
ON THE THETA NUMBER OF POWERS OF CYCLE GRAPHS

CHRISTINE BACHOC, ARNAUD PÊCHER, AND ALAIN THIÉRY

ABSTRACT. We give a closed formula for Lovász’s theta number of the powers
of cycle graphs Cd

k and of their complements, the circular complete graphs Kk/d.
As a consequence, we establish that the circular chromatic number of a circular
perfect graph is computable in polynomial time. We also derive an asymptotic
estimate for the theta number of Cd

k .

1. INTRODUCTION

Let G = (V,E) be a finite graph with vertex set V and edge set E. The clique
number ω(G) and the chromatic number χ(G) are classical invariants of G which
can be defined in terms of graph homomorphisms.

A homomorphism from a graph G = (V,E) to a graph G′ = (V ′, E′) is a
mapping f : V → V ′ which preserves adjacency: if ij is an edge of G then
f(i)f(j) is an edge of G′. If there is a homomorphism from G to G′, we write
G → G′. Then, the chromatic number of G is the smallest number k such that
G → Kk, where Kk denotes the complete graph with k vertices. Similarly, the
clique number is the largest number k such that Kk → G.

In the seminal paper [7], Lovász introduced the so-called theta number ϑ(G)
of a graph. On one hand, this number provides an approximation of ω(G) and of
χ(G) since (this is the celebrated Sandwich Theorem)

ω(G) ≤ ϑ(G) ≤ χ(G),

where G stands for the complement of G. On the other hand, this number is the
optimal value of a semidefinite program [11], and, as such, is computable in poly-
nomial time with polynomial space encoding accuracy [11], [5]. In contrast, the
computation of either of the clique number or the chromatic number is known to
be NP-hard.

By definition, a graph G is perfect, if for every induced subgraph H , ω(H) =
χ(H) [1]. As ϑ(G) = χ(G) and χ(G) is an integer, we have

Theorem 1.1. (Grötschel, Lovász and Schrijver) [5] For every perfect graph, the
chromatic number is computable in polynomial time.

Date: March 2, 2011.
1991 Mathematics Subject Classification. 05C15, 05C85, 90C27.
Key words and phrases. theta number, circular complete graphs, circular perfect graphs.
Supported by the ANR/NSC project GraTel ANR-09-blan-0373-01, NSC98-2115-M-002-013-

MY3 and NSC99-2923-M-110-001-MY3.
1



2 CHRISTINE BACHOC, ARNAUD PÊCHER, AND ALAIN THIÉRY

There are very few families of graphs for which an explicit formula for the theta
number is known. In [7], the theta numbers of the cycles Ck and of the Kneser
graphs K(n, r) are explicitly computed. In particular, it is shown that, if k is an
odd number,

(1) ϑ(Ck) =
k cos

(
π
k

)
1 + cos

(
π
k

) .
In this paper, we give a closed formula for the theta number of the circular

complete graphs Kk/d and of their complements Kk/d. For k ≥ 2d, the graph
Kk/d has k vertices {0, 1, . . . , k − 1} and two vertices i and j are connected by
an edge if d ≤ |i − j| ≤ k − d. We have Kk/1 = Kk and Kk/2 = Ck. More
generally, the graphKk/d is the (d−1)th power of the cycle graph Ck. Because the
automorphism group ofKk/d is vertex transitive (it contains the cyclic permutation
(0, 1, . . . , k − 1)), we have (see [7, Theorem 8])

(2) ϑ(Kk/d)ϑ(Kk/d) = k.

Besides the case d = 2 demonstrated by Lovász, the only case previously known
was due to Brimkov et al. who proved in [4] that, for d = 3 and k odd,

(3) ϑ
(
Kk/3

)
= k

(
1−

1
2 − cos

(
2π
k b

k
3c
)
− cos

(
2π
k

(
bk3c+ 1

))(
cos
(

2π
k b

k
3c
)
− 1
) (

cos
(

2π
k

(
bk3c+ 1

))
− 1
)) .

In Section 3, we prove the following:

Theorem 1.2. Let d ≥ 2, k ≥ 2d, with gcd(k, d) = 1. Let, for 0 ≤ n ≤ d− 1,

cn := cos
(2nπ
d

)
, an := cos

(⌊nk
d

⌋2π
k

)
.

Then

(4) ϑ(Kk/d) =
k

d

d−1∑
n=0

d−1∏
s=1

(cn − as
1− as

)
.

The notions of clique and chromatic numbers and of perfect graphs have been
refined using circular complete graphs. The circular chromatic number χc(G) of a
graph G was first introduced by Vince in [12]. It is the minimum of the fractions
k/d for which G→ Kk/d. Later, Zhu defined the circular clique number ωc(G) of
G to be the maximum of the k/d for which Kk/d → G and introduced the notion
of a circular perfect graph, a graph with the property that every induced subgraph
H satisfies ωc(H) = χc(H) (see Section 7 in [14] for a survey on this notion).
The class of circular perfect graphs extends in a natural way the one of perfect
graphs. So one can ask for the properties of perfect graphs that generalize to this
larger class. In this paper, we prove that Theorem 1.1 still holds for circular perfect
graphs:

Theorem 1.3. For every circular perfect graph, the circular chromatic number is
computable in polynomial time.
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In previous works, the polynomial time computability of the chromatic number
of circular perfect graphs was established in [8] and of the circular chromatic num-
ber of strongly circular perfect graphs (i.e. circular perfect graphs such that the
complementary graphs are also circular perfect) was proved in [9].

