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Fusion frames enable signal decompositions into weighted linear subspace components.
For positive integers p, we introduce p-fusion frames, a sharpening of the notion of fusion
frames. Tight p-fusion frames are closely related to the classical notions of designs and
cubature formulas in Grassmann spaces and are analyzed with methods from harmonic
analysis in the Grassmannians. We define the p-fusion frame potential, derive bounds for
its value, and discuss the connections to tight p-fusion frames.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In modern signal processing, basis-like systems are applied to derive stable and redundant signal representations. Frames
are basis-like systems that span a vector space but allow for linear dependency, that can be used to reduce noise, find sparse
representations, or obtain other desirable features unavailable with orthonormal bases [15,22–25]. In fusion frame theory as
introduced in [14], see also [7,9,10,13,27], the signal is projected onto a collection of linear subspaces that can represent,
for instance, sensors in a network [39] or nodes in a computing cluster [5]. To obtain a signal reconstruction that is robust
against noise and data loss, the subspaces are usually chosen in some redundant fashion and, as such, fusion frames are
tightly connected to coding theory [7,8].

Tight fusion frames [14] provide a direct reconstruction formula, and can be characterized as the minimizers of the
fusion frame potential. The error caused from the loss of one or two subspaces within a tight fusion frame is minimized
for equidimensional subspaces that satisfy the simplex bound with equality [34]. The simplex bound, as derived in [16], is
an extremal estimate on the maximum of the inner products 〈P V , P W 〉 := trace(P V P W ) between the projectors associated
to equidimensional linear subspaces V and W . Equality in this bound implies that the subspaces are equiangular, meaning
that the inner products between distinct pairs take the same value.

We derive a generalized simplex bound that also holds for subspaces whose dimensions can vary. Equality holds if and
only if the fusion frame is tight and equiangular. In Section 3.3, we prove that the number of equiangular subspaces in R

d

cannot exceed
(d+1

2

)
, generalizing Gerzon’s bound for the maximal number of equiangular lines [35].

The p-fusion frame potential of a collection of subspaces is introduced as an extension of the fusion frame potential
discussed in [12,37], as well as a convenient �p approximation of the maximum among the inner products 〈P V , P W 〉 of
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pairwise distinct subspaces. We moreover derive a bound for the p-fusion frame potential that yields the simplex bound at
the limit.

We introduce the notions of p-fusion frames and tight p-fusion frames, where p � 1 is an integer. These notions general-
ize the notion of (tight) fusion frames corresponding to the case p = 1. For subspaces of equal dimension, we apply methods
from harmonic analysis on Grassmann spaces in order to analyse these objects. In particular we characterize tight p-fusion
frames by the evaluation of certain multivariate Jacobi polynomials at the principal angles between subspaces. Moreover we
relate them to cubature formulas in Grassmann space.

A general framework for cubatures in polynomial spaces is proposed in [31]. Designs for the Grassmann space, i.e.,
cubatures with constant weights, have been introduced and studied in [1,4]. We prove that cubatures of strength 2p can be
characterized as the minimizers of the p-fusion frame potential. The notions of tight p-fusion frames and of cubatures of
strength 2p coincide for p = 1; however the latter is stronger than the former for p � 2.

We verify the existence of tight p-fusion frames for any integer p � 1 by using results in [31]. Moreover, we present
general constructions of tight p-fusion frames. One is based on orbits of finite subgroups of the orthogonal group and has
previously been used to derive designs in Grassmann spaces in [3], see [42] for lines in R

d . We also verify that p-designs in
complex and quaternionic projective spaces in the sense of [32] induce tight p-fusion frames. Another construction of tight
p-fusion frames is presented that is reminiscent to constructions by concatenation in coding theory.

The outline is as follows: In Section 2, we list the basic properties of fusion frames. We recall the simplex bound
in Section 3.1 and derive the generalized simplex bound in Section 3.2. An upper bound on the number of equiangular
subspaces is given in Section 3.3. We introduce p-fusion frames in Section 4. The relations between tight p-fusion frames
and cubatures of strength 2p are investigated in Section 5. Constructions of tight p-fusion frames are discussed in Section 6.
Section 7 contains a lower bound on the p-fusion frame potential that does not require the subspaces to be equidimensional.

2. Fusion frames

To introduce fusion frames, we follow [14], see also [12,34]. Given a linear subspace V ⊂ R
d , let P V denote the or-

thogonal projection onto V . The real Grassmann space Gk,d is the space of all k-dimensional subspaces of R
d . Moreover

Gd := ⋃d−1
k=1 Gk,d is the union of all Grassmann spaces.

Definition 2.1. Let {V j}n
j=1 ⊂ Gd and let {ω j}n

j=1 be a collection of positive weights. Then {(V j,ω j)}n
j=1 is called a fusion

frame if there are positive constants A and B such that

A‖x‖2 �
n∑

j=1

ω j
∥∥P V j (x)

∥∥2 � B‖x‖2, for all x ∈R
d. (1)

If A = B , then {(V j,ω j)}n
j=1 is called a tight fusion frame.

In case that A = B and the weights are all equal to 1, we simply say that {V j}n
j=1 is a tight fusion frame. Moreover, we

shall always assume that the subspaces V j are nontrivial, i.e., that V j �= {0} and V j �= R
d .

The standard inner product between self-adjoint operators P and Q is defined by 〈P , Q 〉 := trace(P Q ). It should be
noted that if x belongs to the unit sphere Sd−1 = {x ∈ R

d: ‖x‖ = 1}, then ‖P V (x)‖2 = 〈Px, P V 〉, where Px stands for the
orthogonal projection onto the line Rx. Thus, the fusion frame condition (1) is equivalent to

A �
n∑

j=1

ω j〈P x, P V j 〉 � B, for all x ∈ Sd−1. (2)

Let us recall the significance of fusion frames for signal reconstruction: any finite collection {V j}n
j=1 of linear subspaces

in R
d with positive weights ω = {ω j}n

j=1 induces an analysis operator

F : Rd →
(

n⊕
j=1

V j

)
ω

, x 
→ {
P V j (x)

}n
j=1, (3)

where (
⊕n

j=1 V j)ω is the space
⊕n

j=1 V j endowed with the inner product 〈{ f j}n
j=1, {g j}n

j=1〉ω := ∑n
j=1 ω j〈 f j, g j〉. Its adjoint

is the synthesis operator

F ∗ :
(

n⊕
j=1

V j

)
ω

→R
d, { f j}n

j=1 
→
n∑

j=1

ω j f j, (4)

and the fusion frame operator is defined by

S := F ∗ F : Rd →R
d, x 
→

n∑
ω j P V j (x). (5)
j=1
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If {V j}n
j=1 forms a fusion frame, then S is positive, self-adjoint, invertible, and induces the reconstruction formula x =∑n

j=1 ω j S−1 P V j (x), for all x ∈ R
d , cf. [14]. If the fusion frame is tight, then S = AId holds, and we obtain the appealing

representation

x = 1

A

n∑
j=1

ω j P V j (x), for all x ∈R
d. (6)

3. The simplex bound and equiangular fusion frames

Our goal in this section is to give lower bounds on maxi �= j(〈P V i , P V j 〉). We start to review the known results in the case
of subspaces of equal dimension.

