N1MA4M11 Algèbre 3

Examen du 19 juin 2013. Durée 3h, documents interdits.

Exercice 1

Dans cet exercice, vous pouvez appliquer les résultats du cours sans démonstration mais vous devez fournir un minimum d'explications.

Soit σ , τ les éléments du groupe de permutations S_8 définis par :

- 1. Décomposez σ et τ en produit de cycles à supports disjoints.
- 2. En déduire l'ordre de σ et de τ .
- 3. Les permutations σ et τ sont-elles conjuguées dans S_8 ? Donnez un exemple de permutation σ' , différente de σ , et conjuguée à σ .
- 4. Calculez $\tau\sigma^{-1}$, puis sa décomposition en produit de cycles à supports disjoints.
- 5. En déduire l'ordre de $\tau\sigma^{-1}$ ainsi que sa signature.

Exercice 2

Soit G un groupe. Étant donnés A et B deux sous-groupes de G, on note AB l'ensemble

$$AB = \{xy \ : \ x \in A, \ y \in B\}.$$

Soit H et K deux sous-groupes de G.

- 1. Montrez que HK = KH si et seulement si HK est un sous-groupe de G.
- 2. Dans cette question, $G = S_n$ avec $n \ge 4$. Utilisez la question précédente pour décider si HK est un sous-groupe de G dans les cas suivants :
 - (a) $H = \langle (1,2) \rangle, K = \langle (3,4) \rangle.$
 - (b) $H = \langle (1,2) \rangle, K = \langle (2,3) \rangle.$
- 3. Montrez que, si H est distingué dans G, HK = KH. En déduire que HK est alors un sous-groupe de G.
- 4. Montrez que, si H est distingué dans G, l'application $\phi:K\to HK/H$ definie par : $\phi(k)=kH$ induit un isomorphisme de $K/H\cap K$ sur HK/H.
- 5. Montrez que, si H et K sont distingués dans G, et si $H \cap K = \{1\}$, alors l'application $\psi: H \times K \to HK$ définie par : $\psi((h,k)) = hk$ est un isomorphisme.

Exercice 3

On considère le sous ensemble de $\mathbb C$:

$$A := \{ a + bi : a \in \mathbb{Z}, b \in \mathbb{Z} \}.$$

ainsi que l'application $f: A \to A$ définie par f(a+bi) = a-bi.

- 1. Montrez que $(A, +, \cdot)$ est un anneau commutatif (indication : on pourra montrer que A est un sous-anneau de $(\mathbb{C}, +, \cdot)$).
- 2. Montrez que, si $a+bi \in A^*$ alors $a^2+b^2=1$ et en déduire que $A^*=\{1,-1,i,-i\}$.
- 3. Montrez que f est un automorphisme de l'anneau A.
- 4. Soit $g: A \to A$ un homomorphisme d'anneaux.
 - (a) Montrez que, pour tout $a, b \in \mathbb{Z}$, g(a + bi) = a + bg(i).
 - (b) Montrez que, si x = g(i), x vérifie $x^2 = -1$.
 - (c) Déduire des questions précédentes que g = Id ou g = f.