In contrary to perfect graphs, ϑ(G) does not give directly the result, as ϑ(G)
is not always sandwiched between ωc(G) and χc(G): for instance, ϑ(C5) =

√
5

and ωc(C5) = χc(C5) = 5/2. To bypass this difficulty, we make use of this
following basic observation: by definition, for every graph G with n vertices such
that ωc(G) = χc(G) = k/d, we have ϑ(G) = ϑ(Kk/d), where k, d ≤ n (see the
next section for more details). Hence, to ensure the polynomial time computability
of χc(G), it is sufficient to prove that the values ϑ(Kk/d) with k, d ≤ n are all
distinct and separated by at least ε for some ε with polynomial space encoding.

This paper is organized as follows: Section 2 gathers the needed definitions
and properties of Lovász theta number and of circular numbers. Section 3 proves
Theorem 1.2, while Section 4 proves Theorem 1.3. In Section 5, the asymptotic

estimate ϑ(Kk/d) =
k

d
+ O

(
1
k

)
is obtained (Theorem 5.1).

2. PRELIMINARIES

The theta number ϑ(G) of a graph G = (V,E) was introduced in [7], where
many equivalent formulations are given. The one of [7, Theorem 4] has the form
of a semidefinite program:

(5)

ϑ(G) = max
{ ∑

(x,y)∈V 2

B(x, y) : B ∈ RV×V , B � 0,∑
x∈V

B(x, x) = 1,

B(x, y) = 0 xy ∈ E
}

where B � 0 stands for: B is a symmetric, positive semidefinite matrix. For a
survey on semidefinite programming, we refer to [11]. The dual program gives
another formulation for ϑ(G) (there is no duality gap here because the identity
matrix is a strictly feasible solution of (5) so the Slater condition is fulfilled):

(6)
ϑ(G) = inf

{
t : B ∈ RV×V , B � 0,
B(x, x) = t− 1,
B(x, y) = −1 xy /∈ E

}
From (6) one can easily derive that, if G → G′, then ϑ(G) ≤ ϑ(G′). Indeed, if
B′ is an optimal solution of the dual program defining ϑ(G′), then the matrix B
defined by B(x, y) := B′(f(x), f(y)) is feasible for ϑ(G).

The circular complete graphsKk/d have the property thatKk/d → Kk′/d′ if and
only if k/d ≤ k′/d′ (see [3]). Thus the theta number ϑ(Kk/d) only depends on the
quotient k/d, and we later conveniently assume that k and d are coprime.
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From the definition, it follows that

ω(G) ≤ ωc(G) ≤ χc(G) ≤ χ(G).

Moreover, ω(G) = bωc(G)c, χ(G) = dχc(G)e, and ωc(G) and χc(G) are attained
for pairs (k, d) such that k ≥ 2d and k ≤ |V | (see [3], [13]).

If G is a circular perfect graph, let k, d be such that gcd(k, d) = 1 and ωc(G) =
χc(G) = k/d. Because G and Kk/d are homomorphically equivalent, ϑ(G) =
ϑ(Kk/d). Summarizing, we have

Proposition 2.1. Let G be a circular perfect graph with n vertices. Then,

1. ωc(G) = χc(G) = k/d for some (k, d) such that k ≥ 2d, k ≤ n, and
gcd(k, d) = 1.

2. ϑ(G) = ϑ(Kk/d).

3. AN EXPLICIT FORMULA FOR THE THETA NUMBER OF CIRCULAR
COMPLETE GRAPHS

In this section we prove Theorem 1.2. We start with an overview of our proof:
first of all we show that ϑ(Kk/d) is the optimal value of a linear program (Proposi-
tion 3.1). This step is a standard simplification of a semidefinite program using its
symmetries. In a second step, a candidate for an optimal solution of the resulting
linear program is defined (Definition 3.2) as the unique solution of a certain linear
system. We give an interpretation of this element, in terms of the coefficients of
Lagrange interpolation polynomials on the basis of Chebyshev polynomials. Then,
playing with the dual linear program, it is easy to prove that this element, if feasi-
ble, is indeed optimal (Lemma 3.4). The last step, which is also the most technical,
amounts to prove that this elements is indeed feasible, i.e. essentially that its coor-
dinates are non negative (Lemma 3.3). To that end, we boil down to prove that a
certain polynomial L0(y) has non negative coefficients when expanded as a linear
combination of the Chebyshev polynomials (Lemma 3.6).

