|^2 dx \le \frac{\sigma}{\mu_0} \int_{\Omega} |f(t,x)|^2 dx$$

As $\Phi(u_N)$ is non negative we obtain the following bound for u_0 in $\mathbb{H}^1(\Omega)$, E_0 and H_0 in $\mathbb{L}^2(\mathbb{R}^3)$ and f in $L^2(\mathbb{R}^+ \times \Omega)$:

There exists constants k_i independent of N and λ such that

$$\|\nabla u_N\|_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\Omega))} \le k_1, \quad \|\frac{\partial u_N}{\partial t}\|_{\mathbb{L}^2(\mathbb{R}^+ \times \Omega)} \le k_2, \quad \|u_N\|_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^4(\Omega))} \le k_3,$$

$$\|E_N\|_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))} \le k_4, \quad \|H_N\|_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))} \le k_5.$$

So we can suppose that there exists a subsequence still denoted (u_N, H_N, E_N) such that when N goes to $+\infty$,

$$u_N \rightharpoonup u^{\lambda}$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$ weak \star ,
$$\frac{\partial u_N}{\partial t} \rightharpoonup \frac{\partial u^{\lambda}}{\partial t}$$
 in $L^2(\mathbb{R}^+; \mathbb{L}^2(\Omega))$ weak ,
$$E_N \rightharpoonup E^{\lambda}$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$ weak \star ,
$$H_N \rightharpoonup H^{\lambda}$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$ weak \star .

And according to Aubin's Lemma

$$u_N \to u^{\lambda}$$
 in $L^4(0,T; \mathbb{L}^4(\Omega))$ strong for all T ,

Taking the limit in the equation (3.2)-(3.5) we obtain

1. For any Φ in $\mathbb{H}^1(\Omega)$

$$\int_{\Omega} \frac{\partial u^{\lambda}}{\partial t}(t,x) \cdot \Phi(x) dx - \int_{\Omega} u^{\lambda}(t,x) \wedge \frac{\partial u^{\lambda}}{\partial t}(t,x) \cdot \Phi(x) dx
+ 2 \int_{\Omega} \nabla u^{\lambda}(t,x) \cdot \nabla \Phi(x) dx + \frac{4}{\lambda} \int_{\Omega} (|u^{\lambda}(t,x)|^{2} - 1) u^{\lambda}(t,x) \cdot \Phi(x) dx
- 2 \int_{\Omega} \left(H^{\lambda}(t,x) - \varphi(u^{\lambda}(t,x)) \right) \cdot \Phi(x) dx = 0 \text{ in } L^{2}(\mathbb{R}_{t}^{+}).$$
(3.9)

2. For any Ψ in $H_{\text{curl}}(\mathbb{R}^3)$,

$$\mu_0 < \frac{\partial H^{\lambda}}{\partial t} + \frac{\partial \bar{u}^{\lambda}}{\partial t}, \Psi > + \int_{\mathbb{R}^3} E^{\lambda}(t, x) \cdot \operatorname{curl} \Psi(x) dx = 0 \text{ in } \mathcal{D}'(\mathbb{R}^+).$$
 (3.10)

3. For any Θ in $IH_{\text{curl}}(IR^3)$

$$\varepsilon_{0} < \frac{\partial E^{\lambda}}{\partial t}, \Theta > -\int_{\mathbb{R}^{3}} H^{\lambda}(t, x) \cdot \operatorname{curl} \Theta(x) dx$$

$$+ \sigma \int_{\Omega} \left(E^{\lambda}(t, x) + f(t, x) \right) \cdot \Theta(x) dx = 0 \text{ in } \mathcal{D}'(\mathbb{R}^{+})$$
(3.11)

4. With the initial data

$$u^{\lambda}(0) = u_0 \text{ in } \mathbb{L}^2(\Omega),$$

$$E^{\lambda}(0) = E_0, \quad H^{\lambda}(0) = H_0 \text{ in } \left(H_{\text{curl}}(\mathbb{R}^3)\right)'.$$
 (3.12)

As the L^2 (resp. L^{∞}) norm is lower semi continuous for the weak (resp. weak \star) topology we obtain the energy estimate

$$\forall t > 0, \quad \mathcal{E}_{\lambda}(t) + \int_{0}^{t} \int_{\Omega} \left| \frac{\partial u^{\lambda}}{\partial t}(t, x) \right|^{2} dx \, dt + \frac{\sigma}{2\mu_{0}} \int_{0}^{t} \int_{\Omega} |E^{\lambda}(t, x)|^{2} dx \, dt$$

$$\leq \frac{\sigma}{2\mu_{0}} \int_{0}^{t} \int_{\Omega} |f(t, x)|^{2} dx \, dt + \mathcal{E}_{\lambda}(0),$$
(3.13)

where

$$\begin{split} \mathcal{E}_{\lambda}(t) &= \int_{\Omega} |\nabla u^{\lambda}(t,x)|^2 dx + \frac{1}{\lambda} \int_{\Omega} (|u^{\lambda}(t,x)|^2 - 1)^2 dx + \int_{\Omega} \Phi(u^{-l}(t,x)) dx \\ &+ \frac{1}{2} \int_{\mathbb{R}^3} \left(|H^{\lambda}(t,x)|^2 + \frac{\varepsilon_0}{\mu_0} |E^{\lambda}(t,x)|^2 \right) dx. \end{split}$$

Second step. Limit as λ tends to 0.

We first note that as $|u_0| = 1$, $\mathcal{E}_{\lambda}(0)$ does not depend on λ .

The estimate (3.13) allows us to suppose via the extraction of a subsequence that when λ goes to 0

$$u^{\lambda} \rightharpoonup u$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$ weak \star ,
$$\frac{\partial u^{\lambda}}{\partial t} \rightharpoonup \frac{\partial u}{\partial t}$$
 in $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$ weakly,
$$u^{\lambda} \to u$$
 in $L^2((0,T); \mathbb{L}^2(\Omega))$ strongly for all $T > 0$ and $a.e.$,
$$E^{\lambda} \rightharpoonup E$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$ weak \star ,
$$H^{\lambda} \rightharpoonup H$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$ weak \star .

