
DESIGNS, GROUPS AND LATTICESCHRISTINE BACHOCAbstra
t. The notion of designs in Grassmannian spa
es was intro-du
ed by the author and R. Coulangeon, G. Nebe, in [3℄. After havingre
alled some basi
 properties of these obje
ts and the 
onne
tions withthe theory of latti
es, we prove that the sequen
e of Barnes-Wall latti
eshold 6-Grassmannian designs. We also dis
uss the 
onne
tions betweenthe notion of Grassmannian design and the notion of design asso
iatedwith the symmetri
 spa
e of the totally isotropi
 subspa
es in a binaryquadrati
 spa
e, whi
h is revealed in a 
ertain 
onstru
tion involvingthe Cli�ord group. 1. Introdu
tionRoughly speaking, a design is a �nite subset of a spa
e X whi
h \ap-proximates well" X. In the 
ase of �nite spa
es X, su
h obje
ts arose fromdi�erent 
ontexts like statisti
s, �nite geometries, graphs, and are well un-derstood in the framework of asso
iation s
hemes ([6℄, [15℄). Later the notionof designs was extended to the two-point homogeneous real manifolds ([14℄).Of spe
ial interest are the so-
alled spheri
al designs, de�ned on the unitsphere of the Eu
lidean spa
e. Due mainly to the work of Boris Venkov([28℄), we know that ni
e spheri
al designs arise from 
ertain families of lat-ti
es, and that the latti
es whi
h 
ontain spheri
al designs are lo
ally dense.Moreover, this 
ombinatorial property gives a hint to 
lassify these latti
es,whi
h was re
ently ful�lled in many 
ases ([5℄).In a 
ommon work with R. Coulangeon and G. Nebe, we have generalizedthese notions to the real Grassmannian spa
es Gm;n. This was the subje
t ofmy talk at the XXIII�emes Journ�ees Arithm�etiques (2003), in Graz. I have
hosen not to reprodu
e this talk here, but rather to present some 
omple-mentary results on one aspe
t of this subje
t, whi
h was not emphasized inGraz, namely the links with group representation. In parti
ular, we will notdis
uss at all here the 
onne
tions with Siegel modular forms.Se
tions 2 to 4 essentially review on results from [3℄. The zonal poly-nomials asso
iated with the a
tion of the orthogonal group on Gm;n, whi
hare generalized Ja
obi polynomials in m variables, play a 
ru
ial role. Theyare presented in x2. The existen
e of Grassmannian designs in a latti
e is
onne
ted to its Rankin fun
tions 
m;n, this is re
alled in x3. In x4, we re
allhow 
ertain properties of the representations of a �nite subgroup of O(Rn)Date: September 24, 2004. 1



2 CHRISTINE BACHOCensures that its orbits on Gm;n are designs. This is su

essfully applied tothe automorphism group of many latti
es.In x5, we introdu
e the Cli�ord groups Ck < O(R2k ), and their subgroupsGk, of index 2, whi
h are the automorphism groups of the Barnes-Walllatti
es. These groups have re
ently attra
ted attention in 
ombinatori
sbe
ause of their appearan
e in several apparently dis
onne
ted situations(�nite geometries, quantum 
odes, latti
es, Kerdo
k 
odes..). In [20℄, a veryni
e 
ombinatorial proof that their polynomial invariants are spanned bythe generalized weight enumerators of binary 
odes is given. We partlyextend this result to the subgroup Gk. As a 
onsequen
e, we obtain thatthe Barnes-Wall latti
es support Grassmannian 6-designs, and that they arelo
al maxima for all the Rankin 
onstants.The last se
tion, x6, dis
usses some other 
onstru
tions of Grassmanniandesigns asso
iated with the Cli�ord groups. We en
ounter another notionof design, this time asso
iated with the spa
e of totally isotropi
 subspa
esof �xed dimension in a binary quadrati
 spa
e. This spa
e is homogeneousand symmetri
 for the a
tion of the 
orresponding binary orthogonal group.Unsurprisingly, the Cli�ord group 
onne
ts these two notions of designs,leading to interesting new examples of Grassmannian designs.2. Grassmannian designs2.1. De�nitions. The notion of Grassmannian designs was introdu
ed in[3℄. Let m � n=2, and let Gm;n be the real Grassmannian spa
e, togetherwith the transitive a
tion of the real orthogonal group O(Rn). The startingpoint is the de
omposition of the spa
e of 
omplex-valued squared moduleintegrable fun
tions L2(Gm;n) under the a
tion of O(Rn). One has:(1) L2(Gm;n) = ��H2�m;nwhere the sum is over the partitions � = �1 � � � � � �m � 0, and the spa
esH2�m;n are isomorphi
 to the irredu
ible representation of O(Rn) 
anoni
allyasso
iated with 2�, and denoted V 2�n (see [16℄). Here 2� = 2�1 � � � � �2�m � 0 is a partition with even parts. The degree of the partition � is byde�nition deg(�) :=Pi �i and its length l(�) is the number of its non-zeroparts.As an example, when l(�) = 1, the representation V �n is isomorphi
 tothe spa
e of polynomials in n variables, homogeneous of degree �1, and har-moni
, i.e. annihilated by the standard Lapla
e operator. When l(�) > 1,the representations V �n have more 
ompli
ated but still expli
it realizationsas spa
es of polynomials in matrix arguments.



