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ABSTRACT. The Lovász theta function provides a lower bound for the chro-
matic number of finite graphs based on the solution of a semidefinite program.
In this paper we generalize it so that it gives a lower bound for the measurable
chromatic number of distance graphs on compact metric spaces.

In particular we consider distance graphs on the unit sphere. There we trans-
form the original infinite semidefinite program into an infinite, two-variable lin-
ear program which then turns out to be an extremal question about Jacobi poly-
nomials which we solve explicitly in the limit. As an application we derive new
lower bounds for the measurable chromatic number of the Euclidean space in
dimensions 10, . . . , 24 and we give a new proof that it grows exponentially with
the dimension.

1. INTRODUCTION

The chromatic number of the n-dimensional Euclidean space is the minimum
number of colors needed to color each point of Rn in such a way that points at
distance 1 from each other receive different colors. It is the chromatic number of
the graph with vertex set Rn and in which two vertices are adjacent if they lie at
distance 1 from each other. We denote it by χ(Rn).

A famous open question is to determine the chromatic number of the plane.
In this case, it is only known that 4 ≤ χ(R2) ≤ 7, where lower and upper
bounds come from simple geometric constructions. In this form the problem was
considered, e.g., by E. Nelson, J.R. Isbell, P. Erdős, and H. Hadwiger. For his-
torical remarks and for the best known bounds in other dimensions we refer to
L.A. Székely’s survey article [20]. The best asymptotic lower bound is due to
P. Frankl and R.M. Wilson [9, Theorem 3] and the best asymptotic upper bound is
due to D.G. Larman and C.A. Rogers [13]:

(1 + o(1))1.2n ≤ χ(Rn) ≤ (3 + o(1))n.

In this paper we study a variant of the chromatic number of Rn, namely the
measurable chromatic number. The measurable chromatic number of Rn is the
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smallest number m such that Rn can be partitioned into m Lebesgue measurable
stable sets. Here we call a set C ⊆ Rn stable if no two points in C lie at distance 1
from each other. In other words, we impose that the sets of points having the same
color have to be measurable. We denote the measurable chromatic number of Rn

by χm(Rn). One reason to study the measurable chromatic number is that then
stronger analytic tools are available.

The study of the measurable chromatic number started with K.J. Falconer [8],
who proved that χm(R2) ≥ 5. The measurable chromatic number is at least the
chromatic number and it is amusing to notice that in case of strict inequality the
construction of an optimal coloring necessarily uses the axiom of choice.

Related to the chromatic number of the Euclidean space is the chromatic number
of the unit sphere Sn−1 = {x ∈ Rn : x · x = 1}. For −1 < t < 1, we consider
the graph G(n, t) whose vertices are the points of Sn−1 and in which two points
are adjacent if their inner product x · y equals t. The chromatic number of G(n, t)
and its measurable version, denoted by χ(G(n, t)) and χm(G(n, t)) respectively,
are defined like in the Euclidean case.

The chromatic number of this graph was studied by L. Lovász [15], in particular
in the case when t is small. He showed that

n ≤ χ(G(n, t)) for −1 < t < 1,

χ(G(n, t)) ≤ n+ 1 for −1 < t ≤ −1/n.

P. Frankl and R.M. Wilson [9, Theorem 6] showed that

(1 + o(1))(1.13)n ≤ χm(G(n, 0)) ≤ 2n−1.

The (measurable) chromatic number of G(n, t) provides a lower bound for the
one of Rn: After appropriate scaling, every proper coloring of Rn intersected with
the unit sphere Sn−1 gives a proper coloring of the graph G(n, t), and measurabil-
ity is preserved by the intersection.

In this paper we present a lower bound for the measurable chromatic number
of G(n, t). As an application we derive new lower bounds for the measurable
chromatic number of the Euclidean space in dimensions 10, . . . , 24 and we give a
new proof that it grows exponentially with the dimension.

The lower bound is based on a generalization of the Lovász theta function, which
L. Lovász introduced in [14] to give upper bounds for the stability number of finite
graphs. Using a basic inequality between the stability number and the fractional
chromatic number, it also gives a lower bound for the chromatic number. Here we
aim at generalizing the theta function to distance graphs in compact metric spaces.
These are graphs defined on all points of the metric space where the adjacency
relation only depends on the distance.

The remaining of the paper is structured as follows: In Section 2 we define
the stability number and the fractional measurable chromatic number and give a
basic inequality involving them. Then, after reviewing L. Lovász’ original formu-
lation of the theta function in Section 3, we give our generalization in Section 4.
Like the original theta function for finite graphs, it gives an upper bound for the
stability number. Moreover, in the case of the unit sphere, it can be explicitly
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computed, thanks to classical results on spherical harmonics. The needed mate-
rial about spherical harmonics is given in Section 5 and an explicit formulation
for the theta function of G(n, t) using basic notions from the theory of orthogonal
polynomials is given in Section 6.

In Section 7 we choose specific values of t for which we can analytically com-
pute the theta function of G(n, t). This allows us to compute the limit of the theta
function for the graph G(n, t) as t goes to 1 in Section 8. This gives improvements
on the best known lower bounds for χm(Rn) in several dimensions. Furthermore
this gives a new proof of the fact that χm(Rn) grows exponentially with n. Al-
though this is an immediate consequence of the result of P. Frankl and R.M. Wil-
son (and also of a result of P. Frankl and V. Rödl [10]) and our bound of 1.165n is
not an improvement, our result is an easy consequence of the methods we present.
Moreover, we think that our proof is of interest because the methods used here are
radically different from those of P. Frankl and R.M. Wilson and they can be applied
to other metric spaces.

