CODES AND DESIGNS IN GRASSMANNIAN SPACES.

CHRISTINE BACHOC, EIICHI BANNAI, AND RENAUD COULANGEON

ABSTRACT. The notion of t-design in a Grassmannian space $\mathcal{G}_{m,n}$ was introduced by the first two authors and G. Nebe in a previous paper. In the present work, we give a general lower bound for the size of such designs. The method is inspired by Delsarte, Goethals and Seidel work in the case of spherical designs. This leads us to introduce a notion of fcode in Grassmannian spaces, for which we obtain upper bounds, as well as a kind of duality tight-designs/tight-codes. The bounds are in terms of the dimensions of the irreducible representations of the orthogonal group O(n) occuring in the decomposition of the space $L^2(\mathcal{G}_{m,n}^\circ)$ of square integrable functions on $\mathcal{G}_{m,n}^\circ$, the set of oriented grassmanianns.

1. INTRODUCTION.

There are various combinatorial problems related to finite sets of Euclidean spheres. Among those, two, in a sense dual to each other, have received much attention, namely the notions of spherical t-design (t an integer), and spherical A-codes (A a finite set in [-1, 1]). The notion of spherical design was motivated by numerical integration: a spherical t-design is a finite subset X of a sphere S^{d-1} , such that the integral over S^{d-1} of a polynomial function up to degree t coincides with its average value at the points of X. It is thus important, for instance for applications, to find designs with smallest possible cardinality. So the question of finding a lower bound for the size of a spherical design is central. As for A-codes, it is natural conversely to ask for an upper bound of their size : an A-code is a finite set in a sphere S^{d-1} such that the scalar products of pairwise distinct elements belong to a fixed set $A \subset [-1, 1]$. When A = [-1, 1/2], finding an upper bound is equivalent to the kissing number problem, known as the problem of the thirteen spheres when n = 3. In their landmark paper [5], Delsarte, Goethals and Seidel proposed a general method, based on harmonic analysis on the orthogonal group, to study both questions.

The problem of packings, and related combinatorial questions, in the Grassmanian spaces $\mathcal{G}_{m,n}$ of *m*-dimensional subspaces of \mathbb{R}^n have been investigated in a series of recent papers (see [3], [4]). In [1], a theory of designs was developped in that framework. One task of the present paper is to define a notion of *f*-code in Grassmannian spaces, which reduces to *A*-code

Date: April 9, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 11H06,

Key words and phrases. Grassmann manifold, designs, codes, zonal functions, bounds.

when m = 1 (the codes in the first Grassmannian $\mathcal{G}_{1,n}$ are in one-to-one correspondance with the antipodal codes of the unit sphere). Then, inspired by Delsarte, Goethals and Seidel's works, we establish lower/upper bounds for the size of such designs/codes, which involve the dimensions of some irreducible representations of O(n).

2. Zonal functions on Grassmannian spaces.

Let $\mathcal{G}_{m,n} \simeq O(n)/O(m) \times O(n-m)$ be the Grassmannian space of *m*dimensional subspaces of \mathbb{R}^n . Recall (see [1], [11]), that the orbits under O(n) of pairs $(p,q) \in \mathcal{G}_{m,n} \times \mathcal{G}_{m,n}$ are parametrized by the *m*-tuples

$$1 \ge t_1 \ge t_2 \ge \cdots \ge t_m \ge 0.$$

Namely, to a couple (p,q) of *m*-dimensional subspaces, one associates the *m*-tuple $t_1 = \cos \theta_1, \cdots, t_m = \cos \theta_m$, where $0 \le \theta_1 \le \cdots \le \theta_m \le \frac{\pi}{2}$ are the principal angles between *p* and *q*. One way to compute the t_i , is as follows : denoting by p_0 the subspace generated by the first *m* vectors of the canonical basis of \mathbb{R}^n , and writing $p = g \cdot p_0$, $q = h \cdot p_0$, with suitable *g*, *h* in O(n), then the $y_i := t_i^2$ are the eigenvalues of the $m \times m$ symmetric matrix AA^t , where *A* is the *m*-size block appearing in the block-decomposition

(1)
$$g^{-1}h = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Moreover, g and h are defined up to multiplication by an element in $\text{Stab}(p_0)$, and may be chosen so that B = D = 0 and (2)

$$A = \begin{pmatrix} \cos \theta_1 & 0 & \dots & 0 \\ 0 & \cos \theta_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \cos \theta_m \end{pmatrix}, C = \begin{pmatrix} \sin \theta_1 & 0 & \dots & 0 \\ 0 & \sin \theta_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \sin \theta_m \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Besides $\mathcal{G}_{m,n}$, we have to consider the set $\mathcal{G}_{m,n}^{\circ}$ of oriented *m*-dimensional subspaces of \mathbb{R}^n . We may view the elements of $\mathcal{G}_{m,n}^{\circ}$ as couples $\tilde{p} = (p, s)$, with *p* an *m*-dimensional subspace, and *s* an element in $\bigwedge^m p$. The action of O(n) on these couples is given by

$$g.(p,s) := (gp, gs),$$

so that if we fix an orientation s_0 on p_0 , the stabilizer of (p_0, s_0) identifies with $SO(m) \times O(n-m)$. Consequently

$$\mathcal{G}_{m,n}^{\circ} \simeq SO(n)/SO(m) \times SO(n-m)) \simeq O(n)/SO(m) \times O(n-m),$$

which is a 2 to 1 covering of $\mathcal{G}_{m,n}$. The orbits under O(n) of pairs $(\tilde{p}, \tilde{q}) \in \mathcal{G}_{m,n}^{\circ} \times \mathcal{G}_{m,n}^{\circ}$ can be likewise parametrized by (m+1)-tuples $(\epsilon, t_1, \cdots, t_m)$,

where t_1, \dots, t_m are defined as above, and $\epsilon = \frac{\det A}{|\det A|} \in \{\pm 1\}$, where A is as in (1). We still have a canonical block-decomposition like (2), but with top-left block