DESIGNS, GROUPS AND LATTICES 3De�nition 2.1 ([3℄). A �nite subset D of Gm;n is 
alled a 2t-design if, forall f 2 H2�m;n and all � with 0 � deg(�) � t,(2) ZGm;n f(p)dp = 1jDjXx2D f(x):The de
omposition (1) immediately shows that this de�nition is equiva-lent to the 
ondition:(3) for all f 2 H2�m;n and all � with 1 � deg(�) � t;Xx2D f(x) = 0:There is a ni
e 
hara
terization of the designs in terms of the zonal fun
-tions of Gm;n, whi
h is mu
h more satisfa
tory from the algorithmi
 pointof view. We brie
y re
all it here.It is a 
lassi
al fa
t that the orbits under the a
tion of O(Rn) of the pairs(p; p0) of elements of Gm;n are 
hara
terized by their so-
alled prin
ipal angles(�1; : : : ; �m) 2 [0; �=2℄m. We set yi := 
os2(�i). The polynomial fun
tions onGm;n�Gm;n whi
h are invariant under the simultaneous a
tion of O(Rn) arepolynomials in the variables (y1; : : : ; ym), and their spa
e is isomorphi
 tothe algebra C [y1 ; : : : ; ym℄Sm of symmetri
 polynomials inm variables. More-over, there is a unique sequen
e of orthogonal polynomials P�(y1; : : : ; ym)indexed by the partitions of length m, su
h that C [y1 ; : : : ; ym℄Sm = ��CP� ,P�(1; : : : ; 1) = 1, and the fun
tion : p 2 Gm;n ! P�(y1(p; p0); : : : ; ym(p; p0))de�nes, for all p0 2 Gm;n, an element of H2�m;n. These polynomials have de-gree deg(�). They are expli
itly 
al
ulated in [17℄, where it is shown thatthey belong to the family of Ja
obi polynomials.More pre
isely, James and Constantine show that the 
anoni
al measureon Gm;n, indu
es on C [y1 ; : : : ; ym℄Sm the following measure:d�(y1; : : : ; ym) = � Y1�i<j�m jyi � yjj Y1�i�m y�1=2i (1� yi)n=2�m�1=2dyi(where � is 
hosen so that R[0;1℄m d�(y1; : : : ; ym) = 1). This measure de�nesan hermitian produ
t on C [y1 : : : ; ym℄Sm , namely[f; g℄ = Z[0;1℄m f(y)g(y)d�(y):Sin
e the irredu
ible subspa
es H2�m;n are pairwise orthogonal, the 
or-responding polynomials P� must be orthogonal for this hermitian produ
t.Together with some knowledge on the monomials of degree deg(�) that o

urin P�, it is enough to uniquely determine them. However, the most eÆ
ientway to 
al
ulate them is to exploit the fa
t that they are eigenve
tors forthe operator on C [y1 ; : : : ; ym℄Sm indu
ed by the Lapla
e-Beltrami operator(see [17℄, [3℄ for more details).The �rst ones are equal to:



4 CHRISTINE BACHOCP0 = 1P(1) = 1�1 �X yi � m2n � ; �1 = m(1� mn )P(11) = 1�11 �X yiyj � (m� 1)2n� 2 X yi + m2(m� 1)22(n� 1)(n� 2)� ;�11 = m(m� 1)2 (1� 2m� 1n� 2 + m(m� 1)(n� 1)(n� 2))P(2) = 1�2 �X y2i + 23X yiyj � 2(m+ 2)23(n+ 4) X yi + m2(m+ 2)23(n+ 2)(n+ 4)� ;�2 = m(m+ 2)3 (1� 2m+ 2n+ 4 + m(m+ 2)(n+ 2)(n+ 4))where P yi =P1�i�m yi, P y2i =P1�i�m y2i , P yiyj =P1�i<j�m yiyj.Theorem 2.2 ([3℄). Let D � Gm;n be a �nite set. Then,(1) for all �, Pp;p02D P�(y1(p; p0); : : : ; ym(p; p0)) � 0.(2) The set D � Gm;n is a 2t-design if and only if for all �,1 � deg(�) � t, Pp;p02D P�(y1(p; p0); : : : ; ym(p; p0)) = 0.Remark 2.3. The �rst property is basi
 to the so-
alled linear programmingmethod to derive bounds for 
odes and designs (see [2℄).2.2. Some subsets of Gm;n asso
iated with a latti
e. Let L � Rn be alatti
e. We de�ne 
ertain natural �nite subsets of Gm;n asso
iated with L, inthe following way. Let Sm(R), S>0m (R), S�0m (R) be the spa
es of m�m realsymmetri
, respe
tively real positive de�nite, and real positive semi-de�nitematri
es.De�nition 2.4. Let S 2 S>0m (R). Let LS be the set of p 2 Gm;n su
hthat p \ L is a latti
e, having a basis (v1; : : : ; vm) with vi � vj = Si;j for all1 � i; j � m.Clearly, the sets LS are �nite sets. In the 
ase m = 1, the sets LS are thesets of lines supporting the latti
e ve
tors of �xed norm.De�nition 2.5. Let Æm(L) := minS2S>0m (R)jLS 6=; detS. Let Sm(L) := [LS,where S 2 S>0m (R) and detS = Æm(L). The �nite set Sm(L) is 
alled the setof minimal m-se
tions of the latti
e L.In parti
ular, Æ1(L) = min(L). The minimal 1-se
tions are the linessupporting the minimal ve
tors of the latti
e.3. Grassmannian designs and Rankin 
onstants of latti
esBeside the 
lassi
al Hermite fun
tion 
 (= 
1 in what follows), Rankinde�ned a 
olle
tion of fun
tions 
m asso
iated with a latti
e L � Rn :



