
DESIGNS, GROUPS AND LATTICESCHRISTINE BACHOCAbstrat. The notion of designs in Grassmannian spaes was intro-dued by the author and R. Coulangeon, G. Nebe, in [3℄. After havingrealled some basi properties of these objets and the onnetions withthe theory of latties, we prove that the sequene of Barnes-Wall lattieshold 6-Grassmannian designs. We also disuss the onnetions betweenthe notion of Grassmannian design and the notion of design assoiatedwith the symmetri spae of the totally isotropi subspaes in a binaryquadrati spae, whih is revealed in a ertain onstrution involvingthe Cli�ord group. 1. IntrodutionRoughly speaking, a design is a �nite subset of a spae X whih \ap-proximates well" X. In the ase of �nite spaes X, suh objets arose fromdi�erent ontexts like statistis, �nite geometries, graphs, and are well un-derstood in the framework of assoiation shemes ([6℄, [15℄). Later the notionof designs was extended to the two-point homogeneous real manifolds ([14℄).Of speial interest are the so-alled spherial designs, de�ned on the unitsphere of the Eulidean spae. Due mainly to the work of Boris Venkov([28℄), we know that nie spherial designs arise from ertain families of lat-ties, and that the latties whih ontain spherial designs are loally dense.Moreover, this ombinatorial property gives a hint to lassify these latties,whih was reently ful�lled in many ases ([5℄).In a ommon work with R. Coulangeon and G. Nebe, we have generalizedthese notions to the real Grassmannian spaes Gm;n. This was the subjet ofmy talk at the XXIII�emes Journ�ees Arithm�etiques (2003), in Graz. I havehosen not to reprodue this talk here, but rather to present some omple-mentary results on one aspet of this subjet, whih was not emphasized inGraz, namely the links with group representation. In partiular, we will notdisuss at all here the onnetions with Siegel modular forms.Setions 2 to 4 essentially review on results from [3℄. The zonal poly-nomials assoiated with the ation of the orthogonal group on Gm;n, whihare generalized Jaobi polynomials in m variables, play a ruial role. Theyare presented in x2. The existene of Grassmannian designs in a lattie isonneted to its Rankin funtions m;n, this is realled in x3. In x4, we reallhow ertain properties of the representations of a �nite subgroup of O(Rn)Date: September 24, 2004. 1



2 CHRISTINE BACHOCensures that its orbits on Gm;n are designs. This is suessfully applied tothe automorphism group of many latties.In x5, we introdue the Cli�ord groups Ck < O(R2k ), and their subgroupsGk, of index 2, whih are the automorphism groups of the Barnes-Walllatties. These groups have reently attrated attention in ombinatorisbeause of their appearane in several apparently disonneted situations(�nite geometries, quantum odes, latties, Kerdok odes..). In [20℄, a verynie ombinatorial proof that their polynomial invariants are spanned bythe generalized weight enumerators of binary odes is given. We partlyextend this result to the subgroup Gk. As a onsequene, we obtain thatthe Barnes-Wall latties support Grassmannian 6-designs, and that they areloal maxima for all the Rankin onstants.The last setion, x6, disusses some other onstrutions of Grassmanniandesigns assoiated with the Cli�ord groups. We enounter another notionof design, this time assoiated with the spae of totally isotropi subspaesof �xed dimension in a binary quadrati spae. This spae is homogeneousand symmetri for the ation of the orresponding binary orthogonal group.Unsurprisingly, the Cli�ord group onnets these two notions of designs,leading to interesting new examples of Grassmannian designs.2. Grassmannian designs2.1. De�nitions. The notion of Grassmannian designs was introdued in[3℄. Let m � n=2, and let Gm;n be the real Grassmannian spae, togetherwith the transitive ation of the real orthogonal group O(Rn). The startingpoint is the deomposition of the spae of omplex-valued squared moduleintegrable funtions L2(Gm;n) under the ation of O(Rn). One has:(1) L2(Gm;n) = ��H2�m;nwhere the sum is over the partitions � = �1 � � � � � �m � 0, and the spaesH2�m;n are isomorphi to the irreduible representation of O(Rn) anoniallyassoiated with 2�, and denoted V 2�n (see [16℄). Here 2� = 2�1 � � � � �2�m � 0 is a partition with even parts. The degree of the partition � is byde�nition deg(�) :=Pi �i and its length l(�) is the number of its non-zeroparts.As an example, when l(�) = 1, the representation V �n is isomorphi tothe spae of polynomials in n variables, homogeneous of degree �1, and har-moni, i.e. annihilated by the standard Laplae operator. When l(�) > 1,the representations V �n have more ompliated but still expliit realizationsas spaes of polynomials in matrix arguments.