3.1. The simplex bound for subspaces of equal dimension

The chordal distance dc(V , W ), for V , W ∈ Gk,d , was introduced in [16] and is defined by

d2
c (V , W ) = 1

2
‖P V − P W ‖2

F = k −
k∑

i=1

cos2(θi(V , W )
) = k − 〈P V , P W 〉, (7)

where θ1, . . . , θk are the principal angles between V and W , cf. [28]. If {V j}n
j=1 ⊂ Gk,d , then the simplex bound as derived

in [16] yields

min
i �= j

d2
c (V i, V j) � k(d − k)

d

n

n − 1
, (8)

and equality requires n �
(d+1

2

)
. Of course, in view of (7), the above simplex bound is a lower bound for maxi �= j(〈P V i , P V j 〉).

The following result is proven in [34]:

Theorem 3.1. (See [34].) If {V j}n
j=1 ⊂ Gk,d is an equidistance fusion frame, i.e. if dc(V i, V j) is independent of i �= j, then it is tight if

and only if it satisfies the simplex bound (8) with equality.

We shall extend the simplex bound (8) and the above theorem to collections of weighted subspaces that do not all have
the same dimension.

3.2. The simplex bound for subspaces of arbitrary dimension

When the subspaces do not have the same dimension, we replace the notion of subspaces being equidistant with the
notion of equiangular subspaces:

Definition 3.2. Let {V j}n
j=1 be a collection in Gd and let {ω j}n

j=1 be positive weights. We then call both, {(V j,ω j)}n
j=1 and

{V j}n
j=1, equiangular if 〈P V i , P V j 〉 does not depend on i �= j.

If all subspaces V j are of dimension 1, then our definition of {V j}n
j=1 being equiangular coincides with the classical

notion of equiangular lines. If all subspaces V j are of dimension k, being equiangular amounts to being equidistant with
respect to the chordal distance. However, we remark that being equiangular in our sense does not mean that the k-tuples
of principal angles between the pairs (V i, V j) are the same (unless k = 1).

The proof of the simplex bound (8) in [16] heavily relies on the embedding of Gk,d into a higher dimensional sphere. For
subspaces that are not equidimensional, we cannot use this embedding. Instead, we use the p-fusion frame potential.

Definition 3.3. The p-fusion frame potential of the collection of weighted subspaces {(V j,ω j)}n
j=1 is defined for 1 � p < ∞

by:

FFP
({

(V j,ω j)
}n

j=1, p
) :=

n∑
i, j=1

ωiω j〈P V i , P V j 〉p . (9)

Note that the 1-fusion frame potential FFP({(V j,ω j),1}n
j=1) = trace(S2), where S is the fusion frame operator, has already

been considered in [12,37].
We can now derive a new weighted simplex bound for collections of subspaces that are not necessarily equidimensional.
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Theorem 3.4 (Generalized simplex bound). Given positive weights {ω j}n
j=1 , if {V j}n

j=1 ⊂ Gd and m = ∑n
j=1 ω j dim(V j), then the

following points hold:

1) For 1 � p < ∞,

FFP
({

(V j,ω j)
}n

j=1, p
)
�

(m2

d − ∑n
j=1 ω2

j dim(V j))
p

(
∑

i �= j ωiω j)
p−1

+
n∑

j=1

ω2
j dim(V j)

p . (10)

If p = 1, then equality holds if and only if {(V j,ω j)}n
j=1 is a tight fusion frame. If 1 < p < ∞, then equality holds if and only if

{(V j,ω j)}n
j=1 is an equiangular tight fusion frame.

2) max
i �= j

〈P V i , P V j 〉 �
m2

d − ∑n
j=1 ω2

j dim(V j)∑
i �= j ωiω j

. (11)

Equality holds if and only if {(V j,ω j)}n
j=1 is an equiangular tight fusion frame.

Proof. Part 1) for p = 1 has already been derived in [12,37]. For 1 < p < ∞, we take the p-th root and only consider the
terms i �= j. We then see that (10) is equivalent to

∥∥(
ω

1/p
i ω

1/p
j 〈P V i , P V j 〉

)
i �= j

∥∥
�p �

(
m2

d
−

n∑
j=1

ω2
j dim(V j)

)(∑
i �= j

ωiω j

)1/p−1

,

so that (11) complements the estimate on ‖(ω1/p
i ω

1/p
j 〈P V i , P V j 〉)i �= j‖�p in (10) for p = ∞.

By applying the Hölder inequality, we obtain, for 1 < p � ∞ and 1 = 1
p + 1

q ,

∥∥(
ω

1
p

i ω
1
p

j 〈P V i , P V j 〉
)

i �= j

∥∥
�p

∥∥(
ω

1
q

i ω
1
q

j

)
i �= j

∥∥
�q �

∑
i �= j

ωiω j〈P V i , P V j 〉 = trace

((
n∑

i=1

ωi P V i

)2)
−

∑
j

w2
j dim V j. (12)

If {λk}d
k=1 are the eigenvalues of S = ∑n

i=1 ωi P V i , then we further obtain

trace

((
n∑

i=1

ωi P V i

)2)
−

∑
j

w2
j dim V j =

d∑
k=1

λ2
k −

∑
j

w2
j dim V j � 1

d

(
d∑

k=1

λk

)2

−
∑

j

w2
j dim V j.

In the last step we have used the Cauchy–Schwartz inequality for (λk)
d
k=1 and the constant sequence. The inequality (12)

turns into an equality if and only if {V j}n
j=1 are equiangular. The Cauchy–Schwartz inequality turns into an equality if and

only if S is a multiple of the identity. �
By applying (7), we observe that (11) is equivalent to the simplex bound (8) if all the subspaces have the same dimension

and the weights are constant.

Corollary 3.5. If {V j}n
j=1 ⊂ Gk,d and {ω j}n

j=1 are positive weights, then {(V j,ω j)}n
j=1 is an equiangular tight fusion frame if and only

if the weights are constant and 〈P V i , P V j 〉 = k(nk−d)
(n−1)d , for all i �= j.

Proof. Without loss of generality, we can assume that
∑n

j=1 ω j = 1. For dim(V j) = k, j = 1, . . . ,n, the right-hand side

of (11) equals k(
k
d −1

1−∑n
j=1 ω2

j
+ 1) and is maximized if and only if ω j = 1/n, j = 1, . . . ,n. By applying Theorem 3.4, we can

conclude the proof. �
3.3. The maximal number of equiangular subspaces

To match the generalized simplex bound of Theorem 3.4 with equality, the subspaces need to be equiangular. It is natural
to ask how large a collection of equiangular subspaces can be. The classical Gerzon upper bound n �

(d+1
2

)
for equiangular

lines [35] was extended to equiangular subspaces of equal dimension k in [3, Theorem 3.6]. In the present section, we prove
that this upper bound extends further to equiangular subspaces of arbitrary dimensions.