DESIGNS, GROUPS AND LATTICES 5(4) 
m(L) := Æm(L)=(detL)mnThus, for m = 1, 
1(L) is the 
lassi
al Hermite invariant of L. As a fun
tionon the set of n-dimensional positive de�nite latti
es, 
m is bounded, andthe supremum, whi
h a
tually is a maximum, is denoted by 
m;n. In [13℄, a
hara
terization of the lo
al maxima of 
m was given.De�nition 3.1. (1) A latti
e L is 
alled m-perfe
t if the endomorphismsprp when p 2 Sm(L) generate Ends(E)(2) A latti
e L is m-euta
ti
 if there exist positive 
oeÆ
ients �p, p 2Sm(L) su
h that Pp2Sm(L) �p prp = Id.(3) A latti
e L is 
alled m-extreme, if 
m a
hieves a lo
al maximum atL.Theorem 3.2 ([13℄). L is m-extreme if and only if L is both m-perfe
t andm-euta
ti
.Theorem 3.3 ([28℄, [3℄). If Sm(L) is a 4-design in Gm;n, then it is m-extreme, i.e. it a
hieves a lo
al maximum of the Rankin fun
tion 
m.Following B. Venkov, who 
alls strongly perfe
t a latti
e for whi
h S(L)is a 4-design, we 
all m-strongly perfe
t a latti
e L for whi
h Sm(L) is a4-design in Gm;n. It is worth noti
ing that, sin
e the number of 
lasses of m-perfe
t latti
es is �nite, the number of 
lasses of strongly m-perfe
t latti
esis also �nite.Examples: The main sour
es of examples are the following:� Small dimensional latti
es gave the �rst examples of m-strongly lat-ti
es: in that 
ase, it 
an be 
he
ked dire
tly, using Theorem 2.2. Itwas natural to look among the strongly perfe
t latti
es, whi
h havebeen 
lassi�ed up to dimension n � 12([28℄, [22℄, [29℄). These are:A2, D4, E6, E7, E8, K 010, K 010�, K12. They are m-strongly perfe
tfor all m, ex
ept K 010, its dual, and K12, whi
h are only 1-stronglyperfe
t.� Extremal modular latti
es. In that 
ase, the spheri
al theta series ofthe latti
es 
an be used to prove strong perfe
tion. This argumentgeneralizes in prin
iple to m > 1. Only for m = 2 and the evenunimodular 
ase expli
it 
al
ulations on the spa
es of ve
tor-valuedSiegel modular forms show that 
ertain families of latti
es are 2-strongly perfe
t, namely the extremal ones of dimension 32 and 48(see [28℄, [5℄, [4℄).� Latti
es with an automorphism group whose natural representationsatis�es the 
riterion of Theorem 4.1 of the next se
tion. This 
aseleads to many examples (see Table 1), and to the only known in�nitefamily on m-strongly perfe
t latti
es: the sequen
e of the Barnes-Wall latti
es, whi
h will be dis
ussed in se
tion 5.



6 CHRISTINE BACHOC4. Orbits of finite subgroups of O(Rn).A natural way to produ
e �nite subsets of Gm;n is to take the orbit of apoint under the a
tion of a �nite subgroup G of O(Rn). In [3℄, we provea 
riterion on the representations of G for these sets to be designs, whi
hnaturally extends a well-known 
riterion for the spheri
al designs.Theorem 4.1 ([3℄). Let m0 � n=2. Let G < O(Rn) be a �nite group. Thefollowing 
onditions are equivalent:� For all m � m0 and all p 2 Gm;n, G:p is a 2t-design� For all �, 1 � deg(�) � t, l(�) � m0, (V 2�n )G = f0gProof. We give here a simpli�ed proof. Assume D = G:p is the orbit ofp 2 Gm;n. Let Gp be the stabilizer of p. Then,Xx2D f(x) = 1jGpjXg2G f(g:p)= 1jGpjXg2G(g�1:f)(p)= jGjjGpj (�G:f)(p)where �G = 1jGjPg2G g. The 
ondition (V 2�n )G = f0g is equivalent to�G(V 2�n ) = f0g whi
h from previous equalities and the 
hara
teristi
 
ondi-tion (3) lead to the statement.Examples: It is well-known that the Weyl groups of irredu
ible root sys-tems W (R) a
ting on the spa
e of homogeneous polynomials of degree 2leave invariant only the quadrati
 form x21 + x22 + � � �+ x2n. Therefore, thesegroups give rise to 2-designs on all the Grassmannian spa
es. Moreover, theproperty for the degree 4 holds also for A2, D4, E6, E7 and the degree 6is ful�lled for E8. It is easily 
he
ked dire
tly on the groups; note that thepartitions to be taken into a

ount are not only (4) and (6) but also, whenn � 4 (2; 2), (4; 2), and, when n � 6, (2; 2; 2).The group 2:Co1 has the required property for the degree 10, with norestri
tion on m.Another interesting example is the sequen
e of real Cli�ord groups Ckwhi
h are subgroups of O(R2k ), leading to 6-designs in all the Grassmanni-ans. Next se
tion 
onsiders this group and one subgroup of index 2 whi
his the automorphism group of the Barnes-Wall latti
e.When the previous theorem 
an be applied to the group of automorphismsof a latti
e L, sin
e obviously the sets LS are unions of orbits under the a
tionof Aut(L), we obtain that all these sets are designs.