DESIGNS, GROUPS AND LATTICES 3De�nition 2.1 ([3℄). A �nite subset D of Gm;n is alled a 2t-design if, forall f 2 H2�m;n and all � with 0 � deg(�) � t,(2) ZGm;n f(p)dp = 1jDjXx2D f(x):The deomposition (1) immediately shows that this de�nition is equiva-lent to the ondition:(3) for all f 2 H2�m;n and all � with 1 � deg(�) � t;Xx2D f(x) = 0:There is a nie haraterization of the designs in terms of the zonal fun-tions of Gm;n, whih is muh more satisfatory from the algorithmi pointof view. We briey reall it here.It is a lassial fat that the orbits under the ation of O(Rn) of the pairs(p; p0) of elements of Gm;n are haraterized by their so-alled prinipal angles(�1; : : : ; �m) 2 [0; �=2℄m. We set yi := os2(�i). The polynomial funtions onGm;n�Gm;n whih are invariant under the simultaneous ation of O(Rn) arepolynomials in the variables (y1; : : : ; ym), and their spae is isomorphi tothe algebra C [y1 ; : : : ; ym℄Sm of symmetri polynomials inm variables. More-over, there is a unique sequene of orthogonal polynomials P�(y1; : : : ; ym)indexed by the partitions of length m, suh that C [y1 ; : : : ; ym℄Sm = ��CP� ,P�(1; : : : ; 1) = 1, and the funtion : p 2 Gm;n ! P�(y1(p; p0); : : : ; ym(p; p0))de�nes, for all p0 2 Gm;n, an element of H2�m;n. These polynomials have de-gree deg(�). They are expliitly alulated in [17℄, where it is shown thatthey belong to the family of Jaobi polynomials.More preisely, James and Constantine show that the anonial measureon Gm;n, indues on C [y1 ; : : : ; ym℄Sm the following measure:d�(y1; : : : ; ym) = � Y1�i<j�m jyi � yjj Y1�i�m y�1=2i (1� yi)n=2�m�1=2dyi(where � is hosen so that R[0;1℄m d�(y1; : : : ; ym) = 1). This measure de�nesan hermitian produt on C [y1 : : : ; ym℄Sm , namely[f; g℄ = Z[0;1℄m f(y)g(y)d�(y):Sine the irreduible subspaes H2�m;n are pairwise orthogonal, the or-responding polynomials P� must be orthogonal for this hermitian produt.Together with some knowledge on the monomials of degree deg(�) that ourin P�, it is enough to uniquely determine them. However, the most eÆientway to alulate them is to exploit the fat that they are eigenvetors forthe operator on C [y1 ; : : : ; ym℄Sm indued by the Laplae-Beltrami operator(see [17℄, [3℄ for more details).The �rst ones are equal to:



4 CHRISTINE BACHOCP0 = 1P(1) = 1�1 �X yi � m2n � ; �1 = m(1� mn )P(11) = 1�11 �X yiyj � (m� 1)2n� 2 X yi + m2(m� 1)22(n� 1)(n� 2)� ;�11 = m(m� 1)2 (1� 2m� 1n� 2 + m(m� 1)(n� 1)(n� 2))P(2) = 1�2 �X y2i + 23X yiyj � 2(m+ 2)23(n+ 4) X yi + m2(m+ 2)23(n+ 2)(n+ 4)� ;�2 = m(m+ 2)3 (1� 2m+ 2n+ 4 + m(m+ 2)(n+ 2)(n+ 4))where P yi =P1�i�m yi, P y2i =P1�i�m y2i , P yiyj =P1�i<j�m yiyj.Theorem 2.2 ([3℄). Let D � Gm;n be a �nite set. Then,(1) for all �, Pp;p02D P�(y1(p; p0); : : : ; ym(p; p0)) � 0.(2) The set D � Gm;n is a 2t-design if and only if for all �,1 � deg(�) � t, Pp;p02D P�(y1(p; p0); : : : ; ym(p; p0)) = 0.Remark 2.3. The �rst property is basi to the so-alled linear programmingmethod to derive bounds for odes and designs (see [2℄).2.2. Some subsets of Gm;n assoiated with a lattie. Let L � Rn be alattie. We de�ne ertain natural �nite subsets of Gm;n assoiated with L, inthe following way. Let Sm(R), S>0m (R), S�0m (R) be the spaes of m�m realsymmetri, respetively real positive de�nite, and real positive semi-de�nitematries.De�nition 2.4. Let S 2 S>0m (R). Let LS be the set of p 2 Gm;n suhthat p \ L is a lattie, having a basis (v1; : : : ; vm) with vi � vj = Si;j for all1 � i; j � m.Clearly, the sets LS are �nite sets. In the ase m = 1, the sets LS are thesets of lines supporting the lattie vetors of �xed norm.De�nition 2.5. Let Æm(L) := minS2S>0m (R)jLS 6=; detS. Let Sm(L) := [LS,where S 2 S>0m (R) and detS = Æm(L). The �nite set Sm(L) is alled the setof minimal m-setions of the lattie L.In partiular, Æ1(L) = min(L). The minimal 1-setions are the linessupporting the minimal vetors of the lattie.3. Grassmannian designs and Rankin onstants of lattiesBeside the lassial Hermite funtion  (= 1 in what follows), Rankinde�ned a olletion of funtions m assoiated with a lattie L � Rn :