(2')
$$A = \begin{pmatrix} \epsilon \cos \theta_1 & 0 & \dots & 0 \\ 0 & \cos \theta_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \cos \theta_m \end{pmatrix}.$$

Both $\mathcal{G}_{m,n}$ and $\mathcal{G}_{m,n}^{\circ}$ inherit from the Haar measure of O(n), a measure denoted dp and $d\tilde{p}$ respectively. Since we will be mainly interested in nonoriented grassmanians, we normalize it so as $\int_{\mathcal{G}_{m,n}} dp = 1$ (whence $\int_{\mathcal{G}_{m,n}^{\circ}} d\tilde{p} =$ 2). Accordingly, the space $L^2(\mathcal{G}_{m,n}^{\circ})$ of square integrable functions on $\mathcal{G}_{m,n}^{\circ}$ is endowed with the scalar product

$$\langle f,g\rangle = \frac{1}{2}\int_{\mathcal{G}_{m,n}^{\circ}} f(\tilde{p})\overline{g(\tilde{p})}d\tilde{p},$$

so that its restriction to $L^2(\mathcal{G}_{m,n})$ satisfies

$$\langle f,g
angle = \int_{{\mathcal G}_{m,n}} f(p)\overline{g(p)}dp, \ f\in L^2({\mathcal G}_{m,n}), g\in L^2({\mathcal G}_{m,n}).$$

The group O(n) acts isometrically on $L^2(\mathcal{G}_{m,n}^{\circ})$ by

$$\sigma \cdot f(\tilde{p}) = f(\sigma^{-1}\tilde{p}).$$

The structure of $L^2(\mathcal{G}_{m,n}^{\circ})$ as an O(n)-module is well-known, and is given for instance in [9], p. 546. To be precise, if we consider the subset $\mathcal{R}(\mathcal{G}_{m,n}^{\circ})$ of regular functions on $\mathcal{G}_{m,n}^{\circ}$ (*i.e.* the set of functions induced by regular functions on O(n)) which is a dense subset of $L^2(\mathcal{G}_{m,n}^{\circ})$, we have the following decomposition

$$\mathcal{R}(\mathcal{G}_{m,n}^{\circ}) = \bigoplus H_{m,n}^{\mu}$$

in pairwise orthogonal non isomorphic irreducible O(n)-submodules $H_{m,n}^{\mu}$, the sum being over partitions $\mu = \mu_1 \ge \mu_2 \ge \ldots \mu_m \ge 0$, of depth at most m, with $\mu_i \equiv \mu_j \mod 2$ for all (i, j). We call these partitions m-admissible, or admissible for short. They split into odd and even, according to the parity of the μ_i .

Remark 2.1. For a given even partition μ , the admissibility does not depend on m, as long as depth $(\mu) \leq m \leq \frac{n}{2}$, whereas for μ odd it does, since in that case the μ_i have to be nonzero for all $1 \leq i \leq m$.

It turns out that the O(n)-isomorphism class of $H_{m,n}^{\mu}$ is independent of m, provided that depth(μ) $\leq m \leq \frac{n}{2}$ and μ is m-admissible (see [1] for a more detailed description of $H_{m,n}^{\mu}$). The space $H_{m,n}^{\mu}$ is isomorphic to the irreducible representation of O(n) canonically associated to the partition μ , and denoted V_n^{μ} in [9]. We shall denote the dimension of this space d_{μ} .

CHRISTINE BACHOC, EIICHI BANNAI, AND RENAUD COULANGEON

The sum over even, resp. odd, partitions corresponds respectively to $\mathcal{R}(\mathcal{G}_{m,n})$ and its orthogonal complement $\mathcal{R}(\mathcal{G}_{m,n})^{\perp}$. This also corresponds to the eigenspace decomposition of $\mathcal{R}(\mathcal{G}_{m,n}^{\circ})$ with respect to the canonical involution σ^* induced by orientation changing, namely

$$\mathcal{R}(\mathcal{G}_{m,n}) = \mathcal{R}(\mathcal{G}_{m,n}^{\circ})^+ := \{ f \in \mathcal{R}(\mathcal{G}_{m,n}^{\circ}) \mid \sigma^*(f) = f \},\$$

and

4

$$\mathcal{R}(\mathcal{G}_{m,n})^{\perp} = \mathcal{R}(\mathcal{G}_{m,n}^{\circ})^{-} := \{ f \in \mathcal{R}(\mathcal{G}_{m,n}^{\circ}) \mid \sigma^{*}(f) = -f \}.$$

Let \mathcal{Z}^{o} (resp. \mathcal{Z}) be the set of O(n)-invariant functions F on $\mathcal{G}_{m,n}^{\circ} \times \mathcal{G}_{m,n}^{\circ}$ (resp. $\mathcal{G}_{m,n} \times \mathcal{G}_{m,n}$), such that

(3)
$$F(\tilde{p},.) \in \mathcal{R}(\mathcal{G}_{m,n}^{\circ}), F(.,\tilde{q}) \in \mathcal{R}(\mathcal{G}_{m,n}^{\circ}) \text{ for all } (\tilde{p},\tilde{q}) \in \mathcal{G}_{m,n}^{\circ} \times \mathcal{G}_{m,n}^{\circ},$$

resp.

