CODES AND DESIGNS IN GRASSMANNIAN SPACES.

CHRISTINE BACHOC, EIICHI BANNAI, AND RENAUD COULANGEON

ABSTRACT. The notion of ¢-design in a Grassmannian space G, , was
introduced by the first two authors and G. Nebe in a previous paper.
In the present work, we give a general lower bound for the size of such
designs. The method is inspired by Delsarte, Goethals and Seidel work
in the case of spherical designs. This leads us to introduce a notion of f-
code in Grassmannian spaces, for which we obtain upper bounds, as well
as a kind of duality tight-designs/tight-codes. The bounds are in terms
of the dimensions of the irreducible representations of the orthogonal
group O(n) occuring in the decomposition of the space L*(Gy,,) of
square integrable functions on Gy, ,,, the set of oriented grassmanianns.

1. INTRODUCTION.

There are various combinatorial problems related to finite sets of Eu-
clidean spheres. Among those, two, in a sense dual to each other, have
received much attention, namely the notions of spherical ¢-design (¢ an inte-
ger), and spherical A-codes (A a finite set in [—1,1]). The notion of spherical
design was motivated by numerical integration: a spherical ¢-design is a finite
subset X of a sphere S4~1, such that the integral over S?~! of a polynomial
function up to degree ¢ coincides with its average value at the points of X. Tt
is thus important, for instance for applications, to find designs with smallest
possible cardinality. So the question of finding a lower bound for the size of a
spherical design is central. As for A-codes, it is natural conversely to ask for
an upper bound of their size : an A-code is a finite set in a sphere S9~! such
that the scalar products of pairwise distinct elements belong to a fixed set
A C [-1,1]. When A = [—1,1/2], finding an upper bound is equivalent to
the kissing number problem, known as the problem of the thirteen spheres
when n = 3. In their landmark paper [5], Delsarte, Goethals and Seidel
proposed a general method, based on harmonic analysis on the orthogonal
group, to study both questions.

The problem of packings, and related combinatorial questions, in the
Grassmanian spaces G, , of m-dimensional subspaces of R" have been in-
vestigated in a series of recent papers (see [3], [4]). In [1], a theory of designs
was developped in that framework. One task of the present paper is to de-
fine a notion of f-code in Grassmannian spaces, which reduces to A-code
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when m =1 (the codes in the first Grassmannian G, ,, are in one-to-one cor-
respondance with the antipodal codes of the unit sphere). Then, inspired
by Delsarte, Goethals and Seidel’s works, we establish lower/upper bounds
for the size of such designs/codes, which involve the dimensions of some
irreducible representations of O(n).

2. ZONAL FUNCTIONS ON GRASSMANNIAN SPACES.

Let Gy ~ O(n)/O(m) x O(n — m) be the Grassmannian space of m-
dimensional subspaces of R". Recall (see [1], [11]), that the orbits under
O(n) of pairs (p,q) € Gmn X Gm,n are parametrized by the m-tuples

1>ty >t 2> >ty 20.

Namely, to a couple (p,q) of m-dimensional subspaces, one associates the
m-tuple t; = cosfy,--- ,ty, = cosby, where 0 < 6; < --- < 6, < 3 are
the principal angles between p and ¢q. One way to compute the ¢;, is as
follows : denoting by pg the subspace generated by the first m vectors of the
canonical basis of R", and writing p = g - po, ¢ = h - pg, with suitable g, h in
O(n), then the y; := t? are the eigenvalues of the m x m symmetric matrix
AA!, where A is the m-size block appearing in the block-decomposition

(1) g h = (g‘ g).

Moreover, g and h are defined up to multiplication by an element in Stab(py),
and may be chosen so that B = D = 0 and

(2)

sin 04 0 o 0
0 sin 92 A 0
cos 6 0 0 ) . .
0 cos B9 0 : :
A= . . ,C = 0 0 sin 0,,
: 0 0 0
0 0 cos O, .
0 0 0

Besides G, we have to consider the set G, , of oriented m-dimensional
subspaces of R". We may view the elements of G;, , as couples p = (p, s),
with p an m-dimensional subspace, and s an element in A™ p. The action
of O(n) on these couples is given by

9-(p, s) := (9p, 93),
so that if we fix an orientation sy on pg, the stabilizer of (pg, sg) identifies
with SO(m) x O(n —m). Consequently