DESIGNS, GROUPS AND LATTICES 5(4) m(L) := Æm(L)=(detL)mnThus, for m = 1, 1(L) is the lassial Hermite invariant of L. As a funtionon the set of n-dimensional positive de�nite latties, m is bounded, andthe supremum, whih atually is a maximum, is denoted by m;n. In [13℄, aharaterization of the loal maxima of m was given.De�nition 3.1. (1) A lattie L is alled m-perfet if the endomorphismsprp when p 2 Sm(L) generate Ends(E)(2) A lattie L is m-eutati if there exist positive oeÆients �p, p 2Sm(L) suh that Pp2Sm(L) �p prp = Id.(3) A lattie L is alled m-extreme, if m ahieves a loal maximum atL.Theorem 3.2 ([13℄). L is m-extreme if and only if L is both m-perfet andm-eutati.Theorem 3.3 ([28℄, [3℄). If Sm(L) is a 4-design in Gm;n, then it is m-extreme, i.e. it ahieves a loal maximum of the Rankin funtion m.Following B. Venkov, who alls strongly perfet a lattie for whih S(L)is a 4-design, we all m-strongly perfet a lattie L for whih Sm(L) is a4-design in Gm;n. It is worth notiing that, sine the number of lasses of m-perfet latties is �nite, the number of lasses of strongly m-perfet lattiesis also �nite.Examples: The main soures of examples are the following:� Small dimensional latties gave the �rst examples of m-strongly lat-ties: in that ase, it an be heked diretly, using Theorem 2.2. Itwas natural to look among the strongly perfet latties, whih havebeen lassi�ed up to dimension n � 12([28℄, [22℄, [29℄). These are:A2, D4, E6, E7, E8, K 010, K 010�, K12. They are m-strongly perfetfor all m, exept K 010, its dual, and K12, whih are only 1-stronglyperfet.� Extremal modular latties. In that ase, the spherial theta series ofthe latties an be used to prove strong perfetion. This argumentgeneralizes in priniple to m > 1. Only for m = 2 and the evenunimodular ase expliit alulations on the spaes of vetor-valuedSiegel modular forms show that ertain families of latties are 2-strongly perfet, namely the extremal ones of dimension 32 and 48(see [28℄, [5℄, [4℄).� Latties with an automorphism group whose natural representationsatis�es the riterion of Theorem 4.1 of the next setion. This aseleads to many examples (see Table 1), and to the only known in�nitefamily on m-strongly perfet latties: the sequene of the Barnes-Wall latties, whih will be disussed in setion 5.



6 CHRISTINE BACHOC4. Orbits of finite subgroups of O(Rn).A natural way to produe �nite subsets of Gm;n is to take the orbit of apoint under the ation of a �nite subgroup G of O(Rn). In [3℄, we provea riterion on the representations of G for these sets to be designs, whihnaturally extends a well-known riterion for the spherial designs.Theorem 4.1 ([3℄). Let m0 � n=2. Let G < O(Rn) be a �nite group. Thefollowing onditions are equivalent:� For all m � m0 and all p 2 Gm;n, G:p is a 2t-design� For all �, 1 � deg(�) � t, l(�) � m0, (V 2�n )G = f0gProof. We give here a simpli�ed proof. Assume D = G:p is the orbit ofp 2 Gm;n. Let Gp be the stabilizer of p. Then,Xx2D f(x) = 1jGpjXg2G f(g:p)= 1jGpjXg2G(g�1:f)(p)= jGjjGpj (�G:f)(p)where �G = 1jGjPg2G g. The ondition (V 2�n )G = f0g is equivalent to�G(V 2�n ) = f0g whih from previous equalities and the harateristi ondi-tion (3) lead to the statement.Examples: It is well-known that the Weyl groups of irreduible root sys-tems W (R) ating on the spae of homogeneous polynomials of degree 2leave invariant only the quadrati form x21 + x22 + � � �+ x2n. Therefore, thesegroups give rise to 2-designs on all the Grassmannian spaes. Moreover, theproperty for the degree 4 holds also for A2, D4, E6, E7 and the degree 6is ful�lled for E8. It is easily heked diretly on the groups; note that thepartitions to be taken into aount are not only (4) and (6) but also, whenn � 4 (2; 2), (4; 2), and, when n � 6, (2; 2; 2).The group 2:Co1 has the required property for the degree 10, with norestrition on m.Another interesting example is the sequene of real Cli�ord groups Ckwhih are subgroups of O(R2k ), leading to 6-designs in all the Grassmanni-ans. Next setion onsiders this group and one subgroup of index 2 whihis the automorphism group of the Barnes-Wall lattie.When the previous theorem an be applied to the group of automorphismsof a lattie L, sine obviously the sets LS are unions of orbits under the ationof Aut(L), we obtain that all these sets are designs.



DESIGNS, GROUPS AND LATTICES 7When the strength is equal to 4, the possible partitions are (2), (4),(2; 2). We have investigated the behavior of Aut(L) for all the latties L ofdimension 4 � n � 26 whih are known to be strongly perfet. The resultsare summarized in Table 1, where only one lattie among fL;L�g appears,even when they are not similar latties.The following situations our (enoded in the last olumn of the table):(1) G = Aut(L) satis�es (V �n )G = f0g for the three possible partitions(2), (4), (2; 2). In that ase, the sets LS are 4-designs for all S, andin partiular L is strongly m-perfet for all m. It holds also for anylattie with the same automorphism group, espeially for the duallattie.(2) G = Aut(L) satis�es (V �n )G = f0g only for (2) and (4). We an onlyonlude that the sets Lm := fx 2 L j x � x = mg, also alled thelayers of the lattie are 4-designs, as well as the layers of the duallattie.(3) G = Aut(L) does not satisfy (V �n )G = f0g for (2) and (4).Moreover, one an ask if any of these latties have an automorphismgroup holding the property of Theorem 4.1 for t � 3. It is well-known forthe Leeh lattie and t = 5 (and not for t = 6), and next setion provesthat the latties E8 and �16 reahes t = 3. A diret alulation shows thatthe minimal vetors of E8 and �16 do not hold an 8-design, so t = 3 is themaximum. The lassi�ation of the integral latties of minimum m � 5whose set of minimal vetors is a 6-design, performed in [18℄, shows that theother latties in this table annot exeed t = 2, exept possibly the lattieN16. A diret omputation on its automorphism group shows that t = 2 isalso the maximum value for this lattie.The list of these latties is taken from [28℄, with an additionnal lattieof dimension 26 whih was pointed to me by J. Martinet (named T26 after[21℄. The lattie N26 appears in [21℄ as Beis26 and S6(3)C3:2.)We have kepted the notations of [28℄ for the names of the latties, exeptof ourse for the last one. The determinant is given in the third olumn,in a form that reveals the struture of the disriminant group L�=L. Theautomorphism group is given in the �fth olumn, with the notations of [19℄,[21℄ when available. In [28℄ and [21℄ more informations on these latties aregiven.The ondition on (V �n )G is heked using the Shur polynomials assoiatedwith �.A ompletely di�erent reason for the existene of spherial designs in lat-ties is often given by the theory of modular forms (see [28℄, [5℄). Among thelist of Table 1, only the 21-dimensional lattie esapes from both the grouptheory argument and the modular forms argument. It is worth pointing outthat it is the only one of whih the dual lattie does not have a 4-spherialdesign on its minimal vetors. Of ourse, it is expeted that the situation is