3.1. A linear program defining the theta number. The vertex set of G = Kk/d

can be identified with the additive group Z/kZ, and the additive action of this
group defines automorphisms of this graph. This action allows to transform the
semidefinite program (5) into a linear program, as follows:

Proposition 3.1. Let k0 := bk/2c. We have:

(7)

ϑ(Kk/d) = max
{
kf0 : fj ≥ 0,

k0∑
j=0

fj = 1,

k0∑
j=0

fj cos
(2j`π

k

)
= 0, 1 ≤ ` ≤ d− 1

}
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and also:

(8)

ϑ(Kk/d) = min
{
kg0 :

d−1∑
`=0

g` ≥ 1,

d−1∑
`=0

g` cos
(2`jπ

k

)
≥ 0, 1 ≤ j ≤ k0

}
Proof. Taking the average over the translations by the elements of Z/kZ, one con-
structs from a matrix B which is optimal for (5), another optimal matrix which
is translation invariant, i.e. which satisfies B(x + z, y + z) = B(x, y) for all
x, y, z ∈ Z/kZ. Thus one can restrict in (5) to the matrices B which are transla-
tion invariant. In other words, we can assume that B(x, y) = F (x − y) for some
F : Z/kZ → R. Then we can use the Fourier transform over Z/kZ to express F
as

F (z) =
k−1∑
j=0

fje
2ijzπ/k.

Then B � 0 if and only if fj = fk−j and fj ≥ 0 for all j = 0, . . . , k − 1. After a
change from fj to 2fj for j 6= 0, k/2, we can rewrite

B(x, y) =
k0∑
j=0

fj cos
(2j(x− y)π

k

)
.

Then, it remains to transfer to (f0, . . . , fk0) the constraints on B that stand in (5).
We have

∑
(x,y)∈(Z/kZ)2 B(x, y) = k2f0, and

∑
x∈Z/kZB(x, x) = k

∑k0
j=0 fj .

The edges of Kk/d are the pairs (x, y) with 1 ≤ |x − y| ≤ d − 1 so the condition
that B(x, y) = 0 for all edges (x, y) translates to

k0∑
j=0

fj cos
(2j`π

k

)
= 0, 1 ≤ ` ≤ d− 1.

Changing fj to fj/k leads to (7). The linear program (8) is the dual formulation of
(7). �

3.2. A candidate for an optimal solution of (7). In order to understand the con-
struction of this solution, it is worth to take a look at the case when d divides k.
Indeed, in this case, the system of linear equations

k0∑
j=0

fj cos
(2j`π

k

)
= δ0,l, 0 ≤ ` ≤ d− 1

which is equivalent to

k−1∑
j=0

f ′je
2ij`π/k = δ0,l, 0 ≤ ` ≤ d− 1
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where f ′j = f ′k−j = fj/2 for j 6= 0, k/2, otherwise f ′j = fj , has an obvious
solution f = (f ′0, . . . , f

′
k−1) defined as follows: take fj = 1/d for the indices j

which are multiples of k/d, i.e. for j = nk/d, n = 0, . . . , d − 1. Take fj = 0
for other indices. Then f has exactly d non zero coefficients, is feasible because
fj ≥ 0, and its objective value equals k/d, which is also the optimal value of the
linear program.

In the case when gcd(k, d) = 1, none of the rational numbers nk/d, for n =
0, . . . , d−1, are integers. Instead, we choose indices which are as close as possible,
namely we choose the indices of the form bnkd c for 0 ≤ n ≤ d − 1 and set all
other coefficients to zero. Then, the d-tuple of coefficients which are not set to
zero, satisfies a linear system with d equations, and this linear system has a unique
solution. We shall prove that in this way an optimal solution of (7) is obtained.

Now we introduce some additional notations. The Chebyshev polynomials ([10]),
denoted (T`)`≥0 are defined by the characteristic property: T`(cos(θ)) = cos(`θ).
They can be iteratively computed by the relation T`+1(x) = 2xT`(x) − T`−1(x)
and the first terms T0 = 1, T1 = x. These polynomials are orthogonal for the
measure dx/

√
1− x2 supported on the interval [−1, 1].

The numbers an, 0 ≤ n ≤ d − 1, introduced in Theorem 1.2, come into play
now. Recall that

an = cos
(⌊nk

d

⌋2π
k

)
.

We remark that the coefficients in the linear constraints of (7) associated to the
indices bnkd c are precisely equal to T`(an).

We assume for the rest of this section that gcd(k, d) = 1. Then the real numbers
an are pairwise distinct. We introduce the Lagrange polynomials ([10]) associated
to (a0, . . . , ad−1):

(9) Ln(y) :=
d−1∏
s=0
s 6=n

( y − as
an − as

)
.

Now we have two basis for the space of polynomials of degree at most equal to d−
1: the Chebyshev basis {T0, . . . , Td−1} and the Lagrange basis {L0, . . . , Ld−1}.
We introduce the two d× d matrices T = (τ`,n) and L = (λn,`) such that

(10) T`(y) = τ`,0L0(y) + τ`,1L1(y) + · · ·+ τ`,d−1Ld−1(y) 0 ≤ ` ≤ d− 1

and

(11) Ln(y) = λn,0T0(y) + λn,1T1(y) + · · ·+ λn,d−1Td−1(y) 0 ≤ n ≤ d− 1.