G = S0(n)/SO(m) x SO(n —m)) ~ O(n)/SO(m) x O(n —m),

which is a 2 to 1 covering of G, ,. The orbits under O(n) of pairs (p,q) €
Gom X Gm.n can be likewise parametrized by (m + 1)-tuples (€, 1, ,tm),
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where tq,- -+ , %, are defined as above, and € = ‘(éittf“ € {£1}, where A is

as in (1). We still have a canonical block-decomposition like (2), but with
top-left block

€ cos 6 0 ... 0
0 cosfy ... 0
(2)) A= . . .
0 0 ... cosb,,
Both Gy n and Gy, ,, inherit from the Haar measure of O(n), a measure

denoted dp and dp respectively. Since we will be mainly interested in non-
oriented grassmanians, we normalize it so as fgm dp=1 (whence fgo dp =

2). Accordingly, the space LQ(Q;’%n) of square integrable functions on Gy, ,
is endowed with the scalar product

o= [ SGa@

so that its restriction to L?(Gy, ) satisfies
o) = [ @10, ] € XG0 € (G

The group O(n) acts isometrically on L*(Gy, ,) by
o f(p) = f(o"'p).
The structure of L*(Gy, ,) as an O(n)-module is well-known, and is given
for instance in [9], p. 546. To be precise, if we consider the subset R(Gy, ,,)
of regular functions on Gy, ,, (i.e.the set of functions induced by regular

functions on O(n)) which is a dense subset of L*(Gy, ,,), we have the following
decomposition

R(Gmn) = EP HA

in pairwise orthogonal non isomorphic irreducible O(n)-submodules H}, p,
the sum being over partitions p = 1 > po > ...y, > 0, of depth at most
m, with p; = p; mod 2 for all (4, 7). We call these partitions m-admissible,
or admissible for short. They split into odd and even, according to the parity
of the p;.

Remark 2.1. For a given even partition u, the admissibility does not de-
pend on m, as long as depth(u) < m < %, whereas for i odd it does, since
in that case the u; have to be nonzero for all 1 < i < m.

It turns out that the O(n)-isomorphism class of H}y, , is independent of
m, provided that depth(x) < m < § and p is m-admissible (see [1] for a
more detailed description of Hﬁm) The space H#z,n is isomorphic to the
irreducible representation of O(n) canonically associated to the partition p,

and denoted V;!' in [9]. We shall denote the dimension of this space d,.
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The sum over even, resp. odd, partitions corresponds respectively to

R(Gm.n) and its orthogonal complement R (G n)L. This also corresponds
to the elgenspace decomposition of R(an) with respect to the canonical
involution ¢* induced by orientation changlng, namely

R(Gmn) = R(Gmn) " = 1{f € R(Gnn) | 07 (f) = £},

and

RAGmn)" = R(Ginn) = {f € R(Grn) | 0*(f) = = f}.
Let Z° (resp. Z) be the set of O(n)-invariant functions F on Gy, ,, X Gy, ,,
(resp. Gm,n X gm,n), such that

) F(..) € R(Gnn) F(.q) € R(Gy,p) for all (,q) € Gy X G
resp.
(37 F(p,.) € R(Gmn): F(.,q) € R(Gm,n) for all (p,q) € Gmn X Gmn-
As usual, we call such functions zonal. Alternatively, if a base point p is
fixed, one can identify Z° with R(Q%’n)smb(ﬁ), mapping F' € Z° on F(p,.) €
R(Gm., 2)5t20@) and similarly Z identifies with R(Gyp,,,) 520
As explalned in [1], [11], it follows from the Frobenius reciprocity theorem
that Hﬁl,stab(ﬁ) is one-dimensional for any p (if g is even, then H#m -
R(Gmn) = R(g;m)*, so that Hﬁl,stab(ﬁ) = Hﬁl,stab(p)). Consequently, to
each summand H}, , is attached a unique (up to scaling) zonal function P,,,

which can be computed in the following way: denoting by d, the dimension
of Hb, », and {eu,i}t1<i<d, an orthonormal basis of it, one has

(4) Pu(p, ) Zeu, P)ew,i(p

The results of the next section rely on the following properties of the P,;:

Lemma 2.2.
(i) Pu(p.) = 1, for any p and p.
(i1) For any X\, u and p, p', one has
_ _ ox o
(5) <Pu(p7')7pz\(p’7')> = —’upu(papl)a

if, for fized p, we view the map G — P,(p,q) as a function in LQ(QZM).
In particular, for any finite set X C Gy, ,,, the matriz (P, (p,p'))
18 positive semidefinite.