- We remark, and it is the main point of the proof, that |u| = 1 a.e. in $\mathbb{R}^+ \times \Omega$, as $u^{\lambda} \to u$ a.e.
- Now we derive the equation satisfied by u by taking in (3.9) $\Phi = u^{\lambda}(t, x) \wedge \xi(t, x)$ where ξ is any test function given in $\mathbb{L}^2_{loc}(\mathbb{R}^+; \mathbb{H}^2(\Omega))$.

$$\int_{0}^{T} \int_{\Omega} \frac{\partial u^{\lambda}}{\partial t}(t,x) \cdot (u^{\lambda}(t,x) \wedge \xi(t,x)) dx dt$$

$$- \int_{0}^{T} \int_{\Omega} u^{\lambda}(t,x) \wedge \frac{\partial u^{\lambda}}{\partial t}(t,x) \cdot (u^{\lambda}(t,x) \wedge \xi(x)) dx dt$$

$$+ 2 \int_{0}^{T} \int_{\Omega} \sum_{i=1}^{3} \frac{\partial u^{\lambda}}{\partial x_{i}}(t,x) \cdot \frac{\partial}{\partial x_{i}} \left(u^{\lambda}(t,x) \wedge \xi(t,x) \right) dx dt$$

$$- 2 \int_{0}^{T} \int_{\Omega} \left(H^{\lambda}(t,x) - \varphi(u^{\lambda}(t,x)) \cdot \left(u^{\lambda}(t,x) \wedge \xi(t,x) \right) dx dt \right)$$

$$+ \frac{4}{\lambda} \int_{0}^{T} \int_{\Omega} (|u^{\lambda}(t,x)|^{2} - 1) u^{\lambda}(t,x) \cdot \left(u^{\lambda}(t,x) \wedge \xi(t,x) \right) dx dt = 0$$

$$(3.14)$$

The last term of the left-hand side of (3.14) vanishes identically. Furthermore we remark that

$$\frac{\partial u^{\lambda}}{\partial x_i} \cdot \frac{\partial}{\partial x_i} (u^{\lambda} \wedge \xi) = -(u^{\lambda} \wedge \frac{\partial u^{\lambda}}{\partial x_i}) \cdot \frac{\partial \xi}{\partial x_i}.$$

Now we can take the limit when λ goes to 0 to obtain

$$\int_{0}^{T} \int_{\Omega} \left(\frac{\partial u}{\partial t}(t,x) - u(t,x) \wedge \frac{\partial u}{\partial t}(t,x) \right) \cdot \left(u(t,x) \wedge \xi(t,x) \right) dx dt$$
$$-2 \int_{0}^{T} \int_{\Omega} \sum_{i=1}^{3} \frac{\partial \xi}{\partial x_{i}}(t,x) \cdot \left(u(t,x) \wedge \frac{\partial u}{\partial x_{i}}(t,x) \right) dx dt$$
$$-2 \int_{0}^{T} \int_{\Omega} \left(H(t,x) - \varphi(u(t,x)) \right) \cdot \left(u(t,x) \wedge \xi(t,x) \right) dx dt = 0,$$

that is

$$\int_{0}^{T} \int_{\Omega} \left(\frac{\partial u}{\partial t}(t, x) + u(t, x) \wedge \frac{\partial u}{\partial t}(t, x) \right) \cdot \xi(t, x) dx dt
+ 2 \int_{0}^{T} \int_{\Omega} \sum_{i=1}^{3} (u(t, x) \wedge \frac{\partial u}{\partial x_{i}}(t, x)) \cdot \frac{\partial \xi}{\partial x_{i}}(t, x) dx dt$$
(3.15)

$$-2\int_0^T\int_\Omega u(t,x)\wedge \left(H(t,x)-\varphi(u(t,x))\right)\cdot \xi(t,x)dx\,dt=0$$

as

$$\frac{\partial u}{\partial t} \cdot (u \wedge \xi) = -(u \wedge \frac{\partial u}{\partial t}) \cdot \xi$$
, and $-(u \wedge \frac{\partial u}{\partial t}) \cdot (u \wedge \xi) = -\frac{\partial u}{\partial t} \cdot \xi$

since |u| = 1 a.e. in $\mathbb{R}^+ \times \Omega$.

- Moreover as the L^2 (resp. L^{∞}) norm is lower semi continuous for the weak (resp. weak \star) the energy estimate (3.13) remains valid for $|u_0| = 1$.
 - Next from (3.15) we derive that

$$\sum_{i=1}^{3} \frac{\partial}{\partial x_i} (u \wedge \frac{\partial u}{\partial x_i}) \text{ belongs to } L^2_{loc}(\mathbb{R}^+; \mathbb{L}^2(\Omega))$$

so $u \wedge \frac{\partial u}{\partial \nu}$ makes sense in $L^2_{loc}(\mathbb{R}^+; \mathbb{H}^{-1/2}(\partial \Omega))$.

Moreover as $|u|^2 = 1$, one has $u \cdot \frac{\partial u}{\partial \nu} = 0$. So from the equality

$$\frac{\partial u}{\partial \nu} = \left(u \cdot \frac{\partial u}{\partial \nu} \right) u + u \wedge \left(u \wedge \frac{\partial u}{\partial \nu} \right) = \frac{\partial u}{\partial \nu}$$

which is valid in $H^{-1-\eta}(\partial\Omega)$ for any $\eta > 0$ according to the product of function in sobolev spaces (see L. Hörmander [6]) so in fact

$$\frac{\partial u}{\partial \nu}$$
 makes sense in $L^2_{loc}(\mathbb{R}^+; H^{-1-\eta}(\partial\Omega))$ for any $\eta > 0$.

 \bullet As the Maxwell equations are linear, it is straightforward to take the limit in (3.10) and (3.11) to obtain (2.3) and (2.4).

4 Description of the ω -limit set.

Consider a weak solution u of (1.1)-(1.5). From the energy estimate (2.5), the ω -limit set $\omega(u)$ is not empty. We denote u_{∞} a point of this set.

Hence there exists a sequence $(t_n)_{n\geq 1}$, with $\lim_{n\to+\infty}t_n=+\infty$ such that $u(t_n,.)$ tends to u_∞ in $I\!\!H^1(\Omega)$ weak, in $I\!\!L^2(\Omega)$ strong, and almost everywhere in Ω . In particular one has |u|=1 a.e. in Ω .