In Section 9 we point out how to apply our generalization to distance graphs
in other compact metric spaces, endowed with the continuous action of a compact
group. Finally in Section 10 we conclude by showing the relation between our
generalization of the theta function and the linear programming bound for spherical
codes established by P. Delsarte, J.M. Goethals, and J.J. Seidel [7].

2. THE FRACTIONAL CHROMATIC NUMBER AND THE STABILITY NUMBER

LetG = (V,E) be a finite or infinite graph whose vertex set is equipped with the
measure µ. We assume that the measure of V is finite. In this section we define the
stability number and the measurable fractional chromatic number of G and derive
the basic inequality between these two invariants. In the case of a finite graph one
recovers the classical notions if one uses the uniform measure µ(C) = |C| for
C ⊆ V .

Let L2(V ) be the Hilbert space of real-valued square-integrable functions de-
fined over V with inner product

(f, g) =
∫
V
f(x)g(x)dµ(x)

for f, g ∈ L2(V ). The constant function 1 is measurable and its squared norm
is the number (1, 1) = µ(V ). The characteristic function of a subset C of V we
denote by χC : V → {0, 1}.

A subset C of V is called a measurable stable set if C is a measurable set and if
no two vertices in C are adjacent. The stability number of G is

α(G) = sup{µ(C) : C ⊆ V is a measurable stable set}.

Similar measure-theoretical notions of the stability number have been considered
before by other authors for the case in which V is the Euclidean space Rn or the
sphere Sn−1. We refer the reader to the survey paper of Székely [20] for more
information and further references.
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The fractional measurable chromatic number of G is denoted by χ∗m(G). It is
the infimum of λ1 + · · · + λk where k ≥ 0 and λ1, . . . , λk are nonnegative real
numbers such that there exist measurable stable sets C1, . . . , Ck satisfying

λ1χ
C1 + · · ·+ λkχ

Ck = 1.

Note that the measurable fractional chromatic number of the graph G is a lower
bound for its measurable chromatic number.

Proposition 2.1. We have the following basic inequality between the stability num-
ber and the measurable fractional chromatic number of a graph G = (V,E):

(1) α(G)χ∗m(G) ≥ µ(V ).

So, any upper bound for α(G) provides a lower bound for χ∗m(G).

Proof. Let λ1, . . . , λk be nonnegative real numbers and C1, . . . , Ck be measurable
stable sets such that λ1χ

C1 + · · · + λkχ
Ck = 1. Since Ci is measurable, its char-

acteristic function χCi lies in L2(V ). Hence

(λ1 + · · ·+ λk)α(G) ≥ λ1µ(C1) + · · ·+ λkµ(Ck)

= λ1(χC1 , 1) + · · ·+ λk(χCk , 1)

= (1, 1)

= µ(V ). �

3. THE LOVÁSZ THETA FUNCTION FOR FINITE GRAPHS

In the celebrated paper [14] L. Lovász introduced the theta function for finite
graphs. It is an upper bound for the stability number which one can efficiently
compute using semidefinite programming. In this section we review its definition
and properties, which we generalize in Section 4.

The theta function of a graph G = (V,E) is defined by

ϑ(G) = max
{∑

x∈V

∑
y∈V

K(x, y) :

K ∈ RV×V is positive semidefinite,∑
x∈V

K(x, x) = 1,

K(x, y) = 0 if {x, y} ∈ E
}
.

(2)

Theorem 3.1. For any finite graph G, ϑ(G) ≥ α(G).

Although this result follows from [14, Lemma 3] and [14, Theorem 4], we give
a proof here to stress the analogy between the finite case and the more general case
we consider in our generalization of Theorem 4.1.

Proof of Theorem 3.1. Let C ⊆ V be a stable set. Consider the characteristic func-
tion χC : V → {0, 1} of C and define the matrix K ∈ RV×V by

K(x, y) =
1
|C|

χC(x)χC(y).
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NoticeK satisfies the conditions in (2). Moreover, we have
∑

x∈V
∑

y∈V K(x, y) =
|C|, and so ϑ(G) ≥ |C|. �

Remark 3.2. There are many equivalent definitions of the theta function. Possible
alternatives are reviewed by D.E. Knuth in [12]. We use the one of [14, Theorem
4].

If the graph G has a nontrivial automorphism group, it is not difficult to see
that one can restrict oneself in (2) to the functions K which are invariant under the
action of any subgroup Γ of Aut(G), where Aut(G) is the automorphism group
of G, i.e., it is the group of all permutations of V that preserve adjacency. Here
we say that K is invariant under Γ if K(γx, γy) = K(x, y) holds for all γ ∈ Γ
and all x, y ∈ V . If moreover Γ acts transitively on G, the second condition∑

x∈V K(x, x) = 1 is equivalent to K(x, x) = 1/|V | for all x ∈ V .