(iii) For any X, pu, one has

(6) P)\P = ZC/\’M(T)PT

PP EX?

with non-negative coefficients cy ,(7). In particular, cy ,(0) = 62—:‘.
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Proof. Since P,(p,p) does not depend on p, one has

. 1 o 1
Py(p,p) = §/go P, (p,p)dp = gZ/ lewi (P)|"dp
m,n =1 m,n
d
1 13
= CTZ(%J"@M,Q L,
Boi=1

which proves (i). As for (ii), this is clear using (4) and the orthogonality re-
lations between the e, ;. Finally, assertion (iii) is classical, see [10] Theorem
3.1

O

The algebraic structure of Z and Z° can be easily deduced from [9]. For
lack of reference, we state it in the next proposition
Proposition 2.3.

(i) There is an isomorphism
Z~CYy, e, Vi,

the ring of symmetric polynomials in m wvariables, mapping Y; to y; =
yi(p,q). Similarly, one has

20~ Yy, Y5 [6], with 0> =Y - Yy,

mapping 6 to ety ---ty,, where € = €(p,q), t; = ti(p,q). Moreover,
the eigenspace decomposition of Z° with respect to the involution o* is
given by

2" = Z and 2° =ty -t Z ~ OC[Y, -, Y]
(ii) The P, corresponding to even partitions may be expressed as

Pu(p,q) = pu(y1(p,q)s -+ s ym(p: q))

with p, (Y1, ,Ym) a symmetric polynomial of total degree %, and

those corresponding to odd partitions as
Pu(ﬁa qN) = (Etl et tm)pu(yla e 7ym)7

=
5

with p, (Y1, ,Ym) a symmetric polynomial of degree

Proof. (i) As explained above, we can identify Z with R(Gp,.,)5P®) (resp.
Z° with R(Gy,,,)5"P)), p (resp. p) being any fixed base point. From the
isomorphism Stab(p) >~ O(m) x O(n — m), it is easily seen, using (2), that
an element F' = F(p,) € R(Gm.n) P®) is of the form
F = P(cosfy,- -+ ,co86p,,sinfy, - sinb,,),

where P(Ty,--- Ty, Z1, - Zy,) is a polynomial, symmetric in Ty, -, Ty,
and Zi,--- Z,, respectively. Now the Stab(p)-invariance also implies that
all the exponents are even, so that F' is indeed a symmetric polynomial
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inY, = TZ,---,Y,, = T2, which is the first part of assertion (i). As for
the second part of the assertion, one first shows in the same way that a

Stab(p)-invariant element in R(G,, ,) is of the form
F =F(p,-) = P(ecosby,-+ ,co80,,,sinb,---sinb,,),

where P(Ty,--- , Ty, 21, Zy,) is a polynomial, symmetric in Ty, - , T},
and Zi,--- Z,, respectively. Since Stab(p) ~ SO,, x O,_,, the Stab(p)-
invariance also implies that the exponents in the last m variables are even,
whereas the exponents in the first m ones are only restricted to have the same
parity. Consequently, P is the sum of a polynomialin Y = T2, --- | Y,, = T2
plus Ty - - - T}, times a polynomial in Y7, - - ,Y,,, as asserted. The eigenspace
decomposition is clear.

As for assertion (ii), we only need to observe that the P, belong to Z°*
or Z°7 according to as u is even or odd, and that the p, have total degree
|| in Ty, -, T O

3. BOUNDS ON CODES AND DESIGNS.

Among the various equivalent definitions of a t¢-design given in [1] we
recall the following one (see [1] Proposition 4.2.)

Definition 3.1. A finite subset D of Gy is a 2k-design if

(7) Vo € H, (p.1) = fﬁ S olp).
peD

As for spherical codes, the natural generalization to our context is as
follows:

Definition 3.2. Let f(Y1,---,Yn) be a symmetric polynomial such that
f(1,---,1) = 1. A finite subset D of the Grassmannian space Gy, n is a
f-code, if for any pair (p,q) of distinct elements in D one has

fy(p:q)s s ym(p,q)) = 0.

On the other hand, one can associate canonically to a symmetric polyno-
mial f(Y7,:--,Y,,) as above, an O(n)-invariant function F on G, X Grom,
satisfying F'(p,p) = 1, by the formula:

F(p.q) == fyi(p, ), ,ym(p. q)),
and the definition of an f-code now reads
(8) F(p,q) = by (p,q) € D*.
The following notion of type is consistent with [6] Definition 5.4.:

Definition 3.3. The type of an f-code is 1 if Y1 ---Y,, divides the polyno-
mial f(Y1, - ,Yy), and 0 otherwise.
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For any integer k, we define

H,= @ Hi,.

| <k
© admissible

It decomposes under o* as Hy, = H,;" ® H, , and we have, for the respective
dimensions dki of H ];t,

d;r = Z dy, resp. d, = Z dy.

