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Abstract—We develop the linear programming method to ob- drawback of these bounds is that they are only valid in a
tain bounds for the cardinality of Grassmannian codes endowed certain range of minimal distances. In [4], an asymptotic

with the chordal distance. We obtain a bound and its asymptotic bound, derived from the Hamming bound, is given. Another
version that generalize the well-known bound for codes in the ' ' ’

real projective space obtained by Kabatyanskiy and Levenshtein, apF’roaCh |s_developed in [5], Where bounds are given f_or codes
and improve the Hamming bound for sufficiently large minimal ~ Which principal angles are subject to certain constraints (the
distances. so-called f-codes), which arise naturally from the notion of
Index Terms— Grassmann manifold, chordal distance, codes, Grassmannian designs introduced in [6].
zonal functions, bounds, linear programming method In this paper, we extend Delsarte method to the Grass-
mannian codes, exploiting the zonal polynomials attached to
Gm,n- These are symmetric polynomials in the variables
1, -, Ym; they belong to the family of orthogonaener-
HILIPPE Delsarte has introduced the so-callémear alized Jacobi polynomial¢see the next subsection). In the
programming methadn order to find bounds for the sizesecond section, we recall, or settle the properties of these
of codes with prescribed minimal distance, in the classicpblynomials needed to perform linear programming bounds;
case of codes over finite fields. This method, also callebese properties are easy to obtain by straightforward general-
Delsarte methodor polynomial method exploits a certain ization of the arguments used in the classical cases. In fact, the
family of orthogonal polynomials attached to the situatiorprinciples underlying the LP method would remain true for the
the Krawtchouk polynomials, and their positivity propertyzonal polynomials attached to any symmetric space. The real
These polynomials and their properties are intimately relatéifficulties start when one wants to actually perform explicit
to the action of the symmetric group on the Hamming spadsounds, because the polynomials have (for> 2) several
Delsarte method has proved to be very powerful, and waariables. The low degree cases are still easy to manage; this
extended to many other situations, where the underlying spasedone in section Ill, where we recover the simplex bound
is symmetric of rank one, and is homogeneous under the actas the bound arising from the case of degree one, and give
of a certain group of transformations. Examples of such spacesv bounds from polynomials of degreke and 3. In the
are: the Johnson space, the Grassmannian space over a ffoith section, we propose a strategy based on the eigenvalues
field, the unit sphere of the Euclidean space, the projectivé certain symmetric endomorphisms, which extends the one
spaces over the real, complex and quaternionic fields (for thesgiable method based on the zeros of the polynomials and on
last spaces see [1], [2])- Christoffel-Darboux formula, but avoids to deal with zeros of
In recent years, codes over the real Grassmannian sppo#/nomials in several variables. We obtain an upper bound
have attracted attention, motivated by their application for the size of a cod&” with minimal distanced, which is
information theory, more precisely to the so-callgzhce-time expressed in terms of the largest eigenvalue (Theorem 4.4 and
codes used for multi-antenna systems of communication. Tt@orollary 9). Section V settles the asymptotic behavior of this
distance usually considered is the chordal distance, introduderjest eigenvalue (Theorem 5.3), and in section VI we derive
in [3], and defined in the following way (more details arehe following asymptotic version of the bound:
given in the next subsection): The Grassmannian space- of
dimensional subspaces &", wherem < n/2, is denoted Theorem l.1:iLet C' be a code ing,,, with minimal
by Gm.n; to a pair (p, q) of elements ofG,, , is associated chordal distance, let s := m — 6% €]0,m[ and let
m principal anglesdy, ..., 0,, € [0,7/2]. Let y; := cos? 6.

I. INTRODUCTION

m S
Then = — (=14 (1—2)"/2).
pi= (=1+( m) )
de(p,q) == | > _sin®0; =, |m =) v Then, whem: — +-o0,
i=1 =1

In [3], the authors give bounds for the size of Grassmannian 1 log |C] S m((1+ p)log(1+ p) — plog(p)). (1)
codes, called the simplex and orthoplex bounds. The main
Our bound coincides with the bound given by G. Kabatian-
o _ _ L sky and V. Levenshtein in [7] for the case of the real projective
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deaux, 351 cours de la Laation, 33405 Talence, France, bachoc@math.2PaCe, corresponding te. = 1 But it_ beats f[he Ha‘_mming
bordeaux.fr bound of [4] only when the minimal distance is relatively big.



A. Basic facts about Grassmannian spaces and their zonalOther possibilities are the Riemannian distargd_;" | 62
polynomials. which behaves somewhat badly because it is not smooth; the
fpax distancemax; 6;, etc.. The “product distance” (which is

about Grassmannian spaces and their zonal polynomials. Sz%j a distance in the metric sens]], sinf;) seems to be

useful references for the mathematical background are: [8], evant in the cc_nntext of space 2t|me codes. _
for the representations of the orthogonal group, [14], [15], for Now we consider the sp2acé (Gm.n) of functions f :
the Grassmannian spaces and harmonic analysis on it, [£0},» — C such thatf, [f[*dp < +oco. This is aC-vector

We repeat here, without proofs, some well-known fac

[11], [12], [13] for multivariate orthogonal polynomials. ~ Space, endowed with the hermitian product:
The real Grassmannian space, denoteddy, (m < N
n/2), is the set ofm-dimensionalR-linear subspaces @&". <fg>= ; F(p)g(p)dp

The orthogonal grou(n,R) acts transitively onG,, ,; a
transformation stabilizing a given elementalso stabilizes its
orthogonal complemenig- and therefore the stabilizer gf, (o-f)p) = fle1(p))

is isomorphic to the direct produ€(m,R) x O(n — m,R). ) N ) ) ]
Hence we derive the identification of,, ,, with the set of (for which the above hermitian product is of course invariant).
classes: ' Its associatedhlgebra of zonal functiongalso called the

Hecke algebra) is:

Z = {Z 5gm,n2 - C | Z(p, ')7 Z(‘v‘]) € Lz(gm,n) and

from which G, ,, inherits the structure of a (compact) diffe- Z(a(p),o(q)) = Z(p,q) for all o € O(n,R)}
rential variety, and &(n,R)-invariant measure that will be
normalized so thay’gm dp=1.1t is worth noticing that the
casem = 1 corresponds to the real projective space.

In order to understand the action @¥(n,R) on pairs
(p,q) € Gm.n?, We need to introduce thprincipal angles
betweenp and q. These aren anglesfs,...,0,, € [0,7/2]

and with the left action of the orthogonal group given by:

Gmn ~ O(n,R)/(O(m,R) x O(n — m,R))

Form Proposition 1.2, sinc€ € Z is constant on the orbits
of O(n,R) on G,,,? it can be given the formZ(p,q) =
z2(y1(p,q), - .., ym(p,q)) for some functionz.
The explicit decomposition int®(n, R)-irreducible sub-
spaces ofL?(G,,.»), and the corresponding structure 8f
; ! : where investigated for the first time by James and Constantine
defined in the following way: ([14]). It is now a standard result on the representation of the
Let p1 C p, 1 C g be two lines such that the angle  |assical groups (see [9]).
betweenp;, and g, is minimal. If m = 1 we have finished,  Recall that the irreducible representations@fn, R) are
otherwise lep’ be the orthogonal complementyefin p, ¢"be (5 to a power of the determinant) naturally indexed by
the orthogonal complement a@f in ¢; we define recursively partitions & = (k1,...,Kn), Wherer; > -~ > k, > 0 (we
02,...,0,, 10 be the principal angles associated to the pgiiay omit the last parts if they are equal ®. Following
(¢',4') N Gm1.n. We introduce the notatiop; := cos® 0; [9], let them be denoted by*. For example,V,! = C1,
when needed, we may denote rathe(p,q), 0i(p,a)- A jnqy (0 Harmy, the spacenof homogeneous of degiee
classical result on the geometry @f, ,, is the following: harmgnic polynomials im variables.