4. A GENERALIZATION OF THE LOVÁSZ THETA FUNCTION FOR DISTANCE
GRAPHS ON COMPACT METRIC SPACES

We assume that V is a compact metric space with distance function d. We
moreover assume that V is equipped with a Borel regular measure µ for which
µ(V ) is finite. Let D be a closed subset of the image of d. We define the graph
G(V,D) to be the graph with vertex set V and edge set E = {{x, y} : d(x, y) ∈
D}.

The elements ofL2(V ×V ) are called kernels. In the following we only consider
symmetric kernels, i.e., kernels K with K(x, y) = K(y, x) for all x, y ∈ V . We
denote by C(V ×V ) the subspace of continuous kernels. A kernelK ∈ L2(V ×V )
is called positive if, for all f ∈ L2(V ),∫

V

∫
V
K(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0.

We are now ready to extend the definition (2) of the Lovász theta function to the
graph G(V,D). We define

ϑ(G(V,D)) = sup
{∫

V

∫
V
K(x, y)dµ(x)dµ(y) :

K ∈ C(V × V ) is positive,∫
V
K(x, x)dµ(x) = 1,

K(x, y) = 0 if d(x, y) ∈ D
}
.

(3)

Theorem 4.1. The theta function is an upper bound for the stability number, i.e.,

ϑ(G(V,D)) ≥ α(G(V,D)).

Proof. Fix ε > 0 arbitrarily. Let C ⊆ V be a stable set such that µ(C) ≥
α(G(V,D)) − ε. Since µ is regular, we may assume that C is closed, as oth-
erwise we could find a stable set with measure closer to α(G(V,D)) and use a
suitable inner-approximation of it by a closed set.
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Note that, since C is compact and stable, there must exist a number β > 0 such
that |d(x, y) − δ| > β for all x, y ∈ C and δ ∈ D. But then, for small enough
ξ > 0, the set

B(C, ξ) = {x ∈ V : d(x,C) < ξ},

where d(x,C) is the distance from x to the closed setC, is stable. Moreover, notice
that B(C, ξ) is open and that, since it is stable, µ(B(C, ξ)) ≤ α(G(V,D)).

Now, the function f : V → [0, 1] given by

f(x) = ξ−1 ·max{ξ − d(x,C), 0}

for all x ∈ V is continuous and such that f(C) = 1 and f(V \ B(C, ξ)) = 0. So
the kernel K given by

K(x, y) =
1

(f, f)
f(x)f(y)

for all x, y ∈ V is feasible in (3).
Let us estimate the objective value of K. Since we have

(f, f) ≤ µ(B(C, ξ)) ≤ α(G(V,D))

and ∫
V

∫
V
f(x)f(y)dµ(x)dµ(y) ≥ µ(C)2 ≥ (α(G(V,D))− ε)2,

we finally have ∫
V

∫
V
K(x, y)dµ(x)dµ(y) ≥ (α(G(V,D))− ε)2

α(G(V,D))

and, since ε is arbitrary, the theorem follows. �

Let us now assume that a compact group Γ acts continuously on V , preserving
the distance d. Then, if K is a feasible solution for (3), so is (x, y) 7→ K(γx, γy)
for all γ ∈ Γ. Averaging on Γ leads to a Γ-invariant feasible solution

K(x, y) =
∫

Γ
K(γx, γy)dγ,

where dγ denotes the Haar measure on Γ normalized so that Γ has volume 1.
Moreover, observe that the objective value ofK is the same as that ofK. Hence we
can restrict ourselves in (3) to Γ-invariant kernels. If moreover V is homogeneous
under the action of Γ, the second condition in (3) may be replaced by K(x, x) =
1/µ(V ) for all x ∈ V .

We are mostly interested in the case in which V is the unit sphere Sn−1 endowed
with the Euclidean metric of Rn, and in which D is a singleton. If D = {δ} and
δ2 = 2− 2t, so that d(x, y) = δ if and only if x · y = t, the graph G(Sn−1, D) is
denoted by G(n, t). Since the unit sphere is homogeneous under the action of the
orthogonal group O(Rn), the previous remarks apply.
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5. HARMONIC ANALYSIS ON THE UNIT SPHERE

It turns out that the continuous positive kernels on the sphere have a nice de-
scription coming from classical results of harmonic analysis reviewed in the this
section. This allows us the calculation of ϑ(G(n, t)). For information on spherical
harmonics we refer to [1, Chapter 9] and [22].

The unit sphere Sn−1 is homogeneous under the action of the orthogonal group
O(Rn) = {A ∈ Rn×n : AtA = In}, where In denotes the identity matrix. More-
over, it is two-point homogeneous, meaning that the orbits of O(Rn) on pairs of
points are characterized by the value of their inner product. The orthogonal group
acts on L2(Sn−1) by Af(x) = f(A−1x), and L2(Sn−1) is equipped with the
standard O(Rn)-invariant inner product

(4) (f, g) =
∫
Sn−1

f(x)g(x)dω(x)

for the standard surface measure ω. The surface area of the unit sphere is ωn =
(1, 1) = 2πn/2/Γ(n/2).