DESIGNS, GROUPS AND LATTICES 7When the strength is equal to 4, the possible partitions are (2), (4),(2; 2). We have investigated the behavior of Aut(L) for all the latti
es L ofdimension 4 � n � 26 whi
h are known to be strongly perfe
t. The resultsare summarized in Table 1, where only one latti
e among fL;L�g appears,even when they are not similar latti
es.The following situations o

ur (en
oded in the last 
olumn of the table):(1) G = Aut(L) satis�es (V �n )G = f0g for the three possible partitions(2), (4), (2; 2). In that 
ase, the sets LS are 4-designs for all S, andin parti
ular L is strongly m-perfe
t for all m. It holds also for anylatti
e with the same automorphism group, espe
ially for the duallatti
e.(2) G = Aut(L) satis�es (V �n )G = f0g only for (2) and (4). We 
an only
on
lude that the sets Lm := fx 2 L j x � x = mg, also 
alled thelayers of the latti
e are 4-designs, as well as the layers of the duallatti
e.(3) G = Aut(L) does not satisfy (V �n )G = f0g for (2) and (4).Moreover, one 
an ask if any of these latti
es have an automorphismgroup holding the property of Theorem 4.1 for t � 3. It is well-known forthe Lee
h latti
e and t = 5 (and not for t = 6), and next se
tion provesthat the latti
es E8 and �16 rea
hes t = 3. A dire
t 
al
ulation shows thatthe minimal ve
tors of E8 and �16 do not hold an 8-design, so t = 3 is themaximum. The 
lassi�
ation of the integral latti
es of minimum m � 5whose set of minimal ve
tors is a 6-design, performed in [18℄, shows that theother latti
es in this table 
annot ex
eed t = 2, ex
ept possibly the latti
eN16. A dire
t 
omputation on its automorphism group shows that t = 2 isalso the maximum value for this latti
e.The list of these latti
es is taken from [28℄, with an additionnal latti
eof dimension 26 whi
h was pointed to me by J. Martinet (named T26 after[21℄. The latti
e N26 appears in [21℄ as Beis26 and S6(3)C3:2.)We have kepted the notations of [28℄ for the names of the latti
es, ex
eptof 
ourse for the last one. The determinant is given in the third 
olumn,in a form that reveals the stru
ture of the dis
riminant group L�=L. Theautomorphism group is given in the �fth 
olumn, with the notations of [19℄,[21℄ when available. In [28℄ and [21℄ more informations on these latti
es aregiven.The 
ondition on (V �n )G is 
he
ked using the S
hur polynomials asso
iatedwith �.A 
ompletely di�erent reason for the existen
e of spheri
al designs in lat-ti
es is often given by the theory of modular forms (see [28℄, [5℄). Among thelist of Table 1, only the 21-dimensional latti
e es
apes from both the grouptheory argument and the modular forms argument. It is worth pointing outthat it is the only one of whi
h the dual latti
e does not have a 4-spheri
aldesign on its minimal ve
tors. Of 
ourse, it is expe
ted that the situation is



8 CHRISTINE BACHOCTable 1dim name det min G 
ase4 D4 4 2 W (F4) (1)6 E6 3 2 2�W (E6) (1)7 E7 2 2 W (E7) (1)8 E8 1 2 W (E8) (1)10 K 010 62 � 33 4 (6� SU(4; 2)) : 2 (2)12 K12 36 4 6:SU4(3):22 (2)14 Q14 37 4 2�G2(3) (1)16 �16 28 4 29+
+(8; 2) (1)� O16 26 3 D48:S6(2) (1)� N16 58 6 2:Alt10 (2)18 K 018 35 4 (2� 31+4 : Sp4(3)):2 (2)20 N20 210 4 (SU5(2)� SL2(3)):2 (2)� N 020 � � 2:M12:2 (2)� N 0020 � � HS20 (3)21 K 021 12 � 3 4 211:36:5:7 (3)22 O22 3 3 [Aut(�22) : Aut(O22)℄ = 3 (1)� �22 6 � 2 4 (2� PSU6(2)):S3 (1)� �22[2℄ 6 � 219 6 � �� M22 15 4 (2�M
L):2 (1)� M22[5℄ 15 � 320 10 � �23 O23 1 3 2� CO2 (1)� �23 4 4 � �� M23 6 4 2� CO3 (1)� M23[2℄ 6 � 321 10 � �24 �24 1 4 2:CO1 (1)24 N24 312 6 SL2(13) Æ SL2(3) (3)26 N26 313 6 S6(3)C3:2 (3)26 T26 3 4 3D4(2) : 3 (3)
ompletely di�erent when the dimension grows, and the above list is anyway
omplete only up to the dimension 12.



DESIGNS, GROUPS AND LATTICES 95. The group Aut(BWn)In this se
tion we study the tensor invariants of the automorphism groupof the Barnes-Wall latti
es. We shall make use of the methods and resultsdeveloped in [20℄. Let us re
all from [20℄ some fa
ts about the Cli�ord groupsCk and the Barnes-Wall latti
es.We set n = 2k. The real spa
e Rn is endowed with an orthonormal basis(eu)u2F k2 indexed by the elements of Fk2 .The Barnes-Wall latti
e BWn � Rn is the latti
e de�ned by:BWn =< 2b k�d+12 
Xu2U eu; U >Zwhere U runs over all aÆne subspa
es of F k2 , and d = dim(U).The �rst latti
es of the sequen
e are well-known: BW4 ' D4, BW8 ' E8,BW16 ' �16 the laminated latti
e of the dimension 16. Suitably res
aled,min(BWn) = 2b k2 
, and BWn is even unimodular when k � 1 mod 2, re-spe
tively 2-modular when k � 0 mod 2.Bolt, Room and Wall ([9℄, [10℄, [8℄) and later Brou�e-Enguehard [7℄ de-s
ribed Aut(BWn). When n 6= 8, it is a subgroup of index 2 in the Cli�ordgroup Ck whi
h we des
ribe now.The extra-spe
ial 2-group 21+2k+ has a representation E in Rn : ifX(a) : eu ! eu+a and Y (b) : eu ! (�1)b�ueu;E =< �I;X(a); Y (b) j a; b 2 Fk2 > :De�nition 5.1. The Cli�ord group Ck is the normalizer in O(Rn) of E.Sin
e q(x) := x2 de�nes a quadrati
 form on E=Z(E) ' F2k2 , non degen-erate and of maximal Witt index, and sin
e Ck a
ts on E (by 
onjugation)preserving q, it indu
es a subgroup of O+(2k; 2). It turns out that the wholeO+(2k; 2) is realized, yielding the isomorphism:Ck ' 21+2k+ :O+(2k; 2)The group O+(2k; 2) has a unique subgroup of index 2, 
+(2k; 2). Itsparaboli
 subgroups are the stabilizers in 
+(2k; 2) of totally isotropi
 sub-spa
es; they are maximal in 
+(2k; 2). Let P (2k; 2) be the one asso
iatedwith the image in F2k2 of < �X(a) j a 2 Fk2 >.A