(3)
$$F(p,.) \in \mathcal{R}(\mathcal{G}_{m,n}), F(.,q) \in \mathcal{R}(\mathcal{G}_{m,n}) \text{ for all } (p,q) \in \mathcal{G}_{m,n} \times \mathcal{G}_{m,n}.$$

As usual, we call such functions zonal. Alternatively, if a base point \tilde{p} is fixed, one can identify \mathcal{Z}^o with $\mathcal{R}(\mathcal{G}_{m,n}^{\circ})^{\operatorname{Stab}(\tilde{p})}$, mapping $F \in \mathcal{Z}^o$ on $F(\tilde{p}, .) \in \mathcal{R}(\mathcal{G}_{m,n}^{\circ})^{\operatorname{Stab}(\tilde{p})}$, and similarly \mathcal{Z} identifies with $\mathcal{R}(\mathcal{G}_{m,n})^{\operatorname{Stab}(p)}$

As explained in [1], [11], it follows from the Frobenius reciprocity theorem that $H_{m,n}^{\mu \operatorname{Stab}(\tilde{p})}$ is one-dimensional for any μ (if μ is even, then $H_{m,n}^{\mu} \subset \mathcal{R}(\mathcal{G}_{m,n}) = \mathcal{R}(\mathcal{G}_{m,n}^{\circ})^+$, so that $H_{m,n}^{\mu \operatorname{Stab}(\tilde{p})} = H_{m,n}^{\mu \operatorname{Stab}(p)}$). Consequently, to each summand $H_{m,n}^{\mu}$ is attached a unique (up to scaling) zonal function P_{μ} , which can be computed in the following way: denoting by d_{μ} the dimension of $H_{m,n}^{\mu}$, and $\{e_{\mu,i}\}_{1\leq i\leq d_{\mu}}$ an orthonormal basis of it, one has

(4)
$$P_{\mu}(\tilde{p}, \tilde{p}') := \frac{1}{d_{\mu}} \sum_{i=1}^{d_{\mu}} e_{\mu,i}(\tilde{p}) \overline{e_{\mu,i}(\tilde{p}')}.$$

The results of the next section rely on the following properties of the P_{μ} :

Lemma 2.2.

- (i) $P_{\mu}(\tilde{p}, \tilde{p}) = 1$, for any μ and \tilde{p} .
- (ii) For any λ , μ and \tilde{p} , \tilde{p}' , one has

(5)
$$\langle P_{\mu}(\tilde{p},.), P_{\lambda}(\tilde{p}',.) \rangle = \frac{\delta_{\lambda,\mu}}{d_{\mu}} P_{\mu}(\tilde{p},\tilde{p}'),$$

if, for fixed \tilde{p} , we view the map $\tilde{q} \mapsto P_{\mu}(\tilde{p}, \tilde{q})$ as a function in $L^2(\mathcal{G}_{m,n}^{\circ})$. In particular, for any finite set $X \subset \mathcal{G}_{m,n}^{\circ}$, the matrix $(P_{\mu}(\tilde{p}, \tilde{p}'))_{\tilde{p}, \tilde{p}' \in X^2}$ is positive semidefinite.

(iii) For any λ , μ , one has

(6)
$$P_{\lambda}P_{\mu} = \sum_{\tau} c_{\lambda,\mu}(\tau)P_{\tau},$$

with non-negative coefficients $c_{\lambda,\mu}(\tau)$. In particular, $c_{\lambda,\mu}(0) = \frac{\delta_{\lambda,\mu}}{d_{\mu}}$.

Proof. Since $P_{\mu}(\tilde{p}, \tilde{p})$ does not depend on \tilde{p} , one has

$$\begin{split} P_{\mu}(\tilde{p},\tilde{p}) &= \frac{1}{2} \int_{\mathcal{G}_{m,n}^{\circ}} P_{\mu}(\tilde{p},\tilde{p}) d\tilde{p} = \frac{1}{2d_{\mu}} \sum_{i=1}^{a_{\mu}} \int_{\mathcal{G}_{m,n}^{\circ}} |e_{\mu,i}(\tilde{p})|^2 d\tilde{p} \\ &= \frac{1}{d_{\mu}} \sum_{i=1}^{d_{\mu}} \langle e_{\mu,i}, e_{\mu,i} \rangle = 1, \end{split}$$

which proves (i). As for (ii), this is clear using (4) and the orthogonality relations between the $e_{\mu,i}$. Finally, assertion (iii) is classical, see [10] Theorem 3.1.

The algebraic structure of \mathcal{Z} and \mathcal{Z}^{o} can be easily deduced from [9]. For lack of reference, we state it in the next proposition

Proposition 2.3.

(i) There is an isomorphism

$$\mathcal{Z} \simeq \mathbb{C}[Y_1, \cdots, Y_m]^{S_m},$$

the ring of symmetric polynomials in m variables, mapping Y_i to $y_i = y_i(p,q)$. Similarly, one has

$$\mathcal{Z}^o \simeq \mathbb{C}[Y_1, \cdots, Y_m]^{S_m}[\theta], \text{ with } \theta^2 = Y_1 \cdots Y_m,$$

mapping θ to $\epsilon t_1 \cdots t_m$, where $\epsilon = \epsilon(\tilde{p}, \tilde{q}), t_i = t_i(\tilde{p}, \tilde{q})$. Moreover, the eigenspace decomposition of \mathcal{Z}^o with respect to the involution σ^* is given by

 $\mathcal{Z}^{o+} = \mathcal{Z} \text{ and } \mathcal{Z}^{o-} = \epsilon t_1 \cdots t_m \mathcal{Z} \simeq \theta \mathbb{C}[Y_1, \cdots, Y_m]^{S_m}$

(ii) The P_{μ} corresponding to even partitions may be expressed as

 $P_{\mu}(p,q) = p_{\mu}(y_1(p,q),\cdots,y_m(p,q))$

with $p_{\mu}(Y_1, \dots, Y_m)$ a symmetric polynomial of total degree $\frac{|\mu|}{2}$, and those corresponding to odd partitions as

$$P_{\mu}(\tilde{p},\tilde{q}) = (\epsilon t_1 \cdots t_m) p_{\mu}(y_1, \cdots, y_m),$$

with $p_{\mu}(Y_1, \cdots, Y_m)$ a symmetric polynomial of degree $\frac{|\mu|-m}{2}$.