<k <k
p even 1 odd
depth(u)<m depth(p)<m

It’s worth noticing that, from remark 2.1, d;’ does not depend on m, while
d,; does. The next two theorems establish bounds for ¢-designs and f-codes
in terms of these numbers. Some explicit values of d;’ and d, are collected

in the Appendix (the d, are computed from the formulas in [7] §24.2, pp
407-410):

Remark 3.4. In [1], we considered only non-oriented grassmanians, and
what was denoted Hy there, corresponds to what is denoted H,;" here.

Theorem 3.5. Let D C Gy be a 2k-design. Then

(9) D| > max{dy,d, }.

If equality holds in (9), then D is an f-code for f = dLJfZWKk dup, or
k n even

f=YYn ngk dupy, depending on whether d,‘g" > d, or not.

dy u odd

o

Proof. Let s be a section of the canonical surjection G, ,

— Gmn, and
D = s(D). Fix p and ¢ in Gy, ,,. If p and X are two partitions of degree < F,

the formula
(P(ﬁl) = Pu(ﬁa ﬁI)P/\(qa ﬁl)
defines an element in Hy. If moreover o and A are both even (resp. odd),

then ¢ is o*-invariant, so it belongs to H;;C Consequently (7) applies in
both cases and reads:

% > o) = ﬁ > o)

p'eD p'eD

= (@, 1) 12(Gn.)

= (Pu(p: ) PA(¢: ) D12 (Gpnn)

= (Pu(p:-), Px(4, ) 203, )
S

= —2P,(p,q).
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In other words, the matrices S, := (d,P,(p,p"))
relations

55 in B ‘| <k, satisfy the

SMS/\ = 5z\,u|5|5u = 5A,M|D|Sua
as long as p and X are both even (resp. odd). Setting ST := 3, <k Sy,

[ even

resp. S” 1= )|, |<k Sy, it follows that
podd

(10) S** = |p|S*.

On the other hand, one has Tr S, = d,|D|, from Lemma 2.2, so that Tr S* =
Do lul<k Tr S, = df|D|, and likewise Tr S~ = d_ |D|. Therefore,

1 even
_ TrS*

df = = rank S* < |D|,
g D]

whence the conclusion.

When equality holds, then (10) implies that ST = |D|Ijp| = d]f I)p| resp.
S~ = d; I;p|, depending on whether d;’ > d; or not, where Ip| stands for
the identity matrix in dimension |D|. This means that F(p,q) = 0,4, for
all (p,q) € D?, where F = d%z\u\ﬁk d,P,, resp. dL—ZW\Sk d,P,. In the

ko even k odd
first case, this is clearly equivalent to the assertion that D be an f-code,

according to (8) and the definition of f. This is also the case in the second
case, since each P,, u odd, is divisible by the product ¢; - - - ¢,,, so that

1 1
e Z duPu(p,q) = 0pq & e Z (1 tm)dy Pu(p, q) = dpq-
ko |ul<k ko |ul<k
© odd © odd
O
Theorem 3.6. Any f-code D in Gy, satisfies
(11) D < djf
where k = 2deg f. If moreover f is of type 1, then
(12) D < d;
where k = 2deg f — m. Whenever equality holds in (11), resp. (12), then
1
f= d_+ Z dupua
ko pl <k
I even
resp.

Vi

-
ko lul<k
u odd

and D 1s a 2k-design.
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Proof. Setting k = 2deg f, we first see that the functions F(p,.), p € D are
in H ,;" . We claim that they form a linearly independent system. Indeed,
if ZpGD MpF(p,.) = 0, then evaluating the left-hand side successively on
each p € D, and using (8), we see that A, = 0 for all p € D. Hence |D| <
dim H,;" = d:, which is the first assertion. As for the second one, if f is divis-
ible by Y7 ---Y,,, we write it as f(Yi,---, V) = (Yi---Yn)g(Yi, -, V).
Then the functions t1(p,.) - t;m(p,.)G(p,.), p € D are linearly independent
elements in H,, with & = 2deg f — m, and the inequality |D| < d, follows,
as in the first case.

