
DESIGNS IN GRASSMANNIAN SPACES AND LATTICESCHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEAbstrat. We introdue the notion of a t-design on the Grassmannmanifold Gm;n of the m-subspaes of the Eulidean spae Rn . It gen-eralizes the notion of antipodal spherial design whih was introduedby P. Delsarte, J.-M. Goethals and J.-J. Seidel. We haraterize the�nite subgroups of the orthogonal group whih have the property thatall their orbits are t-designs. Generalizing a result due to B. Venkov,we prove that, if the minimal m-setions of a lattie L form a 4-design,then L is a loal maximum for the Rankin funtion n;m.1. IntrodutionThe notion of strongly perfet lattie is due to Boris Venkov. It is asublass of the extreme latties, i.e. of the latties on whih the Hermitefuntion is a loal maximum, distinguished by a ombinatorial property of itsminimal vetors. Namely, its minimal vetors form a set whih is a spherial4-design in the sense of [4℄.In this paper, we introdue an analogous notion of t-design on the Grass-mann manifold Gm;n of the m-subspaes of the Eulidean spae Rn . Tothis aim we use the deomposition of the O(n)-module L2(Gm;n) of squareintegrable funtions on Gm;n into a sum of irreduibles and the alulationof unique elements in eah of the irreduible subspaes as zonal funtionswhih is performed in [8℄ (see Setion 3). The next setion gives variousriteria for t-designs on Gm;n; in partiular we haraterize the �nite sub-groups of O(n) whose orbits on the Grassmannians are always t-designs. Ifthe minimal m-setions of a lattie L form a 4-design, we all the lattieL strongly m-perfet. Using the desription of m-extreme latties repeatedin Setion 5, we show that the strongly m-perfet latties are m-extreme.The �nal setion gives lower bounds for the minima of strongly m-perfetlatties. 2. The Grassmann manifoldThe Grassmann manifold Gm;n is the manifold ofm-dimensional subspaesof the Eulidean spae Rn . It is a homogeneous spae for the ation of theorthogonal group O(n) := O(Rn). The stabilizer of a given m-subspaep is isomorphi to O(m) � O(n �m) (sine an orthogonal transformationDate: April 9, 2002.1991 Mathematis Subjet Classi�ation. 11H06,Key words and phrases. lattie, Grassmann manifold, orthogonal group, zonal funtion.1



2 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEwhih preserves p also preserves p?). The manifold Gm;n is ompat, andtherefore endowed with a Haar measure �. The spae of square-integrablereal valued-funtions L2(Gm;n) is endowed with the usual salar produt< f1; f2 >= ZGm;n f1(x)f2(x)d�(x):In order to parametrise the orbits of pairs of points in Gm;n underO(n), wehave to introdue prinipal angles between subspaes. We ollet some well-known fats about this notion (see [2℄, or [6℄ p. 584). Let m � q � n=2 and(p; p0) 2 Gm;n � Gq;n. Denote by prp (resp. prp0) the orthogonal projetionon p (resp. p0). As v varies over p0, the funtion v 7! k prp(v)kkvk admits mritial values 0 � tm = os �m � � � � � t1 = os �1 � 1. Then �1; : : : ; �m 2[0; �=2℄ are alled the prinipal angles between p and p0. Moreover, one anonstrut orthonormal bases fuig and fvig of p and p0 suh that ui � vi = tifor 1 � i � m, and ui � vj = 0 if i 6= j. Completing fuig to an orthonormalbasis B of Rn , and writing down the n� q generating matrixM of p0 in thisbasis, we get:
M =

0BBBBBBBBBBBBBBBBBB�
os �1 0 : : : 0 � : : : �0 os �2 : : : 0 � : : : �... ... ... ... ...0 0 : : : os �m � : : : �sin �1 0 : : : 0 � : : : �0 sin �2 : : : 0 � : : : �... ... ... ... ...0 0 : : : sin �m � : : : �0 0 : : : 0 � : : : �... ... ... ... ...0 0 : : : 0 � : : : �

1CCCCCCCCCCCCCCCCCCA(1)
In partiular, the m-tuple (os �1; � � � ; os �m) haraterizes the O(n)-orbitof the pair (p; p0).The yi := os2 �i may be alulated as the �rst m eigenvalues, in de-reasing order, of the endomorphism prp Æprp0 (or prp0 Æprp). Alternatively,if feig1�i�m and ffig1�i�q are any bases of p and p0, the yi are just theeigenvalues of the m�m matrix:(ei � ej)�1(ei � fj)(fi � fj)�1(fi � ej)(2) 3. Deomposition of L2(Gm;n) and intertwining funtionsIn this setion we deompose the O(n)-module L2(Gm;n) into irreduiblesubmodules. Replaing any subspae p 2 Gm;n by its orthogonal omple-ment, we may assume that m � n2 . We shall make use of several lassialresults of representation theory, for whih we refer to the book of Goodman