Obviously we have

(12) τ`,n = T`(an)

and

TL = LT = Id.



ON THE THETA NUMBER OF POWERS OF CYCLE GRAPHS 7

In particular, the d-tuple (λ0,0, λ1,0, . . . , λd−1,0) satisfies the equations:

(13)
d−1∑
n=0

λn,0T`(an) = δ`,0, 0 ≤ ` ≤ d− 1.

Now we can define our candidate for an optimal solution of (7):

Definition 3.2. With the above notations, let f∗ = (f∗0 , . . . , f
∗
k0

) be defined by:{
f∗j = λn,0 if j = ±

⌊
nk
d

⌋
mod k

f∗j = 0 otherwise.

It remains to prove that f∗ is indeed optimal for (7). It will result from the two
following lemmas:

Lemma 3.3. For all j, 0 ≤ j ≤ k0, f∗j ≥ 0.

We postpone the proof of Lemma 3.3 to the next subsection.

Lemma 3.4. f∗ is an optimal solution of (7).

Proof. Lemma 3.3, joined with (13) shows that f∗ is feasible. Thus we can derive
the inequality:

kλ0,0 ≤ ϑ(Kk/d).
Now we claim that the element g∗ = (λ0,0, λ0,1, . . . , λ0,d−1) is a feasible solution
of the dual program (8). For that we need to prove that

d−1∑
`=0

λ0,` cos
(2`jπ

k

)
≥ δj,0, 0 ≤ j ≤ k0

which can be rewritten as
d−1∑
`=0

λ0,`T`

(
cos
(2jπ
k

))
≥ δj,0, 0 ≤ j ≤ k0

or, taking account of (11),

(14) L0

(
cos
(2jπ
k

))
≥ δj,0, 0 ≤ j ≤ k0.

For j = 0, (14) holds because L0(1) = L0(a0) = 1. For j ≥ 1, we take a look
at the position of cos(2jπ/k) with respect to the roots a1, . . . , ad−1 of L0. Indeed,
these roots belong to the set {cos(2jπ/k), j = 1, . . . , k − 1}, but it should be no-
ticed that they go in successive pairs. More precisely, an and ad−n are equal to the
first coordinate of neighbor vertices of the regular k-gone. So either cos(2jπ/k)
is equal to one of the an, or there is an even number of roots an, n ≥ 1, which
are greater than cos(2jπ/k). In the later case, L0(cos(2jπ/k)) and L0(1) have the
same sign. Since L0(1) = 1, we are done.

Since g∗ is a feasible solution of (8), its objective value, which is equal to kλ0,0,
upper bounds ϑ(Kk/d). So we conclude that

ϑ(Kk/d) = kλ0,0
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and that f∗ is an optimal solution of (7). �

3.3. The proof of Lemma 3.3. We want to prove that λn,0 ≥ 0 for all n =
0, . . . , d − 1. We first prove that this condition is equivalent to: λ0,` ≥ 0 for
all 0 ≤ ` ≤ d− 1.

Lemma 3.5. The tuples (λn,0, 0 ≤ n ≤ d−1) and (λ0,`, 0 ≤ ` ≤ d−1) are equal
up to a permutation of their coordinates.

Proof. It turns out that, up to a permutation of the an, the matrix T is symmetric.
Since gcd(k, d) = 1, one can find v, 1 ≤ v ≤ d − 1, and t ≥ 0, such that
kv = 1 + td. By definition,

an := cos
(⌊nk

d

⌋2π
k

)
only depends on n mod d. Let us compute an′ where n′ = vn mod d. Since
vnk/d = n/d+ nt, we have

an′ = cos
(⌊vnk

d

⌋2π
k

)
= cos

(2ntπ
k

)
.

If we set

(15) x = x(k, d) := cos
(2tπ
k

)
= cos

((v
d
− 1
kd

)
2π
)
,

we have
an′ = Tn(x).

If we reorder the an according to the permutation n 7→ vn mod d, which fixes 0,
the coefficients of the corresponding matrix T are equal to:

τ`,n = T`(an′) = T`(Tn(x)) = T`n(x) = Tn`(x) = τn,`.

Thus the new matrix T is symmetric. This reordering of the an, permutes accord-
ingly the coordinates of (λn,0, 0 ≤ n ≤ d − 1). Also the matrix L = T−1 has
become symmetric, so the permuted λn,0 are equal to λ0,n (who have not changed
in the procedure because the polynomial L0(y) is not affected by the reordering of
the an). �

The next lemma ends the proof of Lemma 3.3:

Lemma 3.6. For all 0 ≤ ` ≤ d− 1, λ0,` ≥ 0.