Proof. (i) As explained above, we can identify \mathcal{Z} with $\mathcal{R}(\mathcal{G}_{m,n})^{\operatorname{Stab}(p)}$ (resp. \mathcal{Z}^{o} with $\mathcal{R}(\mathcal{G}_{m,n}^{o})^{\operatorname{Stab}(\tilde{p})}$), p (resp. \tilde{p}) being any fixed base point. From the isomorphism $\operatorname{Stab}(p) \simeq O(m) \times O(n-m)$, it is easily seen, using (2), that an element $F = F(p, \cdot) \in \mathcal{R}(\mathcal{G}_{m,n})^{\operatorname{Stab}(p)}$ is of the form

$$F = P(\cos \theta_1, \cdots, \cos \theta_m, \sin \theta_1, \cdots, \sin \theta_m),$$

where $P(T_1, \dots, T_m, Z_1, \dots, Z_m)$ is a polynomial, symmetric in T_1, \dots, T_m and Z_1, \dots, Z_m respectively. Now the $\operatorname{Stab}(p)$ -invariance also implies that all the exponents are even, so that F is indeed a symmetric polynomial

6

in $Y_1 = T_1^2, \dots, Y_m = T_m^2$, which is the first part of assertion (i). As for the second part of the assertion, one first shows in the same way that a $\operatorname{Stab}(\tilde{p})$ -invariant element in $\mathcal{R}(\mathcal{G}_{m,n}^{\circ})$ is of the form

$$F = F(\tilde{p}, \cdot) = P(\epsilon \cos \theta_1, \cdots, \cos \theta_m, \sin \theta_1, \cdots, \sin \theta_m),$$

where $P(T_1, \dots, T_m, Z_1, \dots, Z_m)$ is a polynomial, symmetric in T_1, \dots, T_m and Z_1, \dots, Z_m respectively. Since $\operatorname{Stab}(\tilde{p}) \simeq SO_m \times O_{n-m}$, the $\operatorname{Stab}(\tilde{p})$ invariance also implies that the exponents in the last m variables are even, whereas the exponents in the first m ones are only restricted to have the same parity. Consequently, P is the sum of a polynomial in $Y_1 = T_1^2, \dots, Y_m = T_m^2$ plus $T_1 \cdots T_m$ times a polynomial in Y_1, \dots, Y_m , as asserted. The eigenspace decomposition is clear.

As for assertion (ii), we only need to observe that the P_{μ} belong to \mathcal{Z}^{o+} or \mathcal{Z}^{o-} according to as μ is even or odd, and that the p_{μ} have total degree $|\mu|$ in T_1, \dots, T_m .

3. Bounds on codes and designs.

Among the various equivalent definitions of a t-design given in [1] we recall the following one (see [1] Proposition 4.2.)

Definition 3.1. A finite subset \mathcal{D} of $\mathcal{G}_{m,n}$ is a 2k-design if

(7)
$$\forall \varphi \in H_{2k}^+, \ \langle \varphi, 1 \rangle = \frac{1}{|\mathcal{D}|} \sum_{p \in \mathcal{D}} \varphi(p)$$

As for spherical codes, the natural generalization to our context is as follows:

Definition 3.2. Let $f(Y_1, \dots, Y_m)$ be a symmetric polynomial such that $f(1, \dots, 1) = 1$. A finite subset \mathcal{D} of the Grassmannian space $\mathcal{G}_{m,n}$ is a f-code, if for any pair (p, q) of distinct elements in \mathcal{D} one has

$$f(y_1(p,q),\cdots,y_m(p,q))=0.$$

On the other hand, one can associate canonically to a symmetric polynomial $f(Y_1, \dots, Y_m)$ as above, an O(n)-invariant function F on $\mathcal{G}_{m,n} \times \mathcal{G}_{m,n}$, satisfying F(p, p) = 1, by the formula:

$$F(p,q) := f(y_1(p,q), \cdots, y_m(p,q)),$$

and the definition of an f-code now reads

(8)
$$F(p,q) = \delta_{p,q}, \ (p,q) \in \mathcal{D}^2.$$

The following notion of type is consistent with [6] Definition 5.4.:

Definition 3.3. The type of an f-code is 1 if $Y_1 \cdots Y_m$ divides the polynomial $f(Y_1, \cdots, Y_m)$, and 0 otherwise.

For any integer k, we define

$$H_k = \bigoplus_{\substack{|\mu| \le k \\ \mu \text{ admissible}}} H_{m,n}^{\mu}$$

It decomposes under σ^* as $H_k = H_k^+ \oplus H_k^-$, and we have, for the respective dimensions d_k^{\pm} of H_k^{\pm} ,

$$d_k^+ := \sum_{\substack{|\mu| \le k \\ \mu \text{ even} \\ \operatorname{depth}(\mu) \le m}} d_\mu, \text{ resp. } d_k^- := \sum_{\substack{|\mu| \le k \\ \mu \text{ odd} \\ \operatorname{depth}(\mu) \le m}} d_\mu$$

It's worth noticing that, from remark 2.1, d_k^+ does not depend on m, while d_k^- does. The next two theorems establish bounds for t-designs and f-codes in terms of these numbers. Some explicit values of d_k^+ and d_k^- are collected in the Appendix (the d_μ are computed from the formulas in [7] §24.2, pp 407-410):

Remark 3.4. In [1], we considered only non-oriented grassmanians, and what was denoted H_k there, corresponds to what is denoted H_k^+ here.