It is a well-known fact (see e.g. [22, Chapter 9.2]) that the space C(Sn−1) of
continuous functions decomposes under the action of O(Rn) into a Hilbert space
direct sum as follows:

(5) C(Sn−1) = H0 ⊥ H1 ⊥ H2 ⊥ . . . ,
where Hk is isomorphic to the O(Rn)-irreducible space

Harmk =
{
f ∈ R[x1, . . . , xn] : f homogeneous, deg f = k,

n∑
i=1

∂2

∂x2
i

f = 0
}

of harmonic polynomials in n variables which are homogeneous and have degree
k. We set hk = dim(Harmk) =

(
n+k−1
n−1

)
−
(
n+k−3
n−1

)
. The equality in (5) means

that every f ∈ C(Sn−1) can be uniquely written in the form f =
∑∞

k=0 pk, where
pk ∈ Hk, and where the convergence is absolute and uniform.

The addition formula (see e.g. [1, Chapter 9.6]) plays a central role in the char-
acterization of O(Rn)-invariant kernels: For any orthonormal basis ek,1, . . . , ek,hk
of Hk and for any pair of points x, y ∈ Sn−1 we have

(6)
hk∑
i=1

ek,i(x)ek,i(y) =
hk
ωn
P

(α,α)
k (x · y),

where P (α,α)
k is the normalized Jacobi polynomial of degree k with parameters

(α, α), with P (α,α)
k (1) = 1 and α = (n − 3)/2. The Jacobi polynomials with

parameters (α, β) are orthogonal polynomials for the weight function (1−u)α(1+
u)β on the interval [−1, 1]. We denote by P (α,β)

k the normalized Jacobi polynomial
of degree k with normalization P (α,β)

k (1) = 1.
In [17, Theorem 1] I.J. Schoenberg gave a characterization of the continuous

kernels which are positive and O(Rn)-invariant: They are those which lie in the
cone spanned by the kernels (x, y) 7→ P

(α,α)
k (x · y). More precisely, a continuous
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kernel K ∈ C(Sn−1 × Sn−1) is O(Rn)-invariant and positive if and only if there
exist nonnegative real numbers f0, f1, . . . such that K can be written as

(7) K(x, y) =
∞∑
k=0

fkP
(α,α)
k (x · y),

where the convergence is absolute and uniform.

6. THE THETA FUNCTION OF G(n, t)

We obtain from Section 4 in the case V = Sn−1, D = {
√

2− 2t}, and Γ =
O(Rn), the following characterization of the theta function of the graph G(n, t):

ϑ(G(n, t)) = max
{∫

Sn−1

∫
Sn−1

K(x, y)dω(x)dω(y) :

K ∈ C(Sn−1 × Sn−1) is positive,

K is invariant under O(Rn),

K(x, x) = 1/ωn for all x ∈ Sn−1,

K(x, y) = 0 if x · y = t
}
.

(8)

(It will be clear later that the maximum above indeed exists.)

Corollary 6.1. We have

ωn/ϑ(G(n, t)) ≤ χ∗m(G(n, t)).

Proof. Immediate from Theorem 4.1 and the considerations in Section 2. �

A result of N.G. de Bruijn and P. Erdős [5] implies that the chromatic number
of G(n, t) is attained by a finite induced subgraph of it. So one might wonder if
computing the theta function for a finite induced subgraph of G(n, t) could give a
better bound than the previous corollary. This is not the case as we will show in
Section 10.

The theta function for finite graphs has the important property that it can be
computed in polynomial time, in the sense that it can be approximated with arbi-
trary precision using semidefinite programming. In the following two subsections
we are concerned with the computability of the generalization (8).

6.1. Primal formulation. First, we apply Schoenberg’s characterization (7) of the
continuous kernels which are O(Rn)-invariant and positive. This transforms the
original formulation (3), which is a semidefinite programming problem in infin-
itely many variables having infinitely many constraints, into the following linear
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programming problem with optimization variables fk:

ϑ(G(n, t)) = max
{
ω2
nf0 :
fk ≥ 0 for k = 0, 1, . . .,
∞∑
k=0

fkP
(α,α)
k (1) = 1/ωn,

∞∑
k=0

fkP
(α,α)
k (t) = 0

}
,

(9)

where α = (n− 3)/2.
To obtain (9) we simplified the objective function in the following way. Because

of the orthogonal decomposition (5) and because the subspaceH0 contains only the
constant functions, we have∫

Sn−1

∫
Sn−1

∞∑
k=0

fkP
(α,α)
k (x · y)dω(x)dω(y) = ω2

nf0.

We refer to (9) as the primal formulation of ϑ(G(n, t)).

6.2. Dual formulation. A dual formulation for (9) is the following linear pro-
gramming problem in two variables z1 and zt with infinitely many constraints:

min
{
z1/ωn :

z1P
(α,α)
0 (1) + ztP

(α,α)
0 (t) ≥ ω2

n,

z1P
(α,α)
k (1) + ztP

(α,α)
k (t) ≥ 0 for k = 1, 2, . . .

}
.

(10)

It is easy to check that weak duality holds between (9) and (10), so that the
value of any feasible solution of the dual formulation gives an upper bound for the
value of any feasible solution of the primal formulation and thus an upper bound
for ϑ(G(n, t)). Indeed, let f0, f1, . . . be a feasible solution to (9) and z1, zt be a
feasible solution to (10). Then,

z1/ωn = z1

∞∑
k=0

fkP
(α,α)
k (1) + zt

∞∑
k=0

fkP
(α,α)
k (t)

= f0(z1P
(α,α)
0 (1) + ztP

(α,α)
0 (t)) +

∞∑
k=1

fk(z1P
(α,α)
k (1) + ztP

(α,α)
k (t))

≥ ω2
nf0.