Proof. Since
∏d−1
s=1(1− as) ≥ 0, we can replace L0(y) by

d−1∏
s=1

(y − as) =
d−1∏
s=1

(y − Ts(x))

where x is defined in (15). The right hand side becomes a polynomial in the vari-
ables x and y, depending only on d. This polynomial has an expansion in the
Chebyshev basis:

(16)
d−1∏
s=1

(y − Ts(x)) =
d−1∑
`=0

Q`(x)T`(y).
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We introduce complex variables X and Y , such that 2x = X + 1/X and 2y =
Y + 1/Y . Then, (16) becomes:

(17)
d−1∏
s=1

(Y −Xs)(Y −X−s) = Y d−1
d−1∑

`=−(d−1)

Q′`(x)Y `

where Q′0 = 2d−1Q0 and, for ` = 1, . . . , d− 1, Q′−` = Q′` = 2d−2Q`. We want to
prove that Q′`(x) ≥ 0 when x is given by (15). To that end, we will prove that this
sequence of numbers is decreasing:

(18) Q′0(x) ≥ Q′1(x) ≥ · · · ≥ Q′d−1(x)

and since Q′d−1(x) = 1, we will be done. Now the idea is to multiply the equation
(17) by (Y − 1), so that the successive differences Q′`−1(x)−Q′`(x) appear in the
right hand side as the coefficients of Y `. We obtain, setting Q′−d = Q′d := 0:

(19)
d−1∏

s=−(d−1)

(Y −Xs) = Y d−1
d∑

`=−(d−1)

(Q′`−1(x)−Q′`(x))Y `.

We let:

(20) P (Y ) :=
d−1∏

s=−(d−1)

(Y −Xs) :=
2d−1∑
j=0

Cj(X)Y j .

We have:

P (XY ) =
d−1∏

j=−(d−1)

(XY −Xj)

= X2d−1
d−1∏

j=−(d−1)

(Y −Xj−1)

= X2d−1 Y −X−d

Y −Xd−1
P (Y ).

This equation leads to:

(Y −Xd−1)
2d−1∑
j=0

Cj(X)XjY j = (X2d−1Y −Xd−1)
2d−1∑
j=0

Cj(X)Y j .

Comparing the coefficients of Y j in both sides, we obtain the formula:

(21) Cj(X) = Cj−1(X)
Xj−d −Xd

Xj − 1
, 1 ≤ j ≤ 2d− 1.

If X = eiθ, we obtain in (21)

(22) Cj(X) = Cj−1(X)
sin(( j2 − d)θ)

sin( jθ2 )
, 1 ≤ j ≤ 2d− 1.



10 CHRISTINE BACHOC, ARNAUD PÊCHER, AND ALAIN THIÉRY

Thus, taking account of (15), (19), (20) and (22), the inequalities (18) that we

want to establish, are equivalent to the non negativity of sin(( j
2
−d)θ)

sin( jθ
2

)
when θ =(

v
d −

1
kd

)
2π, 1 ≤ j ≤ d− 1, and k ≥ 2d. Let us prove it now: let{

N = N(k, d) := b jvd c
ε = ε(k, d) := jv

d −N.

Since v and d are coprime and 1 ≤ j < d, we have ε ∈ {1
d ,

2
d , . . . ,

d−1
d }. We

first study the sign of sin( jθ2 ): since jθ
2 = π(N + ε− j

kd), this number belongs to
]Nπ, (N + 1)π[, which means that the sign of sin( jθ2 ) is (−1)N .

Now we determine the sign of sin(( j2−d)θ) : we have ( j2−d)θ = π(N−2v+ε−
j
kd+ 2

k ), from which we obtain that ( j2−d)θ belongs to ](N−2v)π, (N−2v+1)π[,
thus the sign of sin(( j2 − d)θ) equals (−1)N+2v.

�

3.4. The end of the proof of Theorem 1.2. We have obtained an optimal solution
f∗ of (7), given in Definition 3.2, with objective value equal to kλ0,0. So we have

(23) ϑ(Kk/d) = kλ0,0.

We recall that:

(24) L0(y) = λ0,0T0(y) + λ0,1T1(y) + · · ·+ λ0,d−1Td−1(y).

If we plug in (24) the value y = cn and sum up for n = 0, . . . , d−1, taking account
of T0 = 1 and

∑d−1
n=0 Tj(cn) =

∑d−1
n=0 cos(2jnπ/d) = 0, we obtain the formula

(4).

3.5. Other expressions for ϑ(Kk/d). Alternatively, we can integrate (24) for the
measure dy/

√
1− y2, for which the Chebyshev polynomials are orthogonal, lead-

ing to different expressions for ϑ(Kk/d):

Theorem 3.7. We have, with the notations of Theorem 1.2:

ϑ(Kk/d) =
k

π

∫ 1

−1
L0(y)

dy√
1− y2

(25)

=
(−1)d−1k
d−1∏
n=1

(1− an)

b(d−1)/2c∑
j=0

1
22j

(
2j
j

)
σd−1−2j(a1, . . . , ad−1)(26)

where σ0, . . . , σd−1 denote the elementary symmetric polynomials in d − 1 vari-
ables.