Theorem 3.5. Let $\mathcal{D} \subset \mathcal{G}_{m,n}$ be a 2k-design. Then

(9)
$$|\mathcal{D}| \ge \max\{d_k^+, d_k^-\}$$

If equality holds in (9), then \mathcal{D} is an f-code for $f = \frac{1}{d_k^+} \sum_{\substack{\mu \mid \leq k \\ \mu \text{ even}}} d_\mu p_\mu$ or $f = \frac{Y_1 \cdots Y_m}{d_k^-} \sum_{\substack{\mu \mid \leq k \\ \mu \text{ odd}}} d_\mu p_\mu$, depending on whether $d_k^+ \ge d_k^-$ or not.

Proof. Let s be a section of the canonical surjection $\mathcal{G}_{m,n}^{\circ} \to \mathcal{G}_{m,n}$, and $\widetilde{\mathcal{D}} = s(\mathcal{D})$. Fix \tilde{p} and \tilde{q} in $\mathcal{G}_{m,n}^{\circ}$. If μ and λ are two partitions of degree $\leq k$, the formula

$$\varphi(\tilde{p}') = P_{\mu}(\tilde{p}, \tilde{p}') P_{\lambda}(\tilde{q}, \tilde{p}')$$

defines an element in H_{2k} . If moreover μ and λ are both even (resp. odd), then φ is σ^* -invariant, so it belongs to H_{2k}^+ . Consequently (7) applies in both cases and reads:

$$\frac{1}{|\mathcal{D}|} \sum_{\tilde{p}' \in \widetilde{\mathcal{D}}} \varphi(\tilde{p}') = \frac{1}{|\mathcal{D}|} \sum_{p' \in \mathcal{D}} \varphi(p')$$
$$= \langle \varphi, 1 \rangle_{L^2(\mathcal{G}_{m,n})}$$
$$= \langle P_\mu(p, .) P_\lambda(q, .), 1 \rangle_{L^2(\mathcal{G}_{m,n})}$$
$$= \langle P_\mu(\tilde{p}, .), P_\lambda(\tilde{q}, .) \rangle_{L^2(\mathcal{G}_{m,n})}$$
$$= \frac{\delta_{\lambda,\mu}}{d_\mu} P_\mu(\tilde{p}, \tilde{q}).$$

In other words, the matrices $S_{\mu} := (d_{\mu}P_{\mu}(\tilde{p}, \tilde{p}'))_{\tilde{p}, \tilde{p}' \text{ in } \tilde{\mathcal{D}}}, |\mu| \leq k$, satisfy the relations

$$S_{\mu}S_{\lambda} = \delta_{\lambda,\mu}|\widetilde{\mathcal{D}}|S_{\mu} = \delta_{\lambda,\mu}|\mathcal{D}|S_{\mu},$$

as long as μ and λ are both even (resp. odd). Setting $S^+ := \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} S_{\mu}$, resp. $S^- := \sum_{\substack{|\mu| \leq k \\ \mu \text{ odd}}} S_{\mu}$, it follows that

(10)
$$S^{\pm 2} = |\mathcal{D}|S^{\pm}.$$

On the other hand, one has $\operatorname{Tr} S_{\mu} = d_{\mu} |\mathcal{D}|$, from Lemma 2.2, so that $\operatorname{Tr} S^+ = \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} \operatorname{Tr} S_{\mu} = d_k^+ |\mathcal{D}|$, and likewise $\operatorname{Tr} S^- = d_k^- |\mathcal{D}|$. Therefore,

$$d_k^{\pm} = \frac{\operatorname{Tr} S^{\pm}}{|\mathcal{D}|} = \operatorname{rank} S^{\pm} \le |\mathcal{D}|,$$

whence the conclusion.

8

When equality holds, then (10) implies that $S^+ = |\mathcal{D}|I_{|\mathcal{D}|} = d_k^+ I_{|\mathcal{D}|}$ resp. $S^- = d_k^- I_{|\mathcal{D}|}$, depending on whether $d_k^+ \ge d_k^-$ or not, where $I_{|\mathcal{D}|}$ stands for the identity matrix in dimension $|\mathcal{D}|$. This means that $F(p,q) = \delta_{p,q}$, for all $(p,q) \in \mathcal{D}^2$, where $F = \frac{1}{d_k^+} \sum_{\substack{\mu \mid \le k \\ \mu \text{ even}}} d_\mu P_\mu$, resp. $\frac{1}{d_k^-} \sum_{\substack{\mu \mid \le k \\ \mu \text{ odd}}} d_\mu P_\mu$. In the first case, this is clearly equivalent to the assertion that \mathcal{D} be an *f*-code, according to (8) and the definition of *f*. This is also the case in the second case, since each P_μ , μ odd, is divisible by the product $t_1 \cdots t_m$, so that

$$\frac{1}{d_k^-} \sum_{\substack{|\mu| \le k \\ \mu \text{ odd}}} d_\mu P_\mu(p,q) = \delta_{p,q} \Leftrightarrow \frac{1}{d_k^-} \sum_{\substack{|\mu| \le k \\ \mu \text{ odd}}} (t_1 \cdots t_m) d_\mu P_\mu(p,q) = \delta_{p,q}.$$

Theorem 3.6. Any f-code \mathcal{D} in $\mathcal{G}_{m,n}$ satisfies

 $(11) \qquad \qquad |\mathcal{D}| \le d_k^+$

where $k = 2 \deg f$. If moreover f is of type 1, then

$$(12) \qquad \qquad |\mathcal{D}| \le d_k^-$$

where $k = 2 \deg f - m$. Whenever equality holds in (11), resp. (12), then

$$f = \frac{1}{d_k^+} \sum_{\substack{|\mu| \le k \\ \mu \text{ even}}} d_\mu p_\mu,$$

resp.

$$f = \frac{Y_1 \cdots Y_m}{d_k^-} \sum_{\substack{|\mu| \le k \\ \mu \text{ odd}}} d_\mu p_\mu,$$

and \mathcal{D} is a 2k-design.