First step. Let be a a non negative real number. For s in (-a, a) and x in Ω we define for n large enough

$$U_n(s,x) = u(t_n + s, x).$$

The sequence $(U_n)_{n\geq 1}$ tends to u_{∞} in $\mathbb{L}^2((-a,a)\times\Omega)$ strongly and in $L^2((-a,a);\mathbb{H}^1(\Omega))$ weakly. In fact following [12], we have the estimate

$$\frac{1}{2a} \int_{-a}^{a} \int_{\Omega} |U_n(s,x) - u(t_n,x)|^2 dx \, ds = \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} \left| \int_{0}^{s} \frac{\partial u}{\partial t} (t_n + \tau, x) d\tau \right|^2 dx \, ds$$

$$\leq \frac{1}{2a} \int_{-a}^{a} |s| \int_{\Omega} \int_{t_n - a}^{+\infty} \left| \frac{\partial u}{\partial t} (\tau, x) \right|^2 d\tau dx \, ds$$

$$\leq a \int_{t_n - a}^{+\infty} \int_{\Omega} \left| \frac{\partial u}{\partial t} (\tau, x) \right|^2 dx \, d\tau.$$

Now, as $\frac{\partial u}{\partial t}$ lies in $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$, one gets

$$\lim_{n \to +\infty} \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} |U_n(s, x) - u(t_n, x)|^2 dx ds = 0.$$

Since $u(t_n,.)$ tends to u_{∞} in $\mathbb{L}^2(\Omega)$ strongly, U_n tends to u_{∞} in $L^2((-a,a);\mathbb{L}^2(\Omega))$ strongly. Moreover we obviously see that the sequence $(\nabla U_n)_{n\geq 1}$ is bounded in $\mathbb{L}^2((-a,a)\times\Omega)$ so there exists a subsequence still noted $(U_n)_{n\geq 1}$ such that U_n tends to u_{∞} in $L^2((-a,a);\mathbb{H}^1(\Omega))$ weakly, in $L^2((-a,a);\mathbb{L}^2(\Omega))$ strongly and almost everywhere in Ω .

Second step. We consider a \mathcal{C}^{∞} non negative function ρ_a supported by (-a,a) satisfying

$$\rho_a(\tau) = 1 \text{ for } \tau \in (-a+1, a-1),$$

$$0 \le \rho_a(\tau) \le 1, \ |\rho'_a(\tau)| \le 2.$$

We set

$$H_a^n(x) = \frac{1}{2a} \int_{-a}^a H(t_n + s, x) \rho_a(s) ds$$

and

$$E_a^n(x) = \frac{1}{2a} \int_{-a}^a E(t_n + s, x) \rho_a(s) ds.$$

From the estimate (2.5), E and H are bounded in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$. Then H_a^n and E_a^n are bounded in $\mathbb{L}^2(\mathbb{R}^3)$ independently of n and a. So by extracting a subsequence we may suppose that $(E_a^n, H_a^n)_{n\geq 1}$ converges in $\mathbb{L}^2(\mathbb{R}^3)$ weakly to (E_a, H_a) when n goes to $+\infty$.

Third step. In the weak formulation (2.2) we take as test function $\rho_a(t-t_n)\Psi(x)$ where Ψ is a function lying in $\mathcal{D}(\bar{\Omega})$. We obtain after the change of chart $s=t-t_n$

$$\frac{1}{2a} \int_{-a}^{a} \int_{\Omega} \left(\frac{\partial U_n}{\partial t}(s, x) + U_n(s, x) \wedge \frac{\partial U_n}{\partial t}(s, x) \right) \cdot \Psi(x) \rho_a(s) dx ds
+ 2 \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} \sum_{i=1}^{3} \left(U_n(s, x) \wedge \frac{\partial U_n}{\partial x_i}(s, x) \right) \cdot \frac{\partial \Psi}{\partial x_i} \rho_a(s) dx ds
- 2 \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} U_n \wedge \left(H(t_n + s, x) - \varphi(U_n(s, x)) \right) \cdot \Psi(x) \rho_a(s) dx ds = 0.$$
(4.1)

To pass through the limit in (4.1) we bound separately each term of (4.1).

• First term.

$$\left| \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} \frac{\partial U_{n}}{\partial t}(s, x) \cdot \Psi(x) \rho_{a}(s) dx ds \right|$$

$$\leq \frac{1}{2a} \int_{-a}^{a} \rho_{a}(s) \left(\int_{\Omega} \left| \frac{\partial U_{n}}{\partial t}(s, x) \right|^{2} dx \right)^{1/2} \left(\int_{\Omega} \left| \Psi(x) \right|^{2} dx \right)^{1/2} ds$$

$$\leq \frac{1}{\sqrt{2a}} \left(\int_{\Omega} \left| \Psi(x) \right| dx \right)^{1/2} \left(\int_{t_{n}-a}^{t_{n}+a} \int_{\Omega} \left| \frac{\partial u}{\partial t}(s, x) \right|^{2} dx ds \right)^{1/2}$$

Since $\frac{\partial u}{\partial t}$ belongs to $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$, this last term tends to zero as n goes to $+\infty$. In the same way, as U_n takes its values on S^2 , one also has

$$\lim_{n \to +\infty} \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} U_n(s, x) \wedge \frac{\partial U_n}{\partial t}(s, x) \rho_a(s) \cdot \Psi(x) dx ds = 0$$

• Second term

As $(U_n)_{n\geq 1}$ tends to u_∞ strongly in $\mathbb{L}^2((-a,a)\times\Omega)$, as $(\frac{\partial U_n}{\partial x_i})_{n\geq 1}$ tends to $\frac{\partial u_\infty}{\partial x_i}$ weakly in $\mathbb{L}^2((-a,a)\times\Omega)$ and since $\frac{\partial \Psi}{\partial x_i}\rho_a$ belongs to $\mathbb{L}^\infty((-a,a)\times\Omega)$, the second term of (4.1) tends to

$$2\frac{1}{2a}\int_{-a}^{a}\rho_{a}(s)ds\int_{\Omega}\sum_{i=1}^{3}\left(u_{\infty}(x)\wedge\frac{\partial u_{\infty}}{\partial x_{i}}(x)\right)\cdot\frac{\partial\Psi}{\partial x_{i}}(x)dx.$$

• Third term.

$$\frac{1}{2a} \int_{-a}^{a} \int_{\Omega} U_n(s,x) \wedge H(t_n + s, x) \cdot \Psi(x) \rho_a(s) dx ds$$

$$= \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} \left(U_n(s,x) - u_{\infty}(x) \right) \wedge H(t_n + s, x) \cdot \Psi(x) \rho_a(s) dx ds$$

$$+ \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} u_{\infty}(x) \wedge H(t_n + s, x) \cdot \Psi(x) \rho_a(s) dx ds. \tag{4.2}$$

The first term of (4.2) goes to zero as $(U_n - u_\infty)_n$ tends strongly to zero in $\mathbb{L}^2((-a, a) \times \Omega)$ and as H is bounded in $L^\infty(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$. The second term is equal to

$$\int_{\Omega} \left(u_{\infty}(x) \wedge H_a^n(x) \right) \cdot \Psi(x) dx,$$

and tends obviously to

$$\int_{\Omega} \left(u_{\infty}(x) \wedge H_a(x) \right) \cdot \Psi(x) dx.$$

As φ is linear, it is straightforward to take the limit in the last term.

