
DESIGNS IN GRASSMANNIAN SPACES AND LATTICESCHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEAbstra
t. We introdu
e the notion of a t-design on the Grassmannmanifold Gm;n of the m-subspa
es of the Eu
lidean spa
e Rn . It gen-eralizes the notion of antipodal spheri
al design whi
h was introdu
edby P. Delsarte, J.-M. Goethals and J.-J. Seidel. We 
hara
terize the�nite subgroups of the orthogonal group whi
h have the property thatall their orbits are t-designs. Generalizing a result due to B. Venkov,we prove that, if the minimal m-se
tions of a latti
e L form a 4-design,then L is a lo
al maximum for the Rankin fun
tion 
n;m.1. Introdu
tionThe notion of strongly perfe
t latti
e is due to Boris Venkov. It is asub
lass of the extreme latti
es, i.e. of the latti
es on whi
h the Hermitefun
tion is a lo
al maximum, distinguished by a 
ombinatorial property of itsminimal ve
tors. Namely, its minimal ve
tors form a set whi
h is a spheri
al4-design in the sense of [4℄.In this paper, we introdu
e an analogous notion of t-design on the Grass-mann manifold Gm;n of the m-subspa
es of the Eu
lidean spa
e Rn . Tothis aim we use the de
omposition of the O(n)-module L2(Gm;n) of squareintegrable fun
tions on Gm;n into a sum of irredu
ibles and the 
al
ulationof unique elements in ea
h of the irredu
ible subspa
es as zonal fun
tionswhi
h is performed in [8℄ (see Se
tion 3). The next se
tion gives various
riteria for t-designs on Gm;n; in parti
ular we 
hara
terize the �nite sub-groups of O(n) whose orbits on the Grassmannians are always t-designs. Ifthe minimal m-se
tions of a latti
e L form a 4-design, we 
all the latti
eL strongly m-perfe
t. Using the des
ription of m-extreme latti
es repeatedin Se
tion 5, we show that the strongly m-perfe
t latti
es are m-extreme.The �nal se
tion gives lower bounds for the minima of strongly m-perfe
tlatti
es. 2. The Grassmann manifoldThe Grassmann manifold Gm;n is the manifold ofm-dimensional subspa
esof the Eu
lidean spa
e Rn . It is a homogeneous spa
e for the a
tion of theorthogonal group O(n) := O(Rn). The stabilizer of a given m-subspa
ep is isomorphi
 to O(m) � O(n �m) (sin
e an orthogonal transformationDate: April 9, 2002.1991 Mathemati
s Subje
t Classi�
ation. 11H06,Key words and phrases. latti
e, Grassmann manifold, orthogonal group, zonal fun
tion.1



2 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEwhi
h preserves p also preserves p?). The manifold Gm;n is 
ompa
t, andtherefore endowed with a Haar measure �. The spa
e of square-integrablereal valued-fun
tions L2(Gm;n) is endowed with the usual s
alar produ
t< f1; f2 >= ZGm;n f1(x)f2(x)d�(x):In order to parametrise the orbits of pairs of points in Gm;n underO(n), wehave to introdu
e prin
ipal angles between subspa
es. We 
olle
t some well-known fa
ts about this notion (see [2℄, or [6℄ p. 584). Let m � q � n=2 and(p; p0) 2 Gm;n � Gq;n. Denote by prp (resp. prp0) the orthogonal proje
tionon p (resp. p0). As v varies over p0, the fun
tion v 7! k prp(v)kkvk admits m
riti
al values 0 � tm = 
os �m � � � � � t1 = 
os �1 � 1. Then �1; : : : ; �m 2[0; �=2℄ are 
alled the prin
ipal angles between p and p0. Moreover, one 
an
onstru
t orthonormal bases fuig and fvig of p and p0 su
h that ui � vi = tifor 1 � i � m, and ui � vj = 0 if i 6= j. Completing fuig to an orthonormalbasis B of Rn , and writing down the n� q generating matrixM of p0 in thisbasis, we get:
M =

0BBBBBBBBBBBBBBBBBB�

os �1 0 : : : 0 � : : : �0 
os �2 : : : 0 � : : : �... ... ... ... ...0 0 : : : 
os �m � : : : �sin �1 0 : : : 0 � : : : �0 sin �2 : : : 0 � : : : �... ... ... ... ...0 0 : : : sin �m � : : : �0 0 : : : 0 � : : : �... ... ... ... ...0 0 : : : 0 � : : : �

