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Abstract

For infinitely many primes p = 4k + 1 we give a slightly improved upper bound
for the maximal cardinality of a set B ⊂ Zp such that the difference set B − B
contains only quadratic residues. Namely, instead of the ”trivial” bound |B| ≤ √

p
we prove |B| ≤ √

p− 1, under suitable conditions on p. The new bound is valid for
approximately three quarters of the primes p = 4k + 1.
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1. Introduction

Let q be a prime-power, say q = pk. We will be interested in estimating the maximal

cardinality s(q) of a set B ⊂ Fq such that the difference set B − B contains only
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squares. While our main interest is in the case k = 1, we find it instructive to

compare the situation for different values of k.

This problem makes sense only if −1 is a square; to ensure this we assume q ≡ 1

(mod 4). The universal upper bound s(q) ≤ √
q can be proved by a pigeonhole

argument or by simple Fourier anlysis, and it has been re-discovered several times

(see [8, Theorem 3.9], [12, Problem 13.13], [4, Proposition 4.7], [3, Chapter XIII,

Theorem 14], [11, Theorem 31.3], [10, Proposition 4.5], [7, Section 2.8] for various

proofs). For even k we have equality, since Fpk can be constructed as a quadratic

extension of Fpk/2 , and then every element of the embedded field Fpk/2 will be

a square. It is known that every case of equality can be obtained by a linear

transformation from this one, [2].

Such problems and results are often formulated in terms of the Paley graph Pq,

which is the graph with vertex set Fq and an edge between x and y if and only if

x− y = a2 for some non-zero a ∈ Fq.

Paley graphs are self-complementary, vertex and edge transitive, and (q, (q −
1)/2, (q−5)/4, (q−1)/4)-strongly regular (see [3] for these and other basic properties

of Pq). Paley graphs have received considerable attention over the past decades

because they exhibit many properties of random graphs G(q, 1/2) where each edge

is present with probability 1/2. Indeed, Pq form a family of quasi-random graphs,

as shown in [5].

With this terminology s(q) is the clique number of Pq. The general lower bound

s(q) ≥ ( 12 + o(1)) log2 q is established in [6], while it is proved in [9] that s(p) ≥
c log p log log log p for infinitely many primes p. The “trivial” upper bound s(p) ≤√
p is notoriously difficult to improve, and it is mentioned explicitly in the selected

list of problems [7]. The only improvement we are aware of concerns the special

case p = n2 + 1 for which it is proved in [13] that s(p) ≤ n − 1 (the same result

was proved independently by T. Sanders – unpublished, personal communication).

It is more likely, heuristically, that the lower bound is closer to the truth than the

upper bound. Numerical data [16, 15] up to p < 10000 suggest (very tentatively)

that the correct order of magnitude for the clique number of Pp is c log2 p (see the

discussion and the plot of the function s(p) at [17]).

In this note we prove the slightly improved upper bound s(p) ≤ √
p − 1 for the

majority of the primes p = 4k+1 (we will often suppress the dependence on p, and

just write s instead of s(p)).

We will denote the set of nonzero quadratic residues by Q, and that of nonzero

non-residues by NQ. Note that 0 /∈ Q and 0 /∈ NQ.
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2. The improved upper bound

Theorem 2.1. Let q be a prime-power, q = pk, and assume that k is odd and q ≡ 1

(mod 4). Let s = s(q) be the maximal cardinality of a set B ⊂ Fq such that the

difference set B −B contains only squares.

(i) If [
√
q] is even then s2 + s− 1 ≤ q,

(ii) if [
√
q] is odd then s2 + 2s− 2 ≤ q.

Proof. The claims hold if s < [
√
q]. Hence we may assume that s ≥ [

√
q].

Lemma 2.2. Let D ⊂ Fq be a set such that

D ⊂ NQ, D −D ⊂ Q ∪ {0}.

With r = |D| we have

s(q) ≤ 1 +
q − 1

2r
. (1)

Proof. Let B be a maximal set such that B−B ⊂ Q∪{0}, |B| = s(q) = s. Consider

the equation

b1 − b2 = zd, b1, b2 ∈ B, d ∈ D, z ∈ NQ.

This equation has exactly s(s−1)r solutions; indeed, every pair of distinct b1, b2 ∈ B

and a d ∈ D determines z uniquely. On the other hand, given b1 and z, there can

be at most one pair b2 and d to form a solution. Indeed, if there were another pair

b′2, d
′, then by substracting the equations

b1 − b2 = zd, b1 − b′2 = zd′

we get (b′2 − b2) = z(d − d′), a contradiction, as the left hand side is a square and

the right hand side is not. This gives s(s− 1)r ≤ s(q − 1)/2 as wanted.

We try to construct such a set D in the form D = (B − t) ∩NQ with a suitable

t. The required property then follows from D −D ⊂ B −B.