So from equation (4.1) we derive that u_{∞} solve the equation

$$\int_{\Omega} \sum_{i=1}^{3} \left(u_{\infty}(x) \wedge \frac{\partial u_{\infty}}{\partial x_{i}}(x) \right) \cdot \frac{\partial \Psi}{\partial x_{i}}(x) + \int_{\Omega} \left(u_{\infty}(x) \wedge \varphi(u_{\infty}(x)) \right) \cdot \Psi(x) dx$$

$$\frac{2a}{\int_{-a}^{a} \rho(s) ds} \int_{\Omega} \left(u_{\infty}(x) \wedge H_{a}(x) \right) \cdot \Psi(x) dx = 0.$$
(4.3)

Forth step. In order to obtain the desired result it remains to take the limit in (4.3) when a tends to $+\infty$.

We first remark that

$$\lim_{a \to +\infty} \frac{2a}{\int_{-a}^{a} \rho(s)ds} = 1.$$

Through estimate (2.5) and by definition of H_a , $(H_a)_{a\geq 1}$ is uniformly bounded in $\mathbb{L}^2(\mathbb{R}^3)$. Hence, by extraction we can suppose that H_a tends to H_{∞} weakly in $\mathbb{L}^2(\mathbb{R}^3)$. So at the limit one has

$$-\int_{\Omega} \sum_{i=1}^{3} \left(u_{\infty}(x) \wedge \frac{\partial u_{\infty}}{\partial x_{i}}(x) \right) \cdot \frac{\partial \Psi}{\partial x_{i}}(x) dx + \int_{\Omega} u_{\infty}(x) \wedge \left(H_{\infty}(x) - \varphi(u_{\infty}(x)) \right) \cdot \Psi(x) dx = 0$$

Fifth step. In order to derive the equation satisfied by H_{∞} we first recall the equation verified by H_a^n and E_a^n .

In equation (2.3) we take $\Psi(t,x) = \theta_a(t-t_n)\nabla\xi(x)$ with ξ in $\mathcal{D}(\mathbb{R}^3)$ and θ_a is defined by

$$\theta_a(t) = \int_a^t \rho_a(s) ds.$$

We obtain that for every ξ in $\mathcal{D}(\mathbb{R}^3)$

$$-\int_{-a}^{a} \int_{\mathbb{R}^{3}} \left(H(t_{n}+s,x) + \bar{u}(t_{n}+s,x) \right) \cdot \nabla \xi(x) \rho_{a}(s) ds = \int_{\mathbb{R}^{3}} \left(H_{0}(x) + \bar{u}_{0}(x) \right) \cdot \nabla \xi(x) dx \theta_{a}(0).$$

As div $(H_0 + \bar{u}_0) = 0$ in $\mathcal{D}'(\mathbb{R}^3)$, we obtain after dividing by 2a

$$\int_{\mathbb{R}^3} \left(H_a^n(x) + \frac{1}{2a} \int_{-a}^a \bar{u}(t_n + s, x) \rho_a(s) ds \right) \cdot \nabla \xi(x) dx = 0.$$

When n goes to $+\infty$ we obtain that

$$\int_{\mathbb{R}^3} \left(H_a(x) + \bar{u}_{\infty}(x) \right) \cdot \nabla \xi(x) dx = 0,$$

and so when a goes to infinity we get

$$\operatorname{div}(H_{\infty} + \bar{u}_{\infty}) = 0 \text{ in } \mathcal{D}'(\mathbb{R}^3).$$

Now we take $\Psi(t,x) = \rho_a(t-t_n)\xi(x)$ in (2.4). We obtain that

$$\frac{1}{2a} \int_{-a}^{a} \int_{\mathbb{R}^{3}} E(t_{n} + s, x) \cdot \rho_{a}'(s)\xi(x)dx ds - \int_{\mathbb{R}^{3}} H_{a}^{n}(x) \cdot \operatorname{curl} \xi(x)dx
+ \sigma \int_{\Omega} E_{a}^{n}(x) \cdot \xi(x)dx + \sigma \frac{1}{2a} \int_{-a}^{a} \int_{\Omega} f(t_{n} + s, x) \cdot \rho_{a}(s)\xi(x)dx ds
= \int_{\mathbb{R}^{3}} E_{0}(x) \cdot \xi(x)dx \, \rho_{a}(-t_{n}).$$
(4.4)

For n large enough, the righthand side of (4.4) vanishes identically.

Let us bound the first term of (4.4). As ρ'_a is identically zero on (-a+1, a-1) and is bounded by 2, one has

$$\left| \frac{1}{2a} \int_{-a}^{a} \int_{\mathbb{R}^{3}} E(t_{n} + s, x) \cdot \rho'_{a}(s) \xi(x) dx \right| \leq \frac{1}{a} ||\xi||_{\mathbb{L}^{2}(\mathbb{R}^{3})} ||E||_{L^{\infty}(\mathbb{R}^{+}; \mathbb{L}^{2}(\mathbb{R}^{3}))}. \tag{4.5}$$

Moreover

$$\left| \frac{1}{2a} \int_{-a}^{a} \int_{\mathbb{R}^{3}} f(t_{n} + s, x) \cdot \rho_{a}(s) \xi(x) dx ds \right|$$

$$\leq \frac{1}{2a} \left(\int_{-a+t_n}^{a+t_n} ||f(s)||_{L^2(\Omega)}^2 \right)^{1/2} \left(\int_{-a}^a \rho_a(s)^2 ds \right)^{1/2} ||\xi||_{L^2(\Omega)},$$

that is

$$\left| \frac{1}{2a} \int_{-a}^{a} \int_{\mathbb{R}^{3}} f(t_{n} + s, x) \cdot \rho_{a}(s) \xi(x) dx ds \right| \leq \frac{1}{\sqrt{2a}} \left(\int_{-a + t_{n}}^{a + t_{n}} ||f(s)||_{\mathbb{L}^{2}(\Omega)}^{2} \right)^{1/2} ||\xi||_{\mathbb{L}^{2}(\Omega)}$$
(4.6)

since $0 \le \rho_a(s) \le 1$.

