Devoir Maison n°2

Exercice 1 Produit semi-direct

1. Soient H et K deux groupes notés multiplicativement. On note Aut(H) le groupe des automorphismes de H. Soit

$$\varphi \colon \begin{cases} K & \to \operatorname{Aut}(H) \\ k & \mapsto \varphi_k \end{cases}$$

un morphisme de groupes.

(a) Montrer que l'ensemble $H \times K$ muni de la loi

$$(h,k)\cdot(h',k')=(h\varphi_k(h'),kk'),$$

est un groupe. Le groupe ainsi obtenu est appelé produit semi-direct de H par K relativement à φ et est noté $H \bowtie_{\varphi} K$. Si φ est le morphisme trivial (c'est-à-dire, $\varphi_k = 1_{\text{Aut}(H)} = \text{id}_H$ pour tout $k \in K$), on retrouve le produit direct de H et K.

- (b) On suppose que H et K sont abéliens. Montrer que $H \rtimes_{\varphi} K$ est commutatif si et seulement si φ est le morphisme trivial.
- (c) Soient

$$H' = H \times \{1\} = \{(h, 1) : h \in H\},\$$

 $K' = \{1\} \times K = \{(1, k) : k \in K\}.$

Montrer que H', K' sont deux sous-groupes de $H \rtimes_{\varphi} K$ et que $H' \subset H \rtimes_{\varphi} K$ est distingué. Remarquer que $H' \cdot K' = G$ et $H' \cap K' = \{(1,1)\}$ et montrer que le groupe quotient G/H' est isomorphe à K.

2. Réciproquement, soient G un groupe et E, F deux sous-groupes de G. On supposer que E est distingué dans G et que $E \cdot F = G$ et $E \cap F = \{1\}$. On définit

$$\psi \colon \begin{cases} F & \to \operatorname{Int}(E) \\ x & \mapsto \psi_x \end{cases}$$

où ψ_x est l'automorphisme intérieur $y \mapsto xyx^{-1}$ de E. Montrer que G et $E \rtimes_{\psi} F$ sont isomorphes.

- 3. (a) Soit $n \ge 1$ un entier. Exhiber un isomorphisme entre le groupe diédral D_{2n} et un produit semi-direct de $\mathbb{Z}/n\mathbb{Z}$ par $\mathbb{Z}/2\mathbb{Z}$. A-t-on $D_{2n} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$?
 - (b) À l'aide de la question (1.b), contruire un groupe non commutatif d'ordre $21 = 3 \times 7$.

Exercice 2 Sous-groupe transitifs de S_4

Soit $n \geq 1$. Un sous-groupe G de $S_n = S(\{1, 2, \dots, n\})$ est dit transitif si son action sur $\{1, 2, \dots, n\}$ est transitive, i.e., pour tous $i, j \in \{1, 2, \dots, n\}$, il existe $g \in G$ tel que g(i) = j. Le commutant d'un élément γ d'un groupe Γ est le sous-groupe de Γ des éléments qui commutent avec γ .

- 1. Montrer que n divise l'ordre de tout sous-groupe transitif de S_n .
- 2. Déterminer les sous-groupes transitifs de S_3 .
- 3. Soit H le sous-groupe de S_4 engendré par (1,2,3,4) et (1,3).
 - (a) Déterminer les sous-groupes de H qui sont transitifs.
 - (b) Déterminer le commutant de chaque élément d'ordre 2 de S_4 , et réaliser H de cette manière.
 - (c) Soit G un sous-groupe transitif de S_4 d'ordre un diviseur de 8. Montrer qu'il est conjugué à l'un de ceux déterminés à la question (b).
 - (d) Établir, à conjugaison près, la liste des sous-groupes transitifs de S_4 .

Exercice 3 Classification des groupes non-commutatifs d'ordre 8

Le but de cet exercice est de déterminer tous les groupes non-commutatifs d'ordre 8 à isomorphisme près. Dans la suite, G est un groupe fini et Z = Z(G) le centre de G.