ording to [20℄, the following transformations are expli
it generators ofthe group Ck:(1) Diagonal transformations: eu ! (�1)q(u)eu, where q is any binaryquadrati
 form, and �I.(2) Permutation transformations: eu ! e�(u), where � 2 AGL(k; 2).



10 CHRISTINE BACHOC(3) H := h 
 I2 
 � � � 
 I2, h = 1p2 �1 11 �1� (here Rn and (R2 )
k areidenti�ed in an obvious way).Straightforward 
al
ulations show that these elements normalizeE. More-over, the indu
ed a
tion of the elements of the �rst and se
ond type on F2k2is given by the respe
tive matri
es �1 b0 1� where b is the symple
ti
 matrixasso
iated with q, and �� 00 ��tr� where � 2 GL(2; k). The group generatedby these transformations on F2k2 is the paraboli
 group P (2k; 2).The element H2 := h 
 h 
 I2 
 � � � 
 I2 has rational entries. The sub-group Gk of Ck generated by the elements of the �rst and se
ond type, andH2, generate a subgroup of 
+(2k; 2), 
ontaining P (2k; 2), hen
e equal to
+(2k; 2). It follows that Gk has index 2 in Ck and is rational; hen
e it isthe automorphism group of BWn (see [20℄).The polynomial invariants of Ck are des
ribed, �rst by B. Runge ([23℄,[24℄, [25℄), then with a di�erent proof by G. Nebe, E. Rains, N.J.A. Sloane([20℄, in terms of self-dual binary 
odes. As a 
onsequen
e, the �rst nontrivial invariant o

urs for the degree 8, asso
iated with the �rst non trivialself-dual binary 
ode whi
h is the [8; 4; 4℄ Hamming 
ode. We extend herethis result to the subgroup Gk.Theorem 5.2. If k � 3 and d � 6, then(V 
d)Gk = (V 
d)Ck = (V 
d)O(V ):Corollary 5.3. The orbits of Aut(BWn) on Gm;n are 6-designs. In parti
u-lar, the sets (BWn)S are 6-designs and the latti
e BWn is strongly m-perfe
tfor all m.Remark 5.4. - Theorem 5.2 shows more than what is needed for the Grass-mannian design property, sin
e V 
6 
ontains the representations asso
iatedwith arbitrary partitions of degree lower or equal to 6.- The fa
t that the set of minimal ve
tors is a 6-spheri
al design wasalready proved by dire
t 
al
ulation by Boris Venkov ([28℄).Proof. The argument in [20℄ extends straightforwardly to the tensor invari-ants of Ck. Let V := Rn . To a binary 
ode C of length d, is asso
iated atensor enumerator T (k)C 2 V 
d. To a k-tuple (w1; : : : ; wk) of 
odewords, weasso
iate a k�d matrix whi
h rows are the words w1; : : : ; wk. Let u1; : : : ; udbe the d 
olumns of this matrix. Then:T (k)C := X(w1;:::;wk)2Ck eu1 
 � � � 
 eudwhere



DESIGNS, GROUPS AND LATTICES 11The usual (generalized) weight enumerator W (k)C is obtained by the sym-metrization V 
d ! Symd(V ). For the same reasons, when C is self-dual,T (k)C is invariant under the a
tion of Ck. A straightforward generalization ofthe proof in [20℄ of the fa
t that the invariants of Ck on Symd(V ) are exa
tlyspanned by the polynomials W (k)C when C = C? shows that the invariantsof Ck on V 
d are spanned by the T (k)C when C = C?. To determine the in-variants of Gk, we follow the same steps as in [20℄: the �rst is the des
riptionof (V 
d)Pk , whi
h we re
all in next lemma.Lemma 5.5 ([20℄, Theorem 4.6). The spa
e (V 
d)Pk is generated by theT (k)C where C runs over the binary 
odes of length d su
h that 1 � C � C?and dim(C) � k + 1.The se
ond 
al
ulates �PkH2 as a linear 
ombination of the T (k)C asso
i-ated with binary 
odes satisfying 1 � C � C? (whi
h obviously belong to(V 
d)Pk ; only those with dim(C) � k + 1 are linearly independent).Lemma 5.6. Let C be a binary 
ode of length d su
h that 1 � C � C? anddim(C) � k + 1. Let r := d=2� dim(C).(�PkH2):T (k)C = a1T (k)C + a2 XC0�C0?C�C0;[C0:C℄=2T (k)C0 + a4 XC0�C0?C�C0;[C0:C℄=4T (k)C0where 8>><>>:a1 = 2�2r(1 + 2 (22r�1)(22r�2�1)(2k�1)(2k�1�1) � 322r�12k�1 )a2 = 3:2�2r2k�1 (1� 22r�2�12k�1�1 )a4 = 3:2�2r(2k�1)(2k�1�1)Moreover, a1 = 1 if and only if r = 0 or r = k.Proof. Let �(w1; : : : ; wk) := eu1 
 � � � 
 eud . We have (as a 
onsequen
e ofthe Poisson summation formula)H2T (k)C = 2�2r Xw1;w22C?w3;:::;wk2C �(w1; : : : ; wk)As a 
onsequen
e of the 
hange from H to H2, not only the �rst, but alsothe se
ond ve
tor is allowed to be in C?. Therefore, by the same argumentas in [20℄, there exists 
oeÆ
ients a1; a2; a4 (depending on r and k) su
h that(5) �PkH2T (k)C = a1T (k)C + a2 XC0�C0?C�C0;[C0:C℄=2T (k)C0 + a4 XC0�C0?C�C0;[C0:C℄=4T (k)C0