1CCCCCCCCCCCCCCCCCCA(1)
In parti
ular, the m-tuple (
os �1; � � � ; 
os �m) 
hara
terizes the O(n)-orbitof the pair (p; p0).The yi := 
os2 �i may be 
al
ulated as the �rst m eigenvalues, in de-
reasing order, of the endomorphism prp Æprp0 (or prp0 Æprp). Alternatively,if feig1�i�m and ffig1�i�q are any bases of p and p0, the yi are just theeigenvalues of the m�m matrix:(ei � ej)�1(ei � fj)(fi � fj)�1(fi � ej)(2) 3. De
omposition of L2(Gm;n) and intertwining fun
tionsIn this se
tion we de
ompose the O(n)-module L2(Gm;n) into irredu
iblesubmodules. Repla
ing any subspa
e p 2 Gm;n by its orthogonal 
omple-ment, we may assume that m � n2 . We shall make use of several 
lassi
alresults of representation theory, for whi
h we refer to the book of Goodman
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h [7℄ and Fulton and Harris [5℄. Following [7℄, F �n denotes theirredu
ible module of GL(n;R) of highest weight Pni=1 �iLi, where � is apartition � = �1 � �2 � : : : �n � 0 in at most n-parts (
f. [5, Prop. 15.15℄).De�nition 3.1. The degree of a partition � is deg(�) := Pi �i, and thedepth of � is depth(�) := maxfi j �i 6= 0g.If depth(�) � n2 , then the restri
tion of F �n to the orthogonal group O(n)
ontains a unique irredu
ible submodule V �n , whi
h does not o

ur in thespa
es F �n , with deg(�) < deg(�). The representation V �n is asso
iated tothe partition � as des
ribed in [5, Se
tion 19.5℄.From [7, Se
tion 12.3.2℄ (pp 544-547) (where they show the analogousassertion for SO(n)) one gets the following theorem:Theorem 3.2. Let m � n2 . Then the O(n)-spa
e L2(Gm;n) is isomorphi
to L2(Gm;n) 'MV �n(3)where the sum is over the � of depth at most equal to m, with all the �i � 0mod 2.De�nition 3.3. Denote the unique submodule of L2(Gm;n) isomorphi
 toV �n by H�m;n.Let p0 be the m-subspa
e generated by the �rstm elements of the 
anoni-
al basis of Rn . Then the stabilizer of p0 in O(n) is Stab(p0) �= O(m)�O(n�m) and L2(Gm;n) is the indu
ed module from the trivial O(m)�O(n�m)-module. Hen
e by Frobenius re
ipro
ity [7, 12.1.8℄ ea
h of the irredu
ibleO(n)-subspa
es H�m;n 
ontains a (up to s
alar multiples) unique zonal fun
-tion P�, i.e. a fun
tion that is invariant under O(m)�O(n�m).In the following we give a more pre
ise des
ription of H�m;n and explain astrategy used in [8℄ to 
al
ulate P�.We �x the following notations whi
h we will keep for the rest of the paper:for all m, n 2 N, let Mn;m denote the ve
tor spa
e of n�m matri
es withreal 
oeÆ
ients, and SMm the ve
tor spa
e of the real symmetri
 m � mmatri
es.We 
onsider the spa
es of homogeneous polynomials of degree k in the 
o-eÆ
ients of these matri
es, denoted by Homk(Mn;m) and Homk(SMm). Thegroup GL(m;R) a
ts on Homk(SMm) by (g:f)(S) = f(gtSg), and the prod-u
t GL(n;R)�GL(m;R) a
ts on Homk(Mn;m) by ((g; h):f)(M) = f(gtMh).The de
omposition of the GL(n;R)-module Homk(SMn) is given by ([7,Th. 5.2.9℄): Homk(SMn) 'MF �n(4)where the sum is over the � of depth � n su
h that �i is even for all iand deg(�) = 2k. It is worth noti
ing here that the spa
e of polynomials�kHomk(SMn) is isomorphi
 to the spa
e of polynomial fun
tions on thereal symmetri
 positive de�nite matri
es S+n . This set is homogeneous for the
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tion of GL(n;R), and the stabilizer of the identity matrix is the orthogonalgroup. So the polynomial fun
tions are the indu
ed module from O(n) toGL(n;R) of the trivial one.The de
omposition as a GL(n;R) �GL(m;R)-module of Homk(Mn;m) is([7, Th. 5.2.7℄): Homk(Mn;m) 'MF �n 
 F �m(5)where the sum is over the � of depth at most equal to min(m;n), and ofdegree equal to k.From (4) and Frobenius re
ipro
ity, the spa
e of O(n)-invariant elementsin F �n is one-dimensional if and only if �i is even for all i, so, as a GL(n;R)-module: Homk(Mn;m)O(m) 'MF �n(6)where the sum is over the � of depth at most equal to min(m;n) with allthe �i � 0 mod 2 and deg(�) = k (and hen
e k is even otherwise this spa
eis redu
ed to 0).Let p 2 Gm;n be an m-subspa
e of Rn . We asso
iate to p an n�m matrixXp of an orthonormal basis of p. Changing the basis amounts to multiplyingXp on the right by an element of O(m), so we 
an de�ne a mapping:� : Hom2k(Mn;m)O(m) �! L2(Gm;n)f 7�! �f : �f(p) = f(Xp)(7)whi
h 
ommutes with the a
tion of O(n).If X is an n � m matrix, we denote by X1 the m � m matrix X1 =(Xi;j)1�i�m1�j�m: The map: � :Mn;m ! SMm de�ned by �(X) = X1Xt1 indu
esa map: �� : Homk(SMm) �! Hom2k(Mn;m)O(m)(8)Note that �� sends the degree k polynomials on SMm to degree 2kpolynomials on Mn;m; one 
he
ks easily that its image is 
ontained in thef1g �O(m)-invariant polynomials.The Frobenius re
ipro
ity theorem [7, 12.1.8℄ asserts that, sin
e the mul-tipli
ity of F �m is 1 in Homk(SMm), there is up to a multipli
ative s
alarone zonal fun
tion in F �m, whi
h we denote by C�. We have C�(S) =
�(�1; : : : ; �m) where 
� is a homogeneous symmetri
 polynomial of degreek (be
ause we 
an take S diagonal) and (�1; : : : ; �m) are the eigenvalues ofS. We normalize 
� by 
�(1; 1; : : : ; 1) = 1. An expli
it 
omputation of 
� isgiven in [8℄.De�nition 3.4. We will also use C� to denote the image in L2(Gm;n) ofthe zonal fun
tion C� above under the mapping ���.