When n goes to infinity, by extraction of a subsequence the first term of the left-hand side of (4.4) tends to a real α_a satisfying

$$|\alpha_a| \le \frac{1}{2a} ||E||_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))} ||\xi||_{\mathbb{L}^2(\Omega)}$$
 (4.7)

Due to (4.6), the fourth term of the left-hand side of (4.4) goes to zero as

$$\int_{\mathbb{R}^+} \int_{\Omega} |f(t,x)|^2 dx dt < +\infty.$$

Hence we obtain

$$\alpha_a - \int_{\mathbb{R}^3} H_a(x) \cdot \operatorname{curl} \xi(x) dx + \sigma \int_{\Omega} E_a(x) \cdot \xi(x) dx = 0.$$

Then taking the limit as a goes to infinity, one has from (4.7)

$$\int_{\mathbb{R}^3} H_{\infty}(x) \cdot \operatorname{curl} \xi(x) dx = \sigma \int_{\Omega} E_{\infty}(x) \cdot \xi(x) dx. \tag{4.8}$$

In the same way, taking $\Psi(t,x) = \rho_a(t_n - t)\xi(x)$ in (2.3) we derive that

$$\int_{\mathbb{R}^3} E_{\infty}(x) \cdot \operatorname{curl} \xi(x) dx = 0,$$

that is curl $E_{\infty} = 0$. So it is valid to take $\xi(x) = E_{\infty}(x)$ in (4.8) which leads to

$$\sigma \int_{\Omega} |E_{\infty}(x)|^2 dx = 0.$$

This (4.8) gives curl $H_{\infty} = 0$. Finaly H_{∞} is uniquely determined by

$$\begin{cases} \operatorname{div} (H_{\infty} + \bar{u}_{\infty}) = 0 \text{ in } \mathbb{R}^3, \\ \operatorname{curl} H_{\infty} = 0 \text{ in } \mathbb{R}^3, \\ H_{\infty} \in \mathbb{L}^2(\mathbb{R}^3). \end{cases}$$

Therefore u_{∞} is a solution of the stationary model (2.6)-(2.8).

Remark 4.1 Following an idea of G. Métivier, it is possible to prove Theorem 2.2 without average Maxwell Equations. This is due to the fact that H(t,.) - H(u(t)) tends to zero in L^2_{loc} when t tends to $+\infty$ (see [8]).

5 Quasi-stationary model

The last part of this paper is devoted to the justification of the quasi-stationary model.

We recall that we suppose $f \equiv 0$.

We consider ε^n and μ^n such that ε^n , μ^n and ε^n/μ^n tend to zero. In the sequel we denote (u^n, H^n, E^n) a family of weak solutions of (1.1)-(1.5) with $\varepsilon_0 = \varepsilon^n$ and $\mu_0 = \mu^n$.

We recall the energy estimate satisfied by (u^n, H^n, E^n) .

$$\mathcal{E}^{n}(t) + \int_{0}^{t} \int_{\Omega} \left| \frac{\partial u^{n}}{\partial t}(t, x) \right|^{2} dx \, dt + \frac{\sigma}{\mu^{n}} \int_{0}^{t} \int_{\Omega} |E^{n}(t, x)|^{2} dx \, dt \le \mathcal{E}^{n}(0)$$
 (5.1)

where

$$\mathcal{E}^{n}(t) = \int_{\Omega} \left(|\nabla u^{n}(t,x)|^{2} + 2\Phi(u^{n}(t,x)) \right) dx + \int_{\mathbb{R}^{3}} \left(|H^{n}(t,x)|^{2} + \frac{\varepsilon^{n}}{u^{n}} |E^{n}(t,x)|^{2} \right) dx.$$

Since ε^n/μ^n remains bounded, the right hand-side term of (5.1) remains bounded uniformly in n. Therefore, by the energy estimate (5.1), u^n is bounded in $L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$ and $\frac{\partial u^n}{\partial t}$ is bounded in $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$ uniformly in n. Furthermore H^n and $\sqrt{\varepsilon^n/\mu^n} E^n$ are uniformly bounded in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$. Extracting a subsequence we can suppose that

$$u^n \to u$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$ weak \star ,
$$u^n \to u$$
 in $L^2((0,T); \mathbb{L}^2(\Omega))$ strong for all $T > 0$,
$$\frac{\partial u^n}{\partial t} \to \frac{\partial u}{\partial t}$$
 in $L^2((0,T); \mathbb{L}^2(\Omega))$ weak for all $T > 0$.

First step.

For any a > 0 we set

$$u_a^n(t,x) := \frac{1}{a} \int_0^a u^n(t+s,x)ds,$$

$$H_a^n(t,x) := \frac{1}{a} \int_0^a H^n(t+s,x)ds,$$

$$E_a^n(t,x) := \frac{1}{a} \int_0^a E^n(t+s,x)ds.$$
(5.2)

Lemma 5.1 For each $n \in \mathbb{N}$ and a > 0, (u_a^n, H_a^n, E_a^n) satisfies the following estimates.

$$||u_a^n||_{L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))} \le ||u^n||_{L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))}, \tag{5.3}$$

$$\left\| \frac{\partial u_a^n}{\partial t} \right\|_{L^2(\mathbb{R}^+ \times \Omega)} \le \left\| \frac{\partial u^n}{\partial t} \right\|_{L^2(\mathbb{R}^+ \times \Omega)},\tag{5.4}$$

$$||H_a^n||_{L^{\infty}(\mathbb{R}^+; L^2(\mathbb{R}^3))} \le ||H^n||_{L^{\infty}(\mathbb{R}^+; L^2(\mathbb{R}^3))},$$
 (5.5)

$$||E_a^n||_{L^{\infty}(\mathbb{R}^+; L^2(\mathbb{R}^3))} \le ||E^n||_{L^{\infty}(\mathbb{R}^+; L^2(\mathbb{R}^3))}.$$
(5.6)

Proof. The estimates (5.3), (5.5) and (5.6) follow directly from the definition (5.2). For (5.4) we write

$$\frac{\partial u_a^n}{\partial t}(t,x) = \frac{1}{a}(u^n(t+a,x) - u^n(t,x)) = \int_0^1 \frac{\partial u^n}{\partial t}(t+\theta a,x)d\theta,$$

so

$$\int_{I\!\!R^+} |\frac{\partial u^n_a}{\partial t}(s,x)|^2 ds \leq \int_{I\!\!R^+} \left(\int_0^1 \frac{\partial u^n}{\partial t}(t+\theta a,x) d\theta \right)^2 dt \leq \int_{I\!\!R^+} |\frac{\partial u^n}{\partial t}(s,x)|^2 ds.$$

That is

$$\int_{\mathbb{R}^{+}\times\Omega} \left|\frac{\partial u_{a}^{n}}{\partial t}(s,x)\right|^{2} ds \ dx \leq \int_{\mathbb{R}^{+}\times\Omega} \left|\frac{\partial u^{n}}{\partial t}(s,x)\right|^{2} ds \ dx.$$

Lemma 5.2 For every a > 0 we have the following estimate

$$||u_a^n - u^n||_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\Omega))} \le \sqrt{a} ||\frac{\partial u^n}{\partial t}||_{\mathbb{L}^2(\mathbb{R}^+ \times \Omega)}.$$