12 CHRISTINE BACHOCand we are left with the 
omputation of these 
oeÆ
ients. Let <;> denotethe s
alar produ
t indu
ed on V 
d by the Eu
lidean stru
ture on V . Forany 
odes C, D, with 1 � C � D � D? � C?, we have:< T (k)C ; T (k)D >= jCjkand < (�PkH2):T (k)C ; T (k)D >=< H2:T (k)C ; T (k)D >= 2�2r[D : C℄2jCjk:Let nr2, respe
tively nr4 be the number of self-orthogonal 
odes 
ontainingC to index 2, respe
tively 4. Obviously, nr2 equals the number of isotropi
lines in the symple
ti
 spa
e C?=C of dimension 2r, and nr4 equals thenumber of totally isotropi
 planes in C?=C. Therefore, nr2 = 22r � 1 andnr4 = (22r � 1)(22r�2 � 1)=3. Taking the s
alar produ
t of equation (5) withT (k)D , su

essively for D = C, then for a self-orthogonal 
ode 
ontaining Cto index 2 and 4, we obtain the three equations (after having divided byjCjk): 2�2r = a1 + a2nr2 + a4nr42�2r:4 = a1 + a2:2k + a2(nr2 � 1) + a4nr�12 :2k + a4(nr4 � nr�12 )2�2r:16 = a1 + a2:3:2k + a2(nr2 � 3)+ a4:4k + a4(3nr�12 � 3):2k + a4(nr4 � 3nr�12 + 2)whi
h lead to the expressions of Theorem 5.2.We end the proof of the theorem in the same way as in [20℄. We have(V 
d)Gk = ker(�PkH2� I)\ (V 
d)Pk . From Lemma 5.6, when the elementsT (k)C are ordered by in
reasing dim(C), the matrix of the transformation�PkH2 is upper triangular. If k � 3 and d � 6, the only diagonal 
oeÆ
ientswhi
h are equal to 1 
orrespond to C = C? and we 
an 
on
lude by [20℄,Lemma 4.8Remark 5.7. Of 
ourse, for arbitrary degree d, the group Gk has moreinvariants than Ck. For k = 2 and d = 6, we have a1 = 1 for r = 2, i.e. forthe 
ode C = 1. The elementT (2)1 � 112 X1�C�C?dim(C)=2 T (2)Cis the unique degree 6 additional invariant under G2.For k = 3 and d = 8, the situation is the same, with