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 5The following lemma des
ribes the spa
e of Stab(p0)-invariant fun
tionsin L2(Gm;n).Lemma 3.5. The mapping ��� yields an isomorphism between the O(m)-invariant elements of Homk(SMm) and the Stab(p0)-invariant elements inthe image of �.Proof. It is easy to see that the Stab(p0)-invariant polynomial fun
tions inthe image of � are the symmetri
 polynomials in the squares y1; : : : ; ym ofthe 
osines of the prin
ipal angles between p and p0. From (2), the yi are theeigenvalues of the symmetri
 matrix Xp;1Xtp;1 2 SMm, so su
h a fun
tion isthe image under ��� of an element of Homk(SMm), whi
h is a polynomialin the eigenvalues of the matrix.Sin
e the orbits of O(m) on S+m are 
hara
terized by the set of eigen-values of the matrix, the O(m)-invariant fun
tions in Homk(SMm) are thesymmetri
 polynomials in the eigenvalues of the matri
es (and the mappingR[Y1 ; :; Ym℄Sm ! (�k Homk(SMm))O(m) is an isomorphism). The possiblevalues for (y1; : : : ; ym) are [0; 1℄m so a polynomial whi
h takes the value zerofor all p 2 Gm;n is identi
ally zero, and the mapping is inje
tive.We have the following 
ommutative diagram of O(n)-modules:Hom2k�2(Mn;m)O(m)� 1mPi;j X2i;j
��

�
((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

QHom2k(Mn;m)O(m) �
// L2(Gm;n)(9)

where the verti
al arrow is the multipli
ation by the degree 2 polynomial1mPi;jX2i;j . It shows that �(Hom2k�2(Mn;m)O(m)) � �(Hom2k(Mn;m)O(m)).Let us denote H2k := �(Hom2k(Mn;m)O(m)) � L2(Gm;n):and let W2k be the orthogonal of H2k�2 in H2k.Proposition 3.6. For a partition � of 2k, let ~P� be the proje
tion of C� 2H2k = H2k�2 �W2k onto W2k. Then ~P� is a nonzero Stab(p0)-invariantfun
tion in H�m;n and hen
e ~P� is (up to a s
alar multiple) the zonal fun
tionP� above. Moreover, the subspa
e H�m;n is the image under � of the (unique)subspa
e of Hom2k(Mn;m)O(m) isomorphi
 to V �n .Proof. It is 
lear that ~P� is Stab(p0)-invariant. Sin
e ~P� equals C� minusa linear 
ombination of C� with Pni=1 �i < 2k, it follows from Lemma 3.5that ~P� is non zero. Let X� be the proje
tion of F �n to W2k. Then X� isan O(n)-submodule of L2(Gm;n) whi
h 
ontains ~P�. By 
onstru
tion andLemma 3.5 P� is the unique O(m) � O(n � m)-invariant fun
tion in X�,whi
h implies that X� is an irredu
ible O(n)-module not isomorphi
 to a



6 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEsubmodule of H2k�2. By indu
tion we may assume that H2k�2 ' �V �nwhere the sum is over the � with �i even andPmi=1 �i � 2k� 2. With The-orem 3.2 one now sees that X� is isomorphi
 to V �n and hen
e X� = H�m;n.It is sometimes more 
onvenient to view the zonal fun
tions as fun
tionson Gm;n � Gm;n. More generally, for m � q � n2 , one 
an 
onsider the spa
eZm;q := fZ : Gm;n � Gq;n ! R j Z(g(p); g(p0)) = Z(p; p0) 8 g 2 O(n);s.t. Z(p; :) 2 L2(Gq;n); Z(:; p0) 2 L2(Gm;n) 8 p 2 Gm;n; p0 2 Gq;ng:(10)If m = q, then any fun
tion Z 2 Zm;m yields a zonal fun
tion Z(p0; �)for the stabilizer of p0. In parti
ular Zm;m 
ontains a unique fun
tion Pm;m�with P�(p) = Pm;m� (p0; p) for all p 2 Gm;n.We also need fun
tions Pm;q� whi
h relate the spa
es L2(Gm;n) and L2(Gq;n)form � q � n2 . The fa
t that the spa
es L2(Gm;n) and L2(Gq;n) ea
h 
ontainthe irredu
ible module V �n (for the partitions � in even parts and of depthat most m) with multipli
ity 1 means for Zm;q that there exists a unique(up to a multipli
ative fa
tor, whi
h we 
hoose in the 
ase m = q so thatPm;m� (p; p) = 1) non zero element Pm;q� in Zm;q, su
h that for all p 2 Gm;n,Pm;q� (p; :) belongs to H�q;n, and for all p0 2 Gq;n, Pm;q� (:; p0) belongs to H�m;n.This element is 
omputed expli
itly in [8, Theorem 15.1℄ and has the generalform
Pm;q� =X��� �m;q�;�C�:(11)