Proposition 1.2: Two pairs (p,q) and (p/,q') are in the The Iengthf(n_) of a partition s is the number of its non
same orbit under the action of the groGn, R), i.e. there Z€ro parts, and its degreleg(x) also denoted byx| equals
existso € O(n,R) such thato(p) = p’ ando(q) = ¢/, if and D i1 K

only if Then, the decomposition d?(G,,,.,) is as follows:
yi(p,q) = yi(p',¢) for all 1 < i <m. L2(Gn) ~ ®V2F
The previous proposition expresses the fact that the avhere x runs over the partitions of length at most and
bits under the action ofO(n,R) of the pairs (p,q) € 2x stands for(2xy,...,2k,,), meaning that only partitions
Qm,n2 are characterized by the:-tuple of real numbers with even parts enter the decomposition. We can see that
(Wi(P:q)s---ym(p,q)). It becomes clear that, fom > 2, the multiplicities in this decomposition are all equal to one,

Gm.n is not 2-point homogeneous, i.e. a single distance amhich translates the fact that the spage.,, is a symmetric
Gm,n Cannot characterize these orbits (while it is the case fepace. Consequently, to each irreducible componéitt is
other spaces of interest in coding theory, like the Hammingssociated a uniquely determined (up to a normalizing factor)
and binary Johnson spaces, or the unit sphere of the Euclideanal functionP, (y1,. .., ¥m), in the sense that

space). It is the reason why we shall deal with mutivariate o
polynomials. Also, it shows that the choice of a distance on P (T8SP-0) = Pa(y1(p, @) - - ym(p,9) € Vi

Gm n is sort of arbitrary. We shall stick to thehordal distance and

in this paper, as introduced in [3]: Z = Dy () <mCPs.

m m It turns out that theP,; are symmetric polynomials in the
de(p,q) == ZSin2 0, = |m— Zyi, variablesys , ...y, of degree|x|, with rational coefficients
i=1 i=1 once they are normalized by the conditiB(l,...,1) = 1.



Moreover, the setP; ). < is @ basis of the space of sym- Examples: the effective computation of the polynomiaf;
metric polynomials in the variableg,, ..., y,, of degree at following the method described above leads to, up to the
most equal tok, denoted bysSy. normalization imposed by (iii):

Since the irreducible subspaces bt(G,, ) are pairwise
non isomorphic, they are orthogonal for ttén, R)-invariant
hermitian product defined above. This hermitian product in-
duces an hermitian product on the space of symmetric poly-
nomials, denoted by, |, for which the polynomialsP, are

orthogonal. More precisely, it is given by the positive measure, Puyy =01 — (m—1)2 o m2(m —1)2

Py =1
2
Py =s1--+

calculated in [14], n—2 2(n—1)(n—2)
2 2(m +2)2 m2(m +2)2
Py = Zoy —
Ry @ =t 3N T ) M S 2t 9
d A ; _ n 2—m—1 2d
e JHI lvi = vl H vi vi wheres: =37, ;.. Yir 82 = 21 <icm Yi

1<j 01 = 1<icj<m Yil¥s:

(where ) is chosen so thaf[o o du(y) = 1). and Remark: The complex Grassmannid, ,,(C) is more com-

’ monly used in the context of space-time coding. It affords the
B 3 transitive action of the unitary groufy (C,n); similarly one
[f.9]= 0] FW)g(y)du(y)- defines principal angle@, . . ., 6,,) between two elements of

Gm.n(C). The U(C,n) decomposmon ofL?(Gm.»(C)) and
One recognizes a special case of the orthogonal measg€ associated zonal polynomials are computed in [14] so
associated tgeneralized Jacobi polynomia(fl1]). one can play the same game concerning bounds of codes.
We let II, be the subspace df), generated by the poly- We believe that an asymptotic bound obtained in this way
nomials P,;, with |x| = k, so that we have the orthogonalould be the same as the bound obtained from the embedding
decomposition: Gmn(C) C Gomon(R) (if (61,...,0,,) are the principal
angles associated to a pdip,q) of elements ingG,, ,(C),
S = Sp_1 L IIj. the 2m principal angles associated to the p@it¢), seen as
elements 0fGy,, 2, (R), are simply(61,61,6,602,...)). This
Let the dimensions of, II, be denoted respectively by,, is what happens fom = 1 (see [7]).
m,. The numberry is also equal to the number of partitions
k of k in at mostm parts. These dimensions also depend of. ZoNAL POLYNOMIALS ASSOCIATED TOGym.n AND THE
m, although it does not reflect on our notation, for the sake LP BOUND
of simplicity. : . . :
In view of the explicit calculation of the polynomial&, . it In this section, we settle the properties of the polynomials

P, relevant for the LP bound, settle this bound, and show
is better to use the following characterization, which |nvolvq§ow the Christoffel-Darboux formula can be exploited in that
the polynomialsC;, which are themselves the zonal polyno-

mials associated to the symmetric spé&ke(m,R)/O(m,R) context. ) . -

(these are Jack polynomials, normalizeddy(1, ..., 1) = 1, The dimension oﬂ/,f is denoted byd,,. Explicit formulas
see [14], [12]), and the differential operatdx induced on O dx can be found in [8]; however we do not need them
Cly1, ..., ym|" by the Laplace Beltrami operator @, ,. Pefore Section S.

The condition: for alll < i < m, x; > p; is denoted by:  proposition 2.1: The polynomialsP.,, normalized by the

K2 [ condition P.(1,...,1) = 1, satisfy:
(i) P, is an eigenvector for the operator () [P, Py] = dy}
(i) (Positivity property): For all finite seC C G, »,
Y 0 Pu(y1(p. ) (p.9)) = 0
A 7+ 2y — )~ > Pi(0,0)s- - ym(p,0) >
Z ¥ oy 1;;1 yii =) g =
m (iii) Let pj; , be defined by the property:

%77”4’1 Zyz Zyzayl

i=1

PK,P)/L = ZPZ#LPD

= > vilyi—y)™! 0 —*Z v :
= NI Gy 2 Oy, The numberg;}, , are non-negative numbers.
. Proof: These properties where already pointed out in
(i) P, = 5:C +Zm>u BrenC [5][Lemma 2.2] and step on very general arguments (see
(i) Po(1,.. 1) = [16][Theorem 3.1]). For the sake of completeness, we briefly
Condition (ii) is needed to avoid the multiplicities of therecall the arguments. Lety,...,eq,. be any orthonormal

operatorA. basis of the subspadé’,, of L(G,,,,) isomorphic toV,2~.



Let Pi(p,q) :== Pc(y1(p. ), ---,ym(p: ). It is well known
that we have (this is called theddition formulg

_ 1 day

Pulp.a) = o > eipeilq).

=1

As a consequence, from the expression

P, Py = / Po(p, 0)Pela,p)da

m,n

(i) follows. Moreover,

d21~‘,
~ 1
P,i(p, q) = T (Zei(p)ez(Q))
p,qeC 2K p,qeC =1
1 dak
=2 (2 cilwe(a)
2k i=1 p,qeC
1 d2»~t 2
==Y | Y| =0
25 =1 peC

hence (ii). More generally, for any function : C — C, we
have:

dar. )
> a@a@Pulpa) =5 > | 3 alp)eit)
p,q€C R i=1 peC

> 0.