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 3and Wallah [7℄ and Fulton and Harris [5℄. Following [7℄, F �n denotes theirreduible module of GL(n;R) of highest weight Pni=1 �iLi, where � is apartition � = �1 � �2 � : : : �n � 0 in at most n-parts (f. [5, Prop. 15.15℄).De�nition 3.1. The degree of a partition � is deg(�) := Pi �i, and thedepth of � is depth(�) := maxfi j �i 6= 0g.If depth(�) � n2 , then the restrition of F �n to the orthogonal group O(n)ontains a unique irreduible submodule V �n , whih does not our in thespaes F �n , with deg(�) < deg(�). The representation V �n is assoiated tothe partition � as desribed in [5, Setion 19.5℄.From [7, Setion 12.3.2℄ (pp 544-547) (where they show the analogousassertion for SO(n)) one gets the following theorem:Theorem 3.2. Let m � n2 . Then the O(n)-spae L2(Gm;n) is isomorphito L2(Gm;n) 'MV �n(3)where the sum is over the � of depth at most equal to m, with all the �i � 0mod 2.De�nition 3.3. Denote the unique submodule of L2(Gm;n) isomorphi toV �n by H�m;n.Let p0 be the m-subspae generated by the �rstm elements of the anoni-al basis of Rn . Then the stabilizer of p0 in O(n) is Stab(p0) �= O(m)�O(n�m) and L2(Gm;n) is the indued module from the trivial O(m)�O(n�m)-module. Hene by Frobenius reiproity [7, 12.1.8℄ eah of the irreduibleO(n)-subspaes H�m;n ontains a (up to salar multiples) unique zonal fun-tion P�, i.e. a funtion that is invariant under O(m)�O(n�m).In the following we give a more preise desription of H�m;n and explain astrategy used in [8℄ to alulate P�.We �x the following notations whih we will keep for the rest of the paper:for all m, n 2 N, let Mn;m denote the vetor spae of n�m matries withreal oeÆients, and SMm the vetor spae of the real symmetri m � mmatries.We onsider the spaes of homogeneous polynomials of degree k in the o-eÆients of these matries, denoted by Homk(Mn;m) and Homk(SMm). Thegroup GL(m;R) ats on Homk(SMm) by (g:f)(S) = f(gtSg), and the prod-ut GL(n;R)�GL(m;R) ats on Homk(Mn;m) by ((g; h):f)(M) = f(gtMh).The deomposition of the GL(n;R)-module Homk(SMn) is given by ([7,Th. 5.2.9℄): Homk(SMn) 'MF �n(4)where the sum is over the � of depth � n suh that �i is even for all iand deg(�) = 2k. It is worth notiing here that the spae of polynomials�kHomk(SMn) is isomorphi to the spae of polynomial funtions on thereal symmetri positive de�nite matries S+n . This set is homogeneous for the



4 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEation of GL(n;R), and the stabilizer of the identity matrix is the orthogonalgroup. So the polynomial funtions are the indued module from O(n) toGL(n;R) of the trivial one.The deomposition as a GL(n;R) �GL(m;R)-module of Homk(Mn;m) is([7, Th. 5.2.7℄): Homk(Mn;m) 'MF �n 
 F �m(5)where the sum is over the � of depth at most equal to min(m;n), and ofdegree equal to k.From (4) and Frobenius reiproity, the spae of O(n)-invariant elementsin F �n is one-dimensional if and only if �i is even for all i, so, as a GL(n;R)-module: Homk(Mn;m)O(m) 'MF �n(6)where the sum is over the � of depth at most equal to min(m;n) with allthe �i � 0 mod 2 and deg(�) = k (and hene k is even otherwise this spaeis redued to 0).Let p 2 Gm;n be an m-subspae of Rn . We assoiate to p an n�m matrixXp of an orthonormal basis of p. Changing the basis amounts to multiplyingXp on the right by an element of O(m), so we an de�ne a mapping:� : Hom2k(Mn;m)O(m) �! L2(Gm;n)f 7�! �f : �f(p) = f(Xp)(7)whih ommutes with the ation of O(n).If X is an n � m matrix, we denote by X1 the m � m matrix X1 =(Xi;j)1�i�m1�j�m: The map: � :Mn;m ! SMm de�ned by �(X) = X1Xt1 induesa map: �� : Homk(SMm) �! Hom2k(Mn;m)O(m)(8)Note that �� sends the degree k polynomials on SMm to degree 2kpolynomials on Mn;m; one heks easily that its image is ontained in thef1g �O(m)-invariant polynomials.The Frobenius reiproity theorem [7, 12.1.8℄ asserts that, sine the mul-tipliity of F �m is 1 in Homk(SMm), there is up to a multipliative salarone zonal funtion in F �m, whih we denote by C�. We have C�(S) =�(�1; : : : ; �m) where � is a homogeneous symmetri polynomial of degreek (beause we an take S diagonal) and (�1; : : : ; �m) are the eigenvalues ofS. We normalize � by �(1; 1; : : : ; 1) = 1. An expliit omputation of � isgiven in [8℄.De�nition 3.4. We will also use C� to denote the image in L2(Gm;n) ofthe zonal funtion C� above under the mapping ���.