Proof. Setting $k = 2 \deg f$, we first see that the functions $F(p, .), p \in \mathcal{D}$ are in H_k^+ . We claim that they form a linearly independent system. Indeed, if $\sum_{p \in \mathcal{D}} \lambda_p F(p, .) = 0$, then evaluating the left-hand side successively on each $p \in \mathcal{D}$, and using (8), we see that $\lambda_p = 0$ for all $p \in \mathcal{D}$. Hence $|\mathcal{D}| \leq \dim H_k^+ = d_k^+$, which is the first assertion. As for the second one, if f is divisible by $Y_1 \cdots Y_m$, we write it as $f(Y_1, \cdots, Y_m) = (Y_1 \cdots Y_m)g(Y_1, \cdots, Y_m)$. Then the functions $t_1(p, .) \cdots t_m(p, .)G(p, .), p \in \mathcal{D}$ are linearly independent elements in H_k^- , with $k = 2 \deg f - m$, and the inequality $|\mathcal{D}| \leq d_k^-$ follows, as in the first case.

To see when equality is achieved, let us assume, for instance that $|\mathcal{D}| = d_k^+$, $k = 2 \deg f$ (the case $|\mathcal{D}| = d_k^-$, $k = 2 \deg f - m$ for \mathcal{D} of type 1 is dealt with similarly). Under this assumption, the family $\{F(p, .), p \in \mathcal{D}\}$ is now a basis of H_k^+ . Moreover, it is readily checked that the following formula holds for any φ in H_k^+ :

(13)
$$\varphi = \sum_{p \in \mathcal{D}} \varphi(p) F(p, .).$$

On the other hand, we know from Proposition 2.3 that F (resp. f) may be written as a linear combination of the P_{μ} (resp. p_{μ}),

(14)
$$F = \sum_{\substack{|\mu| \le k \\ \mu \text{ even}}} f_{\mu} P_{\mu} \text{ (resp. } f = \sum_{\substack{|\mu| \le k \\ \mu \text{ even}}} f_{\mu} p_{\mu} \text{)}.$$

Let $P := \sum_{\substack{\mu \mid \leq k \\ \mu \text{ even}}} d_{\mu} P_{\mu}$. What we want to show is that $F = \frac{1}{d_k^+} P$, or in other words that

(15)
$$f_{\mu} = \frac{d_{\mu}}{d_k^+}, \text{ for } |\mu| \le k, \mu \text{ even.}$$

To that end, it is sufficient to show that

(16)
$$0 \le f_{\mu} \le \frac{d_{\mu}}{d_k^+}, \text{ for } |\mu| \le k, \mu \text{ even.}$$

since applying (14) to any p in \mathcal{D} , we see that $1 = F(p, p) = \sum f_{\mu}P_{\mu}(p, p) = \sum f_{\mu}$, so the right inequality in (16) is an equality. First we note, using (5) and the above decomposition, that

$$\langle F(q,.), \sum_{|\mu| \le k} d_{\mu} P_{\mu}(p,.) \rangle = F(p,q),$$

so that the condition $F(p,q) = \delta_{p,q}$, $(p,q) \in \mathcal{D}^2$ implies that the family $\{\sum_{|\mu| \leq k} d_{\mu} P_{\mu}(p,.), p \in \mathcal{D}\}$ is a basis, dual to $\{F(p,.), p \in \mathcal{D}\}$ with respect to the scalar product \langle, \rangle . Consequently, the matrix $S = (P(p,q))_{p,q \in \mathcal{D}^2} = (\langle P(p,.), P(q,.) \rangle)_{p,q \in \mathcal{D}^2}$ is invertible and its inverse is given by

$$S^{-1} = (\langle F(p,.), F(q,.) \rangle)_{p,q \in \mathcal{D}^2}.$$

One easily checks, using lemma 2.2 that

$$\langle F(p,.), P_{\mu}(q,.) \rangle = \frac{f_{\mu}}{d_{\mu}} P_{\mu}(q,p),$$

for p, q in \mathcal{D}^2 , and $|\mu| \leq k$, μ even. But according to (13), this means that the functions $P_{\mu}(q, .), q \in \mathcal{D}, |\mu| \leq k, \mu$ even, are eigenfunctions of the matrix $(\langle F(p, .), F(q, .) \rangle)_{p,q \in \mathcal{D}^2} = S^{-1}$, with corresponding eigenvalue $\frac{f_{\mu}}{d_{\mu}}$. Thus the $\frac{f_{\mu}}{d_{\mu}}$ are eigenvalues of the Gram matrix of a basis of H_k^+ , hence positive. Now, writing (14) for all $(p,q) \in \mathcal{D}^2$, and adding up we obtain

$$|\mathcal{D}| = \sum_{(p,q)\in\mathcal{D}^2} F(p,q) = \sum_{\substack{|\mu| \le k \\ \mu \text{ even}}} f_{\mu} \sum_{\substack{(p,q)\in\mathcal{D}^2}} P_{\mu}(p,q)$$