Conversely, assum&’ < §Sj is a polynomial with real
coefficients, such that, for any finite set C G,,, and any
functiona : C' — C,

> ap)alg)F(p,q)

p,q€C

and let us prove that’ expands on thé’, with non-negative
coefficients. Taking limits, we have, for amye L%(G,, ),

//m’n a(p)a(q)F(p, q)dpdq > 0

and hence, using the addition formula,

J].7

If F= Zlu\<k fl,P,,, the left hand-side equals, /da,, which

=0,

p,q)dpdg > 0.

proves that the coefficient§, are non-negative numbers.
Using once again the addition formula, it is easy to show that

Proposition 2.3: AssumeF}, € S, satisfy:
(i) Fr = Zlﬂ‘gk [Py with f. >0 for all s, fo >0
() Fre(y1s---,ym) <0 forall (y1,...,ym) € [0,1]™ such
that> 7" y; <m— &2
Then, the following bound holds for the cardinaljty| of any

0-code:
Fk(la

fo
Proof: This is a standard argument, that we recall
here. LetC be ad-code. As before, we letFy(p,q)

c] < 1)

Fy(y1(p,q), - - -, ym(p, q))- We calculate
> Fipa)= 30 Sl 3 Pulp.a))
p,q€C |k|<K p,qeC

Assumption (i) leads toF(p,q) < 0 whenp # q. The
remaining terms of the left hand-side, corresponding te
q, give a contribution of|C|Fy(1,...,1). Assumption (i),
together with the positivity property of the polynomial3,
(Proposition 2.1 (ii)), show that all the terms of the right
hand-side are non-negative. When= (0), P,, = 1 and the

contribution is fo|C|?. We obtain
ICIFx(L,...,1) = folCJ”
equivalently
F.(1,...
fo
It is worth noticing that equality in this inequality happens
if and only if, for all 1 < |k| < k such thatf, # 0,

ZMGCP (p,q) = 0 and, for allp # q € C, Fi.(p.q) = 0.
The first condition says that' is a 2k-design in the sense of
[6] (when it holds for alll < || < k), and the second one
that C is an Fj-code in the sense of [5].

IC| < 1),

B. The three-term relation and the Christoffel-Darboux for-
mula

We join here more material on the sequence of polynomials
P,, that will be of later use. The results presented here
are essentially established in [13], except that we deal with
symmetric polynomials. Following [13], the (column) vector
of the polynomials P, with |x| = k is denoted byP.

If necessary, we order the partitions of the same degree in
increasing lexicographic order.

We also set

o=y +Y2+ -+ UYm

the productP, P, holds this general positivity property, and

therefore expands on the, with non-negative coefficients.

A. The principles of the LP bound
The positivity property of the polynomialB, is the basis of

and, when necessary, we make the involved variables explicit,
by writing o(y) rather thano. The 7, x 7, diagonal matrix,
denoted byDy, with entries

Dy [k, K] = day = dim(V,*%)

the linear programming method to upper bound the cardinaliy the inverse of the Gram matrix &f;.

of d-codes.

Definition 2.2: A Grassmannian cod€ satisfying the con-

straint:
For allp # q € C?,d.(p,q) > 0.

is called ad-code.

Next result is an analogue of the so-called “three-term
relation”.

Theorem 2.4:For all £ > 1, there exists matriced,., By,
Cy, of size respectivelyry, X mp41, T X T, Tk X Tp—1, SUCh
that:

0P, = ApPri1 + BrPr + CrpPr_1.



Moreover,(Dy By )t = DBy, and Dy,Cy, = (Dy_1Ak_1)". (i) Forall k>0,

Proof: The polynomialsr P, with || = k are symmetric Z day P, (2) P, (y) =
of total degreek + 1 so they afford a decomposition over i<k
the (P,)|uj<k+1- Moreover, [0 Py, P,] = [P.,0P,] = 0 if -

lul <k —2.
If |u| = || =k, we have:Byk, u][P,, P,) = [0P., P,] =
[P.,0P,] = By[u, k][Px, P:], which proves that the matrix (i) Moreover, if ¢ := 3"

Z\H\=k dQK, (QE(I)PK(y) - PK(I)QK(y>)
o(x) —o(y)
o

Dy, By, is symmetric. The same argument shows that’), = =1 9y,
(Dr—1Ak_1)". .
Notations: We want to definex(® (respectively ;) to Z dQV(pV(y))Q =
be the partition obtained from by increasing (respectively lv|<k
decreasing) the-th partx, by one. This is not possible for do,
all 4, since the result should be also a partition, i.e. the new > - ((eQn(y))Pn(y) - (GPK(y))Qm(y)>'
parts should be in decreasing order. Hence we define (where |w|=k
Km41 = 0): Proof: The proof of (i) is the same as [13][Theorem
o ) 4 _ 3.5.3]. Note that we cannot hope for a formula for eagh
u(r) = {,1} U{i €2 m] | ri1 > mi} like in [13], since we should stick to symmetric polynomials.
dk) :={i € [1,m] | ki > Kit1} If
The setu(x) is the set of indices for which (") makes sense
grelj?:ctl‘velf(n)lfor K(;))- Moreover, if|s| = k, |[s\"] = k41 St = (AsPyy1 () DsPs (y) — Py (@)t Dy Ao 1 (y)
@l =Fr—1.
Otherwise explicitly mentioned, in the rest of this paper, = ) o (Qu(@)Pa(y) — Pul(@)Qu(v)),
|k|=s

k, k' are partitions of degreg, while p, 1’ are partitions of

degreek + 1 andv, v/ are partitions of degrek — 1. from the “three-term relation” of Theorem 2.4, we have:

Proposition 2.5: The following properties hold:
() For all &, p andk’, Ag[k,p] > 0, and By [k, k'] > 0.

(i) The coefficients of the matrix, are equal to zero, The formula (i) follows from summing up these identities, for
except the coefficientsl[x, V], which are positive. | < ¢ < .

Z]s - Es—l = (O-(‘T) - U(y))PS(I)tD‘?]PS(y)

Proof: The first assertions are equivalent o, P,] > In the equation (i), we replac®, (x) P (y) — Pe(x)Qx(y)
0 for all «, ¢ of any degree. Bulp P, P,] = [1,0 P, P,] and by
o =m(l - ™)P, + ™ Joint with Proposition 2.1(ii), we
obtain[l,0P,P,] > 0.

The coefficientsd, [, 4] can be more precisely calculated, ~ @ (%) (Px(y) — Py(x)) = Pu(2)(Qn(y) — Qu()).
using ([17, Lemma 7.5.7]). Since we do not normalize th‘Fhen if we specializer, = y 2, =y and letz; tend
polynomials C,. in the same way, we introduce coefficients "~ * | " " 7.~ 27 I im T Im !

["] such that Y

= 3 e S o (Pw)* =

lnl=k+1

[v[<k

They differ by a positive multiplicative factor from the gener- 90 OP

alized binomial coefficient$) defined in [17]; see also [10]. > dgﬁAk[fﬂ,M](( 5 “(y)) Pu(y) — (8 . (y))Qn(y))-

Then we have K=k n o
|p|=k+1

14 ﬁy -
Aglr, p] = [J (ﬁ) : The same identity holds when one replagedy anyvy;; if

we sum up all these identities, we obtain the more symmetric
It is known that the generalized binomial coefficier{t) formula (ii).
are equal to zero whep is not equal to one of the(¥; Remark 2.7:The left hand side of the Christoffel-Darboux
consequently the same holds fdr,[x, ]. Moreover, since formula

(") > 0. also '] > 0 and Ay, 0] £ 0.

Theorem 2.6 (Christoffel-Darboux Formula)et Ky (x,y) := |Z<k doy Py (2) Py ()
Qr = Z Al p)Pu € i1 is thereproducing kernebf the space of symmetric polynomi-

ul=h+1 als of degree at mogt It satisfies the characteristic property:

With the previous notations, we have: for all Q € Sk, [Ki(z,.),Q] = Q(x).