Proof. Integrating (24) for the measure dy/
√

1− y2 over the interval [−1, 1] leads
to (25) because the Chebyshev polynomials Tn satisfy:

1
π

∫ 1

−1
Tn(y)

dy√
1− y2

= δn,0.
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Then, (26) is obtained from (25) with the monomial expansion of L0(y) and the
formula (ref ??)

1
π

∫ 1

−1
yj

dy√
1− y2

=

{
0 if j is odd
1
2j

( j
j/2

)
otherwise .

�

Remark 3.8. The expression (4) specializes, when d = 2 and d = 3, to the expres-
sions given respectively in [7] and [4]. Indeed, in the case d = 2, we have c0 = 1,
c1 = −1, and a1 = − cos(π/k). Replacing in (4), we recover (1).

For d = 3, we have c1 = c2 = −1/2, a1 = cos(bk3c
2π
k ) and a2 = cos((bk3c +

1)2π
k ). We obtain in (4)

ϑ(Kk/3) =
k

3

(
1 +

(c1 − a1)(c1 − a2)
(1− a1)(1− a2)

+
(c2 − a1)(c2 − a2)
(1− a1)(1− a2)

)
=

k(1/2 + a1a2)
(1− a1)(1− a2)

which agrees with the expression (3) given in [4, Theorem 1].

4. SEPARATING THE ϑ(Kk/d)

In this section, we prove Theorem 1.3. Jointly with Proposition 2.1, and follow-
ing the discussion in the Introduction, it will be an immediate consequence of the
following theorem:

Theorem 4.1. There exists an absolute and effective constant c such that for all
N ∈ N, k ≤ N, k′ ≤ N, k ≥ 2d, k′ ≥ 2d′ with gcd(k, d) = gcd(k′, d′) = 1, and
k/d 6= k′/d′,

|ϑ(Kk/d)− ϑ(Kk′/d′)| ≥ 1
cN5 .

We start with a proof of the weaker property that ϑ(Kk/d) 6= ϑ(Kk′/d′) if k/d 6=
k′/d′.

Theorem 4.2. If ϑ(Kk/d) = ϑ(Kk′/d′) then k/d = k′/d′.

Proof. Assume that ϑ(Kk/d) = ϑ(Kk′/d′) for k/d < k′/d′. Since ϑ(Kp/q) is an
increasing function of p/q (see Section 2), it implies that ϑ(Kp/q) is constant for
all p/q ∈ [k/d, k′/d′]. This constant will be denoted ϑ for simplicity.

Claim 4.3. The number ϑ is rational.

Proof. Let q ≥ 5 be a prime such that 1/q < 1
4(k′/d′ − k/d). Then there exists

r such that r/q, (r + 1)/q, (r + 2)/q, (r + 3)/q ∈ [k/d, k′/d′]. Since q ≥ 5, it
divides at most one of the four numbers r, r + 1, r + 2, r + 3. Hence one can find
p such that p/q, (p+ 1)/q ∈ [k/d, k′/d′] and q is prime to p and p+ 1.

For any positive integer a, denote ζa = exp(2iπ/a). We refer to [6] for the
basic notions of algebraic number theory that will be involved next. For a number
field K, we let Gal(K) denote its Galois group over Q. For number fields K ⊂ L,
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and x ∈ L, TraceLK(x) and NormL
K(x) denote respectively the trace and norm of

x in the extension L/K.
It is well-known (see [6]) that

Ψa : (Z/aZ)× −→ Gal(Q(ζa))
n 7→ σn such that σn(ζa) = ζna

is an isomorphism. Furthermore, if a and b are coprime,

(Z/abZ)× = (Z/aZ)× × (Z/bZ)×

by Chinese Remainder Theorem. It implies immediately that

Gal(Q(ζab)) = Gal(Q(ζa))×Gal(Q(ζb)),

hence the fields Q(ζa) and Q(ζb) are linearly disjoint over Q.
We now compute ϑ = ϑ(Kp/q) using formula (4). By definition, we have cn =

cos(2nπ/q) = 1
2(ζnq + ζ−nq ) = σn(c1) for 1 ≤ n ≤ q − 1. It follows that

ϑ =
p

q
(1 + TraceQ(ζpq)

Q(ζp)
(L0(c1))).

It gives immediately that ϑ ∈ Q(ζp). The same result using (p + 1)/q leads to
ϑ ∈ Q(ζp+1). Since the fields Q(ζp) and Q(ζp+1) are linearly disjoint, this proves
the result. �

Claim 4.4. The number ϑ is an integer.

Proof. Let ϑ = a
b with a, b ∈ N coprime. Using the same arguments as in the

previous lemma, for any prime p such that 1/p < 1
4(d/k − d′/k′), one can find q,

with p coprime to q and q + 1, such that q/p, (q + 1)/p ∈ [d/k, d′/k′] . It means
that p/q, p/(q + 1) ∈ [k/d, k′/d′].

Using formula (4) for p/q, one sees that x = q
∏q−1
n=1(2− 2an)ϑ is an algebraic

integer, hence NormQ(ζpq)
Q (x) ∈ Z. We now compute this norm.