Let χ denote the quadratic multiplicative character, i.e. χ(t) = 1 according to

whether t ∈ Q or t ∈ NQ (and χ(0) = 0). Let

φ(t) =
∑
b∈B

χ(b− t). (2)

Clearly

φ(t) = |(B − t) ∩Q| − |(B − t) ∩NQ|,

and hence for t /∈ B we have

|(B − t) ∩NQ| = s− φ(t)

2
.
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To find a large set in this form we need to find a negative value of φ.

We list some properties of this function. For t ∈ B we have φ(t) = s − 1, and

otherwise

φ(t) ≤ s− 2, φ(t) ≡ s (mod 2)

(the inequality expresses the maximality of B). Furthermore,∑
t

φ(t) = 0,

and, since translations of the quadratic character have the quasi-orthogonality prop-

erty ∑
t

χ(t+ a)χ(t+ b) = −1

for a ̸= b, we conclude∑
t

φ(t)2 = s(q − 1)− s(s− 1) = s(q − s).

By subtracting the contribution of t ∈ B we obtain∑
t/∈B

φ(t) = −s(s− 1),

∑
t/∈B

φ(t)2 = s(q − s)− s(s− 1)2 = s(q − s2 + s− 1).

These formulas assume an even nicer form by introducing the function φ1(t) =

φ(t) + 1: ∑
t/∈B

φ1(t) = q − s2, (3)

∑
t/∈B

φ1(t)
2 = (s+ 1)(q − s2). (4)

As a byproduct, the second equation shows the familiar estimate s ≤ √
q, so we

have s = [
√
q] <

√
q (recall that we assume that s ≥ [

√
q], the theorem being trivial

otherwise).

Now we consider separately the cases of odd and even s. If s is even, then, since∑
t/∈B φ(t) < 0 and each summand is even, we can find a t with φ(t) ≤ −2. This

gives us an r with r ≥ (s + 2)/2, and on substituting this into (1) we obtain the

first case of the theorem.

If s is odd, we claim that there is a t with φ(t) ≤ −3. Otherwise we have

φ(t) ≥ −1, that is, φ1(t) ≥ 0 for all t /∈ B. We also know φ(t) ≤ s−2, φ1(t) ≤ s−1

for t /∈ B. Consequently∑
t/∈B

φ1(t)
2 ≤ (s− 1)

∑
t/∈B

φ1(t) = (s− 1)(q − s2),



INTEGERS: 13 (2013) 5

a contradiction to (4). (Observe that to reach a contradiction we need that q − s2

is strictly positive. In case of an even k it can happen that q = s2 and the function

φ1 vanishes outside B.)

This t provides us with a set D with r ≥ (s+3)/2, and on substituting this into

(1) we obtain the second case of the theorem.

Remark 2.3. An alternative proof for the case q = p and s being odd is as follows.

Assume by contradiction that φ1 is even-valued and nonnegative. Then by (3) it

must be 0 for at least

q − |B| − q − s2

2
=

q + s2 − 2s

2

values of t. Let χ̃, φ̃, φ̃1 denote the images of χ, φ, φ1 in Fq (i.e. the functions are

evaluated mod p). By the previous observation φ̃1 has at least (q + s2 − 2s)/2

zeroes. On the other hand, we have χ̃(x) = x
q−1
2 , and hence φ̃1 is a polynomial of

degree (q − 1)/2; its leading coefficient is s = [
√
q] ̸= 0 mod p (This last fact may

fail if q = pk, even if k is odd. Therefore this proof is restricted in its generality.

Nevertheless we include it here, because we believe that it has the potential to lead

to stronger results if q = p.) Consequently φ̃1 can have at most (q − 1)/2 zeros, a

contradiction. In the case of even k we can have s =
√
q ≡ 0 (mod p) and so the

polynomial φ̃1 can vanish, as it indeed does when B is a subfield.

Remark 2.4. It is clear from (1) that any improved lower bound on r will lead to

an improved upper bound on s. If one thinks of elements of Zp as being quadratic

residues randomly with probability 1/2, then we expect that r ≥ s
2 + c

√
s. This

would lead to an estimate s ≤ √
p − cp1/4. This seems to be the limit of this

method. In order to get an improved lower bound on r one can try to prove non-

trivial upper bounds on the third moment
∑

t∈Zp
φ3(t). To do this, we would need

that the distribution of numbers b1−b2
b1−b3

is approximately uniform on Q as b1, b2, b3
ranges over B. This is plausible because if s ≈ √

p then the distribution of B − B

must be close to uniform on NQ. However, we could not prove anything rigorous

in this direction.

Remark 2.5. Theorem 2.1 gives the bound s ≤ [
√
p]− 1 for about three quarters

of the primes p = 4k + 1. Indeed, part (ii) gives this bound for almost all p such

that n = [
√
p] is odd, with the only exception when p = (n+1)2 − 3. Part (i) gives

the improved bound s ≤ n− 1 if n2 +n− 1 > p. This happens for about half of the

primes p = 4k + 1 for which n is even. To make these statements rigorous we note

that
√
p/2 is uniformly distributed modulo one, when p ranges over primes of the

form p = 4k + 1: this is a special case of a result of Balog, [1, Theorem 1].
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