Theorem 3.6. If {V j}n is a collection of equiangular pairwise distinct subspaces in Gd, then n �
(d+1).
j=1 2
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Proof. Let α = 〈P V i , P V j 〉, for all i �= j. We split the proof into two cases.
Case 1. Suppose that there exists i such that α = dim(V i). Without loss of generality, we assume that i = 1. A short

computation yields that 〈P V 1 , P V 〉 � dim(V 1), for all V ∈ Gd , and equality holds if and only if V 1 is contained in V . Thus,
we have V 1 ⊂ V j , for all j = 2, . . . ,n. Let W j be the orthogonal complement of V 1 in V j , i.e., V j = V 1 ⊕ W j , for all
j = 2, . . . ,n. It can be checked that the equiangularity implies that the collection {W j}n

j=2 is pairwise orthogonal. Since

{V j}n
j=1 are pairwise distinct, none of the {W j}n

j=2 can be zero. Thus, n − 1 � d must hold, which implies n �
(d+1

2

)
, for

d � 2.
Case 2. We can now suppose that α < dim(V i) =: ki , for all i = 1, . . . ,n. Let us define the matrix Gram := (〈P V i , P V j 〉)i, j ∈

R
n×n , so that

Gram =

⎛
⎜⎜⎜⎝

k1 α · · · α

α
. . .

...
...

. . . α
α · · · α kn

⎞
⎟⎟⎟⎠ .

We can check by induction and elimination that Gram has full rank. Therefore, {P V j }n
j=1 is linearly independent. Since the

real vector space of self-adjoint matrices is
(d+1

2

)
-dimensional, we must have n �

(d+1
2

)
. �

The following examples form equiangular subspaces:

Example 3.7.

1) A collection of 10 two-dimensional subspaces of R4 was constructed in [16] that match the simplex bound.
2) Let d be a prime which is either 3 or congruent to −1 modulo 8. A collection of

(d+1
2

)
subspaces in G d−1

2 ,d satisfying

the simplex bound was constructed in [11].
3) In [19], codes in Grassmann spaces were constructed from 2-transitive groups. By construction, these codes are equian-

gular.

4. Tight p-fusion frames

The notion of (tight) fusion frames generalizes in a natural way when squares are replaced by 2p-powers for p a positive
integer:

Definition 4.1. Let {V j}n
j=1 be a collection of linear subspaces in R

d and let {ω j}n
j=1 be a collection of positive weights. Then

{(V j,ω j)}n
j=1 is called a p-fusion frame if there exist constants A, B > 0 such that

A‖x‖2p �
n∑

j=1

ω j
∥∥P V j (x)

∥∥2p � B‖x‖2p, for all x ∈R
d. (13)

If the weights are all equal to 1, then we suppress them in our notation and simply write {V j}n
j=1 for the p-fusion frame.

If A = B , then {(V j,ω j)}n
j=1 is called a tight p-fusion frame. If, in addition, all the subspaces are one-dimensional, then

{(V j,ω j)}n
j=1 is simply called a tight p-frame.

Of course, tight 1-fusion frames are tight fusion frames. Also, it is clear from the definition that the union of tight
p-fusion frames is again a tight p-fusion frame.

Now we show that, for a tight p-fusion frame, the value of A = B is uniquely determined. The real Grassmann space Gk,d

is endowed with the transitive action of the real orthogonal group O (Rd). The Haar measure on O (Rd) induces a measure
σk on the Grassmann space Gk,d , that we assume to be normalized, i.e. σk(Gk,d) = 1. Because these measures are O (Rd)-
invariant, the integral

∫
Gk,d

〈Px, P V 〉p dσk(V ) does not depend on the choice of x ∈ R
d , and similarly,

∫
G1,d

〈Px, P V 〉p dσ1(Rx)

is independent of V ∈ Gk,d . Therefore, we can define the value T1,k,d(p) by

T1,k,d(p) :=
∫

G1,d

∫
Gk,d

〈P x, P V 〉p dσk(V )dσ1(x) =
∫

Gk,d

〈P x, P V 〉p dσk(V ) =
∫

G1,d

〈P x, P V 〉p dσ1(x). (14)

The defining property of a p-fusion frame can be rephrased in the following way:

A �
n∑

ω j〈P x, P V j 〉p � B, for all x ∈ Sd−1. (15)

j=1
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Integrating (15) over Rx ∈ G1,d and using (14) lead to

A �
d−1∑
k=1

mk T1,k,d(p) � B, (16)

where mk = ∑
dim(V j)=k ω j . Equality holds for tight p-fusion frames. Since T1,k,d(1) = k

d , cf. [33], the frame bounds of a

fusion frame satisfy A � m
d � B , where m = ∑n

j=1 ω j dim(V j).
It should also be mentioned that reweighting of a tight p-fusion frame leads to tight p′-fusion frames for the entire

range 1 � p′ � p:

Theorem 4.2. Let p � 2. If {(V j,ω j)}n
j=1 is a tight p-fusion frame, then {(V j, ω̃ j)}n

j=1 is a tight (p − 1)-fusion frame, where ω̃ j =
ω j(p − 1 + dim(V j)/2).

Proof. We introduce the Laplace operator � = ∑d
i=1

∂2

∂x2
i

. In spherical coordinates, for x �= 0, we use the parametrization

x = rϕ , for r > 0 and ϕ ∈ Sd−1, so that the function f (x) = ‖x‖2p is constant in ϕ . Thus, we have � f = r1−d∂r(rd−1∂r f ),
which yields

�
(‖x‖2p) = 4p(p − 1 + d/2)‖x‖2(p−1).

More generally, for a subspace V , we obtain

�
(∥∥P V (x)

∥∥2p) = 4p
(

p − 1 + dim(V )/2
)∥∥P V (x)

∥∥2(p−1)
.

Applying � to both sides of the identity
∑n

j=1 ω j‖P V j (x)‖2p = A‖x‖2p , we obtain

n∑
j=1

ω j
(

p − 1 + dim(V j)/2
)∥∥P V j (x)

∥∥2(p−1) = A(p − 1 + d/2)‖x‖2(p−1),

proving that {(V j,ω j(p − 1 + dim(V j)/2))}n
j=1 is a (p − 1)-tight fusion frame. �

Remark 4.3. Iteration of Theorem 4.2 yields that if {(V j,ω j)}n
j=1 is a tight p-fusion frame, then {(V j,ω

′
j)}n

j=1 is a tight

fusion frame, where ω′
j = ω j

∏p−1
l=1 (l + dim(V j)/2).

5. Equidimensional tight p-fusion frames, cubature formulas and the p-fusion frame potential

In this section, we assume that the subspaces V j have the same dimension k. Using tools from harmonic analysis
on the Grassmann manifold Gk,d , the tight p-fusion frames can be characterized in terms of the principal angles of the
pairs of subspaces. The same holds for minimizers of the p-fusion frame potential, where we minimize over all collections
of k-dimensional subspaces whose weights add up to one. We shall recognize in these minimizers the cubatures for the
Grassmann space, also called Grassmann designs in the case of constant weights. It will turn out that the minimizers of the
p-fusion frame potential are tight p-fusion frames, while the converse holds only in the cases p = 1 or k = 1.