8 CHRISTINE BACHOCTable 1dim name det min G ase4 D4 4 2 W (F4) (1)6 E6 3 2 2�W (E6) (1)7 E7 2 2 W (E7) (1)8 E8 1 2 W (E8) (1)10 K 010 62 � 33 4 (6� SU(4; 2)) : 2 (2)12 K12 36 4 6:SU4(3):22 (2)14 Q14 37 4 2�G2(3) (1)16 �16 28 4 29+
+(8; 2) (1)� O16 26 3 D48:S6(2) (1)� N16 58 6 2:Alt10 (2)18 K 018 35 4 (2� 31+4 : Sp4(3)):2 (2)20 N20 210 4 (SU5(2)� SL2(3)):2 (2)� N 020 � � 2:M12:2 (2)� N 0020 � � HS20 (3)21 K 021 12 � 3 4 211:36:5:7 (3)22 O22 3 3 [Aut(�22) : Aut(O22)℄ = 3 (1)� �22 6 � 2 4 (2� PSU6(2)):S3 (1)� �22[2℄ 6 � 219 6 � �� M22 15 4 (2�ML):2 (1)� M22[5℄ 15 � 320 10 � �23 O23 1 3 2� CO2 (1)� �23 4 4 � �� M23 6 4 2� CO3 (1)� M23[2℄ 6 � 321 10 � �24 �24 1 4 2:CO1 (1)24 N24 312 6 SL2(13) Æ SL2(3) (3)26 N26 313 6 S6(3)C3:2 (3)26 T26 3 4 3D4(2) : 3 (3)ompletely di�erent when the dimension grows, and the above list is anywayomplete only up to the dimension 12.



DESIGNS, GROUPS AND LATTICES 95. The group Aut(BWn)In this setion we study the tensor invariants of the automorphism groupof the Barnes-Wall latties. We shall make use of the methods and resultsdeveloped in [20℄. Let us reall from [20℄ some fats about the Cli�ord groupsCk and the Barnes-Wall latties.We set n = 2k. The real spae Rn is endowed with an orthonormal basis(eu)u2F k2 indexed by the elements of Fk2 .The Barnes-Wall lattie BWn � Rn is the lattie de�ned by:BWn =< 2b k�d+12 Xu2U eu; U >Zwhere U runs over all aÆne subspaes of F k2 , and d = dim(U).The �rst latties of the sequene are well-known: BW4 ' D4, BW8 ' E8,BW16 ' �16 the laminated lattie of the dimension 16. Suitably resaled,min(BWn) = 2b k2 , and BWn is even unimodular when k � 1 mod 2, re-spetively 2-modular when k � 0 mod 2.Bolt, Room and Wall ([9℄, [10℄, [8℄) and later Brou�e-Enguehard [7℄ de-sribed Aut(BWn). When n 6= 8, it is a subgroup of index 2 in the Cli�ordgroup Ck whih we desribe now.The extra-speial 2-group 21+2k+ has a representation E in Rn : ifX(a) : eu ! eu+a and Y (b) : eu ! (�1)b�ueu;E =< �I;X(a); Y (b) j a; b 2 Fk2 > :De�nition 5.1. The Cli�ord group Ck is the normalizer in O(Rn) of E.Sine q(x) := x2 de�nes a quadrati form on E=Z(E) ' F2k2 , non degen-erate and of maximal Witt index, and sine Ck ats on E (by onjugation)preserving q, it indues a subgroup of O+(2k; 2). It turns out that the wholeO+(2k; 2) is realized, yielding the isomorphism:Ck ' 21+2k+ :O+(2k; 2)The group O+(2k; 2) has a unique subgroup of index 2, 
+(2k; 2). Itsparaboli subgroups are the stabilizers in 
+(2k; 2) of totally isotropi sub-spaes; they are maximal in 
+(2k; 2). Let P (2k; 2) be the one assoiatedwith the image in F2k2 of < �X(a) j a 2 Fk2 >.Aording to [20℄, the following transformations are expliit generators ofthe group Ck:(1) Diagonal transformations: eu ! (�1)q(u)eu, where q is any binaryquadrati form, and �I.(2) Permutation transformations: eu ! e�(u), where � 2 AGL(k; 2).