C. An LP bound from Christoffel-Darboux formula Proof: In order to apply Proposition 2.3, we are left

In the classical cases, Christoffel-Darboux formula is inith the computation OZfO and of Fop11 (2, (1,...,1)). Since
volved in the setting up of bounds of the typ@| < M(5) F2e+1(2,y) = Ki(z,y)*(o(y) —o(x)), we have
where M (§) is an explicit function ofs. Usually the running _ 2
interval o(fg is divided into subintervals, related to the zeros Bl (1. 1) = ( Z A2 Py (@) (m = o (2)).
of the zonal polynomials. This is the line followed in [18],
and also in [7]; see [19] for a unified presentation. In thigsing the orthogonality of the’,, we obtain
section, we follow this method, and analyze the difficulties

lv|<k

arising from the several variables situation. foi = [Fora (@), 1] = —[Ke(@, ), Nesa (@, )]
The numerator, of degreg + 1, of the right hand side =— Z doy P, (2)P,, Z dokQr () Py]
of Christoffel-Darboux formula (Theorem 2.6(i)) is denoted lv|<k |wl=k
by Niyi1(z,y). We consider the polynomial in the variables - _ Z o P (2) Qs ().
Yi,...,Ym, Of degree2k + 1, eIk
The main problem with this approach, is that, in general, we
Fora(2,y) : = —Nia (2, y) Ki(2, y) don't even know if the inequalities (i) and (ii) of Proposition
o Niy1(z,y)? 2.8 have a solution:. In case these inequalities define a non
-~ o(y) —o(z) empty area ofR™, a second problem would be to optimize
In order to make clear that only thg, . .., y,, are variables, € choice ofz in this area. In the classical case= 1, Qx =

while thezy, ..., z,, will specialize to real values, we denote! k+1 (Up 10 a positive multiplicative factor). The interlacing
it by F2k+1(7a: .)’ property of the real zeros of the orthogonal polynomiBis

ensures that one can take € [z, zr41], Where z;, is the

Proposition 2.8:Let x € [0, 1]™ satisfyo(x) > s :=m — largest zero ofP, so thatP,.1(z) < 0 and P;(z) > 0 for
52. Assume the following conditions hold: all i < k. Moreover, one uses asymptotic estimates of these

(i) Forall s, |k| <k, Pe(z) >0 zeros to derive an asymptotic bound for the size of codes.

(i) Forall k, |k| =k, Qu(x) <0 In the general case: > 2, we don't have such tools to
Then, Foi41 (z, -) satisfies the conditions required in Proposidea_l with the ||_1equaI|t|es of Proposition 2.8, Whlch_ seem to
tion 2.3. be intractable in general. The first case= 1, leading to

a polynomial of degree, is however discussed in the next
Proof: We have: section. On the other hand, one can think of the zeros of or-
Nt (2,y)? thogonal polynomials in one variable as being the eigenvalues
Fopyi(z,y) = : of the so-called Jacobi matrices associated to the sequence of

oY) - o(2) polynomials. We study in section IV the eigenvalues of the
hence condition (i) is satisfied when< o(x). analogous matrices in the general case, and derive bounds for
To prove condition (i), we point out that, i and G are codes, which contain as a special case the bound obtained
two polynomials with non-negative coefficients on tii%, from a possible solution of these inequalities.
then the product’G holds the same property. This is a direct
consequence of Proposition 2.1(iii). 1. LP BOUNDS OF SMALL DEGREE
From the definition ofK;(z, y), its coefficient onP, with
|v| < k equalsdy, P, (x) (and for higher degree partitions it
is zero). On the other hand,

We take the following notations: let := m — §2, the
maximal value ot among pairs of points of a code. We are
looking for a function} (s) such thaiC| < M (s). Obviously,
—Niga(z,y) = Z o (Pa(2)Qx(y) — Qu(z)Pa(y)) M (s) is an increasing function. In this section, we discuss the

[kl=k cases of small degrele trying to optimize the choice of

N Z ( Z d%Ak[“au]PH(I))PH(y) in Proposition 2.3

ul=k+1  |x|=k

= Y doxQu(@) Puly) A. Degreel

=k Let Fi =1+ f1P12, with f; > 0 (condition (i)). We have
G

» . . Py = oty (0 = 10).
The coefficientAy [, u] is always non-negative. Clearly, Wher(la e)[O,s], 1+ f1 P, should be non-positive (condition

under the conditions of the proposition, th(_a coefficients ?ﬁ))_ Therefore, The zero of + f, P, should be greater than
—Np41(z,y) on the P, and P, are non-negative. s. It leads to the condition:

Corollary 2.9: Assumez satisfies the conditions of Propo- 9
sition 2.8. Then, for alb-codeC, §— — < —

2
m —o(x do, P, (z ) ) »
( ( )>(Z|"‘§k 2 ( )) Since f; > 0, we obtain the necessary conditiern< "}—f

C] <
= 2 jj=k d2n () Qn (@) The smallest value fof; is then




2m(n— m)

common value at = - — s ("1). However,

f= —m(l — T/") the orthoplex bound provec?ln [§ (5 6)] reads:
T 2 n+1
corresponding to a polynomial proportionalde-s. We obtain s <m”/n=|C| < 9

the bound =m?/n=|C| < (n—1)(n+2)

. m2 m — S . . 2 2om(n—m m2
it s <= O] < oo and is better than (6) in the rang&- — m, m,

n % If we plug in (6) the values = m?/n, we find that|C| <
which is the so-called simplex bound proved in [3]. % which is better than the orthoplex bound when
m < n/2. We recall that the orthoplex bound is attained for
a family of codes withn = 2¢, m = n/2, constructed in [20,

B. Degree2
Theorem 1]. These codes are also optifidesigns (see [21]).
We restrict ourselves to polynomials which are divisible by ] P gns ( [21]

o —s. Then, such polynomials are polynomialssinWe write:

C. Degrees3

We do not study general polynomials of degfeleut rather

B=(o=s)o=b)=frlh+ fuPu+ P+ fo. apply the approach described in subsection 1I-C

with the condition thab < 0. With t = s — m?/n, we find: The polynomialF’; has degre8, and is again a polynomial
in o. In the following, we calculate the best choice fofand
m(m+2)(n —m)(n —m+2) discuss its existence). Let:= o(z) —m?/n. We should have:
Jai= 3(n+2)(n +4) (i) u>s—m?/n
2m(m —1)(n—m)(n —m — 1) (i) u >0 (Condition (i))
fi1 = 3 (i) w2 — An—2m? o 2mnom)? o (Condition (ii))
(’n — 2)(77, — 1) T nln— 2)(n+4) n?(n—1)(n+2)
m~ [ m2 A(n — 2m) The polynomial of degre@ occurring in (iii) has a positive
Ji:=m (1 - E) (n + m —t— b) discriminant, and a unique positive root that we shall denote
om?(n — m)? 5 by uo. Let b andc be the coefficients of th|s <polynomlal SO
fo i=— AR T mM)T TV that it is equal tou” — bu — ¢, and letd := 25l The
n?(n=1)(n+2) n bound is then equal to:

The conditionf, > 0, whent > 0, is equivalent to
(n—1)(n+2)(u+d)?*(m—u—m2/n)

m? 2(n —m)? B(u) := — 5
b>n(1_tn(nl)(n+2)) (2) 2u(u? — bu — ¢)

(and whent <= 0 is always fulfilled), which implies

The calculation ofB’(u) shows that it is increasing in the
range [u1, u2] (the numerator has the form: + d times a