whence

(17)
$$|\mathcal{D}|(1-f_0|\mathcal{D}|) = \sum_{\substack{|\mu| \le k \\ \mu \text{ even}, \mu \neq 0}} f_{\mu} \sum_{\substack{(p,q) \in \mathcal{D}^2}} P_{\mu}(p,q) \ge 0,$$

because of the positivity of the matrix $(P_{\mu}(p, p'))_{p,p' \in \mathcal{D}^2}$ (lemma (2.2)(ii)), so that $f_0 \leq \frac{1}{|\mathcal{D}|} = \frac{1}{d_{\nu}^+}$. If we now consider the annihilator polynomial

$$F_{\lambda} := P_{\lambda}F = \sum_{\substack{|\mu| \le k \\ \mu \text{ even}}} g_{\lambda,\mu}P_{\mu}$$

we contend that the $g_{\lambda,\mu}$ are nonnegative and that $g_{\lambda,0} = \frac{f_{\lambda}}{d_{\lambda}}$: this is an easy consequence of lemma 2.2 (6). Consequently, the argument used to get (17) still holds, and we obtain $g_{\lambda,0} = \frac{f_{\lambda}}{d_{\lambda}} \leq \frac{1}{d_k^+}$, as desired.

It remains to prove that \mathcal{D} is a 2k-design. From [1] Proposition 4.2., it amounts to prove that

$$\forall \varphi \in H_{2k}^+, \ \langle \varphi, 1 \rangle = \frac{1}{|\mathcal{D}|} \sum_{p \in \mathcal{D}} \varphi(p) = \frac{1}{d_k^+} \sum_{p \in \mathcal{D}} \varphi(p).$$

It's enough to check this for functions of the form gh, with g, h in H_k^+ , since they generate H_{2k}^+ . Using the expansion (13) of g and h, we see that

$$\begin{split} \langle 1, gh \rangle &= \langle g, h \rangle \\ &= \sum_{p,q \in \mathcal{D}^2} g(p) h(q) \langle F(p, .), F(q, .) \rangle \\ &= \frac{1}{|\mathcal{D}|} \sum_{p \in \mathcal{D}} g(p) h(p), \end{split}$$

whence the conclusion.

4. EXAMPLES.

4.1. The case m = 1. This is the case of the projective space over the real numbers, the codes of which are studied in [6]. The 2k-designs in the real projective space can be viewed as *antipodal* (2k + 1)-designs on the unit sphere of the Euclidean space for which absolute bounds are given in [5]. We recover here these bounds, since for $\mu = \mu_1 \ge 0$ the space $H_{1,n}^{\mu}$ is isomorphic to the space of harmonic polynomials in n variables of degree μ_1 . One has $d_k^+ = \binom{n+k-1}{n-1}$ and $d_k^- = \binom{n+k-2}{n-1}$ if k is even, and vice versa if k is odd. A t-design is called tight if its cardinality attains this lower bound. Tight

A *t*-design is called tight if its cardinality attains this lower bound. Tight *t*-designs are only known for (n, t) = (7, 4), (8, 6), (23, 4), (23, 6), (24, 10). Moreover, it is known that tight *t*-designs cannot exist when $t \ge 8$, apart from the (24, 10) given by the lines supporting the minimal vectors of the Leech lattice (see [2]).

4.2. The case k = 2. In [3] and [4], packings in the Grassmannian spaces are considered, with respect to the so-called *chordal distance*, given in our notations by

$$d^2(p,q) = m - \sum_{i=1}^m y_i.$$

In [3], a simplex bound is settled for the sets \mathcal{D} for which $d(p,q) \geq d$ (using an isometric embedding into the Euclidean sphere of $\mathbb{R}^{(n-1)(n+2)/2}$). Equality holds if and only if $|\mathcal{D}| = \frac{n(n+1)}{2}$ and d(p,q) is constant. In [4, §5], an infinite family of packings in $\mathcal{G}_{\frac{p-1}{2},p}$ meating this bound, is

In [4, §5], an infinite family of packings in $\mathcal{G}_{\frac{p-1}{2},p}$ meating this bound, is constructed. Here p is a prime, which is either equal to 3 or congruent to -1 modulo 8. Let us denote it by \mathcal{D}_p . Then one has:

Proposition 4.1. \mathcal{D}_p is a tight 4-design in $\mathcal{G}_{\frac{p-1}{2},p}$.

Proof. According to [4] Theorem 3, \mathcal{D}_p consists on $\frac{p(p+1)}{2} = d_{[0,\dots,0]} + d_{[2,0,\dots,0]} = d_2^+$ subspaces with same pairwise chordal distance $d^2 = \frac{(p+1)^2}{4(p+2)}$. Since $d^2 = \sum \sin^2 \theta_i = \frac{p-1}{2} - \sum y_i$, the conclusion follows, applying Theorem 3.6 to the polynomial $f = \frac{4(p+2)(\sum Y_i) - (p^2 - 5)}{p^2 - 5}$.

4.3. The case k = 3. From the definitions, one has $d_3^+ = d_2^+ = \frac{n(n+1)}{2}$, and d_3^- equals 0 unless m = 1 in which case $d_3^- = \binom{n+2}{3}$, or m = 3 in which case $d_3^- = d_{(1,1,1)} = \binom{n}{3}$. Therefore, it is very unlikely that tight 6-designs exist for $m \neq 1, 3$.