where � � �means that �i � �i for all i. The method used in [8℄ is to look foreigenve
tors of the Lapla
e-Beltrami operator on the spa
e R[Y1 ; : : : ; Ym℄Sm .We shall keep the notation Pm;m� = P�. Sin
e the Pm;q� are 
onstant onthe orbits of O(n) on Gm;n � Gq;n and these orbits are 
hara
terized by theprin
ipal angles between the subspa
es, there is a symmetri
 polynomialpm;q� 2 R[Y1 ; : : : ; Ym℄Sm with Pm;q� (p; p0) = pm;q� (y1; : : : ; ym).In view of our appli
ations, we give the expli
it expressions of a few of thepolynomials Pm;q� (p; p0) = pm;q� (y1; : : : ; ym), normalized by pm;m� (1; : : : ; 1) =1, respe
tively the polynomials 
�. The indi
es of p and 
 are the (at mostm) non zero parts of the 
orresponding partitions �. Note that m � q � n2 .
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2 = 1m mXi=1 yipm;q2 = qq � n � nq � n
2
4 = 3m(m+ 2)( X1�i�m y2i + 23 X1�i<j�m yiyj)pm;q4 = p04=p04(1 : : : 1); where p04 = 1� 2(n+ 2)q 
2 + (n+ 2)(n+ 4)q(q + 2) 
4
22 = 2m(m� 1) X1�i<j�m yiyjpm;q22 = p022=p022(1 : : : 1); where p022 = 1� 2(n� 1)q 
2 + (n� 1)(n� 2)q(q � 1) 
22

(12)

It is a 
lassi
al fa
t that the Pm;q� 
an also be 
onstru
ted in the followingway: Let � be a �xed partition, with depth(�) � m, and let d be thedimension of V �n . Let (e1; : : : ; ed) be an orthonormal basis (for the O(n)-invariant s
alar produ
t < f; g >:= RGm;n f(x)g(x)d�(x), where � is theHaar measure for O(n)) of H�m;n and let � : H�m;n ! H�q;n be an isomorphismof O(n)-modules. De�neZm;q� (p; p0) := 1d dXi=1 ei(p)�(ei)(p0):(13)This de�nition is independent of the 
hoi
e of the basis be
ause anotherorthonormal basis di�ers from (e1; : : : ; ed) by an orthogonal matrix of size d;another isomorphism between the subspa
esH�m;n andH�q;n di�ers from � bya multipli
ative s
alar. By 
onstru
tion, Zm;q� (p; :) 2 H�q;n and Zm;q� (:; p0) 2H�m;n. If g 2 O(n), (g:e1; : : : ; g:ed) is again an orthonormal basis of H�m;n,so from the last remark we have Zm;q� (g(p); g(p0)) = Zm;q� (p; p0). Moreover,in the 
ase m = q, the value Z�(p; p) is independent of p be
ause O(n) istransitive on Gm;n, and from (13), Z�(p; p) =< Z�(p; p);1 >= 1dPdi=1 <ei; ei >= 1, so Z� = P�.The expression (13) shows that the operator f ! R Zm;q� (p; p0)f(p0)d�(p0)maps f 2 H�q;n to f 2 H�m;n, and 
ommutes with the a
tion of O(n).4. t-Designs and examplesIn this se
tion, we de�ne the designs in the Grassmannian spa
es. Ourde�nition generalizes the notion of spheri
al designs given in [4℄.