The use of harmonic analysis, namely the irreducible decomposition of L2 and the associated zonal spherical functions,
is standard in the study of designs in homogeneous spaces. The unit sphere of Euclidean space [21,43] served as a model
for many other spaces [38,32,4]. We refer to [31] for a general framework for cubature formulas in polynomial spaces and
to [4] for the notion of designs in Grassmann spaces (see also [3,1]).

5.1. A closed formula for the tight p-fusion frame bound

The next proposition shows that, after possibly a change from {V j} to {V ⊥
j }, the condition k � d/2 can be fulfilled. The

assumption that k � d/2 will be conveniently followed in the remaining of this section.

Proposition 5.1. If {(V j,ω j)}n
j=1 is a p-tight fusion frame of equal dimension k, then:

(1) {(V j,ω j)}n
j=1 is a p′-tight fusion frame for all 1 � p′ � p.

(2) {(V ⊥
j ,ω j)}n

j=1 is also a p-tight fusion frame.

Proof. Part (1) follows from Theorem 4.2 by putting (p − 1 + k/2)−1 into the fusion frame constant. For (2), we observe
that ‖x‖2 = ‖P V j (x)‖2 + ‖P ⊥ (x)‖2, so
V j
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n∑
j=1

ω j
∥∥P V ⊥

j
(x)

∥∥2p =
n∑

j=1

ω j
(‖x‖2 − ∥∥P V j (x)

∥∥2)p =
p∑

k=0

(−1)k
(

p

k

)
‖x‖2(p−k)

n∑
j=1

ω j
∥∥P V j (x)

∥∥2k

=
p∑

k=0

(−1)k
(

p

k

)
‖x‖2(p−k) Ak‖x‖2k =

( p∑
k=0

(−1)k
(

p

k

)
Ak

)
‖x‖2p,

where the second last equality follows from the property that {(V j,ω j)}n
j=1 is a k-tight fusion frame for all 1 � k � p,

and insures the existence of some constants Ak > 0 such that
∑n

j=1 ω j‖P V j (x)‖2k = Ak‖x‖2k . Since V ⊥
1 is not empty,∑p

k=0(−1)k
(p

k

)
Ak > 0, so that {(V ⊥

j ,ω j)}n
j=1 is a tight p-fusion frame. �

Remark 5.2. It follows from (16) that the constant A p in the characteristic property of tight p-fusion frames
∑n

j=1 ω j ×
‖P V j (x)‖2p = A p‖x‖2p equals A p = T1,k,d(p)

∑n
j=1 ω j . Applying the Laplace operator p times leads to another, more explicit,

formula:

Ap = (k/2)p

(d/2)p

n∑
j=1

ω j, (17)

where we employ the standard notation (a)p = a(a + 1) · · · (a + p − 1).

5.2. Characterization of tight p-fusion frames by means of principal angles

We now review the irreducible decomposition of the Hilbert space L2(Gk,d) of complex valued functions of integrable
squared module, under the action of the orthogonal group O (Rd). The standard inner product on L2(Gk,d) is denoted 〈 f , g〉.
Let V μ

d denote the complex irreducible representation of O (Rd) canonically associated to the partition μ = μ1 � · · · �
μd � 0 (see [29]). For such a partition μ = (μ1, . . . ,μd) with parts μi , its degree deg(μ) is the sum of its parts and its length
l(μ) is the number of its nonzero parts. We usually omit the parts equal to 0 in the notation of a partition. For example,
V (0)

d is the trivial representation, and V (�)

d is the representation afforded by the homogeneous harmonic polynomials of
degree � (i.e. the kernel of the Laplace operator). Then we have:

L2(Gk,d) =
⊕

l(μ)�k

H2μ
k,d, where H2μ

k,d � V 2μ
d . (18)

Here 2μ = (2μ1, . . . ,2μd) runs over the partitions with even parts. The subspace

Pol�2p(Gk,d) :=
⊕

l(μ)�k, deg(μ)�p

H2μ
k,d (19)

coincides with the space of polynomial functions on Gk,d of degree bounded by 2p. We also introduce the subspace

Pol1�2p(Gk,d) :=
⊕
��p

H (2�)

k,d ⊂ Pol�2p(Gk,d), (20)

so that the orthogonal complement of Pol1
�2p(Gk,d) in Pol�2p(Gk,d) is the direct sum of all H2μ

k,d , such that 2 � l(μ) � k and
deg(μ) � p.

We recall that k principal angles (θ1, . . . , θk) ∈ [0,π/2]k are associated to a pair of subspaces (V , W ) of R
d with d/2 �

dim(V ) = l � dim(W ) = k. We let yi := cos2(θi). Then, y1, . . . , yk are exactly the nonzero eigenvalues of the operator P V P W .
In particular, we observe that y1 + · · · + yk = 〈P V , P W 〉. The set {y1, . . . , yk} uniquely characterizes the orbit of the pair
(V , W ) under the action of O (Rd).

To every subspace H2μ
k,d is associated a polynomial Pμ(y1, . . . , yk) which is symmetric in the variables yi , of degree

equal to deg(μ), satisfying Pμ(1, . . . ,1) = 1, and such that V 
→ Pμ(y1(V , W ), . . . , yk(V , W )) belongs to H2μ
k,d . In fact, these

two last properties uniquely determine Pμ . For example, P (0) = 1 and P (1) = (y1 + · · · + yk) − k2/d up to a multiplicative
constant. These polynomials are called the zonal spherical polynomials of the Grassmann manifold. They were calculated in
[33], where it is shown that they belong to the family of multivariate Jacobi polynomials. They do depend on the parameters
k and d, although those parameters are not involved in our notation, see also [2].

Moreover, the functions (V , W ) 
→ Pμ(y1(V , W ), . . . , yk(V , W )) are positive definite functions on Gk,d , meaning that, for
all n � 1 and all {V j}n

j=1 ⊂ Gk,d , the matrix (Pμ(y1(V i, V j), . . . , yk(V i, V j)))1�i, j�n is positive semidefinite. As a conse-
quence, we have:

n∑
ωiω j Pμ

(
y1(V i, V j), . . . , yk(V i, V j)

)
� 0, for all {V j}n

j=1 ⊂ Gk,d. (21)

i, j=1
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Taking μ = (1), the inequality (21) becomes

FFP
({

(V j,ω j)
}n

j=1,1
)
� 1

d

(
n∑

j=1

ω jk

)2

,

so we already see here a connection with Theorem 3.4. Now we are in the position to characterize the tight p-fusion frames.

Theorem 5.3. The following properties are equivalent for {(V j,ω j)}n
j=1 , where {V j}n

j=1 ⊂ Gk,d and
∑n

j=1 ω j = 1:

(1) {(V j,ω j)}n
j=1 is a tight p-fusion frame.

(2) For all f ∈ Pol1�2p(Gk,d),

∫
Gk,d

f (V )dσk(V ) =
n∑

j=1

ω j f (V j). (22)

(3) For 1 � � � p, for all f ∈ H(2�)

k,d ,
∑n

j=1 ω j f (V j) = 0.