To see when equality is achieved, let us assume, for instance that |D| = dz,
k = 2deg f (the case |D| = d, ,k = 2deg f —m for D of type 1 is dealt with
similarly). Under this assumption, the family {F(p,.) , p € D} is now a
basis of H ,;" . Moreover, it is readily checked that the following formula holds
for any ¢ in H,j':

(13) o= oPF(p,.).
peD

On the other hand, we know from Proposition 2.3 that F' (resp. f) may be
written as a linear combination of the P, (resp. p,),

(14) F= Y fuP(resp. f= > fupy).
lu|<k lu|<k
M even M even

Let P:= )| <k duPy. What we want to show is that F' = %P, or in other
1 even
words that

d
(15) fu= ﬁ, for |u| < k, p even.

To that end, it is sufficient to show that

d
(16) 0< fu< ﬁ for [u| < k,p even.

since applying (14) to any p in D, we see that 1 = F(p,p) = fuPu(p,p) =
>~ fu, so the right inequality in (16) is an equality. First we note, using (5)
and the above decomposition, that

(F(g,-), Y duPulp,.)) = Flp.q),
lnl<k

so that the condition F(p,q) = dp4, (p,q) € D? implies that the family
{Z\mgk d,P,(p,.), p € D} is a basis, dual to {F(p,.), p € D} with respect
to the scalar product (,). Consequently, the matrix S = (P(p,q))
((P(p,-), P(g;.))), gep> is invertible and its inverse is given by

S_l = ((F(p, -)aF(Qa ')>)p,q€D2'

p.geD2 —
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One easily checks, using lemma 2.2 that

)
<F(p7 ')7 PM(Q? )> = d_uP/L(qap)a
o
for p,q in D2, and |p| < k, p even. But according to (13), this means that
the functions P,(q,.), ¢ € D, |u| < k, p even, are eigenfunctions of the
matrix (<F(p,-),F(q,-)>)p’quQ = S~1, with corresponding eigenvalue g—ﬁ.

Thus the g—i are eigenvalues of the Gram matrix of a basis of H,;", hence

positive. Now, writing (14) for all (p, ¢) € D?, and adding up we obtain

D= > Fp.g)= > fu >, Pulp.q)

(p,q)€D? lu|<k  (p,q)€D?
[ even
whence
(17) DiA-flD)= Y. fu Y. Pulp.g) >0,
lul<k (p.q)eD?
u even,u7#0

because of the positivity of the matrix (P,(p,p'))
so that fp <

poyepe (lemma (2.2)(ii),

‘D‘ = d* If we now consider the annihilator polynomial

Fy:=PF =Y guPu
|| <k
peven

_fA

we contend that the g, , are nonnegative and that g, g : this is an easy

consequence of lemma 2.2 (6). Consequently, the argument used to get (17)
It remains to prove that D is a 2k des1gn. From [1] Proposition 4.2., it
amounts to prove that

Vo € Hy,, (p,1 T Z =0 Zso

pED

still holds, and we obtain gy o = as desired.

It’s enough to check this for functions of the form gh, with g, h in H,;", since
they generate HQ";g Using the expansion (13) of g and h, we see that

(1,9h) = (g, h)
= " 9h(a){F(p, ), Flg,.)
p,geD?
|D|,DEZDQ

whence the conclusion. O
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4. EXAMPLES.

4.1. The case m = 1. This is the case of the projective space over the
real numbers, the codes of which are studied in [6]. The 2k-designs in the
real projective space can be viewed as antipodal (2k + 1)-designs on the unit
sphere of the Euclidean space for which absolute bounds are given in [5]. We
recover here these bounds, since for g = p; > 0 the space H{‘n is isomorphic
to the space of harmonic polynomials in n variables of degree p;. One has
d;r = (":ﬁ;l) and d, = ("2512) if k is even, and wvice versa if k is odd.

A t-design is called tight if its cardinality attains this lower bound. Tight
t-designs are only known for (n,t) = (7,4),(8,6),(23,4),(23,6), (24, 10).
Moreover, it is known that tight #-designs cannot exist when ¢ > 8, apart
from the (24,10) given by the lines supporting the minimal vectors of the
Leech lattice (see [2]).

4.2. The case k£ = 2. In [3] and [4], packings in the Grassmannian spaces
are considered, with respect to the so-called chordal distance, given in our
notations by

d2(p, q) =m — Zyl
=1

In [3], a simplex bound is settled for the sets D for which d(p,q) > d
(using an isometric embedding into the Euclidean sphere of R(»—1D(n+2)/2),
Equality holds if and only if |D| = w and d(p, q) is constant.