8 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEDe�nition 4.1. Let D be a �nite subset of Gm;n, and let t be an even num-ber. We say that D is a t-design if Pp2D f(p) = 0 for all f 2 H�m;n and forall � with 2 � deg(�) � t.Proposition 4.2. The following assertions are equivalent, where t is aneven integer, and D � Gm;n.1. D is a t-design2. 1jDjPp2D f(p) = RGm;n f(x)d�(x) for all f 2 Ht, where Ht is the sub-spa
e of L2(Gm;n) spanned by all H�m;n with deg(�) � t.3. For all � su
h that 2 � deg(�) � t and 1 � depth(�) � m, thereexists m0, depth(�) � m0 � m su
h that Pp2D Pm0;m� (p0; p) = 0 for allp0 2 Gm0;n.4. For all � su
h that 2 � deg(�) � t and 1 � depth(�) � m, thereexists m0, depth(�) � m0 � m su
h that Pp2D C�(p0; p) = �� for allp0 2 Gm0;n, , where �� is independent of the 
hoi
e of p0 2 Gm0;n.5. Pp1;p22D P�(p1; p2) = 0, for all � with 2 � deg(�) � t.Proof. 1 ) 2. Let f 2 Ht. We 
an write f = f1 + f0, where f1 2�2�deg(�)�tH�m;n and f0 2 H0:::0m;n = R1 (where 1 denotes the 
onstant fun
-tion taking the value one on all the elements of Gm;n). So f = f1 + �1 andRGm;n f(x)d�(x) =< f;1 >= � < 1;1 >= �. Sin
e Pp2D f1(p) = 0, weobtain 2.2 ) 3. We 
an take f = Pm0;m� (p0; :) and use the fa
t that Pm0;m� (p0; :) 2H�m;n whi
h is orthogonal to 1.3 ) 4. Clearly, from (11) we have C�(p0; p) =P��� ��;�Pm0;m� (p0; p) forsome ��;� 2 R (also depending on m0, m). Sin
e Pm0;m0 (p0; p) = 1, we havePp2D C�(p0; p) = �0;�jDj.4) 1. From (11), the same property holds for Pm0;m� (p0; p); but Pm0;m� (:; p)belongs to H�m0;n, whi
h is orthogonal to 1 if deg(�) 6= 0. So we havePp2D Pm0;m� (p0; p) = 0, for all p0 2 Gm0;n and for all � with 2 � deg(�) � t.On the other hand, Pm0;m� (p0; :) 2 H�m;n whi
h is O(n)-irredu
ible, so H�m;nis spanned by the images by O(n) of this element. Clearly, g:Pm0 ;m� (p0; :) =Pm0;m� (g(p0); :) for all g 2 O(n), and we have proved that D is a t-design.3 ) 5 is obvious, taking m0 = m (note that we have proved that 3. isequivalent to 1., whi
h does not depend on m0, so we 
an freely 
hoosem0 = m).5) 3. We show that 3. holds for m0 = m, whi
h is enough. Let us de�neP := Pp2D P�(p; :). In order to prove that P = 0, we show that < P;P >is equal to a 
onstant timesPp1;p22D P�(p1; p2). It follows from the lemma:Lemma 4.3. For all �, there exists a 
onstant r� su
h that, for all f 2H�m;n, < f; r�P�(p; :) >= f(p).Proof. The operator f ! R Pm;q� (p; p0)f(p0)d�(p0) maps H�m;n into H�q;n, and
ommutes with the a
tion of O(n) (see the end of Se
tion 3). Sin
e H�m;n is
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ible, it is homotheti
, whi
h is exa
tly a rephrasement of the lemma.Corollary 4.4. If D is a t-design, then (3) of Proposition 4.2 holds for allm0 � m and all even partitions � of degree � t in at most m0 parts.Some t-designs in Gm;n 
an arise as orbits under a �nite subgroup of O(n)whose representations have spe
ial properties.Theorem 4.5. Let G be a �nite subgroup of O(n). Let m0 � n=2 be a �xedinteger. The following properties are equivalent:1. For all m � m0, and for all p 2 Gm;n, the orbit G � p of p under thea
tion of G is a 2k-design.2. The representation of G provided by the subspa
e of Homk(SMn) iso-morphi
 to �� even ;depth(�)�m0F �n 
ontains the trivial 
hara
ter as ma-ny times as O(n) itself.Proof. We 
onsider the mappings:Homk(SMn) ��1
// Hom2k(Mn;m)O(m) �

// L2(Gm;n)(14)where ��1 is the GL(n;R)-morphism de�ned by: ��1P (X) = P (XXt). Thesurje
tivity of ��1 is a 
lassi
al result of invariant theory (see [7, Chapter 4℄).From the de
ompositions (4) and (6), we see that its kernel is the sum ofthe F �n with depth(�) > m.Assume the 
ondition 2. holds. Then, HG2k = R1. Let us 
onsider, for �with 2 � deg(�) � 2k, S :=Pg2G g � P�(:; p); S is G-invariant and belongsto H�m;n so S = 0. So, for all p0 2 Gm;n, Pg2G P�(g(p0); p) = 0, whi
his equivalent to Pg2G P�(p0; g�1(p)) = 0, whi
h from Proposition 4.2 (3).means that G � p is a 2k-design.Conversely, we assume that the subspa
e of Homk(SMn) isomorphi
 to��;depth(�)�m0V �n 
ontains aG-invariant element whi
h is notO(n)-invariant.We 
an assume that k is minimal and non zero for this property. Let � ofminimal depth m (m � m0), su
h that the submodule of Homk(SMn) iso-morphi
 to F �n in (4) 
ontains a non zero G-invariant element. Be
ause k isminimal, this element belongs to the O(n)-submodule of F �n isomorphi
 toV �n . Hen
e its image by ���1 is a non zero G-invariant element in H�m;n (seeProposition 3.6). Let us 
all it f ; there exists p 2 Gm;n su
h that f(p) 6= 0,whi
h by de�nition prevents G � p from being a 2k-design.Remark 4.6. � When m0 = 1, one re
overs the usual 
riterion for theorbits of a group on the unit sphere modulo f�1g to be spheri
al de-signs, sin
e F (2k)n ' Sym2k(Rn).