Simplifying (10) using P (α,α)
0 = 1 and P (α,α)

k (1) = 1 we finally obtain the
equivalent problem

min
{
z1/ωn :

z1 + zt ≥ ω2
n,

z1 + ztP
(α,α)
k (t) ≥ 0 for k = 1, 2, . . .

}
.

(11)
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Now, the following theorem characterizes the minimum of (11). Moreover, we
have strong duality between the primal formulation and the dual formulation.

Theorem 6.2. Let m(t) be the minimum of P (α,α)
k (t) for k = 0, 1, . . . Then the

optimal values of (9) and (10) are equal to

ϑ(G(n, t)) = ωn
m(t)

m(t)− 1
.

Proof. We first claim that the minimum m(t) exists and is negative. Indeed, if
P

(α,α)
k (t) ≥ 0 for all k ≥ 1, then z1 = 0 and zt = ω2

n would be a solution for (10)
of value 0. But this is a contradiction, since by weak duality any feasible solution
of (10) has value at least ϑ(G(n, t)) ≥ α(G(n, t)) > 0. So we know that for some
k ≥ 1, P (α,α)

k (t) < 0. This, coupled with the fact that P (α,α)
k (t) goes to zero as k

goes to infinity (cf. [1, Chapter 6.6] or [19, Chapter 8.22]), proves the claim.
To compute the optimal value of (11), one may use the geometric approach to

solve linear programming problems of two variables. The constraints

z1 + ztP
(α,α)
k (t) ≥ 0, k = 1, 2, . . .,

correspond to half planes through the origin of R2. The strongest of these con-
straints is the one for which P

(α,α)
k (t) is as small as possible. In this case the

optimal solution is given by the intersection of the two lines

z1 +m(t)zt = 0 and z1 + zt = ω2
n,

so that the optimal value is ωn ·m(t)/(m(t)− 1).
Now, let k∗ be such that m(t) = P

(α,α)
k∗ (t). Consider the optimization variables

fk of the primal formulation which are zero everywhere with the exceptions f0 =
m(t)/(ωn(m(t) − 1)) and fk∗ = −1/(ωn(m(t) − 1)). This provides a feasible
solution to (9) of value ωn ·m(t)/(m(t)− 1). From the weak duality relation, it is
also an optimal solution. �

Example 6.3. The minimum of P (α,α)
k (0.9999) for α = (24 − 3)/2 is attained at

k = 1131 and its value is −0.00059623 . . .

We end this section with one remark about the proof of Theorem 6.2. The fact
thatm(t) is negative can also be seen as a statement about orthogonal polynomials.
Then, it is more natural to argue as follows: Let k be the smallest degree so that
P

(α,α)
k (t) has a zero in the interval [t, 1]. The existence of such a k follows from

[19, Theorem 6.1.1]. Because of the interlacing property (see Section 7), we have
P

(α,α)
k (t) < 0 in the case P (α,α)

k (t) 6= 0, and P (α,α)
k+1 (t) < 0 whenever P (α,α)

k (t) =

0. Moreover, the absolute value of P (α,α)
k (t) goes to zero as k tends to infinity

(see [1, Chapter 6.6] or [19, Chapter 8.22]). These two facts together imply the
existence and negativity of m(t).
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7. ANALYTIC SOLUTIONS

In this section we compute the value

m(t) = min{P (α,α)
k (t) : k = 0, 1, . . .}

for specific values of t. Namely we choose t to be the largest zero of an appropriate
Jacobi polynomial.

Key for the discussion to follow is the interlacing property of the zeroes of
orthogonal polynomials. It says (cf. [19, Theorem 3.3.2]) that between any pair of
consecutive zeroes of P (α,α)

k there is exactly one zero of P (α,α)
k−1 .

We denote the zeros of P (α,β)
k by t(α,β)

k,j with j = 1, . . . , k and with the increas-

ing ordering t(α,β)
k,j < t

(α,β)
k,j+1. We shall need the following collection of identities:

(12) (1− u2)
d2P

(α,α)
k

du2
− (2α+ 2)u

dP
(α,α)
k

du
+ k(k + 2α+ 1)P (α,α)

k = 0,

(−1)kP (α,α)
k (−u) = P

(α,α)
k (u),(13)

(−1)k(α+ 1)P (α,α+1)
k (−u) = (k + α+ 1)P (α+1,α)

k (u),(14)

(2α+ 2)
dP

(α,α)
k

du
= k(k + 2α+ 1)P (α+1,α+1)

k−1 ,(15)

(2α+ 2)P (α,α+1)
k = (k + 2α+ 2)P (α+1,α+1)

k − kP (α+1,α+1)
k−1 ,(16)

(2k + 2α+ 2)P (α+1,α)
k = (k + 2α+ 2)P (α+1,α+1)

k + kP
(α+1,α+1)
k−1 ,(17)

(k + α+ 1)P (α+1,α)
k = (α+ 1)

P
(α,α)
k − P (α,α)

k+1

1− u
.(18)

They can all be found in [1, Chapter 6], although with different normalization.
Formula (12) is [1, (6.3.9)]; (13) and (14) are [1, (6.4.23)]; (15) is [1, (6.3.8)], (16)
is [1, (6.4.21)]; (17) follows by the change of variables u 7→ −u from (16) and
(13), (14); (18) is [1, (6.4.20)]. (18) and (13), (14).