2(n —m)? 3 degrees polynomlal with a unique real roat;). Hence, for
m' ®3) 5 € [ug+ 7 ug+ ] the best choice fou is v = s—m?/n.
We obtain:

t <

The conditionf; > 0 is equivalent to

Theorem 3.2:Letd = nQ"L("—m) p— _An—2m)®

2 _ 2 ) ) (n—1)(n+2)’ n(n—2)(n+4)’
p My An=2m)” @) 2min—m?
n n(n —2)(n+4) nZ(n—1)(n+2)
One can check that the right hand side of (4) is positive for 9 o 5
m > 2, whent satisfies (3). IFse |2 ™ b 4 s T
The boundB = (f> + fi1 + f1 + fo)/ fo equals 2 4
- (m—s)(s =™ +d)*(n—1)(n +2)
pogm=t (5) O] < mz —
fo 2(s — ) (—(5 = )2 + b(s — =) +¢)
Considered as a function @f it is decreasing when €

[,;(3’"1(;1(”’3), n(i("l)’g;)ﬂ)[ and hence the best choice lofs IV. THE ENDOMORPHISMST},

b= 0. We obtain the bound: We introduce an endomorphisffi, : S — S which
Theorem 3.1:1f s 6}0,%+ %[ eigenvalues will play the role of the zeros of the zonal
polynomials in the rank one case.

n m—Ss
IC| < E( AT (=2 ) (6) Proposition 4.1: Let
n(n—1)(n+2)
This bound, which is an mcreasmg function of s, improves T Sk — Sk

on the simplex bound whes > == — % Their P prg, (oP)



where the orthogonal projection aofy, is denoted byprg, ~ we have[Ty(v),v] < Ag. But [Ti(v),v] = [ov,v] = Ap_1.
(note that, in generalf P does not belong t&), but rather to The equality\,_1 = Ax would mean that is an eigenvector

Sk41)- of T, which is not possible since it has degree- 1.
The endomorphistiy, is a symmetric endomorphism 6f;, In the casem = 1, the eigenvalues of, are exactly the
and is an isomorphism. zeros of the polynomiaP;.. 1. In the general case, we prove
Proof: We have, for all P,Q € Sy, [To(P),Q] — in next Ifertr;]ma j[hat colmmor|1_|zeros of the Solyn(?[rrll@bgl_\;e )
0P,Q] = [P,cQ] = [P,Tw(Q)]. Moreover, [sP,P] — some of the eigenvalues. However, we do not know if suc

common zeros do exist, neither if all of the eigenvalues are

,P?] > 0 unlessP = 0, because of the positivity of the . . .
o, P°] P y obtained that way (and may be it is not so important):

measure o[y, ..., yn]°. ThusT} is injective.
Let J; be the matrix of this endomorphism in the basis Lemma 4.3:Let o € [0,1]™ be a common zero of the
{Ps, k| < k}. From the three-term relation (Theorem 2.4)p0lynomials

Jy is the block-tridiagonal matrix: Q. = Z Ap[k, g Py,
By Ay |p|=k+1
Ci B A for all «, |k| = k. Then,v := Zlka doy P, ()P, is an
Co By A eigenvector off}, for the eigenvaluer(a).
J = . . 7
y Cy 0 Proof: It is immediate from Christoffel-Darboux formula
Ay (Theorem 2.6(i)). fQ,.(a)) = 0 for all %, |x| = k, we have
Cr  Byg
It is worth noticing that the matrixJ;, itself is not sym- (o(@) —o(y))v=— Y doxAx[s, ul Pe() Pu(y) € Tipa
metric, because the polynomial3; are not of norml. We l|=k
shall later introduce and calculate the symmetric maiffix Iul=h+1
obtained in the normalized basis. and, therefrom,
In the end, we shall need some very precise information on
the coefficients of/’;.. For the moment, the only, but crucial, o(a)v = Ti(v).

property that we will exploit is the fact that it ison-negative

) . We now show how to obtain a bound for the size dof
and irreducible

codes, as a function @f Therefore, in order to cope with any
Lemma 4.2:The eigenvalues off;, are real, and belong pPossibles, we must perturb the endomorphisip as explained
to ]0,m[. The maximal eigenvalue df},, denoted by)\;, is Next:

of multiplicity 1, and possesses an eigenvector with POSItiVe 11 aorem 4.4-Let « € R™, with ¢, > 0. Let T¢ be the

coordinates. Moreovedy,_1 < \j. endomorphism defined afi, by
Proof: The matrix J; is non-negative and irreducible
in the sense of [22], because of Proposition 2.5 (note that Ti(v) = Tk (v) — € * vy,
the coefficientsA[x, <()] are positive). Moreover, it is the
matrix of a symmetric endomorphism, so its eigenvalues aff1eree * v = > €x Vs Ls.
real. From [22, Perron-Frobenius Theorem], it follows that the (i) 7}; has a unique maximal eigenvalag, of multiplicity

maximal eigenvalue has multiplicity equal 1o and that, ifv one, possessing an eigenvectorwith positive coeffi-
is an eigenvector, either or —v has positive coordinates. Let cients. Moreover, if # 0,
us now prove that all its eigenvalues belong@om|.

For anyv € Sk, v # 0, we havelov,v] = [ov?du(y), A1 < A < Ak
wheredy is a positive measure. We integrate on the domain, 9 .
0.1)", on which0 < o < m, hence < [ov,v] < mfv,o]. () L&LC 7 0- Any o-codesuch thats = m =07 < A
If v is an eigenvector of;, associated with an eigenvalue satisfies
we have[ov, v] = [\, v] = A[v,v], SO we can conclude that . 2
0<A<m. | | < (Z\M:k ’U’i(e" + a”)>

Now letv be an eigenvector df},_; for \;_1, assumed to ~ (m-— Ai)(Zw:k dg,jenv,g?)
be of norm1. We have

wherea,, := Qy(1,...,1) = 32, _p1 Axlr, 1.
oV = Ap_1v+u Proof:

(i) The matrix Jg of Ty is equal toJ, except the diagonal
elements lying inB. ReplacingJ{ by J{ + M Id for some
appropriate M, we obtain a non-negative matrix which is
irreducible so its largest eigenvalue has multiplicity one and
[Tk (), x] has an associated eigenvector with positive coordinates. It

Ak = zergf{)%} [z,2] remains true forJ;. Since, where # 0, J; < Ji, we have

with w € II,. Obviously, sinceleg(ov) = 1+deg(v), v must
be of degree exactly — 1 (andu # 0).
Since



A, < Ai. The proof of the inequalitp,_; < A, is the same The Christoffel-Darboux formula (Theorem 2.6(i)) shows that
as the one of\,_; < \g. v = Z‘ngk dow Py () Py.

(i) We haveov® = A\jve +exvf +u whereu € 1. We Whenm = 1, m;, = 1 and anye > 0 is of this form. When
need to compute:, and we setw = 3 ;. u, P, Let p,  m > 2, itis not clear. It is not even clear that at least ane

|¢| =k + 1, we have: satisfying these inequalities exists.
[Py, Py] = [u, P,] = [ov®, P,] Another natural question concerns the vqlues Njatakes.
_ Z v [0 Py, P] It is hop_ed of course that QII values in t_he interial 1, \x]
RS are attained. We have defined a mapping frinoo[™ to
Ixl<k JAk—1, k], sendinge to A¢, which is continuous, hence the
= Z v Ag[k, [Py Pyl image in an interval, containing, since clearly it is the
||=k image ofe = 0. Let us prove thaf\{ tends to\;_; whene

tends to+oo. To that end, we use the following inequality,
valid for any non-negative matrix J with maximal eigenvalue

and we obtainu, =3, _;. viAk[k, u]. We have found A ([22)):
w= Z ( Z UZA’“[&MDPN = Z U Qs Forallz,z; > 0, A <sup LJ)Z
lul=k+1  |s|=k |i|=k PR >
hence the‘generalized Christoffel-Darboux formula” This inequality remains true for the matrik, although it is

. not non-negative, because we can apply it to soifie M Id,
v — Z”EP _ Zw:k Ui (€xli + Q) ®) an argument that we have already called for. We choose for
o —~ st o— AL ' x € R*: a vector, which firsts;,_; coefficients constitute a
= positive eigenvector off;_, for the eigenvalue\,_;. Its last

Now we proceed like in Proposition 2.8. Let the numeratoy, coordinates are denoted hy= (tt1s) )=k~ We have:
of the right hand side be denoted B§.1(y), and let

N 2 _o @y _
Forialy) = (M = Nia(y)v”. Tl < k=2, S Nt S unCulr]
Y)= A If |v] =k — 1, &0Re = ) 4 Sl et
We have: If |x| = k, (zi;)m _ Zw‘zk_lz?Ak_l[u,n]
Jo = [Fors1,1] = [Niy1, 0] +(Bg[, K] — €x).