10 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBE� The 
ondition 2. in previous theorem is equivalent to the 
ondition:dim((F �n )G) = 1 for all partition �, whi
h are even, of degree 2k anddepth at most m0� The multipli
ity of the trivial 
hara
ter for O(n) in �F �n where thesum is over the partitions � whi
h are even, of degree 2k and depth atmost m0 is 
learly equal to the number of partitions of k into at mostm0 parts, sin
e dim(F �n )O(n) = 1 from Frobenius theorem.We point out two 
orollaries of Theorem 4.5. The �rst one is trivial butleads to several interesting examples, and the se
ond one links to a 
onditionon the representations of G whi
h appeared in [9℄.Corollary 4.7. Let G be a �nite subgroup of O(n). The following propertiesare equivalent:1. For all m � n=2, and for all p 2 Gm;n, the orbit G � p of p under thea
tion of G is a 2k-design.2. The representation of G provided by Homk(SMn) 
ontains the trivial
hara
ter as many times as O(n) itself.Examples: The representation a�orded by Homk(SMn) is isomorphi
 tothe representation Symk(Sym2(V )), where V is the natural representation ofthe group G; standard formulas 
ompute its 
hara
ter from the 
hara
ter ofG, and hen
e the multipli
ity of the trivial 
hara
ter in it. This 
omputationshows that the 
ondition 2. of Theorem 4.5 holds for Aut(D4) and k � 2,Aut(E6) and k � 2, Aut(E7) and k � 2, Aut(E8) and k � 3, Aut(K12)and k = 1, Aut(BW16) and k � 3, Aut(�24) the Lee
h latti
e and k � 5.In the 
ases D4, E6, E7, E8, BW16 and �24, the lowest degree G-invariantpolynomial appears for a partition � of depth equal to 1, so the degree ofthe design a�orded by the m-se
tions of the latti
e is the same as the degreeof the design on the minimal ve
tors (whi
h is known from [12℄, [1℄). In the
ase of the Coxeter-Todd latti
e K12, the minimal ve
tors form a 4-design,but a G-invariant polynomial appears for � = (2; 2; 0; : : : ; 0). One 
an 
he
kthat the two orbits of G on the minimal planes of the latti
e (of 
ardinality5040 and 126) do not form 4-designs (nor their union).Corollary 4.8. Let G be a �nite subgroup of O(n). The following propertiesare equivalent:1. For all p 2 G1;n [ G2;n, the orbit G � p of p under the a
tion of G is a2k-design.2. The representation of G provided by Sym2(Symk(Rn)) 
ontains thetrivial 
hara
ter as many times as O(n) itself.Proof. There is an isomorphism of GL(n;R)-modules between the spa
esHom2k(Mn;2)O(2) and Sym2(Symk(Rn)) (if X 2Mn;2, 
onsider Sj = Xj;1 +iXj;2 and Tj = Xj;1 � iXj;2; one easily sees that the O(2)-invariant homo-geneous of degree 2k polynomials in the Xi;j are the polynomials whi
h areof degree k in Si and in Tj and invariant under the ex
hange (Si; Ti)).
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ondition 2 of Corollary 4.8 is the same as the 
ondition (ii) of [9,Th 2.6℄. In parti
ular, the almost irredu
ible groups listed in [9℄ give riseto 4-designs in both the Grassmannians G1;n and G2;n. When G is theautomorphism group of a latti
e L, the latti
e is strongly 1- and 2-perfe
t(see next se
tion). 5. The Rankin fun
tion 
n;mBeside the 
lassi
al Hermite fun
tion 
 (= 
1 in what follows), Rankin[10℄ de�ned a 
olle
tion of fun
tions 
m, in the following way : let L be alatti
e in a Eu
lidean spa
e E, endowed with a s
alar produ
t denoted x � y,and m an integer in f1; � � � ; ng. One de�nesÆm(L) = infp2L(m) det p;(15)in whi
h L(m) stands for the set of m-dimensional sublatti
es of L, and
m(L) = Æm(L)=(detL)mn(16)Thus, for m = 1, 
1(L) is the 
lassi
al Hermite invariant of L. It 
an beproved ([10℄) that 
m is bounded as a fun
tion on the set of n-dimensionalpositive de�nite latti
es. The supremum, whi
h a
tually is a maximum,is denoted by 
m;n. In [3℄, a notion of m-perfe
tion and m-eutaxy wereproposed, whi
h we re
all below, and a 
hara
terization of the lo
al maximaof 
m was derived.We de�ne the set of minimal m-se
tions of L asSm(L) = fp 2 L(m) j det p = Æm(L)g(17)whi
h is a �nite set. If p is an m-se
tion, we denote by prp the orthogonalproje
tion on p, seen as an element of the spa
e Ends(E) of the symmetri
endomorphisms of the Eu
lidean spa
e E. We re
all the de�nitions given in[3℄:De�nition 5.1. 1. A latti
e L is 
alled m-perfe
t if the endomorphismsprp generate Ends(E)2. A latti
e L is m-euta
ti
 if there exist positive 
oeÆ
ients �p, p 2Sm(L) su
h that Pp2Sm(L) �p prp = Id.3. A latti
e L is 
alled m-extreme, if 
m a
hieves a lo
al maximum at L.Re
all ([3, Theorem 3.2.3℄) that L is m-extreme if and only if L is bothm-perfe
t and m-euta
ti
.6. Strongly m-perfe
t latti
esIn this se
tion, we study the 
onne
tion between the notion of design onGrassmannians introdu
ed in Se
tion 4, and the Rankin invariant of latti
es.Our goal is to generalise the result of Boris Venkov, whi
h asserts that, if theminimal ve
tors of a latti
e are a 4-spheri
al design, i.e. a 4-design in G1;n,
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e is a lo
al maximum of the Hermite fun
tion ([11, Theorem6.4℄).De�nition 6.1. Let L be a latti
e of dimension n, and let Sm(L) � Gm;nbe the set of its minimal se
tions of dimension m. We say that L is stronglym-perfe
t if Sm(L) is a 4-design in the sense of De�nition 4.1.Examples: The latti
es D4, E6, E7, E8, BW16, �24 are strongly m-perfe
tfor all m � n=2 from Se
tion 4. The Coxeter-Todd latti
e, whi
h is strongly1-perfe
t ([1℄), is not strongly 2-perfe
t (see the examples in Se
tion 4).Despite of that, the asso
iated orthogonal proje
tions span the spa
e ofsymmetri
 endomorphisms, and the latti
e is 2-extreme.Theorem 6.2. If L is strongly m-perfe
t, then it is m-extreme, i.e. ita
hieves a lo
al maximum of the Rankin fun
tion 
m.Proof. We use the 
hara
terization of m-extreme latti
es re
alled in Se
tion5. If p belongs to Gm;n, we denote, as in Se
tion 5, prp the orthogonal pro-je
tion on p. The spa
e Ends(E) is endowed with the usual s
alar produ
tA � B = tra
e(AB). The main ingredient for the proof is the following re-mark: for all p, p0 in Gm;n, mC2(p; p0) = prp �pr0p, and it is obvious in viewof Se
tion 2 and from the expression of 
2 (12).We �rst prove that, if Sm(L) is a 2-design, then L is m-euta
ti
. Tothat end, we prove that Pp2Sm(L) prp = �Id for some � 2 R. It is worthnoti
ing that � is for
ed to be positive be
ause prp �Id = m, and hen
e� = jSm(L)jm=n. Be
ause Ends(E) is generated by all the prp0 when p0 runsover Gm;n, it is enough to prove that, for all p0 2 Gm;n, Pp2Sm(L) prp �prp0 =�Id � prp0 , whi
h is equivalent to Pp2Sm(L) C2(p; p0) = �. But this last
ondition is exa
tly the 
ondition 4. of Proposition 4.2.Let C := (C2(p; p0))p;p02Sm(L). Sin
e the Gram matrix of the proje
tionsprp equals mC, the m-perfe
tion is equivalent to the property that C hasrank equal to dimEnds(E) = n(n+ 1)=2. Let J denote the matrix with all
oeÆ
ients equal to 1. The property that Sm(L) is a 4-design a
tually leadsto a linear relation between C, C2 and J :Lemma 6.3. Assume Sm(L) is a 4-design and let C := (C2(p; p0))p;p02Sm(L).Let d := dim(H2m;n) = n(n+ 1)=2 � 1 and let sm := jSm(L)j. ThenC2 = sm(n�mnd C + m2d+m2 � nmn2d J):(18)Proof. We introdu
e the matrix P := (P2(p; p0))p;p02Sm(L) where P2 = Zm;m2is de�ned in (13) and we 
ompute P 2. For all p, p0 in Sm(L),