10 CHRISTINE BACHOC(3) H := h 
 I2 
 � � � 
 I2, h = 1p2 �1 11 �1� (here Rn and (R2 )
k areidenti�ed in an obvious way).Straightforward alulations show that these elements normalizeE. More-over, the indued ation of the elements of the �rst and seond type on F2k2is given by the respetive matries �1 b0 1� where b is the sympleti matrixassoiated with q, and �� 00 ��tr� where � 2 GL(2; k). The group generatedby these transformations on F2k2 is the paraboli group P (2k; 2).The element H2 := h 
 h 
 I2 
 � � � 
 I2 has rational entries. The sub-group Gk of Ck generated by the elements of the �rst and seond type, andH2, generate a subgroup of 
+(2k; 2), ontaining P (2k; 2), hene equal to
+(2k; 2). It follows that Gk has index 2 in Ck and is rational; hene it isthe automorphism group of BWn (see [20℄).The polynomial invariants of Ck are desribed, �rst by B. Runge ([23℄,[24℄, [25℄), then with a di�erent proof by G. Nebe, E. Rains, N.J.A. Sloane([20℄, in terms of self-dual binary odes. As a onsequene, the �rst nontrivial invariant ours for the degree 8, assoiated with the �rst non trivialself-dual binary ode whih is the [8; 4; 4℄ Hamming ode. We extend herethis result to the subgroup Gk.Theorem 5.2. If k � 3 and d � 6, then(V 
d)Gk = (V 
d)Ck = (V 
d)O(V ):Corollary 5.3. The orbits of Aut(BWn) on Gm;n are 6-designs. In partiu-lar, the sets (BWn)S are 6-designs and the lattie BWn is strongly m-perfetfor all m.Remark 5.4. - Theorem 5.2 shows more than what is needed for the Grass-mannian design property, sine V 
6 ontains the representations assoiatedwith arbitrary partitions of degree lower or equal to 6.- The fat that the set of minimal vetors is a 6-spherial design wasalready proved by diret alulation by Boris Venkov ([28℄).Proof. The argument in [20℄ extends straightforwardly to the tensor invari-ants of Ck. Let V := Rn . To a binary ode C of length d, is assoiated atensor enumerator T (k)C 2 V 
d. To a k-tuple (w1; : : : ; wk) of odewords, weassoiate a k�d matrix whih rows are the words w1; : : : ; wk. Let u1; : : : ; udbe the d olumns of this matrix. Then:T (k)C := X(w1;:::;wk)2Ck eu1 
 � � � 
 eudwhere



DESIGNS, GROUPS AND LATTICES 11The usual (generalized) weight enumerator W (k)C is obtained by the sym-metrization V 
d ! Symd(V ). For the same reasons, when C is self-dual,T (k)C is invariant under the ation of Ck. A straightforward generalization ofthe proof in [20℄ of the fat that the invariants of Ck on Symd(V ) are exatlyspanned by the polynomials W (k)C when C = C? shows that the invariantsof Ck on V 
d are spanned by the T (k)C when C = C?. To determine the in-variants of Gk, we follow the same steps as in [20℄: the �rst is the desriptionof (V 
d)Pk , whih we reall in next lemma.Lemma 5.5 ([20℄, Theorem 4.6). The spae (V 
d)Pk is generated by theT (k)C where C runs over the binary odes of length d suh that 1 � C � C?and dim(C) � k + 1.The seond alulates �PkH2 as a linear ombination of the T (k)C assoi-ated with binary odes satisfying 1 � C � C? (whih obviously belong to(V 
d)Pk ; only those with dim(C) � k + 1 are linearly independent).Lemma 5.6. Let C be a binary ode of length d suh that 1 � C � C? anddim(C) � k + 1. Let r := d=2� dim(C).(�PkH2):T (k)C = a1T (k)C + a2 XC0�C0?C�C0;[C0:C℄=2T (k)C0 + a4 XC0�C0?C�C0;[C0:C℄=4T (k)C0where 8>><>>:a1 = 2�2r(1 + 2 (22r�1)(22r�2�1)(2k�1)(2k�1�1) � 322r�12k�1 )a2 = 3:2�2r2k�1 (1� 22r�2�12k�1�1 )a4 = 3:2�2r(2k�1)(2k�1�1)Moreover, a1 = 1 if and only if r = 0 or r = k.Proof. Let �(w1; : : : ; wk) := eu1 
 � � � 
 eud . We have (as a onsequene ofthe Poisson summation formula)H2T (k)C = 2�2r Xw1;w22C?w3;:::;wk2C �(w1; : : : ; wk)As a onsequene of the hange from H to H2, not only the �rst, but alsothe seond vetor is allowed to be in C?. Therefore, by the same argumentas in [20℄, there exists oeÆients a1; a2; a4 (depending on r and k) suh that(5) �PkH2T (k)C = a1T (k)C + a2 XC0�C0?C�C0;[C0:C℄=2T (k)C0 + a4 XC0�C0?C�C0;[C0:C℄=4T (k)C0