= [Z vy €L, Z vy, Py The last equality relies on a result that is only proved in
|s|=k |r|=k Section 5, Proposition 5.1(i), namely th8} [x, x| = 0 when

= D vitendy,. n K |
=k Let us now choose an arbitrary smalt> 0; we can choose

. ~Ch [,
Since th ficients ofand of vt i 5 the coefficients,, > 0 such that=l==t "= o all
ince the coefficients afand ofv* are non-negative numbers, " i)~ 1" | Then we can chobse. > 0 such that

and fo # 0 whene # 0, it follows that [y, satisfies s> w4, 1(v.s] L
the condition (i) of Proposition 2.3. Condition (ii) is clearly . + (Bels, k] — ex) = 0. We are left with:
fulfilled if s < Af. We calculate

If v < k—2, & —

x

Fopir(1,...,1 (X i V(e + ax))” Ity =k —1, & <Xy +a
2k,‘+1( gty )_ m_)\; . If |K/‘:k, (Iii)n:()
hence the announced bound. Hence)§, < A\,_1 + « for that choice ofe.

Let us show that we have indeed generalized the situation
described in subsection 1I-C and Proposition 28. Lt R™ Let us go back to the bound proved in Theorem 4.4. We
such thatP,(z) > 0, Q.(z) < 0 for all [s] = k, and can simplify further this bound, getting rid of the eigenvector.

Py(x) > 0 for all [k] < k. Let e € R™ be defined by: we obtain the following nicer, but weaker version:
€x = —Qu(z)/Py(x). We can show thah;, = o(z). Indeed,

Then,
Ue(y) _ Z|n|:k 'U;( - (QN(-T)/PN(-T))PH(y) + Qﬁ(y)) |C| < Z|K|:k daka (9)
U(y) - AZ . m — )\k
When we lety tend tozx, the numerator tends tb Since the Proof: If C satisfiesé? > m — A\g_1, sincedz_1 < A§
coordinates ok are positive and®,;(x) > 0 for all |«x| < k, for all non-negativec (from Theorem 4.4 (i)), the bound of
the left hand side cannot be equal to zero when = (Py = Theorem 4.4 (iv) applies t6'. We get, using Cauchy-Schwartz

1). So the denominator also tends to zero, ajd= o(z). inequality, and\j, < Ax:
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B. Formulas for the coefficients of the mattik;

€ 2
ol < 1 (Zlﬁ\:k viles + ax)) Proposition 5.1: The matrix B, has the following proper-
~m— A; > nmk B €052 ties:
(€r + ax)? () Bslk,k'] =0 for all k # &'.
S —— Ak de e (i) If m < n/2,
O\ [£D] 26 +m+1—4
K K ki +m 7
The functionz — ©*%° is minimized over]0, +oo| when 2B,[k, k] = ) : —
. 7 , K K |2Ri+n/24+1—1
z = a. We obtain, withe,, = a,., the announced bound. i€u(k)
K| 2ki+m—1—1
V. ASYMPTOTIC BEHAVIOR OF THE LARGEST EIGENVALUE - Z < ) [ } 5 515
A OF T} icd(k) K(iy] 2K + TL/ —1—

In this section, we compute the limit taken by when the (i) If m = n/2, B[k, k] = m/2.
quotientn/k tends to some fixed value (Theorem 5.3). This
result is needed to pass to the asymptotic in the inequality (9)
for the size of a Grassmannian code.

Proof: We recall that the coefficients,, , are defined by:

We first need some very explicit formulas for the coeffi- Pr=puCr+ Z B Co
cients of the symmetric matri¥’;, associated to the endo- vip>v
morphismTy}, in the orthonormal basis Inverting these relations, we obtain coefficieats, such that
{VdoxPs, || < k}. From now on we change our usual
convention: if not specifieds is a partition of degrea. The Cp =axPs+ Z by
diagonal coefficients of/’;, are the same as the ones.ff, v|>v
while the other coefficients, denoted by [r, 1], satisfy Taking into account the formula (10), we obtain:

Al i) = Ayl ] | 2
st d2u BS[K‘?’{/]ZBH Z |::|O/u,4—‘r Z ﬁﬁl/|: :| e

To start with, we gather some known results on the poly- lul=st1 Ivi=s—1

nomialsC,. We use the following obvious relationsi,,5, = 1 and

QB + B v = 0 1O rewrite

A. Review of some properties of the polynomials
The coefficients] and (*) are defined respectively by the o B | B

following properties: B[k, '] = - > B, (15)

B XS lr
_ H /
O'CK, - Z |:KZ:| C/L (10) + Z |: :| ﬁm 1/>. (16)
lul=s+1 Wimeet
H .
€Cy = Z 3 Cy (11) Let us assume first that # «'. Since [“] is non zero
v|=s—1 only if p = & for some indexi, and alsoj, ., is non
and have the following explicit expressions: zero only if u = ') for some index;, at most one term in
4o (0) Ok — 2+ j—i+1 the first summation may be non zero, and the same argument
= H — (12) holds for the second summation. We only have to consider the
K , 26 — 2K +J — 1 , . . L,
J;l case whers' satisfies: for some indexes# j, x; = k; + 1
7

@ Cm o and s, = x; — 1. The remaining terms in the expression of
(K ) = (ki + 1+ m= Z) H 2k = 25 +]. — +1 B[k, '] correspond tg, = £() = x/Y) andy = Ky = K (i)
K 2 T2k =2kt —it 2 Moreover, the coefficients,, .. are calculated in [14], and

i#i (13) in particular we have: |
while any other values are equal to zero (see [17, Lemma Promy - _1( & ) 2rjtm—1-] (17)
7.5.7], [17], [14, Th 14.1], [10]). The polynomial§, are B 2\K(j)/ 265 +n/2 =1~
intimately related to the decomposition GL(m, R)-modules  Replacing in (15) we have
([9, Theorem 5.2.9]): B , Be 2kj+m—1—j
R(GL(m,R)/O(m,R)) = @, F2". sl w] = 5 2(26; +nj2—1—3)

For later use, we settle the notatiof; := dim(F}?) and we ( £ (KD [k K )
recall the formula ([8]): K K/ kiGy) RG]/

8. = dim(F%) = H Ki —Kj+J— .14 Combining (10) and (11) in the obvious relation:

bt ] —1
1<i<j<m (0 — 0€)Cy = mCy
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leads to: Next we use ([8]):