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 13P 2(p; p0) = Xp002Sm(L)P2(p; p00)P2(p00; p0)= 1d2 Xp002Sm(L)Xi;j ei(p)ei(p00)ej(p00)ej(p0)= 1d2 Xi;j ei(p)ej(p0) Xp002Sm(L) ei(p00)ej(p00):(19)
Clearly, the fun
tion p ! ei(p)ej(p) belongs to H4. A

ording to thede
omposition H4 = R1 ? H2m;n ? H22m;n ? H4m;n, eiej = �01+f2+f22+f4.Be
ause Sm(L) is assumed to be a 4-design, the sums Pp002Sm(L) f2(p00),Pp002Sm(L) f22(p00), Pp002Sm(L) f4(p00) are equal to zero. Moreover, sin
eÆi;j =< ei; ej >=< eiej ;1 >= �0 < 1;1 >= �0,P 2(p; p0) = 1d2 Xi ei(p)ei(p0)sm= smd P (p; p0)(20)and we have proved the matrix relation P 2 = smd P . In order to prove thelemma, we need to 
ompute C in terms of P and J . From (12) we haveC = mn J + n�mn P:(21)Finally, the property that JP = PJ = 0, whi
h holds be
ause Sm(L) is a2-design, together with (20) and (21) ends the proof of the lemma.The matri
es C, C2, J are real symmetri
 matri
es whi
h pairwise 
om-mute, so they are simultaneously diagonalizable. The eigenvalues of J aresm with multipli
ity one, and 0. Let us denote �1, �2, : : : the eigenvaluesof C, where �1 
orresponds to the eigenve
tor (1; 1; : : : ; 1). From the iden-tity CJ = m=nJ2 = smm=nJ , we derive �1 = smm=n. From the identity(18), for i � 2, �2i = smn�mnd �i, so �i = 0 or �i = smn�mnd . Let us denotek the multipli
ity of smn�mnd . We have tra
e(C) = sm = smmn + ksmn�mnd ,from whi
h k = d. Finally, the rank of the matrix C is equal to 1 + d =n(n+ 1)=2 = dim(Ends(E)), whi
h ends the proof of the theorem.7. Bounds for the minimaIn this se
tion we obtain analogous bounds as the ones given in [11,Th�eor�eme 10.4℄. There it is shown that for a strongly 1-perfe
t latti
e L,