Proposition 7.1. Let t = t
(α+1,α+1)
k−1,k−1 be the largest zero of the Jacobi polynomial

P
(α+1,α+1)
k−1 . Then, m(t) = P

(α,α)
k (t).

Proof. We start with the following crucial observation: From (15), t is a zero of the
derivative of P (α,α)

k . Hence it is a minimum of P (α,α)
k because it is the last extremal

value in the interval [−1, 1] and because P (α+1,α+1)
k (1) = 1, whence (using (15))

P
(α,α)
k (u) is increasing on [t, 1].
Now we prove that P (α,α)

k (t) < P
(α,α)
j (t) for all j 6= k where we treat the cases

j < k and j > k separately.
It turns out that the sequence P (α,α)

j (t) is decreasing for j ≤ k. From (18),

the sign of P (α,α)
j (t) − P

(α,α)
j+1 (t) equals the sign of P (α+1,α)

j (t). We have the
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inequalities
t
(α+1,α)
j,j ≤ t(α+1,α)

k−1,k−1 < t
(α+1,α+1)
k−1,k−1 = t.

The first one is a consequence of the interlacing property. From (17) one can
deduce that P (α+1,α)

k−1 has exactly one zero in the interval [t(α+1,α+1)
k−2,i−1 , t

(α+1,α+1)
k−1,i ]

since it changes sign at the extreme points of it, and by the same argument P (α+1,α)
k−1

has a zero left to t(α+1,α+1)
k−1,1 . Thus, t(α+1,α)

k−1,k−1 < t
(α+1,α+1)
k−1,k−1 = t. So t lies right to the

largest zero of P (α+1,α)
j and hence P (α+1,α)

j (t) > 0 which shows that P (α,α)
j (t)−

P
(α,α)
j+1 (t) > 0 for j < k.
Let us consider the case j > k. The inequality [1, (6.4.19)] implies that

(19) for all j > k, P
(α,α)
k (t(α+1,α+1)

k−1,k−1 ) < P
(α,α)
j (t(α+1,α+1)

j−1,j−1 ).

The next observation, which finishes the proof of the lemma, is stated in [1, (6.4.24)]
only for the case α = 0:

(20) for all j ≥ 0, min{P (α,α)
j (u) : u ∈ [0, 1]} = P

(α,α)
j (t(α+1,α+1)

j−1,j−1 ).

To prove it consider

g(u) = P
(α,α)
j (u)2 +

1− u2

j(j + 2α+ 1)

(dP (α,α)
j

du

)2
.

Applying (12) in the computation of g′ shows that

g′(u) =
(4α+ 2)u

j(j + 2α+ 1)

(dP (α,α)
j

du

)2
.

The polynomial g′ takes positive values on [0, 1] and hence g is increasing on this
interval. In particular,

g(t(α+1,α+1)
j−1,i−1 ) < g(t(α+1,α+1)

j−1,i ) for all i ≤ j − 1 with t(α+1,α+1)
j−1,i−1 ≥ 0,

which simplifies to

P
(α,α)
j (t(α+1,α+1)

j−1,i−1 )2 < P
(α,α)
j (t(α+1,α+1)

j−1,i )2 .

Since t(α+1,α+1)
j−1,i are the local extrema of P (α,α)

j , we have proved (20). �

8. NEW LOWER BOUNDS FOR THE EUCLIDEAN SPACE

In this section we give new lower bounds for the measurable chromatic number
of the Euclidean space for dimensions 10, . . . , 24. This improves on the previous
best known lower bounds due to L.A. Székely and N.C. Wormald [21]. Table 8.1
compares the values. Furthermore we give a new proof that the measurable chro-
matic number grows exponentially with the dimension.

For this we give a closed expression for limt→1m(t) which involves the Bessel
function Jα of the first kind of order α = (n − 3)/2 (see e.g. [1, Chapter 4]).
The appearance of Bessel functions here is due to the fact that the largest zero of
the Jacobi polynomial P (α,α)

k behaves like the first positive zero jα of the Bessel
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function Jα. More precisely, it is known [1, Theorem 4.14.1] that, for the largest
zero t(α+1,α+1)

k,k = cos θk of the polynomial P (α+1,α+1)
k ,

(21) lim
k→+∞

kθk = jα+1

and, with our normalization (cf. [1, Theorem 4.11.6]),

(22) lim
k→+∞

P
(α,α)
k

(
cos

u

k

)
= 2αΓ(α+ 1)

Jα(u)
xα

.

Theorem 8.1. We have

lim
t→1

m(t) = 2αΓ(α+ 1)
Jα(jα+1)
(jα+1)α

.

Proof. The asymptotic formula for the Jacobi polynomials [19, Theorem 8.21.8]
converges uniformly in every open interval contained in [−1, 1], hence the function
m(t) is continuous in the open interval (−1, 1) as then locally it can be written as
the minimum of finitely many continuous functions. Hence, by Proposition 7.1 and
by the fact that the zeros t(α+1,α+1)

k−1,k−1 tend to 1,

lim
t→1

m(t) = lim
k→∞

P
(α,α)
k (t(α+1,α+1)

k−1,k−1 ).