S HO- SO0 R e
K]\ vjLv m if k=~ dos 7;‘ qi — q; G+q¢+N )

lul=s+1 lv|=s—1 =1
(18) J#
From (18) we can conclude th&,[x, '] = 0 whenk # &/. (2¢; + N+4)(¢; + N)(¢; + N +1)
When k = &/, replacing (17) in (15) leads to the formula (2¢; + N)(g: + 1)(¢;: +2)
(ii). If moreovern = m/2, taking account of (18) we obtain

where the last fraction must be understood(As+ 4)(N +

Bsls, 6] =m/2. . 2)/2 wheng; = 0, and we obtain the announced formula for
We now give explicit formulas for the coefficients df: Ak, 5]

Proposition 5.2: With the following notations:
C. The limit of\;

qi *=2K; —1+m
Now n varies withk so we rather denote b;i,gn) the endo-

N = n; 2m morphism defined previously arvdf) its largest eigenvalue.
xr
D(z)= 35—y and Theorem 5.3:If n/2k — ¢, while n — +oo andk — +oo,
_ z+1)(z+ N . n ¢ +1
C(0) = 32 (£+2/m)
. Proof: We give careful proofs in the cases = 1
we have the expressions: andm = 2, and will be more sketchy in the general case.
B[k = As it was noticed previously, whem = 1 the eigenvalues
N m Y are the zeros of the Jacobi polynomials; their asymptotic is
m_x D(q; —q; + 1) _ 4tz calculated in [7], exploiting the differential equation for the
2 14 (4 =4 2 + N +2 , -
ieate) =1 ¢+ N+ Jacobi polynomials and Sturm’s method. Another approach,
I using chain sequences, is used in [24]. However, none of these
N O @ methods seem to generalize easily to the several variable case.
+ 4 Z (H Dlai = a; 1)) 2¢; + N —2° Our argument will only use the fact that the matdk™ is
d =1 4 %
i€d(x) 323 non-negative. More precisely, we use the following:
_ Lemma 5.4:[22] Let J be a non-negative symmetric matrix
A [k, 50] = (( [IP(@ — ¢+ 1)D(gi + ¢, + N+1)).  of size N, with largest eigenvalug.
i#i s (i) Forall z € RN with z; > 0, A < max; &)t
C(g:)C(qi + 1)) , (ii) Forall z e RN o #0, A > &=

Proof: For the calculation of3,, we replace in Proposi- The casem = 1. We recover from Proposition 5.2 the
tion 5.1 (i) the formulas (12) and (13), and take account dprmulas:
Proposition 5.1 (iii).

In order to calculate!’ ,[x, (Y], we have already seen that: oh — 1 (n—2)(n —4)
_ . B\ s (4s+n)(4s+n —4)
Ak, 59 = [ " } ( EK ) : o = (2s+1)(2s+2)(2s+n—2)2s+n—1) 1/2
5 s (4s+n—2)4s+n)2(4s+n+2)

We need a formula for{ =5 ) . Expressions for the pFrom these expressions we see that both sequences are
leading coefficients of the polynomialS,, and P, can be mcreasmg withs. Moreover We see easily that ¥ ~ k,
found in [12] and [23]. Putting them together we find: by ~ 2(/ 21)2, anda’y ~ (“2)2 Applying Lemma 5.4 (i)

Bur m ( Gi+a+N ) (2; + N)(2g; + N +2) with z, = 1 for all s leads to:

B =] Gt g+ N+1/ g+ N)g+N+1) MY < aly g 4 by + dy
where the last fraction must be understood Ais-2) /(N +1) and the right hand side tends4¢¢ + 1)/(¢ + 2)* whenn,/2k
wheng; = 0. Joined with (10), we obtain tends tof. (n) . _

o We lower bound\, "’ using Lemma 5.4 (ii) and a choice of

Ak kD =] <q,» - g + 1) (Qi +q; + N+ 1) « proposed in [24]: let: be defined by:

o S\ G %+¢+N
o {m =0 1<s<t:=k—|Vk|+1
(¢ + N)(¢gi + N+1) s =1 t+1<s<k+1

(2¢: + N)(2¢; + N +2) so thatz, = 1 on the| /%] last coordinates. Then,
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@) | DAl bt )
T-T - k—t+1

k—t—-1
> (i) et

(2s+n—2) .
(2s4+mn—2)2 —1)1/2

((ClaNClar+1)"* + (Cla2) Claa + 1))

Al k] =

Again, the right hand side tends 4¢¢/+ 1)/(¢+2)2, hence
the result.

and of the analogous expressiott,_;[x] corresponding
the last term. These expressions are increasing with
Let B,y™™, A,y be their minimal values inC'y .
For simplicity, we assume thahin(B; ™", B;11,v"™") =

The casem = 2. From Proposition 5.2, we have, setting[
. (o}
S:= K1 + Ko anNdv := K1 — Ka:

_ =6 =9) (4s +2n — 4)° B, y™™", and the same foA!, A2
Buln, v] = H_8(45 +2n —6) \ (4k1 +n)(4dk2 +n — 2) BV ) B
(45 + 2n — 8)? We obtain:
 (4ky +n—4)(4m+n—6)>
W) = (CoER N @sen—2)? ) (@) .z
st (20+2)2—1 (2s+n—2)2—1 ' #2
((m +2)(261 +3) (261 + 1 — 3)(2m1 41— 2))“2 (k=t =1V =2) o in g1 min 4o min
(4k1 +n — 2)(4k1 + n)2(4k1 +n + 2) k—t+ 1)V (Btv + Ay + A%y )

)= (20 ) (s na? Y |
’ (2v)2 -1 (2s+n—-2)2-1 Now we letn/2k tend tol. SinceB; """ is obtained at a

(262 + 1)(2k2 + 2) (262 +n — 4) (262 +n — 3)\/?  partition essentially equal t6/2—V/2,t/2+ V/2, and since

( (4 + n — 4)(4kz + n — 2)2(4k3 + n) ) t ~ k, we see thatB; ™" tends to2(¢ + 1/2)/(¢ + 1)%

min

For the same reasomlt,v"”" and A?, v tend to (¢ +

One can verify that these coefficients are increasing wilif2)/(£+1)* (the parameteV” is still fixed at this stage). So
s when v stays constant. This is easy to see 8y, not We obtain
so obvious for the two others because the second term is
decreasing while the last big quotient is increasing. - 9 04+ 1/2
In order to obtain a lower bound fdr,i") from Lemma 5.4 liminf A, > (1 — V) ~4(£ N
(i), we choosex = (z,) with: =, = 0,1. We fix a number
V < k—Vk. Let Ky s be the set of thé” partitions of degree
i = K1 —Ka. = = >
fg\,\J”t—h;T-afl}ésvh\;e sgtfrn f<~':2 1":;”5:;%\:)82 t{:,j ]L’€_| L\/%JK—QH_, botlgév we letV tend to+oo to obtain the appropriate lower
andx € Ky,,. We need to avoid inCy,; some partitions, '
namely the ones with = 0 and the ones withh maximal (for
those partitions, some terms are either missing or are equal tdhe second and last step obtains an upper bound\,(ﬂﬁr
zero in(xJ’,g")),i). Let this new set be denoted By y,,. We from Lemma 5.4 (i) with an appropriate choice of The
have, whene,, =1, k € K'v g, || # ¢, K, choicexz,, = 1 for all x is not good enough here because
D(2v+2)'/2 4 D(2v)'/? # 2. We need some,, that modify
5 properly these factors. We choosg := (2v + 1)'/2 where
("™ = Byls, 1] + ZA/S[“’ k0] v = K1 — ko. We have
i=1

2
+ Z Ay [li(i), K]
=1

/(n) 2
. M = Bs[ﬁa /f] + ZA/S[KWI{(Z.)}M
In the expressions ofl’,[x, x(*)] we can minor the first Ty = Ty
term by 1 (v # 0), then minor each term by its minimal 2 "
value in the sequence = cte to which it belongs. As was + ZA’S_l[/@(i),m] £
mentioned before, this minimal value is obtained when the i=1 Tr

degree is minimal, i.e. whem = ¢t or s = ¢t + 1. We do
the same ford’,_,[k(;), x] and for B[x, x]. Then we must
consider the behavior whenis constant ofB;|x, x|, of: Let:
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The upper bound is obtained with, = (d5,)'/2. We have