Since qϑ is rational, NormQ(ζpq)
Q (qϑ) = (qϑ)φ(pq) where φ is the Euler func-

tion. Since p is a prime, an is a conjugate of a1 for all 1 ≤ n ≤ q − 1, hence
NormQ(ζpq)

Q (
∏q−1
n=1(2− 2an)) = (NormQ(ζpq)

Q (2− 2a1))q−1. We also have

2− 2a1 = 2− 2 cos(bp
q
c2π
p

) = (1− ζ
b p
q
c

p )(1− ζ
−b p

q
c

p ).

Hence NormQ(ζpq)
Q (2− 2a1) = (NormQ(ζpq)

Q (1− ζp))2. Finally,

NormQ(ζpq)
Q (1− ζp) = NormQ(ζp)

Q (NormQ(ζpq)
Q(ζp)

(1− ζp))

= (NormQ(ζp)
Q (1− ζp))φ(q)

= pφ(q)

(see [6]). Summing up all partial results, one gets

(q
a

b
)φ(pq)p2(q−1)φ(q) ∈ Z.
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If l 6= p is a prime factor of b, then l divides q by the previous formula. But the
same formula holds with q + 1, hence l divides also q + 1. It follows that b is a
power of p. But this is true for any p large enough. Hence b = 1. This proves the
result. �

To finish the proof of Theorem 4.2, we use the following result from [8] (see
also [5]): if ϑ(Kk/d) ∈ N then k/d ∈ N. But every rational number in the interval
[k/d, k′/d′] cannot be an integer. �

We can now start the proof of Theorem 4.1. It is based on the following obvious
lemma.

Lemma 4.5. Let α be a non zero algebraic integer of degree less than δ and c ≥ 1
such that the absolute values of the conjugates of α are less than c then

|α| ≥ 1
cδ

Proof. Since α is a non zero algebraic integer , |NormQ(α)
Q (α)| ≥ 1. It follows

immediately that
|α|cδ−1 ≥ 1.

�

Let

α = dd′
d−1∏
n=1

(2− 2an)
d′−1∏
n=1

(2− 2a′n)(ϑ(Kk/d)− ϑ(Kk′/d′))

= kd′
d′−1∏
n=1

(2− 2a′n)
d−1∑
n=0

d−1∏
m=1

(2cn − 2am)− k′d
d−1∏
n=1

(2− 2an)
d′−1∑
n=0

d′−1∏
m=1

(2c′n − 2a′m)

with the obvious notations c′n := cos
(

2nπ
d′

)
and a′n := cos

(⌊
nk′

d′

⌋
2π
k′

)
. The

number α is thus an algebraic integer, and it is non zero by Theorem 4.2. Moreover
it belongs to Q(ζkdk′d′), hence its degree is less than N4.

Let β be a conjugate of α. Since the absolute values of the conjugates of
an, a

′
n, cn and c′n are all less than 1, one gets

|β| ≤ kd′4d′−1d4d−1 + k′d4d−1d′4d
′−1 ≤ 2N

N

2
4
N
2
N

2
4
N
2 ≤ N34N .

It follows from Lemma 4.5 that

|α| ≥ 1
(N34N )N4 .

Furthermore, |dd′
∏d−1
n=1(2− 2an)

∏d′−1
n=1 (2− 2a′n)| ≤ N24N . This implies imme-

diately that

|ϑ(Kk/d)− ϑ(Kk′/d′)| ≥ 1
N24N (N34N )N4 .

This finishes the proof of Theorem 4.1.
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5. THE ASYMPTOTIC BEHAVIOUR OF ϑ(Kk/d)

From Lovász’s formula (1), the asymptotic behaviour of the theta number of odd
holes C2k+1 is (see [2] for instance):

(27) ϑ (C2k+1) =
2k + 1

2
+O

(
1
k

)
.

In general, we have ϑ(Kk/d) ≤ k/d. Indeed,

ϑ(Kk/d) = k/ϑ(Kk/d) ≤ k/ω(Kk/d) = k/d.

In this section, we prove:

Theorem 5.1. If d ≥ 3 and k ≥ 4d3/π then ϑ(Kk/d) ≥ k
d −

4eπ2

3
d
k . Hence, for d

fixed,

ϑ(Kk/d) =
k

d
+ O

(
1
k

)
.

Notice that for d = 2, Theorem 5.1 agrees with Equation (27).

Proof. Let d ≥ 3 and k ≥ 4d3/π. For every 0 ≤ i ≤ d − 1, let ci = cos(2iπ/d),
σi = sin(2iπ/d), ai = cos

(⌊
ik
d

⌋
2π
k

)
and δi = ci−ai. We have ai = cos(2iπ/d−

2πεi), with εi = si/kd and si = ik mod d.