We estimate the difference

|P (α,α)
k (t(α+1,α+1)

k−1,k−1 )− 2αΓ(α+ 1)
Jα(jα+1)
(jα+1)α

|,

that we upper bound by∣∣∣∣P (α,α)
k (t(α+1,α+1)

k−1,k−1 )− P (α,α)
k

(
cos

jα+1

k

)∣∣∣∣
+
∣∣∣∣P (α,α)
k

(
cos

jα+1

k

)
− 2αΓ(α+ 1)

Jα(jα+1)
(jα+1)α

∣∣∣∣ .
The second term tends to 0 from (22). Define θk−1 by t(α+1,α+1)

k−1,k−1 = cos θk−1. By
the mean value theorem we have∣∣∣∣P (α,α)

k (t(α+1,α+1)
k−1,k−1 )− P (α,α)

k

(
cos

jα+1

k

)∣∣∣∣
≤

(
max

u∈[−1,1]

∣∣dP (α,α)
k

du

∣∣)∣∣ cos θk−1 − cos
jα+1

k

∣∣
≤

(
max

u∈[−1,1]

∣∣dP (α,α)
k

du

∣∣)(max
θ∈Ik
| sin θ|

)∣∣θk−1 −
jα+1

k

∣∣,
where Ik denotes the interval with extremes θk−1 and jα+1

k . Then, with (21),

θk−1 −
jα+1

k
= θk−1 −

jα+1

k − 1
+

jα+1

k(k − 1)

=
1

k − 1
((k − 1)θk−1 − jα+1) +

jα+1

k(k − 1)
= o

(
1
k

)
,
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and for all θ ∈ Ik

| sin θ| ≤ |θ| ≤ jα+1

k
+
∣∣θk−1 −

jα+1

k

∣∣ = O

(
1
k

)
.

From (15),

max
u∈[−1,1]

∣∣∣dP (α,α)
k

du

∣∣∣ ∼ k2.

Hence we have proved that

lim
k→∞

∣∣∣∣P (α,α)
k (t(α+1,α+1)

k−1,k−1 )− P (α,α)
k

(
cos

jα+1

k

)∣∣∣∣ = 0. �

Corollary 8.2. We have

χm(Rn) ≥ 1 +
(jα+1)α

2αΓ(α+ 1)|Jα(jα+1)|
,

where α = (n− 3)/2. �

We use this corollary to derive new lower bounds for n = 10, . . . , 24. We give
them in Table 8.1. For n = 2, . . . , 8 our bounds are worse than the existing ones
and for n = 9 our bound is 35 which is also the best known one.

best lower bound new lower bound
n previously known for χm(Rn) for χm(Rn)
10 45 48
11 56 64
12 70 85
13 84 113
14 102 147
15 119 191
16 148 248
17 174 319
18 194 408
19 263 521
20 315 662
21 374 839
22 526 1060
23 754 1336
24 933 1679

TABLE 8.1. Lower bounds for χm(Rn).

We can also use the corollary to show that our bound is exponential in the di-
mension. To do so we use the inequalities (cf. [1, (4.14.1)] and [23, Section 15.3,
p. 485])

jα+1 > jα > α
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and (cf. [1, (4.9.13)])

|Jα(x)| ≤ 1/
√

2

to obtain
(jα+1)α

2αΓ(α+ 1)|Jα(jα+1)|
>
√

2
αα

2αΓ(α+ 1)
,

and with Stirling’s formula Γ(α+ 1) ∼ ααe−α
√

2πα we have that the exponential
term is

(
e
2

)α ∼ (1.165)n.

9. FURTHER GENERALIZATIONS

In this section we want to go back to our generalization (3) of the theta function
and discuss its computation in more general situations than the one of the graph
G(n, t) encountered in Section 6. We assume that a compact group Γ acts continu-
ously on V . Then, the computation only depends on the orthogonal decomposition
of the space of continuous functions (23).

9.1. Two-point homogeneous spaces. First, it is worth noticing that all results in
Section 6 are valid — one only has to use the appropriate zonal polynomials and
appropriate volumes — for distance graphs in infinite, two-point homogeneous,
compact metric spaces where edges are given by exactly one distance. If one con-
siders distance graphs in infinite, compact, two-point homogeneous metric spaces
with s distances, then the dual formulation is an infinite linear programming prob-
lem in dimension s+ 1.

9.2. Symmetric spaces. Next we may consider infinite compact metric spaces V
which are not two-point homogeneous but symmetric. Since the space of continu-
ous functions C(V ) still has a multiplicity-free orthogonal decomposition one gets
a linear programming bound, but with the additional complication that one has to
work with multivariate zonal polynomials. The most prominent case of the Grass-
mann manifold was considered by the first author in [2] in the context of finding
upper bounds for finite codes.

9.3. General homogeneous spaces. For the most general case one would have
multiplicities mk in the decomposition of C(V ) which is given by the Peter-Weyl
Theorem:

(23) C(V ) = (H0,1 ⊥ . . . ⊥ H0,m0) ⊥ (H1,1 ⊥ . . . ⊥ H1,m1) ⊥ . . . ,

where Hk,l are Γ-irreducible subspaces which are equivalent whenever their first
index coincides. In this case one uses S. Bochner’s characterization of the con-
tinuous, Γ-invariant, positive kernels given in [4, Section III] to get the primal
formulation of ϑ which yields a true semidefinite programming problem.
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10. RELATION TO DELSARTE’S LINEAR PROGRAMMING BOUND

That it is possible to treat all two-point homogeneous spaces simultaneously is
similar to the linear programming bounds for finite codes which were established
by P. Delsarte in [6] and put into the framework of group representations, which
we use here, by G.A. Kabatiansky and V.I. Levenshtein in [11]. In this section
we devise an explicit connection between these two bounds. The connection be-
tween the linear programming bound and the theta function was already observed
by R.J. McEliece, E.R. Rodemich, H.C. Rumsey Jr. in [16] and independently by
A. Schrijver in [18] in the case of finite graphs.