- 1. Montrer que Z est un sous-groupe distingué de G. Si G est d'ordre 8, quels sont les ordres possibles de Z?
- 2. Montrer que si G/Z est un groupe cyclique, alors G est abélien.
- 3. Soit p un premier, et supposer le cardinal de G est une puissance de p. Montrer que $Z(G) \neq \{1\}$. (Indication : on pourra consider l'action de G sur lui-même par conjugaison, puis utiliser l'équation aux classes pour trouver une formule du type suivant :

$$|G| = |Z(G)| + \sum_{i=1}^{n} \frac{|G|}{|H_i|}$$

où les $H_i \subsetneq G$ sont certains sous-groupes de G)

- 4. On suppose désormais que G est non-commutatif d'ordre $8 = 2^3$.
 - (a) Montrer que $Z(G) \subset G$ est un sous-groupe d'ordre 2, et que $G/Z(G) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (b) Montrer que G contient au moins un élément d'ordre 4.
 - (c) Montrer que tout sous-groupe de G d'ordre 4 est distingué dans G. Soit $H \subset G$ un sous-groupe cyclique et d'ordre 4 de G.
 - Cas 1 : Il existe dans G-H un élément d'ordre 2. Montrer alors que G=<H,x>. Montrer que l'automorphisme $H\to H,\,g\mapsto xgx^{-1}$ est égal à $g\mapsto g^{-1}$. En déduire que G est isomorphe au groupe diédral D_8 .
 - Cas 2 : Tout élément de G-H est d'ordre 4. Montrer alors que G n'a qu'un seul élément d'ordre 2, et qu'il engendre Z(G). On le note par -1. Soit i un générateur de H, et soit $j \in G-H$. On pose k=ij. Montrer que $i^2=j^2=k^2=-1$. On note alors -i pour i^3 , -j pour j^3 , et -k pour k^3 . Écrire la table de Cayley de G.

Note : ce groupe est appelé le groupe des quaternions et noté par \mathbb{H}_8 (Confer DM $n^{\circ}1$ Exercice 2 pour une définition de \mathbb{H}_8 en termes de matrices).

Exercice 4 Formule de Burnside et coloriages de polyèdres

- 1. Soit G un groupe fini agissant sur un ensemble fini X. Pour tout $x \in X$, on note par O_x son orbite par l'action de G et par G_x son stabilisateur.
 - (a) Soit $x \in X$ et $y \in O_x$. Trouver $z \in G$ tel que

$$G_y = z^{-1} G_x z.$$

(b) Montrer que pour tout $x \in X$,

$$|G| = \sum_{y \in O_x} |G_y|.$$

(c) En déduire

$$|\Omega| = \frac{1}{|G|} \sum_{x \in X} |G_x|$$

où $\Omega = \{O_x, x \in X\}$ est l'ensemble des orbites dans X par l'action de G.

(d) En décomposant de deux façons l'ensemble $F = \{(g, x) \in G \times X/g \cdot x = x\}$, déduire de la question précédente la **formule de Burnside** :

$$|\Omega| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|,$$

où Fix(g) est l'ensemble des points $x \in X$ tels que $g \cdot x = x$.

2. On cherche maintenant à déterminer le nombre de façons de colorier les faces et les arêtes d'un tétraèdre régulier, où k couleurs sont disponibles, à chaque face et à chaque arête étant attribuée une couleur et une seule. Le tétraèdre T est vu comme un sous-ensemble de l'espace vectoriel \mathbb{R}^3 , et on le suppose centré en 0.

On pourra identifier deux coloriages du tétraèdre s'il existe une rotation R de l'espace euclidien \mathbb{R}^3 qui préserve le tétraèdre, i.e. R(T) = T, et qui envoie le premier coloriage sur le second.

- (a) Soit X l'ensemble des coloriages où on interdit cette identification. Quel est le cardinal de X?
- (b) Montrer que l'ensemble des rotations préservant T, muni de la loi de composition, est un groupe.

On note G ce groupe. On admet qu'il est fini et que les éléments de G sont au nombre de 12:

- l'identité $Id_{\mathbb{R}^3}$.
- 3 rotations d'axe passant par le milieu d'une arête et le milieu de l'arête opposée, et d'angle π .
- 8 rotations d'axe passant par un sommet et le centre de la face opposée, et d'angle $\pm 2\pi/3$.
- (c) Le groupe G agit naturellement sur X, et chaque coloriage du tétraèdre correspond à une orbite O_x dans X par l'action de G. Exprimer le nombre de coloriages du tétraèdre en fonction de k.