(4) For 1 � � � p,
∑n

i, j=1 ωiω j P (�)(y1(V i, V j), . . . , yk(V i, V j)) = 0.

Proof. The proof of the equivalence of (2), (3), and (4) is similar to the proof of [4, Proposition 4.2], so we skip it. Let,
for x ∈ R

d , sp
x (V ) := 〈Px, P V 〉p . Clearly sp

x ∈ Pol�2p(Gk,d). We claim that sp
x ∈ Pol1

�2p(Gk,d). Let f ∈ H2μ
k,d with l(μ) � 2; we

want to prove that 〈sp
x , f 〉 = 0. Indeed, the application that sends f ∈ H2μ

k,d to Rx 
→ 〈sp
x , f 〉 ∈ L2(G1,d) is O (Rd)-equivariant.

Because L2(G1,d) � ⊕
��0 V (2�)

d does not contain the representation V 2μ
d � H2μ

k,d , by Schur’s lemma, this application has to
be identically zero.

Let Σ denote the subspace of L2(Gk,d) spanned by the functions sp
x when x runs in R

d . We observe that Σ is invariant
under the action of the orthogonal group. We have just proved that Σ ⊂ Pol1

�2p(Gk,d), so (2) implies (1). For the converse

implication, we need to prove that Σ = Pol1�2p(Gk,d). Because Pol1
�2p(Gk,d) is the direct sum of the irreducible and pairwise

nonisomorphic O (Rd)-subspaces H(2�)

k,d for 0 � � � p, either H(2�)

k,d ⊂ Σ , or H(2�)

k,d and Σ are orthogonal. In order to rule out

this second possibility, we call for another sequence of polynomials denoted P 1,k
(�) (y1). These polynomials are orthogonal for

the measure y(k−2)/2
1 (1− y1)

(d−2−k)/2 dy1 over the interval [0,1], which is the measure induced on y1(x, V ) by the measures

on the Grassmann spaces, and are normalized by the property P 1,k
(�) (1) = 1. Here y1(x, V ) stands for y1(Rx, V ) = 〈Px, P V 〉.

These polynomials are characterized (up to a multiplicative factor) by the property that Rx 
→ P 1,k
(�) (y1(x, V )) belongs to

H(2�)

1,d and V 
→ P 1,k
(�) (y1(x, V )) belongs to H(2�)

k,d (see [33]). So, it is enough to prove that∫
Gk,d

〈P x, P V 〉p P 1,k
(�)

(
y1(x, V )

)
dσk(V ) �= 0 for 0 � � � p

or equivalently that

1∫
0

yp
1 P 1,k

(�) (y1)y(k−2)/2
1 (1 − y1)

(d−2−k)/2 dy1 �= 0 for 0 � � � p. (23)

In fact, we can prove by induction on p that the integral in (23) is positive. In the inductive step, we let yp
1 P 1,k

(�) (y1) =
yp−1

1 (y1 P 1,k
(�) (y1)), and we replace y1 P 1,k

(�) (y1) by

y1 P 1,k
(�) (y1) = a� P 1,k

((�+1))(y1) + b� P 1,k
(�) (y1) + c� P 1,k

((�−1))(y1),

where the coefficients a� , b� and c� can be computed from the coefficients in the three terms relation of the classical Jacobi
polynomials in one variable (see [40]). It turns out fortunately that a� , b� and c� are positive numbers. �
Remark 5.4.

1. Theorem 5.3(4) is the characterization of tight p-fusion frames we were aiming at, involving only the principal angles
of the pairs (V i, V j).
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2. The characteristic property (2) is reminiscent to so-called cubature formulas. If the most classical setting for cubature
formulas is numerical integration of polynomial functions on an interval of the real numbers, they have also been
extensively studied over other spaces such as the unit sphere of Euclidean space, although not over Grassmann spaces
to our knowledge. In [31] a general framework is provided for cubature formulas in polynomial spaces. Following [31,
Definition 1.3], a sequence of functional spaces F (p) is said to be polynomial if F (0) = C and if F (p) is generated by
the products of elements of F (1) and of F (p−1) . It should be noted that the spaces Pol1�2p(Gk,d) are not “polynomial

spaces” in this sense when k > 1. Indeed, the products f1 f2, where f i ∈ Pol1�2(Gk,d), span Pol�4(Gk,d), which is larger

than Pol1�4(Gk,d) when k � 2. So it is more adequate to define cubature formulas for the elements of Pol�2p(Gk,d),
which are polynomial.

5.3. Cubature formulas as minimizers of the p-fusion frame potential

In this section, we define cubature formulas on the Grassmann space and discuss their relations to the p-fusion frame
potential.

Definition 5.5. Let {V j}n
j=1 be a finite subset of Gk,d and let {ω j}n

j=1 be a collection of positive weights, with
∑n

j=1 ω j = 1.
Then {(V j,ω j)}n

j=1 is called a cubature formula of strength 2p (or for short a cubature of strength 2p) if:

∫
Gk,d

f (V )dσk(V ) =
n∑

j=1

ω j f (V j) for all f ∈ Pol�2p(Gk,d). (24)

We say that {V j}n
j=1 is a design of strength 2p or a 2p-design if {(V j,1/n)}n

j=1 is a cubature of strength 2p.

Remark 5.6. If n = (d+1
2

)
holds in Theorem 3.6 and all subspaces have the same dimension, then it follows from [3, Theo-

rem 3.6] that {V j}n
j=1 is a 4-design.

Cubatures can be characterized in a similar way as tight p-fusion frames with the help of the zonal spherical polynomials
of the Grassmann manifold, and they also match lower bounds on the weighted p-potential. These results extend straight-
forwardly similar characterizations of designs on the unit sphere and in Grassmann spaces, see [1,4,21,43]. For preparation
and extending (14), we define, for 1 � k, l � d − 1,

Tk,l,d(p) :=
∫

Gk,d

∫
Gl,d

〈P V , P W 〉p dσk(V )dσl(W ). (25)

Again, the O (Rd)-invariance of σk implies

Tk,l,d(p) =
∫

Gk,d

〈P V , P W 〉p dσk(V ), for all W ∈ Gl,d.

To shorten notation, let Tk,d(p) := Tk,k,d(p).

Theorem 5.7. Let {V j}n
j=1 ⊂ Gk,d and

∑n
j=1 ω j = 1. We then have

FFP
({

(V j,ω j)
}n

j=1, p
)
� Tk,d(p). (26)

Moreover, the following properties are equivalent:

(1) {(V j,ω j)}n
j=1 is a cubature of strength 2p in Gk,d.

(2) For all μ, 1 � deg(μ) � p, for all f ∈ H2μ
k,d,

∑n
j=1 ω j f (V j) = 0.

(3) For all μ, 1 � deg(μ) � p,
∑n

i, j=1 ωiω j Pμ(y1(V i, V j), . . . , yk(V i, V j)) = 0.
(4) FFP({(V j,ω j)}n

j=1, p) = Tk,d(p).