12 CHRISTINE BACHOCand we are left with the omputation of these oeÆients. Let <;> denotethe salar produt indued on V 
d by the Eulidean struture on V . Forany odes C, D, with 1 � C � D � D? � C?, we have:< T (k)C ; T (k)D >= jCjkand < (�PkH2):T (k)C ; T (k)D >=< H2:T (k)C ; T (k)D >= 2�2r[D : C℄2jCjk:Let nr2, respetively nr4 be the number of self-orthogonal odes ontainingC to index 2, respetively 4. Obviously, nr2 equals the number of isotropilines in the sympleti spae C?=C of dimension 2r, and nr4 equals thenumber of totally isotropi planes in C?=C. Therefore, nr2 = 22r � 1 andnr4 = (22r � 1)(22r�2 � 1)=3. Taking the salar produt of equation (5) withT (k)D , suessively for D = C, then for a self-orthogonal ode ontaining Cto index 2 and 4, we obtain the three equations (after having divided byjCjk): 2�2r = a1 + a2nr2 + a4nr42�2r:4 = a1 + a2:2k + a2(nr2 � 1) + a4nr�12 :2k + a4(nr4 � nr�12 )2�2r:16 = a1 + a2:3:2k + a2(nr2 � 3)+ a4:4k + a4(3nr�12 � 3):2k + a4(nr4 � 3nr�12 + 2)whih lead to the expressions of Theorem 5.2.We end the proof of the theorem in the same way as in [20℄. We have(V 
d)Gk = ker(�PkH2� I)\ (V 
d)Pk . From Lemma 5.6, when the elementsT (k)C are ordered by inreasing dim(C), the matrix of the transformation�PkH2 is upper triangular. If k � 3 and d � 6, the only diagonal oeÆientswhih are equal to 1 orrespond to C = C? and we an onlude by [20℄,Lemma 4.8Remark 5.7. Of ourse, for arbitrary degree d, the group Gk has moreinvariants than Ck. For k = 2 and d = 6, we have a1 = 1 for r = 2, i.e. forthe ode C = 1. The elementT (2)1 � 112 X1�C�C?dim(C)=2 T (2)Cis the unique degree 6 additional invariant under G2.For k = 3 and d = 8, the situation is the same, with



DESIGNS, GROUPS AND LATTICES 13T (3)1 � 140 X1�C�C?dim(C)=2 T (3)C + 1480 X1�C�C?dim(C)=3 T (3)Cas an invariant of degree 8. The Molien series on�rms that the degree 8polynomial invariant spae has dimension 3, spanned by the two lasses ofself-dual odes and this one.6. Other Grassmannian designsWhen a group G is known to ful�ll the onditions of Theorem 4.1, amongits orbits the most interesting ones are the ones shorter than the \generi"ones, i.e. the ones with a non trivial isotropi group. In general, it isnot easy to desribe these orbits. In the ase of the Cli�ord group Ck,some of these orbits are desribed in a very expliit way in [11℄, in view ofthe onstrution of Grassmannian odes for the hordal distane. We nextdisuss under whih onditions ertain smaller subsets of these sets remainto be 6-designs or 4-designs. More preisely, we prove that it depends on asimilar ondition of design assoiated with the underlying �nite geometry.6.1. The onstrution. The alluded onstrution is the following. LetS � F2k2 be a totally isotropi subspae of dimension k� s. The preimage ~Sof S in E is an abelian group, 2-elementary. (The identi�ation between F2k2and E=f�1g is still the same, sending X(a)Y (b) to (a; b)), It deomposesthe spae V = Rn into 2k�s irreduible subspaes of dimension 2s, whihare pairwise orthogonal. Let DS � G2s;2k be the set of these 2k�s subspaes.More generally, if � is a set of isotropi subspaes of the same dimensionk � s, we set(6) D� := [S2�DS � G2s;2k :Example: We an take � to be the whole set of totally isotropi subspaesof �xed dimension k � s. In that ase, � is a single orbit under O+(2k; 2),and D� is a single orbit under Ck. Therefore it is a 6-design. Note that,when s = 0, � splits into two orbits under the ation of 
+(2k; 2); the setof lines orresponding to one orbit is the set of lines supporting the minimalvetors of BWn, n = 2k.Of ourse, we are interested in the smallest possible sets, and the aboveexample is the largest one. A natural question is then: whih onditionsshould � satisfy, so that D� is a design? How small an we take �? Toanswer these questions, we need two more ingredients: another riterion forGrassmannian designs, and the notion of designs on the spaes of totallyisotropi subspaes of �xed dimension.



14 CHRISTINE BACHOC6.2. A new riterion. Let D � Gm;n. Let � := y1 + y2 + � � �+ ym.Theorem 6.1. For all m;n, and t, there exists a onstant m;n(2t) suhthat(1) For all D � Gm;n, 1jDj2 Pp;p02D �(p; p0)t � m;n(2t).(2) D is a 2t-design if and only if 1jDj2 Pp;p02D �(p; p0)t = m;n(2t).Proof. From the de�ning property of Grassmannian designs (De�nition 2.1),sine �t has degree t in the variables y1; : : : ; ym, if D is a 2t-design,1jDj2 Xp;p02D �(p; p0)t = Z[0;1℄m �td�(y1; : : : ; ym)We set m;n(2t) := R[0;1℄m �td�(y1; : : : ; ym).Lemma 6.2. There exists positive oeÆients �t;� > 0 suh that:�t = X�;deg(�)�t �t;�P�:Proof. For t = 1, we have � = m(n�m)n P(1) + m2n .For t > 1, we proeed by indution. Let us assume �rst that deg(�) < t.We have [�t; P�℄ = [�t�1; �P�℄= [�t�1; (m(n�m)n P(1) + m2n )P�℄We know that P(1)P� is a linear ombination with non negative oeÆientsof the P� ([1, Lemma 2℄). By indution, we obtain[�t; P�℄ � [�t�1; m2n P�℄> 0 (if deg(�) < t):If deg(�) = t, the seond term of the �rst inequality is zero. We needmore information on the expression �P� on the P�. The analogue of the\three-term relation" for orthogonal polynomials in one variable gives (see[2℄):�P� = Xdeg(�)=k+1Ak[�; �℄P� + Xdeg(�)=kBk[�; �℄P� + Xdeg(�)=k�1Ck[�; �℄P�where k = deg(�). Moreover, Ck[�; �℄[P�; P�℄ = Ak�1[�; �℄[P�; P�℄ is zerounless � is obtained from � by the inrease of one of its parts by one, inwhih ase Ak�1[�; �℄ > 0 ([2℄). In [�t; P�℄ = [�t�1; �P�℄ only those terms