1/2
g () (2042 (25 +n —2)2 _ m By /2 m ¢ —qi+1
Ak, ]_<2U+1) ((2s+n—2)2—1 HD(qi_qj+l)1/2<(252> :Hﬁ
S K . 3
(2k1 + 2)(261 + 3) (261 + 1 — 3)(261 +n — 2)\ /2 vk vk !
(4k1 +n —2)(4k1 +n)2(4k1 +n + 2)

h
Ak, ] = ( 2v ) ( (25 +n—2)* )1/2. oee
’ 20+1) \@s+n—-2)2-1 @) _ g [, 5] + D A, 0]
(262 + 1)(262 + 2) (262 +n — 4) (262 +n — 3)\ /2 T, o Pt ’
(4k2 +n —4)(4dk2 +n — 2)2(4K2 +n) m
A7 W] = 2v (25 +n —4)2 1/2. JrZAb[’i(i)v’f}
PO =91 ) \(@s+n—42 -1 i=1
((2;-;1)(2;-;1 +1)(2k1 +n —5)(2k1 + 1 — ))1/2 where
4 —6)(4 —4)2(4 -2 m
(= O 0 )(514‘172 ) Al (01 — ¢ —q;+1
Wl = (252) (et ), |
@M=\ 1) \@s+n—4 —1 =1 !
(@m_1x ﬂ@w+n—®@m+n—&)u2 m 1o
(4k2 +n — 8)(4dk2 +n — 6)2(4dk2 + n — 4) (( H D(g; +q; + N + 1))C(qi)C(qi + 1))
j=l1
Since o simil Iﬁé
and similarly
1/2
D(2v+ 22203 = v+ 2
v+ 1)V2  2v+1 qu—
and g
I el L - o
172 g
(2v+1) 2vt1 ((HD(%:+Qj+N*1>)C(Qv;*2)C(Qi*1)) .
we have: j_;l_
J#

We have the nice identity:

(@) : ,
—_— = BS Au (@) m m
z, [H,m]+; [k, 6] ZHqi—qj+1:
2 im1j=1 BTG
+ 3 Ak, K] i

We do not have a reference for this last identity, so we give
This expression is increasing withwhenv is fixed. When an argument here: from (14),
dim Fr"”

s is fixed, B[k, k], Yoo, Aflw, k] and 27, A’[k), K] m
are maximal atx = [s/2,s/2] (we extend the functions = H

dim F% ke
[k/2,k/2], 77

to partitions with real parts here). We obtain, with =
We obtain the demanded identity as the equality of the dimen-

ki —k;+7—1i+1
I{iflij+j7i '

(:UJ’(”)) sions in the following decomposition d&L(m,R)-modules
mgx% < (Pieri’s rule, [9]):
2 2
. FO g Fr = gm e
Bulp o) + > Ao, o1+ A [piay, ol - |
i=1 i=1 It turns out that the coefficient®[x, x|, Af[x,x?] and

The computation of these values shows that the right harkil(i); ] are increasing whem runs over a sequence of

side tends tol(¢ + 1/2)/(£ + 1) whenn/2k — . the type (v + s[1,1,...,1])s>0 (when N is big enough),
and that, on the space of partitions (with real pawtspf

The general casem > 2 works the same. For the lowerfixed degreek, the maximum of the expressionB|x, ],
bound, we uséCy,; := {x | [k| = s, km > [ ] =V +1}. The S Af[g m(“} and}""" | A°[k(;), k] is attained ak = p;, =
cardinality of Cy,; only depends ory mod m. We should [k/m k/m,... . k/m)].
avoid some partitions ifCy, s, namely the ones with some parts \oreover, |t is easy to see that, wheri2k — /,
equal and the ones with,,, = |>] — V + 1. Their number
is negligible compared to the cardinality &y ;. Then, we
proceed in the same way as for = 2.

{+1/m

lim B =9
im By [pr, pi] T+ 2/m)
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lim (Z A“[pk,p,@}) = lim (Z Ab[<pk><i>,pk]> 7 =
i=1 i=1 .
 A+1/m .
C(C+2/m)? . / ]
Remark 5.5:0ne obvious consequence of Theorem 5.3 is _— g 7
that, for fixedn, the eigenvalu@\é") runs over the whole ) —
interval ]0, m[. Hence the bounds proved in section IV for L

the size of grassmannian codes potentially cover all possible
minimal distance.

Fig. 1. LP and Hamming asymptotic bounds far= 2

VI. AN ASYMPTOTIC BOUND FOR THE SIZE OF
GRASSMANNIAN CODES

- and we obtain the announced limiting result using the classical
We are now ready to take the limit whentends to+oo g 9

in the inequality (9), and prove Theorem 1.1. ) 1 42k
' ' lim —log (n ) = (14 p)log(1 + p) — plog(p).
We are left with the estimate dbg (3, _, doxax)/n. n/2k—p=t N 2k
Lemma 6.1:Let §,, := dim(F%). If n/2k — p~! € R From the three-term relation (2.4), specializing1o. .., 1)
while n and k tend to+oo, we get trivially
a. < m and hencezmzk doka, < ngf‘;% 5, (obvi-
1 . i i i R)sSsm
lim sup— log( Z 5) < (19) ouslyds, < s, sinceV,2~ is contained inF2~).
" || =2k Then we only have to solve the equation, involving the
tr)sm limiting result of Theorem 5.3,
m((1+ p)log(l+p) — plog(p)). (20
. : n+2k—1 _ i )\(n) =4 pil + 1/m
Proof: In the casem = 1, 09, = dim Sop, = ( 2% S§ = n/zljgfrl k-1 = m

and it is a classical result. The general case is probably well-

known but since we lack a reference, we give a proof hemghich leads to
Let x be a partition of length at most. and of degreek,

that we extend to a partition with parts with an appropriate P
number of zeros. From (14),

m

S+ %)*1/2).

dim(Fr) = [ S ti-t VII. LP VERSUSHAMMING
o —1
Isi<jsn ! In [4], A. Barg and D. Nogin give an asymptotic bound for
Sincex; = 0 whenj > m, we have the size of Grassmannian codes, derived from the so-called
i .o +_ . Hamming bound. They prove, with the notations of Theorem
. " Ri—Kj+J]—1 Ki+J—1
dim(F)) = H sz H H BT 1.1:
1<i<j<m J 1<i<m j>m J
We upper bound: Theorem 7.1:[4]
I<61+j—Z (TL-’-HZ—].) 1 s+m
jgn J—i Kq - log|C| < —mlog 1 o (21)
and . i
Ki—Kj+j—1 < (2 + 1)m2 It turns out that our bound (1) is better than (21) only when
H j—i = s is small! The crossing poink, for the two bounds has the
1si<jsm approximate value:
to obtain
2 O n4 Rk — 1
Z 5o < (26 +1)™ Z H( i ) m 2 3 4 5 6
|| =2k =2k \i=1 Ki so | 1.4528 | 1.2714 | 1.1853 | 1.1372 | 1.1067
l(k)<m l(k)<m
2k 7 8 9 10
m2 n+s—1
< (2k+1)" (Z( ) )) 1.0856 | 1.0702 | 1.0584 | 1.0492
s=0
2K\ ™ Figure 1 plots the two bounds fon = 2.
< (2k+1)" (n ;k ) g P

1After this paper was submitted, the authors have further improved (21),
see [25].
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