(5) There is a constant A > 0 such that
∑n

j=1 ω j〈P W , P V j 〉p = A, for all W ∈ Gk,d.

(6) There are constants Al > 0, l = 1, . . . ,k, such that
∑n

j=1 ω j〈P Wl , P V j 〉p = Al, for all Wl ∈ Gl,d.

Proof. The inequality (26) follows from the positive definiteness of the functions sp(V , W ) := 〈P W , P V 〉p . Indeed, s
is obviously positive definite, and the product of positive definite functions is again positive definite. Moreover, every
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O (Rd)-invariant positive definite function F on Gk,d is a nonnegative linear combination of the zonal polynomials Pμ

in the variables y1(·, ·), . . . , yk(·, ·), i.e.,

F (V , W ) =
∑
μ

λμ Pμ

(
y1(V , W ), . . . , yk(V , W )

)
,

where λμ � 0 for all μ. This important result goes back to [6]. Since (V , W ) 
→ Pμ(y1(V , W ), . . . , yk(V , W )) is positive
definite, F − λ0 is positive definite too, so

n∑
i, j=1

ωiω j F (V i, V j) � λ0

(
n∑

j=1

ω j

)2

,

for all {V j}n
j=1 ⊂ Gk,d . For F = sp , we have λ0 = Tk,d(p).

The equivalences between (1)–(4) have already been proven in [1,4] for constant weights. Incorporating weights is
straightforward so we omit it here.

(1) ⇒ (5): The mapping V 
→ 〈P W , P V 〉p is an element in Pol�2p(Gk,d), for all W ∈ Gl,d and l = 1, . . . ,k. For W ∈ Gk,d ,
the property (24) implies

n∑
j=1

ω j〈P W , P V j 〉p =
∫

Gk,d

〈P W , P V 〉p dσk(V ) = Tk,d(p) =: A.

The implication (1) ⇒ (6) follows in the same way using Al = Tl,k,d(p). Since (6) ⇒ (5) is obvious, we only need to ver-
ify (5) ⇒ (1): As for (16), we can compute A = Tk,d(p). Therefore, we derive

∑
i, j ωiω j〈P V i , P V j 〉p = Tk,d(p), which im-

plies (1). �
Remark 5.8. A few comments are in order.

1. Since Pol1�2(Gk,d) ⊂ Pol�2(Gk,d), every cubature of strength 2p is a tight p-fusion frame according to Theorem 5.3. In
particular, the designs of strength 2p in Grassmann spaces provide an interesting subclass of tight p-fusion frames.

2. We have already seen that Tk,d(1) = k2/d. In [1, Remark 6.4], an explicit expression of Tk,d(p) is given for p = 2,3.
In general, Tk,d(p) can be calculated from the expression of (y1 + · · · + yk)

p as a linear combination of the zonal
polynomials Pμ , cf. [1, Lemma 6.2].

3. For p = 1, Theorems 5.7 and 3.4 show that the tight fusion frames of equal dimension k are exactly the cubatures of
strength 2 of Gk,d .

It is natural to ask for the existence of the objects discussed in this section, namely tight p-fusion frames and cubatures,
and beyond existence, it is also desirable to discuss the size n of these objects as a function of p and d. In these directions,
the following results are borrowed from [31]:

Proposition 5.9. (See [31].)

1. There exists a tight p-fusion frame {(V j,ω j)}n
j=1 with n � dim(Pol1

�2p(Gk,d)) − 1 = (2p+d−1
d−1

) − 1.
2. There exists a cubature {(V j,ω j)}n

j=1 of strength 2p such that the inequality n � dim(Pol�2p(Gk,d)) − 1 holds.
3. If {(V j,ω j)}n

j=1 is a cubature of strength 4p, then n � dim(Pol�2p(Gk,d)).

Proof. Results 1 and 2 follow from Propositions 2.6 and 2.7 in [31], and the fact that dim(V (2�)) = (d+2�−1
d−1

) − (d+2�−3
d−1

)
.

Result 3 follows from Proposition 1.7 in [31]. �
It should be noted that the existence statements above are nonconstructive by nature. In the next section, some explicit

constructions are discussed.

Remark 5.10. We aim to minimize the p-fusion frame potential among all collections of k-dimensional linear subspaces
whose weights add up to one. Proposition 5.9 and Theorem 5.7 ensure that there exists a minimizer of cardinality less than
dim(Pol�2p(Gk,d)).

6. Some constructions of tight p-fusion frames

In this section, we present three constructions of tight p-fusion frames. The first one is standard, it uses orbits of
finite subgroups of O (Rd) to construct tight p-fusion frames of equal weights. This idea has been extensively used for the
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construction of codes and designs in many spaces (see e.g. [18,26]) and also specifically in Grassmann spaces (see [3,17,19]).
It leads to many nice and explicit examples of highly symmetric tight p-fusion frames with equal weights and dimension,
although only for small values of p. The second one relates tight p-fusion frames to designs in projective spaces. We show
that the p-designs in complex and quaternionic spaces in the sense of [32] give rise to tight p-fusion frames of equal
dimension 2 and 4, respectively. The last construction fits together tight p-fusion frames of different dimensions in a very
simple way. It can be used, for example, to extend a tight p-frame for a lower dimensional space to a tight p-frame in a
larger space, guided by the structure of a tight p-fusion frame for the larger space. These constructions are interrelated;
p-designs in complex and quaternionic spaces can be constructed from orbits of complex, respectively quaternionic groups
such as the reflection groups; in turn, they can be used as the building blocks in the last construction, together with tight
p-frames in R

2 or R
4 in order to construct tight p-frames in larger dimensions.

6.1. Tight p-fusion frames from orbits of finite subgroups of O (Rd)

We address the following question: given a finite subgroup G of O (Rd), what property of G would ensure that every
orbit G.V := {g(V ): g ∈ G} on every Grassmann space Gk,d is a tight p-fusion frame?

We remark first that, if an orbit G.V := {g(V ): g ∈ G} is a tight p-fusion frame, then it satisfies the property (13) with
equal weights. To see this, one has to sum up the conditions (13) for x = g(y), when g runs in G .

The space R[X]2p , X = (X1, . . . , Xd), of homogeneous polynomials in d variables of degree 2p, is endowed with the
standard linear action of O (Rd). Let (R[X]2p)G denote the collection of P ∈ R[X]2p such that P (X M) = P (X), for all M ∈ G .

Theorem 6.1. If G is a finite subgroup of O (Rd), then the following conditions are equivalent:

(1) For all 1 � k < d and all V ∈ Gk,d, the collection G.V := {g(V ): g ∈ G} is a tight p-fusion frame.
(2) (R[X]2p)G =R(X2

1 + · · · + X2
d )p .

Remark 6.2. Obviously (X2
1 + · · · + X2

d )p is invariant by the orthogonal group so the condition (2) means that G does not
afford other invariant polynomials than the ones which are invariant by the full orthogonal group.