Proof. From the definition (5.2) one gets

$$u_a^n(t,x) - u^n(t,x) = \frac{1}{a} \int_0^a (u^n(s+t,x) - u^n(t,x)) ds$$
$$= \frac{1}{a} \int_0^a \int_0^s \frac{\partial u^n}{\partial t} (t+\tau,x) d\tau ds,$$

so

$$|u_a^n(t,x) - u^n(t,x)|^2 \le \left| \frac{1}{a} \int_0^a \int_0^s \left| \frac{\partial u^n}{\partial t} (t+\tau,x) \right| d\tau \, ds \right|^2$$

$$\le \left| \int_0^a \left| \frac{\partial u^n}{\partial t} (t+\tau,x) \right| d\tau \right|^2$$

$$\le a \int_t^{t+a} \left| \frac{\partial u^n}{\partial t} (s,x) \right|^2 ds,$$

hence

$$\int_{\Omega} |u_a^n(t,x) - u^n(t,x)|^2 dx \le a \int_{\mathbb{R}^+} \int_{\Omega} |\frac{\partial u^n}{\partial t}(s,x)|^2 ds \ dx.$$

Second step. We choose $a_n = (\varepsilon^n \mu^n)^{\frac{1}{4}}$, and we denote in the sequel

$$u_n := u_{a_n}^n$$
, $H_n := H_{a_n}^n$, and $E_n := E_{a_n}^n$.

Thanks to the energy estimate (5.1) and Lemma 5.1, we can suppose after extraction of a subsequence that

$$u_n \rightharpoonup u^{\infty}$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{H}^1(\Omega))$ weak \star ,
$$u_n \to u^{\infty}$$
 in $L^2((0,T); \mathbb{L}^2(\Omega))$ strong for all $T > 0$,
$$H_n \rightharpoonup H^{\infty}$$
 in $L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))$ weak \star ,
$$\frac{\partial u_n}{\partial t} \rightharpoonup \frac{\partial u^{\infty}}{\partial t}$$
 in $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$ weak.

Furthermore Lemma 5.2 ensures that $u^{\infty} = u$ and $u_n(0,\cdot) \to u_0(\cdot)$ in $\mathbb{L}^2(\Omega)$ strong.

Third step. For t given in \mathbb{R}^+ we take $\Psi(s,x) = \mathbf{1}_{[t,t+a[}(s)\xi(x)$ in (2.1). After dividing by a_n we obtain that

$$\int_{\Omega} \frac{\partial u_n}{\partial t}(t,x) \cdot \xi(x) dx + \int_{\Omega} \frac{1}{a_n} \int_0^{a_n} \left(u^n(t+s,x) \wedge \delta dt u^n(t+s,x) \right) \cdot \xi(x) ds \ dx$$

$$+ 2 \int_{\Omega} \frac{1}{a_n} \int_0^{a_n} \sum_{i=1}^3 \left(u^n(t+s,x) \wedge \frac{\partial u^n}{\partial x_i}(t+s,x) \right) \cdot \frac{\partial \xi}{\partial x_i}(x) ds \ dx$$

$$- 2 \int_{\Omega} \frac{1}{a_n} \int_0^{a_n} u^n(t+s,x) \wedge \left(H^n(t+s,x) - \varphi(u^n(t+s,x)) \right) \cdot \xi(x) ds \ dx = 0.$$

Multiplying this last formula by a test function $\rho(t)$, we obtain after integration

$$\int_{\mathbb{R}^{+}\times\Omega} \frac{\partial u_{n}}{\partial t}(t,x) \cdot \xi(x)\rho(t)dx dt
+ \int_{\mathbb{R}^{+}\times\Omega} \frac{1}{a_{n}} \int_{0}^{a_{n}} \left(u^{n}(t+s,x) \wedge \frac{\partial u^{n}}{\partial t}(t+s,x) \right) \cdot \xi(x)\rho(t)ds dx dt
+ \int_{\mathbb{R}^{+}\times\Omega} \frac{1}{a_{n}} \int_{0}^{a_{n}} \sum_{i=1}^{3} \left(u^{n}(t+s,x) \wedge \frac{\partial u^{n}}{\partial x_{i}}(t+s,x) \right) \cdot \frac{\partial \xi}{\partial x_{i}}(x)\rho(t)ds dx dt
- \frac{2}{a_{n}} \int_{\mathbb{R}^{+}\times\Omega} \int_{t}^{t+a_{n}} u^{n}(s,x) \wedge \left(H^{n}(s,x) - \varphi(u^{n}(s,x)) \right) \cdot \xi(x)\rho(t)ds dx dt = 0.$$

$$\frac{\partial u_{n}}{\partial x_{n}} \xrightarrow{\partial x_{n}} \int_{0}^{t+a_{n}} u^{n}(s,x) \wedge \left(H^{n}(s,x) - \varphi(u^{n}(s,x)) \right) \cdot \xi(x)\rho(t)ds dx dt = 0.$$

As $\frac{\partial u_n}{\partial t} \rightharpoonup \frac{\partial u^{\infty}}{\partial t}$ in $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$ weakly, the first term of (5.7) tends to

$$\int_{I\!\!R^+} \int_{\Omega} \frac{\partial u^{\infty}}{\partial t}(t,x) \cdot \xi(x) \rho(t) dx \ dt.$$

Let us now study the second term.

$$\int_{\mathbb{R}^{+}\times\Omega} \frac{1}{a_{n}} \int_{0}^{a_{n}} u^{n}(t+s,x) \wedge \frac{\partial u^{n}}{\partial t}(t+s,x) \cdot \xi(x)\rho(t)ds \ dx \ dt =$$

$$\int_{\mathbb{R}^{+}\times\Omega} \rho(t)\xi(x) \cdot u^{n}(t,x) \wedge \left(\frac{1}{a_{n}} \int_{0}^{a_{n}} \frac{\partial u^{n}}{\partial t}(t+s,x)ds\right) dx \ dt$$

$$+ \int_{\mathbb{R}^{+}\times\Omega} \rho(t)\xi(x) \cdot \frac{1}{a_{n}} \int_{0}^{a_{n}} \left(u^{n}(t+s,x) - u^{n}(t,x)\right) \wedge \frac{\partial u^{n}}{\partial t}(s,x)ds \ dt \ dx.$$

The definition of u_n shows that this is equal to

$$\int_{\mathbb{R}^{+} \times \Omega} \frac{1}{a_{n}} \int_{0}^{a_{n}} \left(u^{n}(t+s,x) \wedge \frac{\partial u^{n}}{\partial t}(t+s,x) \right) \cdot \xi(x) \rho(t) ds \, dx \, dt =$$

$$\int_{\mathbb{R}^{+} \times \Omega} \rho(t) \xi(x) \cdot \left(u^{n}(t,x) \wedge \frac{\partial u_{n}}{\partial t}(t,x) \right) dt \, dx \qquad (5.8)$$

$$+ \int_{\mathbb{R}^{+} \times \Omega} \rho(t) \xi(x) \cdot \frac{1}{a_{n}} \int_{0}^{a_{n}} \left(u^{n}(t+s,x) - u^{n}(t,x) \right) \wedge \frac{\partial u^{n}}{\partial t}(s,x) ds \, dt \, dx.$$