In [4, §5], an infinite family of packings in gu’p meating this bound, is
constructed. Here p is a prime, which is either 2equal to 3 or congruent to
—1 modulo 8. Let us denote it by D,. Then one has:

Proposition 4.1. D, is a tight 4-design in Gp—1 .
2

Proof. According to [4] Theorem 3, D, consists on @ = dj,... 0] +

— gt . ) : 2 _ (p+1)°
dj2,0,.,0) = dy subspaces with same pairwise chordal distance d° = TPT)R
Since d? = 3 sin? §; = % — > y;, the conclusion follows, applying Theorem
pH)(ZZYi)*(po)) ]

p?=5 ’

3.6 to the polynomial f = 4

4.3. The case k = 3. From the definitions, one has dgr = d;“ = M, and

2
d3 equals 0 unless m = 1 in which case d3 = (n—3|—2)’ or m = 3 in which case

dy =dq,1) = (g) Therefore, it is very unlikely that tight 6-designs exist
for m # 1, 3.

A family of packings in the Grassmannian Gk om is constructed in [4,
Theorem 1], each of them are orbits under the Clifford group C,,. We have
checked that, for m = 2,3,4, and for (m,k) = (5,4), these packings are
6-designs. For each m, the smallest of these sets corresponds to k =m — 1
and its cardinality equals 22™ 4+ 2™ — 2 = 2(dj — 1).
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Remark 4.2. It is known that the orbits of the Clifford group on the first
Grassmannian provide 6-designs, because the first non trivial invariant poly-
nomial of this group has degree 8 (and corresponds to the Hamming code, see
[12] and the earlier work of B. Runge). We conjecture that the orbits of the
Clifford group on all the Grassmannians provide 6-designs. This, according
to [1, Th 4.5, Rem 4.6], is equivalent to the fact that the C,,-invariants of
the (n = 2™ ) Gl -irreducible modules canonically associated to the partitions
(4,2) and (2,2,2) (denoted F} in [9]) have dimension 1.

5. APPENDIX.

We list below some values of d: and d,, for m = 2,3 and 4.

CHRISTINE BACHOC, EIICHI BANNAI, AND RENAUD COULANGEON

m=2 m=3 m=4
n k dkJr d, n k d;r d, n k d;r d,
4 1 1 0 6 1 1 0 8 1 1 0
4 21 10 3 6 2 21 0 8 2 36 0
4 3| 10 3 6 3 21 10 8 3 36 0
4 41 40| 18 6 4| 210 10 8 41 630 35
4 5 40| 18 6 5| 210| 136 8 5| 630| 35
5 1 1 0 7 1 1 0 9 1 1 0
5 2| 15| 10 7 2 28 0 9 2 45 0
5 3| 15| 10 7 3 28 35 9 3 45 0
5 4 (105| 91 7 4| 378 35 9 41 990|126
5 51105| 91 7 5| 378 | 651 9 51 990 | 126
6 1 1 0 8 1 1 0 10 |1 1 0
6 21 21| 15 8 2 36 0 10 |2 55 0
6 3|1 21| 15 8 3 36 56 10 |3 55 0
6 4 (210 | 190 8 4| 630 56 10 |4 | 1485 | 210
6 51210 | 190 8 5| 630 | 1352 10 | 5| 1485 | 210
7 1 1 0 9 1 1 0 11 |1 1 0
7 21 28| 21 9 2 45 0 11 |2 66 0
7 3| 28| 21 9 3 45 84 1 |3 66 0
7 4378 | 351 9 41 990 84 11 | 4] 2145 | 330
7 5378 | 351 9 51 990 | 2541 11 | 52145 | 330
8 1 1 0 10 |1 1 0 12 |1 1 0
8 2| 36| 28 10 |2 55 0 12 |2 78 0
8 3| 36| 28 10 |3 55 | 120 12 |3 78 0
8 41630 | 595 10 |4 |1485 | 120 12 | 4| 3003 | 495
8 51630 | 595 10 | 5| 1485 | 4432 12 | 53003 | 495
9 1 1 0 11 |1 1 0 13 |1 1 0
9 2| 45| 36 11 |2 66 0 13 |2 91 0
9 3| 45| 36 1 |3 66 | 165 13 |3 91 0
9 41990 | 946 11 | 42145 | 165 13 |4 4095|715
9 51990 | 946 11 | 5| 2145 | 7293 13 | 54095 | 715
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