Proof of Theorem 6.1. It is a straightforward adaptation of the proof of [1, Theorem 4.1]. In view of (2) in Proposition 5.1
we can assume k � d/2. We recall that

Pol1�2p(Gk,d) =
p⊕

�=0

H (2�)

k,d �
p⊕

�=0

V (2�)

d � R[X]2p .

So the condition (2) is also equivalent to: (H (2�)

k,d )G = {0} for all k � d/2 and for all 1 � � � p.

Let V ∈ Gk,d and let G V denote the stabilizer of V in G . For f ∈ H(2�)

k,d ,

∑
U∈G.V

f (U ) = 1

|G V |
∑
g∈G

f
(

g(V )
) =

(∑
g∈G

g. f

)
(V ),

where g. f (V ) := f (g(V )). Since
∑

g∈G g. f runs in (H(2�)

k,d )G , condition (2) is also equivalent to
∑

U∈G.V f (U ) = 0 for all k,
V ∈ Gk,d and 1 � � � p. From condition (2) in Theorem 5.3 it amounts to the property that G.V is a tight p-fusion frame
for all k and V ∈ Gk,d . �
Example 6.3.

1. For p = 1, condition (2) is equivalent to the irreducibility of R
d under the action of G , i.e., any orbit Gx spans R

d , for
0 �= x ∈ R

d . So we recover the criterion of [42] for tight frames. In [19], pairs (G, H) such that G acts irreducibly on R
d

and two-transitively on G/H , are used to construct Grassmannian packings that are equiangular and meet the simplex
bound (see Section 3.2 for these notions). Thus they also provide tight frames.

2. For p � 2, standard examples are given by the Weyl groups of the root systems A2, D4, E6, E7 (p = 2), E8 (p = 3),
H4 (p = 5). An infinite family is provided by the real Clifford groups Ck ⊂ O (R2k

) that satisfy (2) for p = 3; some orbits
of these groups on Grassmann spaces lead to good Grassmann codes as described in [11]. Another well-known example
is the automorphism group of the Leech lattice 2.Co1, a subgroup of O (R24) that holds the desired property for p = 5.

3. It should be noted that, if − Id ∈ G , condition (2) is exactly the condition required for every G-orbits on the unit sphere
Sd−1 to be 2p-spherical designs (being antipodal, these designs are trivially of strength (2p +1)). These groups are called
2p-homogeneous in [30]. A useful sufficient condition for a group G to be 2p-homogeneous, due to E. Bannai, is that
the restrictions to G of the O (Rd)-representations V (k)

d for 1 � k � p are irreducible. We refer to [30] for a proof of
this result and for more properties of homogeneous groups. See also [36] for a classification of the quasi-simple groups
such that V (2) is irreducible.
d
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4. In [41] a complete classification of the finite groups G ⊂ O (Rd) such that (V (2)

d )G = (V (4)

d )G = (V (2,2)

d )G = {0}, is given.
The assumption is here slightly stronger than (2) for p = 2; it arises naturally in the study of designs in Grassmann
spaces [4,1].

6.2. Tight p-fusion frames from p-designs in projective spaces

The notion of p-designs has been developed in a uniform setting for the connected, compact, symmetric spaces of rank
one [20,38,32]. These spaces include the projective spaces over the real, complex and quaternionic fields (the unit spheres
of Euclidean space, and the projective plane over the octonions, in fact, make the list of rank one, connected, compact,
symmetric spaces complete). For K = R,C,H, a subset {P j}n

j=1 ⊂P(K d) of the projective space is a p-design if

∫
P(K d)

f (V )dσ(V ) = 1

n

n∑
j=1

f (P j)

for all functions f ∈ Pol�p(P(K d)), where σ denotes the normalized Lebesgue measure on P(K d) and Pol�p(P(K d)) is a
subspace of functions on P(K d), which are polynomial of degree bounded by p in some reasonable sense.

It should be noted that, unfortunately, the notations disagree between [32] and [4] in the case G1,d = P(Rd), so that
what is called a p-design in the projective setting [32] corresponds to a 2p-design in [4].

Let h(x, y) = ∑d
i=1 xi yi denote the standard Hermitian form on K d (where the conjugation on R is the identity). For P1,

P2 in P(K d), we define t(P1, P2) to be the common value of |h(x1, x2)|2 for any xi ∈ Pi , h(xi, xi) = 1. If Pol�p(P(K d)) is
the span of {P 
→ t(P , Q )p: Q ∈P(K d)}, then equivalently, {P j}n

j=1 ⊂P(K d) is a p-design if, for some constant A p ,

n∑
j=1

t(P j, P )p = Ap for all P ∈ P
(

K d). (27)

Now, we make the usual identification of C
d with R

2d and H
d with R

4d , noticing that h(x, x) = ‖x‖2. Obviously, for
x ∈ K d , and P j = K x j , h(x, x) = h(x j, x j) = 1, we have ‖P P j (x)‖2 = t(P j, K x) so that (27) amounts to the property of tight

p-fusion frames
∑n

j=1 ‖P P j (x)‖2p = A p for x ∈ K d , ‖x‖2 = 1. We have proved:

Theorem 6.4. A p-design in the projective space P(Cd) (respectively P(Hd)) is a tight p-fusion frame in R
2d with subspaces of equal

dimension 2 (respectively in R
4d with subspaces of equal dimension 4).

Many examples of projective p-designs for p � 5 are described in [32]. Most of them are related to complex or quater-
nionic reflection groups.

6.3. Extension and refinement of tight p-fusion frames

We consider the following construction. Let F0 = {(V j, v j)}n
j=1 and F1 = {(W i,ωi)}m

i=1 be two sets of weighted linear

subspaces, such that V j ⊂ R
� , � < d and W i ∈ Gl,d . Let f i : R� → W i be some fixed isometries, and let V i, j := f i(V j) ⊂ W i .

Then, for all i, {V i, j}n
j=1 is a collection of linear subspaces of W i which is isometric to F0. We now consider:

F := {
(V i, j,ωi v j)

}
1�i�m
1� j�n

. (28)

Theorem 6.5. If F0 and F1 are tight p-fusion frames, then F is also a tight p-fusion frame.

Proof. Let x ∈ R
d , we want to compute

∑m
i=1

∑n
j=1 ωi v j‖P V i, j (x)‖2p . Because F0 is assumed to be a tight p-fusion frame,

there exists AF0 such that, for all 1 � i � m, for all y ∈ W i ,

n∑
j=1

v j
∥∥P V i, j (y)

∥∥2p = AF0‖y‖2p .

Also F1 is a tight p-fusion frame so, for some AF1 ,

m∑
i=1

ωi
∥∥P W i (x)

∥∥2p = AF1‖x‖2p .

Let xi := P W i (x). Then, P V i, j (x) = P V i, j (xi). So,
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m∑
i=1

n∑
j=1

ωi v j
∥∥P V i, j (x)

∥∥2p =
m∑

i=1

ωi

(
n∑

j=1

v j
∥∥P V i, j (xi)

∥∥2p

)
=

m∑
i=1

ωi AF0‖xi‖2p = AF0

n∑
i=1

ωi
∥∥P W i (x)

∥∥2p

= AF0 AF1‖x‖2p . �
Example. One can take for F0 a tight p-frame in dimension �; the resulting collection F is a tight p-frame in dimension d
with nm elements. Depending on the perspective, the latter extends a tight p-frame to a larger dimensional space or it
refines a tight p-fusion frame by subdividing its subspaces into smaller subspaces.