14 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEthe produ
t of the minima of the latti
e L and its dual latti
e satis�esmin(L)min(L�) � n+23 .Using analogous methods we obtainTheorem 7.1. Let L be a strongly 2-perfe
t latti
e of dimension n. Letm be its minimum, let d be the minimal determinant of a 2-dimensionalsublatti
e of L and m0 be the minimum of the dual latti
e L�. Thendm0 � mn+ 24 :Proof. Let � be a minimal ve
tor of L� and D denote the set of minimal 2-se
tions of L. We 
onsider p0 := h�i 2 G1;n and D � G2;n. The polynomialsp1;22 and p1;24 are polynomials in one variable y1 whi
h 
an be 
al
ulated withequation (2): Let p := he1; e2i 2 D be a minimal 2-se
tion of determinant din L. Then the prin
ipal angle between p and p0 is(�; �)�1d�1 � (�; e1) ; (�; e2) �� (e2; e2) �(e1; e2)�(e1; e2) (e1; e1) �� (�; e1)(�; e2) �= (�; �)�1d�1jj(�; e1)e2 � (�; e2)e1jj2:To shorten the notation we de�ne N(p) := jj(�; e1)e2 � (�; e2)e1jj2: ThenN(p) is the squared length of a ve
tor in L and hen
e it is either 0 or� min(L) = m. Using Corollary 4.4 we 
al
ulate with the equations (12)Xp2DN(p) = 2n(�; �)djDjand Xp2DN(p)2 = 8n(n+ 2)(�; �)2d2jDj:From this we �nd thatXp2DN(p)2 �mN(p) = 8n(n+ 2)(�; �)2d2jDj �m 2n(�; �)djDj= 2mn (�; �)djDj( 4m(n + 2)(�; �)d � 1):Sin
e the left hand side is a sum over nonnegative real numbers, also theright hand side is a nonnegative number. Hen
e 4m(n+2) (�; �)d � 1 or equiv-alently (�; �)d � m(n+2)4 .Examples For L = D4 one has m = 2 hen
e dm0 � 2(4+2)4 = 3, whi
his sharp sin
e d = 3 and m0 = 1. For L = E8 the formula yields the bound5, whereas dm0 = 6, for K12 one �nds 16 � 14 and for BW16 one has24 � 18. Theorem 7.1 also allows to 
on
lude that 
ertain latti
es are notstrongly 2-perfe
t. For instan
e for L = A4 one �nds dm0 = 345 whi
h is not� 2(4+2)4 = 3.
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ase L is integral, one 
an take a minimal ve
tor � 2 L instead of� 2 L� in the proof of Theorem 7.1, and get the following lower bound:Corollary 7.2. Let L be an integral strongly 2-perfe
t latti
e of dimensionn and put d := Æ2(L). Then d � n+ 24 :Theorem 7.3. Let L be an integral strongly 2-perfe
t latti
e of dimensionn and put d := Æ2(L) and d0 := Æ2(L�). Thendd0 � (n+ 2)(n� 1)2(3n� 2)Æwhere Æ 2 N is the least 
ommon multiple of the denominator of the Grammatri
es of the minimal 2-se
tions on L�.Proof. We denote by D the set of minimal 2-se
tions of L. Let p0 :=hf1; f2i � L� be a minimal plane of L� of determinant d0 and let p :=he1; e2i 2 D.Denote by y1, y2 the squares of the 
osines of the prin
ipal angles betweenp and p0. Theny1y2 = 1dd0 det(� (e1; f1) (e1; f2)(e2; f1) (e2; f2) �)2 = 1dd0D(p; p0)with D(p; p0) 2 Z and y1 + y2 = 1dd0N(p; p0)where N(p; p0) 
an be 
al
ulated from (2) and is in 1ÆZ where Æ is the de-nominator of the Gram matrix of p0.From equations (12) we �nd thatXp2DN(p; p0) = dd0jDj 4nXp2DD(p; p0) = dd0jDj 2n(n� 1)Xp2D(N(p; p0))2 = (dd0)2jDj 8(3n� 2)n(n+ 2)(n� 1)From this one gets thatXp2D(N(p; p0))2 � 1ÆN(p; p0) = dd0jDj 4Æn(dd0 2(3n� 2)Æ(n+ 2)(n� 1) � 1) � 0and hen
e dd0 � (n+2)(n�1)2(3n�2)Æ .
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