As we already pointed out in Remark 3.2, there are many alternative ways to
define the theta function for finite graphs and it is somewhat mysterious that they all
give the same. For our generalization we used the definition given in [14, Theorem
4] to give an upper bound for the measure of any stable set in G(n, t). Now we
generalize the definition given in [14, Theorem 3] to give an upper bound for the
maximal cardinality of a finite stable set in the complement of the graph G(n, t).
This is the graph on the unit sphere where two points are adjacent whenever their
inner product is not equal to t. Similarly we could also in the following consider
the graph on the unit sphere where the points are adjacent whenever their inner
product is at most t. In this way we recover the linear programming bound and
shed some light on the connection between these two definitions.

Let G = (V,E) be a finite graph. By taking the automorphism group Aut(G)
into account, definition [14, Theorem 3] becomes

ϑ(G) = min
{
λ : K ∈ RV×V is positive semidefinite,

K is invariant under Aut(G),

K(x, x) = λ− 1 for all x ∈ V ,

K(x, y) = −1 if {x, y} ∈ E
}
.

(24)

In other words, ϑ(G) is the smallest largest eigenvalue of any positive semidefinite
matrix K ∈ RV×V with K(x, y) = 1 whenever x = y or {x, y} ∈ E. This gives
an upper bound for the cardinality of any stable set in the complement of G, i.e.,
the graph with vertex set V in which two vertices are adjacent whenever they are
not adjacent in G.

Now we generalize (24) for the graph G(n, t) by defining

ϑ(G(n, t)) = min
{
λ : K ∈ C(Sn−1 × Sn−1) is positive,

K is invariant under O(Rn),

K(x, x) = λ− 1 for all x ∈ Sn−1,

K(x, y) = −1 if x · y = t
}
.

(25)

Proposition 10.1. Let C ⊆ Sn−1 be a subset of the unit sphere such that every
pair of points in C has inner product t. Then its cardinality is at most ϑ(G(n, t)).

Proof. Let K be a kernel satisfying the conditions in (25). Then, by the positivity
of the continuous kernel K it follows by [4, Lemma 1] that for any nonnegative
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integer m, any points x1, . . . , xm ∈ Sn−1, and any real numbers u1, . . . , um, we
have

∑m
i=1

∑m
j=1K(xi, xj)uiuj ≥ 0. In particular,

0 ≤
∑

(c,c′)∈C2

K(c, c′) =
∑
c

K(c, c) +
∑
c 6=c′

K(c, c′) ≤ |C|K(c, c)− |C|(|C| − 1),

so that |C| − 1 ≤ K(c, c) and the statement follows. �

The values ϑ(G) and ϑ(G) are related by the identity ϑ(G)ϑ(G) = |V | if G is a
finite, homogeneous graph ([14, Theorem 8]), and by the inequality ϑ(G)ϑ(G) ≥
|V | if G is an arbitrary finite graph ([14, Corollary 2]). Using the same arguments
as in the proof of Theorem 6.2 one shows that ϑ(G(n, t)) = (m(t)− 1)/m(t). So
we have

ϑ(G(n, t))ϑ(G(n, t)) = ωn.

It follows immediately from the definitions that ϑ(H) ≤ ϑ(G(n, t)) for any finite
induced subgraph H of G(n, t), since one can extract a feasible solution for ϑ(H)
from any feasible solution for ϑ(G(n, t)). Hence, as we noticed after Corollary 6.1,
we cannot improve the bound on the measurable chromatic number of G(n, t)
given in Corollary 6.1 by computing the theta function of a finite induced subgraph
of it.

We finish by showing how the linear programming bound can be obtained from
(25). Consider the graph on the unit sphere where two points are not adjacent
whenever their inner product lies between −1 and t. Using Schoenberg’s charac-
terization (7) the semidefinite programming problem (25) simplifies to the linear
programming problem

inf
{
λ : f0 ≥ 0, f1 ≥ 0, . . .,

∞∑
k=0

fkP
(α,α)
k (1) = λ− 1,

∞∑
k=0

fkP
(α,α)
k (u)) = −1 for all u ∈ [−1, t]

}
.

We can strengthen it by requiring
∑∞

k=0 fkP
(α,α)
k (u) ≤ −1 for all u ∈ [−1, t]. By

restricting f0 = 0 the infimum is not effected. Then, after simplification, we get
the linear programming bound (cf. [3, (7)])

inf{1 +
∞∑
k=1

fk : f1 ≥ 0, f2 ≥ 0, . . .,

∞∑
k=1

fkP
(α,α)
k (u) ≤ −1 for all u ∈ [−1, t]

}
,

yielding an upper bound for the maximal number of points on the unit sphere with
minimal angular distance arccos t.
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