7. An unrestricted lower bound for the p-fusion frame potential

In this section, we generalize the inequality (26) for the p-fusion frame potential in Definition 3.3 when the sub-
spaces V j are not restricted to have the same dimension. To that end, we will exploit the O (Rd)-decomposition of the
Hilbert space L2(Gd) and the structure of positive definite functions of this space. In contrast with the case of equal di-
mensions, difficulties arise from the fact that the irreducible representations of O (Rd) occur in L2(Gd) with nontrivial
multiplicities. In particular, L := ∑d−1

k=1 C1Gk,d , the subspace of functions taking constant values on Gk,d is isomorphic to
(d − 1) copies of the trivial representation. So, we have to replace the single coefficient λ0 = Tk,d(p) that occurred in (26)
with a matrix of size (d − 1) × (d − 1), i.e., let Td(p) := (Tk,l,d(p))k,l , where Tk,l,d(p) is as in (25).

Theorem 7.1. Given positive weights {ω j}n
j=1 , let {V j}n

j=1 ⊂ Gd and p � 1 be an integer. Define mk := ∑
dim(V i)=k ωi . If M =

(m1, . . . ,md−1), then

FFP
({

(V j,ω j)
}n

j=1, p
)
� MTd(p)M�. (29)

We recall that a function F ∈ L2(Gd × Gd) is said to be positive definite if, for all f ∈ L2(Gd),∫
Gd

∫
Gd

F (V , W ) f (V ) f (W )dσ(V )dσ(W ) � 0.

For a continuous function F : Gd × Gd → C, it amounts to ask that, for all integers s � 1, and (W1, . . . , W s) ∈ (Gd)
s , the

matrix (F (W i, W j))i, j is Hermitian positive semidefinite. In order to prove Theorem 7.1, we need some preparation with
the following lemma. We use the tensor notation L ⊗ L = {(V , W ) 
→ f (V )g(W ): f , g ∈ L}.

Lemma 7.2. Let sp(V , W ) := 〈P V , P W 〉p . Then, sp = F0 + F1 , with F0 ∈ L ⊗ L, F1 ∈ L⊥ ⊗ L⊥ , and F0 , F1 are positive definite
functions.

Proof. The function sp(V , W ) is contained in L2(Gd) ⊗ L2(Gd) = (L ⊕ L⊥) ⊗ (L ⊕ L⊥). Let f0 ∈ L and f1 ∈ L⊥ . We observe
that F and f0 are O (Rd)-invariant. We have∫

Gd

∫
Gd

sp(V , W ) f0(V ) f1(W )dσ(V )dσ(W ) =
∫

O (Rd)

∫
Gd

∫
Gd

sp(V , W ) f0(V ) f1(gW )dσ(V )dσ(W )dg

=
∫
Gd

∫
Gd

sp(V , W ) f0(V )

( ∫
O (Rd)

f1(gW )dg

)
dσ(V )dσ(W ).

But, for W ∈ Gk,d , since Gk,d is O (Rd)-homogeneous,∫
O (Rd)

f1(gW )dg = γk

∫
Gk,d

f1(W )dσk(W )

for some constant γk . Because f1 ∈ L⊥ , the right-hand side is zero. Therefore, we have sp = F0 + F1 ∈ (L ⊗ L) ⊕ (L⊥ ⊗ L⊥).
The functions sp(V , W ) are positive definite on Gd . So, for all f = f0 + f1 ∈ L ⊕ L⊥ , we obtain∫

Gd

∫
Gd

F0(V , W ) f (V ) f (W )dσ(V )dσ(W ) =
∫
Gd

∫
Gd

F0(V , W ) f0(V ) f0(W )dσ(V )dσ(W )

=
∫
Gd

∫
Gd

sp(V , W ) f0(V ) f0(W )dσ(V )dσ(W ) � 0.

Hence, F0 is positive definite. A similar argument shows that F1 is also positive definite. �
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Proof of Theorem 7.1. Since the set of functions {1Gk,d (V )1Gl,d (W ), 1 � k, l � d − 1} is an orthonormal basis of L ⊗ L, we
have

F0(V , W ) =
∑
k,l

Tk,l,d(p)1Gk,d (V )1Gl,d (W ).

Since sp − F0 is positive definite, we obtain
∑

i, j ωi(sp(V i, V j) − F0(V i, V j))ω j � 0, and this yields∑
i, j

ωiω j〈P V i , P V j 〉p �
∑
i, j

∑
k,l

ωiω j Tk,l,d(p)1Gk,d (V i)1Gl,d (V j) =
∑
k,l

Tk,l,d(p)
∑
i, j

ωiω j1Gk,d (V i)1Gl,d (V j)

=
∑
k,l

mkml Tk,l,d(p) = MTd(p)M�. �

Remark 7.3.

1. The measures dσl dσk induce measures dλl,k on [0,1]l for the variables yi = cos2(θi(V , W )), which are computed in [33].
Up to a multiplicative constant, one has, for l � k � d/2,

dλl,k =
∫

[0,1]l

∏
1�i< j�l

|yi − y j|
l∏

i=1

y(k−l−1)/2
i (1 − yi)

(d−k−l−1)/2 dyi .

Note that λ1,k has already occurred in the proof of Theorem 5.3. The zonal spherical intertwining polynomials for the

Grassmann spaces Gl,d and Gk,d , denoted Pl,k
μ (y1, . . . , yk), are symmetric polynomials, and are orthogonal for the mea-

sure λl,k (see [33]). They are indexed by the partitions μ of length at most l. These polynomials already occurred in
Section 5 for (l,k) = (k,k) and for (l,k) = (1,k).
Since 〈P V , P W 〉p = (y1 + · · · + yk)

p , the number Tl,k,d(p) corresponds to the constant term in the expression of (y1 +
· · ·+ yk)

p as a linear combination of these polynomials. For example, Pl,k
(1) = (y1 +· · ·+ yl)− lk/d (up to a multiplicative

factor) and thus Tl,k,d(1) = lk/d. Knowledge of these polynomials allows to give an explicit expression for Tl,k,d(p). We
observe that, because these polynomials have rational coefficients, Tl,k,d(p) is a rational function of l,k, p.

2. For p = 1, we have

∑
1�l,k�d−1

Tl,k,d(1)mlmk =
∑

1�l,k�d−1

(lk/d)mlmk = 1

d

( ∑
1�k�d−1

kmk

)2

= 1

d

(
n∑

j=1

ω j dim(V j)

)2

.

Thus, we recover the lower bound for p = 1 in Theorem 3.4.
3. For p � 1, if {V j}n

j=1 ⊂ Gk,d , then M = (0, . . . ,mk = ∑n
j=1 ω j,0, . . .) and MT (p)M� = (

∑n
j=1 ω j)

2Tk,d(p) so that we
recover (26).
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