Claim 5.2. For every 1 ≤ j ≤ d− 1, we have
d−1∏
i=0

i 6=j,d−j

(cj − ci) =
−d2

2dσ2
j

if j 6= 0, d/2(28)

d−1∏
i=0

i 6=j,d−j

(cj − ci) =
−d2

2d−1
if j = d/2(29)

d−1∑
i=1

1
1− ci

=
d2 − 1

6
(30)

Proof. The proof of these equalities is a short computation and the details are omit-
ted. Equation (29) (respectively (28), (30)) is obtained by taking the first deriva-
tive (respectively the second derivative, the third derivative) with respect to x of
the equality Tk(cosx) = cos(kx), taking into account the identity Tk(x) − 1 =
2k−1

∏k−1
i=0 (x − ci), then by evaluating the resulting identity at π (respectively

2jπ/q, respectively 0). �

Claim 5.3. For every 1 ≤ j ≤ d− 1, we have∣∣∣∣∣δjδd−jσ2
j

∣∣∣∣∣ ≤ 4π2

k2

(
1 +

dπ

k

)
if j 6= d/2(31)

|δj | ≤
4π2

k2
if j = d/2(32)
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Proof. For every 1 ≤ j ≤ d − j, let zj ∈ [2jπ/d − 2πεj , 2jπ/d] such that
δj = −2πεj sin(zj). As | sin(zj)| ≤ |σj | or | sin(zd−j)| ≤ |σj |, we get

|δjδd−j | ≤ 4π2|σj |(|σj |+ 2π/k)/k2.

Taking into account |σj | ≥ sin π
d ≥ 2/d, we obtain (31).

The inequality (32) is straightforward. �

Claim 5.4. For every 1 ≤ j ≤ d− 1, we have

(33)
d−1∏
i=1

|cj − ai| ≤
eπ2

2d−3(1− cj)
d2

k2
.

Proof. Let mj = δjδd−j if j 6= d/2, and md/2 = δd/2. We have

d−1∏
i=1

|cj − ai| =

∣∣∣∣∣∣∣mj

d−1∏
i=1

i 6=j,d−j

(cj − ci)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

d−1∏
i=1

i 6=j,d−j

(
1 +

δi
cj − ci

)∣∣∣∣∣∣∣
≤ π2

2d−3(1− cj)
d2

k2

∣∣∣∣∣∣∣
d−1∏
i=1

i 6=j,d−j

(
1 +

δi
cj − ci

)∣∣∣∣∣∣∣ due to (28), (29), (31), (32)

≤ π2

2d−3(1− cj)
d2

k2
exp

2π
k

d−1∑
i=1

i 6=j,d−j

1
|cj − ci|


≤ π2

2d−3(1− cj)
d2

k2
exp

(
4
π

d3

k

)
since |cj − ci| ≥

π2

2d2
for every i 6= j, d− j

≤ π2e

2d−3(1− cj)
d2

k2
as k ≥ 4d3/π.

�

Claim 5.5. We have
d−1∏
i=1

(1− ai) ≥
d2

2d
.

Proof. Indeed,

d−1∏
i=1

(1− ai) =
d−1∏
i=1

(1− ci)
d−1∏
i=1

(
1 +

δi
1− ci

)

≥ d2

2d−1

d−1∏
i=1

(
1− 2π

k(1− ci)

)
due to (29).
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If x1, . . . , xl are real numbers belonging to [0, 1], then
∏l
i=1 (1− xi) ≥ 1 −

(x1 + . . .+ xl). Since for every i, 2π
k(1−ci) ≤ 1, it follows:

d−1∏
i=1

(1− ai) ≥
d2

2d−1

(
1− 2π

k

d−1∑
i=1

1
1− ci

)

≥ d2

2d
due to (30) and k ≥ 4d3/π.

�

Now we are ready to prove Theorem 5.1. We have the following chain of in-
equalities:

ϑ
(
Kk/d

)
=
k

d
+
k

d

d−1∑
n=1

∏d−1
i=1 (cn − ai)∏d−1
i=1 (1− ai)

from (4)

≥ k

d
− k

d

2d

d2

d−1∑
n=1

∣∣∣∣∣
d−1∏
i=1

(cn − ai)

∣∣∣∣∣ by Claim 5.5

≥ k

d
− k

d

2d

d2

eπ2

2d−3

d2

k2

d−1∑
n=1

1
1− cn

by Claim 5.4

≥ k

d
− 4eπ2

3
d

k
due to (30)

�

Notice that Theorem 5.1 shows that ϑ is close to the circular chromatic number
of dense circular perfect graphs (where dense means that the clique number is large
compared to the stability number):

Corollary 5.6. For every ε > 0, for every positive integer α, there is a positive
integer ω such that for every circular-perfect graph G satisfying ω(G) ≥ ω and
α(G) ≤ α, we have |ϑ

(
G
)
− χc(G)| ≤ ε.
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[8] A. Pêcher and A.K. Wagler, Clique and chromatic number of circular-perfect graphs, ISCO’10,

Tunisia - Electronic Notes in Discrete Mathematics 36 (2010), 199–206.



ON THE THETA NUMBER OF POWERS OF CYCLE GRAPHS 17
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