DESIGNS, GROUPS AND LATTICES 15(and at least one) give a ontribution, so, by indution, we obtain the desiredproperty.Sine m;n(2t) = [�t; 1℄ = �t;0, and from the design riterion and thepositivity ondition of Theorem 2.2, the proof of Theorem 6.1 is ompleted(note that it is ruial than none of the �t;� is equal to zero).Remark 6.3. This riterion is analogous to [28, Th�eor�eme 8.1℄, and similarversions exist in priniple for any notion of design. We shall ome aross asimilar riterion for the designs of totally isotropi spaes.Remark 6.4. It is not apparently easy to alulate m;n(2t) by the integra-tion formula m;n(2t) := R[0;1℄m �td�(y1; : : : ; ym). It is worth notiing that,sine m;n(2t) = [�t; 1℄ = �t;0, it beomes easy one one has alulated ex-pliitly the polynomials P� for deg(�) � t. For example, we obtain fromx2.1, m;n(2) = m2nm;n(4) = m23n �2(m� 1)2n� 1 + (m+ 2)2n+ 2 �and, using [�3; 1℄ = [�2; �℄ and [P(1); P(1)℄ = dim(V (2)n )�1 = 2(n�1)(n+2) , wean even alulatem;n(6) = m23n �(m� 1)2(m+ 2)2(n� 1)(n+ 2) ( 2nn� 2 + n+ 3n+ 4)�8 m(m� 1)2(n� 1)(n� 2) + (m+ 2)2(2m+ 3)(n+ 2)(n+ 4) �6.3. The spae of totally isotropi subspaes. Let Xw be the set of to-tally isotropi subspaes of dimension w � k of the quadrati spae (F2k2 ; q).The group G := O+(2k; 2) ats transitively on Xw; the stabilizer of anelement is a maximal paraboli subgroup Pw. The orbits of G on pairsof elements (S; S0) (also alled orbitals) are investigated in [30℄; they areharaterized by two quantities: dim(S \ S0) and dim(S \ S0?). Sinedim(S \ S0?) = dim(S? \ S0), they are symmetri. In the speial asew = k of the maximal totally isotropi subspaes, S = S? and one value isenough, giving to Xw the struture of a 2-point homogeneous spae (for thedistane d(S; S0) = k � dim(S \ S0)).The spae L(Xw) of omplex valued funtions on Xw deomposes, underthe ation of G, into irreduible subspaes with multipliities equal to one;



16 CHRISTINE BACHOCto eah subspae is assoiated a unique zonal funtion. This deomposition,and the orresponding zonal funtions, are omputed in [26℄, [27℄ (in [27℄,the general ase of Chevalley groups over Fq is treated; it is assumed that theharateristi is di�erent from 2, although the situation would be ompletelyanalogous. In [27℄, the ase w = k is treated in full generality). We onlyneed here the general form of this deomposition ([26, Theorem 6.23℄):L(Xw) = �(m;r)2IVm;rwhere I := f(m; r) j 0 � m � w; 0 � r � m ^ (k � w)g. If y := dim(S \ S0),x+ y := dim(S \ S0?), the orresponding zonal (spherial) funtion Gm;r isa polynomial in 2x, 2y and of degree m in 2y. Note that 2y = jS\S0j. Whenw = k, these polynomials are polynomials in one variable, and identi�ed asq-Krawthouk polynomials. In that ase, the t-designs are de�ned in theusual way (see [15℄).Theorem 6.5. There exists onstants dw;k(t) suh that:(1) For all � � Xw, 1j�j2 PS;S02� jS \ S0jt � dw;k(t)(2) When w = k, equality holds if and only if � is a t-design.Remark 6.6. When w < k, the interpretation of the ase of equality interms of designs is not so lear. Sine the irreduible spaes require a doubleindex, the notion of t-designs itself is not so lear, although the most naturalone would be, like in the ase of the non-binary Johnson sheme, to requireorthogonality with �Vm;r, where (m; r) 2 f(m; r) j m � tg. Then, one wouldneed to look arefully at the positivity of the oeÆients of the expansion of(2y)t on the Gm;r. In the ase w = k, the positivity is guaranteed, thanks tothe three-terms relation, whose oeÆients are the intersetion numbers ofthe assoiation sheme (see [6, II.2(2.1), III.1(1.2)℄).Here, the omputation of the numbers dw;k(t) is easy, sine they omefrom the onstant term: dw;k(t) = [yt; 1℄. So,dw;k(t) = 1jXwj2 XS;S02Xw jS \ S0jt= 1jXwj2 Xx;y jOrb(x; y)j(2y)twhere Orb(x; y) is the orbital assoiated with the values (x; y); its ardinalityis alulated in [30, Theorem 5.5℄.6.4. When is D� a design?Theorem 6.7. Let D� be de�ned as in (6).(1) D� is always a 2-design.