The first term of (5.8) tends to

$$\int_{{\mathbb R}^+ \times \Omega} \rho(t) \xi(x) \cdot \left(u^{\infty}(t,x) \wedge \frac{\partial u^{\infty}}{\partial t}(t,x) \right) dt \ dx$$

as

$$u^n \to u^\infty$$
 in $L^2_{loc}(IR^+; IL^2(\Omega))$ strongly

and

$$\frac{\partial u_n}{\partial t} \rightharpoonup \frac{\partial u^{\infty}}{\partial t}$$
 in $\mathbb{L}^2(\mathbb{R}^+ \times \Omega)$ weakly.

Now we prove that the second term goes to zero. We use the Cauchy-Schwarz inequality to obtain

$$A := \left| \int_{\mathbb{R}^{+} \times \Omega} \rho(t) \xi(x) \cdot \frac{1}{a_{n}} \int_{0}^{a_{n}} \left(u^{n}(t+s,x) - u^{n}(t,x) \right) \wedge \frac{\partial u^{n}}{\partial t}(t+s,x) ds \ dx \ dt \right|$$

$$A \le \|\xi\|_{\mathbb{L}^{\infty}(\Omega)} \|\rho\|_{\mathbb{L}^{\infty}(\mathbb{R}^{+})} \frac{1}{a_{n}} \left\{ \int_{\mathbb{R}^{+} \times \Omega} \int_{0}^{a_{n}} \left(\int_{0}^{s} \frac{\partial u^{n}}{\partial t}(t+\tau,x) d\tau \right)^{2} dx \ dt \ ds \right\}^{\frac{1}{2}} \times$$

$$\left\{ \int_{\mathbb{R}^{+} \times \Omega} \int_{0}^{a_{n}} \left| \frac{\partial u^{n}}{\partial t}(t+s,x) \right|^{2} ds \ dx \ dt \right\}^{\frac{1}{2}}.$$

Now by the Cauchy-Schwarz inequality and Fubini theorem we get

$$A \leq \|\xi\|_{\mathbb{L}^{\infty}(\Omega)} \|\rho\|_{\mathbb{L}^{\infty}(\mathbb{R}^{+})} \frac{1}{\sqrt{a_{n}}} \left\{ \int_{\mathbb{R}^{+} \times \Omega} \int_{0}^{a_{n}} s \int_{0}^{a_{n}} \left| \frac{\partial u^{n}}{\partial t} (t+\tau,x) \right|^{2} d\tau \ ds \ dt \ dx \right\}^{\frac{1}{2}} \|\frac{\partial u^{n}}{\partial t}\|_{\mathbb{L}^{2}(\mathbb{R}^{+} \times \Omega)}.$$

So after integration

$$A \leq \frac{a_n}{\sqrt{2}} \|\xi\|_{L^\infty(\Omega)} \|\rho\|_{L^\infty(\mathbb{R}^+)} \|\frac{\partial u^n}{\partial t}\|_{L^2(\mathbb{R}^+ \times \Omega)}^2.$$

Hence by the energy estimate (5.1), A tends to zero as a_n .

In the same way as in the previous section we obtain finally

$$\int_{\mathbb{R}^{+} \times \Omega} \left(\frac{\partial u^{\infty}}{\partial t}(t, x) + u^{\infty}(t, x) \wedge \frac{\partial u^{\infty}}{\partial t}(t, x) \right) \cdot \xi(x) \rho(t) dx dt
+ 2 \int_{\mathbb{R}^{+} \times \Omega} \sum_{i=1}^{3} \left(u^{\infty}(t, x) \wedge \frac{\partial u^{\infty}}{\partial x_{i}}(t, x) \right) \cdot \frac{\partial \xi}{\partial x_{i}}(x) \rho(t) dx dt
- 2 \int_{\mathbb{R}^{+} \times \Omega} u^{\infty}(t, x) \wedge \left(H^{\infty}(t, x) - \varphi(u^{\infty}(t, x)) \right) \cdot \xi(x) \rho(t) dx dt = 0.$$
(5.9)

Fourth step. As for the study of the ω -limit set we can prove that

$$\operatorname{div}\left(H^{\infty} + \bar{u}^{\infty}\right) = 0.$$

Now it remains to obtain

$$\operatorname{curl} H^{\infty} = 0. \tag{5.10}$$

We recall that for all ξ in $\mathcal{D}(\mathbb{R}^3)$ and ρ in $\mathcal{D}([0,+\infty))$ we have according to (2.4) that

$$-\int_{\mathbb{R}^{+}\times\mathbb{R}^{3}} \varepsilon^{n} E^{n}(s,x) \cdot \frac{\partial \rho}{\partial t}(s)\xi(x)ds \, dx - \int_{\mathbb{R}^{+}\times\mathbb{R}^{3}} H^{n}(s,x) \cdot \operatorname{curl} \xi(x)\rho(s)dx \, ds$$

$$+\sigma \int_{\mathbb{R}^{+}\times\Omega} E^{n}(s,x) \cdot \rho(s)\xi(x)ds \, dx = \int_{\mathbb{R}^{3}} E_{0}(x) \cdot \xi(x)\rho(0)dx.$$
(5.11)

Formally, the identity (5.10) is obtained taking $\rho = \mathbf{1}_{(t,t+a_n)}$ in (5.11). Unfortunately this function is not regular enough, so we introduce a regularised function ρ_{δ} .