DESIGNS, GROUPS AND LATTICES 13T (3)1 � 140 X1�C�C?dim(C)=2 T (3)C + 1480 X1�C�C?dim(C)=3 T (3)Cas an invariant of degree 8. The Molien series 
on�rms that the degree 8polynomial invariant spa
e has dimension 3, spanned by the two 
lasses ofself-dual 
odes and this one.6. Other Grassmannian designsWhen a group G is known to ful�ll the 
onditions of Theorem 4.1, amongits orbits the most interesting ones are the ones shorter than the \generi
"ones, i.e. the ones with a non trivial isotropi
 group. In general, it isnot easy to des
ribe these orbits. In the 
ase of the Cli�ord group Ck,some of these orbits are des
ribed in a very expli
it way in [11℄, in view ofthe 
onstru
tion of Grassmannian 
odes for the 
hordal distan
e. We nextdis
uss under whi
h 
onditions 
ertain smaller subsets of these sets remainto be 6-designs or 4-designs. More pre
isely, we prove that it depends on asimilar 
ondition of design asso
iated with the underlying �nite geometry.6.1. The 
onstru
tion. The alluded 
onstru
tion is the following. LetS � F2k2 be a totally isotropi
 subspa
e of dimension k� s. The preimage ~Sof S in E is an abelian group, 2-elementary. (The identi�
ation between F2k2and E=f�1g is still the same, sending X(a)Y (b) to (a; b)), It de
omposesthe spa
e V = Rn into 2k�s irredu
ible subspa
es of dimension 2s, whi
hare pairwise orthogonal. Let DS � G2s;2k be the set of these 2k�s subspa
es.More generally, if � is a set of isotropi
 subspa
es of the same dimensionk � s, we set(6) D� := [S2�DS � G2s;2k :Example: We 
an take � to be the whole set of totally isotropi
 subspa
esof �xed dimension k � s. In that 
ase, � is a single orbit under O+(2k; 2),and D� is a single orbit under Ck. Therefore it is a 6-design. Note that,when s = 0, � splits into two orbits under the a
tion of 
+(2k; 2); the setof lines 
orresponding to one orbit is the set of lines supporting the minimalve
tors of BWn, n = 2k.Of 
ourse, we are interested in the smallest possible sets, and the aboveexample is the largest one. A natural question is then: whi
h 
onditionsshould � satisfy, so that D� is a design? How small 
an we take �? Toanswer these questions, we need two more ingredients: another 
riterion forGrassmannian designs, and the notion of designs on the spa
es of totallyisotropi
 subspa
es of �xed dimension.
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riterion. Let D � Gm;n. Let � := y1 + y2 + � � �+ ym.Theorem 6.1. For all m;n, and t, there exists a 
onstant 
m;n(2t) su
hthat(1) For all D � Gm;n, 1jDj2 Pp;p02D �(p; p0)t � 
m;n(2t).(2) D is a 2t-design if and only if 1jDj2 Pp;p02D �(p; p0)t = 
m;n(2t).Proof. From the de�ning property of Grassmannian designs (De�nition 2.1),sin
e �t has degree t in the variables y1; : : : ; ym, if D is a 2t-design,1jDj2 Xp;p02D �(p; p0)t = Z[0;1℄m �td�(y1; : : : ; ym)We set 
m;n(2t) := R[0;1℄m �td�(y1; : : : ; ym).Lemma 6.2. There exists positive 
oeÆ
ients �t;� > 0 su
h that:�t = X�;deg(�)�t �t;�P�:Proof. For t = 1, we have � = m(n�m)n P(1) + m2n .For t > 1, we pro
eed by indu
tion. Let us assume �rst that deg(�) < t.We have [�t; P�℄ = [�t�1; �P�℄= [�t�1; (m(n�m)n P(1) + m2n )P�℄We know that P(1)P� is a linear 
ombination with non negative 
oeÆ
ientsof the P� ([1, Lemma 2℄). By indu
tion, we obtain[�t; P�℄ � [�t�1; m2n P�℄> 0 (if deg(�) < t):If deg(�) = t, the se
ond term of the �rst inequality is zero. We needmore information on the expression �P� on the P�. The analogue of the\three-term relation" for orthogonal polynomials in one variable gives (see[2℄):�P� = Xdeg(�)=k+1Ak[�; �℄P� + Xdeg(�)=kBk[�; �℄P� + Xdeg(�)=k�1Ck[�; �℄P�where k = deg(�). Moreover, Ck[�; �℄[P�; P�℄ = Ak�1[�; �℄[P�; P�℄ is zerounless � is obtained from � by the in
rease of one of its parts by one, inwhi
h 
ase Ak�1[�; �℄ > 0 ([2℄). In [�t; P�℄ = [�t�1; �P�℄ only those terms
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ontribution, so, by indu
tion, we obtain the desiredproperty.Sin
e 
m;n(2t) = [�t; 1℄ = �t;0, and from the design 
riterion and thepositivity 
ondition of Theorem 2.2, the proof of Theorem 6.1 is 
ompleted(note that it is 
ru
ial than none of the �t;� is equal to zero).Remark 6.3. This 
riterion is analogous to [28, Th�eor�eme 8.1℄, and similarversions exist in prin
iple for any notion of design. We shall 
ome a
ross asimilar 
riterion for the designs of totally isotropi
 spa
es.Remark 6.4. It is not apparently easy to 
al
ulate 
m;n(2t) by the integra-tion formula 
m;n(2t) := R[0;1℄m �td�(y1; : : : ; ym). It is worth noti
ing that,sin
e 
m;n(2t) = [�t; 1℄ = �t;0, it be
omes easy on
e one has 
al
ulated ex-pli
itly the polynomials P� for deg(�) � t. For example, we obtain fromx2.1, 
m;n(2) = m2n
m;n(4) = m23n �2(m� 1)2n� 1 + (m+ 2)2n+ 2 �and, using [�3; 1℄ = [�2; �℄ and [P(1); P(1)℄ = dim(V (2)n )�1 = 2(n�1)(n+2) , we
an even 
al
ulate
m;n(6) = m23n �(m� 1)2(m+ 2)2(n� 1)(n+ 2) ( 2nn� 2 + n+ 3n+ 4)�8 m(m� 1)2(n� 1)(n� 2) + (m+ 2)2(2m+ 3)(n+ 2)(n+ 4) �6.3. The spa
e of totally isotropi
 subspa
es. Let Xw be the set of to-tally isotropi
 subspa
es of dimension w � k of the quadrati
 spa
e (F2k2 ; q).The group G := O+(2k; 2) a
ts transitively on Xw; the stabilizer of anelement is a maximal paraboli
 subgroup Pw. The orbits of G on pairsof elements (S; S0) (also 
alled orbitals) are investigated in [30℄; they are
hara
terized by two quantities: dim(S \ S0) and dim(S \ S0?). Sin
edim(S \ S0?) = dim(S? \ S0), they are symmetri
. In the spe
ial 
asew = k of the maximal totally isotropi
 subspa
es, S = S? and one value isenough, giving to Xw the stru
ture of a 2-point homogeneous spa
e (for thedistan
e d(S; S0) = k � dim(S \ S0)).The spa
e L(Xw) of 
omplex valued fun
tions on Xw de
omposes, underthe a
tion of G, into irredu
ible subspa
es with multipli
ities equal to one;
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h subspa
e is asso
iated a unique zonal fun
tion. This de
omposition,and the 
orresponding zonal fun
tions, are 
omputed in [26℄, [27℄ (in [27℄,the general 
ase of Chevalley groups over Fq is treated; it is assumed that the
hara
teristi
 is di�erent from 2, although the situation would be 
ompletelyanalogous. In [27℄, the 
ase w = k is treated in full generality). We onlyneed here the general form of this de
omposition ([26, Theorem 6.23℄):L(Xw) = �(m;r)2IVm;rwhere I := f(m; r) j 0 � m � w; 0 � r � m ^ (k � w)g. If y := dim(S \ S0),x+ y := dim(S \ S0?), the 
orresponding zonal (spheri
al) fun
tion Gm;r isa polynomial in 2x, 2y and of degree m in 2y. Note that 2y = jS\S0j. Whenw = k, these polynomials are polynomials in one variable, and identi�ed asq-Krawt
houk polynomials. In that 
ase, the t-designs are de�ned in theusual way (see [15℄).Theorem 6.5. There exists 
onstants dw;k(t) su
h that:(1) For all � � Xw, 1j�j2 PS;S02� jS \ S0jt � dw;k(t)(2) When w = k, equality holds if and only if � is a t-design.Remark 6.6. When w < k, the interpretation of the 
ase of equality interms of designs is not so 
lear. Sin
e the irredu
ible spa
es require a doubleindex, the notion of t-designs itself is not so 
lear, although the most naturalone would be, like in the 
ase of the non-binary Johnson s
heme, to requireorthogonality with �Vm;r, where (m; r) 2 f(m; r) j m � tg. Then, one wouldneed to look 
arefully at the positivity of the 
oeÆ
ients of the expansion of(2y)t on the Gm;r. In the 
ase w = k, the positivity is guaranteed, thanks tothe three-terms relation, whose 
oeÆ
ients are the interse
tion numbers ofthe asso
iation s
heme (see [6, II.2(2.1), III.1(1.2)℄).Here, the 
omputation of the numbers dw;k(t) is easy, sin
e they 
omefrom the 
onstant term: dw;k(t) = [yt; 1℄. So,dw;k(t) = 1jXwj2 XS;S02Xw jS \ S0jt= 1jXwj2 Xx;y jOrb(x; y)j(2y)twhere Orb(x; y) is the orbital asso
iated with the values (x; y); its 
ardinalityis 
al
ulated in [30, Theorem 5.5℄.6.4. When is D� a design?Theorem 6.7. Let D� be de�ned as in (6).(1) D� is always a 2-design.