DESIGNS, GROUPS AND LATTICES 17(2) For t = 2 and t = 3, D� is a 2t-design if and only if � satis�es theequality: 1j�j2 XS;S02� jS \ S0jt�1 = dw;k(t� 1):Proof. We alulate 1jD�j2 Pp;p02D� �(p; p0)t. By the onstrution,1jD�j2 Xp;p02D� �(p; p0)t = 122(k�s)j�j2 XS;S02�( Xp2DS;p02DS0 �(p; p0)t):Let dim(S \ S0) := k � u. The 2k�u irreduible subspaes assoiatedwith ~S \ S0 are obtained from the 2k�s ones assoiated with S, by summingtogether 2u�s of them. These ones are preisely the ones on whih theorresponding haraters of ~S and ~S0 oinide on ~S \ S0. Aording to [11,(9)℄, if p 2 DS and p0 2 DS0 are ontained in the same irreduible subspaesassoiated with ~S \ S0,�(p; p0) = 2k jS \ S0jjSjjS0j = 22s�u;and it holds for (2u�s)2 pairs (p; p0). Otherwise, �(p; p0) = 0, exept if p = p0of ourse.All together, we obtain1jD�j2 Xp;p02D� �(p; p0)t = 2(2s�k)t 1j�j2 XS;S02� jS \ S0jt�1:From Theorem 6.1, we obtain that D� is a 2t-design if and only if(7) 1j�j2 XS;S02� jS \ S0jt�1 = 2�(2s�k)t2s;2k(2t):When t = 1, from Remark 6.4, 2�(2s�k)2s;2k(2) = 1, and the previousequality always holds.When t = 2; 3, we know that, taking � = Xk�s, we do obtain a 2t-design,and hene, that (7) is ful�lled. We have proved two things:� 2�(2s�k)t2s;2k(2t) = dk�s;k(t� 1).� Assertion (2) of the theorem.It remains, of ourse, to give examples of sets � with the property (2) ofTheorem 6.7. One example is given by maximal spreads. These are standardobjets of �nite geometries.
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DESIGNS, GROUPS AND LATTICES 19[10℄ B. Bolt, T.G. Room and G.E. Wall, On Cli�ord ollineation, transform and similaritygroups II, J. Australian Math. So, 2 (1961), 80-96[11℄ J. H. Conway, R. H. Hardin, E. Rains, P.W. Shor and N. J. A. Sloane, A group-theoretial framework for the onstrution of pakings in Grassmannian spaes, J.Algebrai Comb. 9 (1999), 129-140.[12℄ J. H. Conway, R. H. Hardin and N. J. A. Sloane, Paking Lines, Planes, et., Pakingsin Grassmannian Spaes, Experimental Mathematis 5 (1996), 139-159.[13℄ R. Coulangeon. R�eseaux k-extrêmes, Pro. London Math. So. (3) 73 (1996), no. 3,555-574.[14℄ P. Delsarte, J. M. Goethals and J. J. Seidel, Spherial odes and designs, Geom.Dediata 6 (1977), 363-388.[15℄ P. Delsarte, V.I. Levenshtein, Assoiation shemes and oding theory, IEEE Trans.Inf. Th. 44(6) (1998), 2477-2504.[16℄ R. Goodman and N. R. Wallah, Representations and invariants of the lassialgroups, Enylopedia of Mathematis and its Appliations 68, Cambridge Univer-sity Press, 1998.[17℄ A.T. James and A.G. Constantine, Generalized Jaobi polynomials as spherial fun-tions of the Grassmann manifold, Pro. London Math. So. (3) 29 (1974), 174-192.[18℄ J. Martinet, Sur ertains designs sphriques lis des rseaux entiers, in \R�eseaux eu-lidiens, designs sph�eriques et formes modulaires, J. Martinet, �ed., L'EnseignementMath�ematique, Monographie nÆ 37", Gen�eve (2001).[19℄ G. Nebe, W. Plesken, Finite rational matrix groups, Memoirs of the AMS, vol. 116,nb. 556 (1995).[20℄ G. Nebe, E. Rains, N.J.A Sloane, The invariants of the Cli�ord groups, Designs,Codes, and Cryptography 24 (1), 99-122 (2001).[21℄ G. Nebe, N.J.A Sloane, A atalogue of latties,http://www.researh.att.om/~njas/latties/index.html[22℄ G. Nebe, B. Venkov, The strongly perfet latties of dimension 10, J. Th�eorie deNombres de Bordeaux 12 (2000) 503-518[23℄ B. Runge, On Siegel modular forms I, J. Reine Angew. Math. 436 (1993), 57-85.[24℄ B. Runge, On Siegel modular forms II, Nagoya Math. J. 138 (1995), 179-197.[25℄ B. Runge, Codes and Siegel modular forms, Disrete Math. 148 (1995), 175-205.[26℄ D. Stanton, Some q-Krawthouk polynomials on Chevalley groups, Amer. J. Math.102(4) (1980), 625-662.[27℄ D. Stanton, Orthogonal polynomials and Chevalley groups, in Speial funtions: Grouptheoretial aspets and appliations R.A. Askey, T.H. Koornwinder, W. Shempp ed-itors, Mathematis and its appliations, D. reidel Publishing Company, 1984.[28℄ B. Venkov, R�eseaux et designs sph�eriques, in \R�eseaux eulidiens, designs sph�eriqueset formes modulaires, J. Martinet, �ed., L'Enseignement Math�ematique, MonographienÆ 37", Gen�eve (2001).[29℄ B. Venkov, personnal omuniation.[30℄ H. Wei, Y. Wang, Suborbits of the transitive set of subspaes of type (m,0) under�nite lassial groups, Algebra Colloq. 3:1 (1996), 73-84.C. Baho, Laboratoire A2X, Universit�e Bordeaux I, 351, ours de la Lib�e-ration, 33405 Talene FraneE-mail address: baho�math.u-bordeaux.fr