For each $\delta > 0$ given, $0 < \delta < a_n$, we denote

$$\rho_{\delta}(s) = \begin{cases} 1 & \delta \leq s \leq a_n - \delta \\ 0 & s \leq 0 \text{ or } s \geq a_n \end{cases}$$

$$\text{linear} \quad 0 \leq s \leq \delta \text{ and } a_n - \delta \leq s \leq a_n$$

Now, for $\rho = \rho_{\delta}(s-t)$ equation (5.11) gives

$$-\frac{\varepsilon^{n}}{a_{n}} \int_{t}^{t+\delta} \int_{\mathbb{R}^{3}} E^{n}(s,x) \frac{\partial \rho_{\delta}}{\partial t}(s-t) \cdot \xi(x) ds dx$$

$$-\frac{\varepsilon^{n}}{a_{n}} \int_{t+a_{n}-\delta}^{t+a_{n}} \int_{\mathbb{R}^{3}} E^{n}(s,x) \frac{\partial \rho_{\delta}}{\partial t}(s-t) \cdot \xi(x) ds dx - \int_{\mathbb{R}^{3}} H_{a}^{n}(x) \cdot \operatorname{curl} \xi(x) dx$$

$$+\frac{\sigma}{a_{n}} \int_{t}^{t+a_{n}} \int_{\Omega} \rho_{\delta}(t-s) E^{n}(t,x) \cdot \xi(x) dx ds$$

$$= -\frac{1}{a_{n}} \int_{t}^{t+a_{n}} \int_{\mathbb{R}^{3}} H^{n}(s,x) \cdot (1-\rho_{\delta}(s-t)) \operatorname{curl} \xi(x) dx ds.$$

$$(5.12)$$

The two first terms of the left-hand side of (5.12) are bounded by

$$2\frac{\varepsilon^{n}}{a_{n}} \|E^{n}\|_{L^{\infty}(\mathbb{R}^{+}; \mathbb{L}^{2}(\mathbb{R}^{3}))} \|\xi\|_{\mathbb{L}^{2}(\mathbb{R}^{3})}. \tag{5.13}$$

The last term of the left-hand side of (5.12) is bounded by

$$\sigma \|E^n\|_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\Omega))} \|\xi\|_{\mathbb{L}^2(\Omega)}. \tag{5.14}$$

The right-hand side of (5.12) is bounded by

$$2\frac{\delta}{a_n} \|H^n\|_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))} \|\operatorname{curl} \xi\|_{\mathbb{L}^2(\mathbb{R}^3)}.$$
 (5.15)

According to the energy estimate (5.1) we have

$$||E^n||_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\mathbb{R}^3))} \leq k\sqrt{\frac{\mu^n}{\varepsilon^n}}$$

$$||E^n||_{L^{\infty}(\mathbb{R}^+; \mathbb{L}^2(\Omega))} \leq k\sqrt{\mu^n}$$

for some constant k

So by choosing $a_n = (\varepsilon^n \mu^n)^{\frac{1}{4}}$ and $\delta = a_n^2$ we get, for any test function φ

$$\int_{\mathbb{R}^3} H^{\infty}(t,x) \cdot \operatorname{curl} \xi(x) \varphi(t) dx dt = 0.$$

Fifth step. Energy estimate.

By convexity and thanks to the definition (5.2), one has

$$\begin{split} \int_{\Omega} |\nabla u_a^n(t,x)|^2 dx + 2 \int_{\Omega} \Phi(u_a^n(t,x)) + \int_{\mathbb{R}^3} |H_a^n(t,x)|^2 dx \\ & \leq \frac{1}{a} \int_0^a \left(\int_{\Omega} |\nabla u^n(t+s,x)|^2 dx + 2 \int_{\Omega} \Phi(u^n(t+s,x)) + \int_{\mathbb{R}^3} |H^n(t+s,x)|^2 dx \right) \\ & \leq \frac{1}{a} \int_0^a \mathcal{E}^n(t+s) ds. \end{split}$$

On the other hand

$$\int_0^t \int_{\Omega} \left| \frac{\partial u_a^n}{\partial t} (s, x) \right|^2 dx \, ds = \int_0^t \int_{\Omega} \left| \frac{1}{a} \int_0^a \frac{\partial u^n}{\partial t} (\tau + s, x) d\tau \right|^2 dx \, ds$$

$$\leq \frac{1}{a} \int_0^a \int_0^{t+s} \int_{\Omega} \left| \frac{\partial u^n}{\partial t} (\tau, x) \right|^2 d\tau \, dx \, ds.$$

Hence

$$\int_{\Omega} |\nabla u_a^n(t,x)|^2 dx + 2 \int_{\Omega} \Phi(u_a^n(t,x)) + \int_{\mathbb{R}^3} |H_a^n(t,x)|^2 dx + \int_0^t \int_{\Omega} |\frac{\partial u_a^n}{\partial t}(s,x)|^2 dx ds$$

$$\leq \frac{1}{a} \int_0^a \left(\mathcal{E}^n(t+s) + \int_0^{t+s} \int_{\Omega} |\frac{\partial u^n}{\partial t}(\tau,x)|^2 d\tau dx \right) ds \leq \mathcal{E}^n(0).$$

Since ε^n/μ^n tends to zero, $\mathcal{E}^n(0)$ tends to $\mathcal{E}_q(0)$. Therefore using the semi continuity of the norms for the weak topology, we derive the desired energy estimate (2.12).

Acknowledgements: The authors wish to thank professors T. Colin, J.L. Joly, M. Langlais, and G. Métivier for many stimulating discussions.

References

- [1] F. Alouges, Private communication.
- [2] F. Alouges et A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal., Theory Methods Appl. 18, No.11, 1071-1084 (1992).
- [3] W.F. Brown, Micromagnetics, Interscince publisher, John Willey & Sons, New York, 1963.
- [4] G. Carbou, Modèle quasi-stationnaire en micromagnétisme. C.R. Acad. Sci. Paris, t. 325, Série 1, p. 847-850, 1997.
- [5] G. Carbou et P. Fabrie, Comportement asymptotique des solutions faibles des équations de Landau-Lifschitz. C.R. Acad. Sci. Paris, t 325, Série 1, p. 717-720, 1997.

- [6] L. Hörmander, Progress in Nonlinear Differential Equations and their Applications, 21. Birkhuser Boston, Inc., Boston, MA, 1996.
- [7] J.L. Joly, G. Métivier et J. Rauch, Solution globale du système de Maxwell dans un milieu ferromagnétique, Ecole Polytechnique, Séminaire EDP, 1996-1997, exposé N° 11.
- [8] J.L. Joly, G. Métivier et J. Rauch, Private communication.
- [9] P. Joly et O. Vacus, Mathematical and numerical studies of nonlinear ferromagnetic materials, à paraître M2AN.
- [10] F. Labbé, Private communication.
- [11] L. Landau et E. Lifschitz, Electrodynamique des milieux continues, cours de physique théorique, tome VIII (ed. Mir) Moscou (1969).
- [12] M. Langlais et D. Phillips, Stabilization of solutions of nonlinear and degenerate evolution equation, Nonlinear Analysis, TMA, Vol. 9, n 4 p.p. 321-333, (1985).
- [13] J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure, Siam. J. Math. Anal., Vol. 21, n 5 p.p; 1093-1117, (1990).
- [14] A. Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, Vol. 2, n 1, p.p. 69-84, (1985).
- [15] H. Wynled, Ferromagnetism, Encyclopedia of Physics, Vol. XVIII / 2. Springer Verlag, Berlin, (1966).