A family of packings in the Grassmannian $\mathcal{G}_{2^k,2^m}$ is constructed in [4, Theorem 1], each of them are orbits under the Clifford group \mathcal{C}_m . We have checked that, for m = 2, 3, 4, and for (m, k) = (5, 4), these packings are 6-designs. For each m, the smallest of these sets corresponds to k = m - 1 and its cardinality equals $2^{2m} + 2^m - 2 = 2(d_2^+ - 1)$.

Remark 4.2. It is known that the orbits of the Clifford group on the first Grassmannian provide 6-designs, because the first non trivial invariant polynomial of this group has degree 8 (and corresponds to the Hamming code, see [12] and the earlier work of B. Runge). We conjecture that the orbits of the Clifford group on all the Grassmannians provide 6-designs. This, according to [1, Th 4.5, Rem 4.6], is equivalent to the fact that the C_m -invariants of the $(n = 2^m)$ Gl_n-irreducible modules canonically associated to the partitions (4, 2) and (2, 2, 2) (denoted F_n^{μ} in [9]) have dimension 1.

5. Appendix.

	1.00	DCIOW	some	values	101	<i>k</i> and	a_k ioi		00	una n.	
m=2				m=3		-		m=4			
n	k	d_k^+	d_k^-	n	k	d_k^+	d_k^-	n	k	d_k^+	d_k^-
4	1	1	0	6	1	1	0	8	1	1	0
4	2	10	3	6	2	21	0	8	2	36	0
4	3	10	3	6	3	21	10	8	3	36	0
4	4	40	18	6	4	210	10	8	4	630	35
4	5	40	18	6	5	210	136	8	5	630	35
5	1	1	0	7	1	1	0	9	1	1	0
5	2	15	10	7	2	28	0	9	2	45	0
5	3	15	10	7	3	28	35	9	3	45	0
5	4	105	91	7	4	378	35	9	4	990	126
5	5	105	91	7	5	378	651	9	5	990	126
6	1	1	0	8	1	1	0	10	1	1	0
6	2	21	15	8	2	36	0	10	2	55	0
6	3	21	15	8	3	36	56	10	3	55	0
6	4	210	190	8	4	630	56	10	4	1485	210
6	5	210	190	8	5	630	1352	10	5	1485	210
7	1	1	0	9	1	1	0	11	1	1	0
7	2	28	21	9	2	45	0	11	2	66	0
7	3	28	21	9	3	45	84	11	3	66	0
7	4	378	351	9	4	990	84	11	4	2145	330
7	5	378	351	9	5	990	2541	11	5	2145	330
8	1	1	0	10	1	1	0	12	1	1	0
8	2	36	28	10	2	55	0	12	2	78	0
8	3	36	28	10	3	55	120	12	3	78	0
8	4	630	595	10	4	1485	120	12	4	3003	495
8	5	630	595	10	5	1485	4432	12	5	3003	495
9	1	1	0	11	1	1	0	13	1	1	0
9	2	45	36	11	2	66	0	13	2	91	0
9	3	45	36	11	3	66	165	13	3	91	0
9	4	990	946	11	4	2145	165	13	4	4095	715
9	5	990	946	11	5	2145	7293	13	5	4095	715

We list below some values of d_k^+ and d_k^- for m = 2, 3 and 4.

References

- Bachoc, C., Coulangeon, R and Nebe, G. Designs in Grassmanian spaces and lattices, J. Algebraic Combinatorics, to appear.
- [2] Bannai, E., and Damerell, R.M. Tight spherical designs II, J. London Math. Soc., (3) 21 (1980), 13-30.
- [3] Conway, J. H., Hardin, R. H. and Sloane, N. J. A. Packing Lines, Planes, etc., Packings in Grassmannian Spaces, Experimental Mathematics, Vol. 5 (1996), 139-159.
- [4] Calderbank, A. R., Hardin, R. H., Rains, E. M., Shor, P. W. and Sloane, N. J. A., A group-theoretic framework for the construction of packings in Grassmannian spaces, J. Algebraic Combin. 9 (1999), no. 2, 129-140.
- [5] Delsarte, Ph., Goethals, J.M. and Seidel, J.J. Spherical codes and designs, Geom. Dedicata (6) (1977), 363-388.
- [6] Delsarte, Ph., Goethals, J.M. and Seidel, J.J. Bounds for systems of lines, and Jacobi polynomials, Philips Res. Repts 30 (1975),91*-105*, Bouwkamp volume.
- [7] Fulton, W. and Harris, J. Representation Theory, a first course, GTM 129 Springer 1991
- [8] Golub, G. H. and Van Loan, C. F. Matrix computations, John Hopkins Univ. Press, 2nd ed., 1989.
- [9] Goodman, R. and Wallach, N. R. Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications 68, Cambridge University Press, 1998.
- [10] Koornwinder, T. Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2), 18 (1978), no 1, 101-114.
- [11] James, A.T. and Constantine, A.G. Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. (3) 29 (1974), 174-192.
- [12] Nebe, G., Rains, E., and Sloane, N.J.A. The invariants of the Clifford groups, Designs, Codes, and Cryptography 24 (1) (2001), 99-122.
- [13] Venkov, B. Even unimodular extremal lattices, Proc. Steklov Inst. Math. (165) (1984), 47-52.

C. Bachoc, Laboratoire A2X, Université Bordeaux I, 351, cours de la Libération, 33405 Talence France

 $E\text{-}mail\ address: \texttt{bachocQmath.u-bordeaux.fr}$

E. BANNAI, KYUSHU UNIVERSITY JAPAN E-mail address: bannai@math.kyushu-u.ac.jp

R. Coulangeon, Laboratoire A2X, Université Bordeaux I, 351, cours de la Libération, 33405 Talence France

E-mail address: coulange@math.u-bordeaux.fr