DESIGNS, GROUPS AND LATTICES 17(2) For t = 2 and t = 3, D� is a 2t-design if and only if � satis�es theequality: 1j�j2 XS;S02� jS \ S0jt�1 = dw;k(t� 1):Proof. We 
al
ulate 1jD�j2 Pp;p02D� �(p; p0)t. By the 
onstru
tion,1jD�j2 Xp;p02D� �(p; p0)t = 122(k�s)j�j2 XS;S02�( Xp2DS;p02DS0 �(p; p0)t):Let dim(S \ S0) := k � u. The 2k�u irredu
ible subspa
es asso
iatedwith ~S \ S0 are obtained from the 2k�s ones asso
iated with S, by summingtogether 2u�s of them. These ones are pre
isely the ones on whi
h the
orresponding 
hara
ters of ~S and ~S0 
oin
ide on ~S \ S0. A

ording to [11,(9)℄, if p 2 DS and p0 2 DS0 are 
ontained in the same irredu
ible subspa
esasso
iated with ~S \ S0,�(p; p0) = 2k jS \ S0jjSjjS0j = 22s�u;and it holds for (2u�s)2 pairs (p; p0). Otherwise, �(p; p0) = 0, ex
ept if p = p0of 
ourse.All together, we obtain1jD�j2 Xp;p02D� �(p; p0)t = 2(2s�k)t 1j�j2 XS;S02� jS \ S0jt�1:From Theorem 6.1, we obtain that D� is a 2t-design if and only if(7) 1j�j2 XS;S02� jS \ S0jt�1 = 2�(2s�k)t
2s;2k(2t):When t = 1, from Remark 6.4, 2�(2s�k)
2s;2k(2) = 1, and the previousequality always holds.When t = 2; 3, we know that, taking � = Xk�s, we do obtain a 2t-design,and hen
e, that (7) is ful�lled. We have proved two things:� 2�(2s�k)t
2s;2k(2t) = dk�s;k(t� 1).� Assertion (2) of the theorem.It remains, of 
ourse, to give examples of sets � with the property (2) ofTheorem 6.7. One example is given by maximal spreads. These are standardobje
ts of �nite geometries.



18 CHRISTINE BACHOCDe�nition 6.8. The set � � Xw is 
alled a spread if � is a set a totallyisotropi
 subspa
es, su
h that the interse
tion of two distin
t elements isredu
ed to f0g. A maximal spread is a spread, su
h that [S2�S is exa
tlyequal to the whole set of isotropi
 elements.The number of non zero isotropi
 ve
tors is (2k�1)(2k�1+1). Therefore,a maximal spread in Xw must have (2k � 1)(2k�1 + 1)=(2w � 1) elements,and hen
e a ne
essary 
ondition for the existen
e of a maximal spread, isthat this number is an integer. It is well known that, when w divides k,maximal spreads do exist.Theorem 6.9. Let � be a maximal spread in Xk�s. Then, D� is a 4-design.Proof. Let � be a spread, and let N := j�j. We 
al
ulate1j�j2 XS;S02� jS \ S0j = 1N2 (N(N � 1) +N:2k�s) = 1 + 2k�s � 1N :On the other hand, from Remark 6.4,2�2(2s�k)
2s;2k(4) = 2�(2s�k)+13 ((2s � 1)22k � 1 + (2s�1 + 1)22k�1 + 1 ):The 
ondition (7) leads to N = (2k � 1)(2k�1 + 1)=(2k�s � 1).Aknowledgements: I am indebted to Eii
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