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 5The following lemma desribes the spae of Stab(p0)-invariant funtionsin L2(Gm;n).Lemma 3.5. The mapping ��� yields an isomorphism between the O(m)-invariant elements of Homk(SMm) and the Stab(p0)-invariant elements inthe image of �.Proof. It is easy to see that the Stab(p0)-invariant polynomial funtions inthe image of � are the symmetri polynomials in the squares y1; : : : ; ym ofthe osines of the prinipal angles between p and p0. From (2), the yi are theeigenvalues of the symmetri matrix Xp;1Xtp;1 2 SMm, so suh a funtion isthe image under ��� of an element of Homk(SMm), whih is a polynomialin the eigenvalues of the matrix.Sine the orbits of O(m) on S+m are haraterized by the set of eigen-values of the matrix, the O(m)-invariant funtions in Homk(SMm) are thesymmetri polynomials in the eigenvalues of the matries (and the mappingR[Y1 ; :; Ym℄Sm ! (�k Homk(SMm))O(m) is an isomorphism). The possiblevalues for (y1; : : : ; ym) are [0; 1℄m so a polynomial whih takes the value zerofor all p 2 Gm;n is identially zero, and the mapping is injetive.We have the following ommutative diagram of O(n)-modules:Hom2k�2(Mn;m)O(m)� 1mPi;j X2i;j
��
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Q

Q
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Q

Q

Q
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QHom2k(Mn;m)O(m) �
// L2(Gm;n)(9)

where the vertial arrow is the multipliation by the degree 2 polynomial1mPi;jX2i;j . It shows that �(Hom2k�2(Mn;m)O(m)) � �(Hom2k(Mn;m)O(m)).Let us denote H2k := �(Hom2k(Mn;m)O(m)) � L2(Gm;n):and let W2k be the orthogonal of H2k�2 in H2k.Proposition 3.6. For a partition � of 2k, let ~P� be the projetion of C� 2H2k = H2k�2 �W2k onto W2k. Then ~P� is a nonzero Stab(p0)-invariantfuntion in H�m;n and hene ~P� is (up to a salar multiple) the zonal funtionP� above. Moreover, the subspae H�m;n is the image under � of the (unique)subspae of Hom2k(Mn;m)O(m) isomorphi to V �n .Proof. It is lear that ~P� is Stab(p0)-invariant. Sine ~P� equals C� minusa linear ombination of C� with Pni=1 �i < 2k, it follows from Lemma 3.5that ~P� is non zero. Let X� be the projetion of F �n to W2k. Then X� isan O(n)-submodule of L2(Gm;n) whih ontains ~P�. By onstrution andLemma 3.5 P� is the unique O(m) � O(n � m)-invariant funtion in X�,whih implies that X� is an irreduible O(n)-module not isomorphi to a



6 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEsubmodule of H2k�2. By indution we may assume that H2k�2 ' �V �nwhere the sum is over the � with �i even andPmi=1 �i � 2k� 2. With The-orem 3.2 one now sees that X� is isomorphi to V �n and hene X� = H�m;n.It is sometimes more onvenient to view the zonal funtions as funtionson Gm;n � Gm;n. More generally, for m � q � n2 , one an onsider the spaeZm;q := fZ : Gm;n � Gq;n ! R j Z(g(p); g(p0)) = Z(p; p0) 8 g 2 O(n);s.t. Z(p; :) 2 L2(Gq;n); Z(:; p0) 2 L2(Gm;n) 8 p 2 Gm;n; p0 2 Gq;ng:(10)If m = q, then any funtion Z 2 Zm;m yields a zonal funtion Z(p0; �)for the stabilizer of p0. In partiular Zm;m ontains a unique funtion Pm;m�with P�(p) = Pm;m� (p0; p) for all p 2 Gm;n.We also need funtions Pm;q� whih relate the spaes L2(Gm;n) and L2(Gq;n)form � q � n2 . The fat that the spaes L2(Gm;n) and L2(Gq;n) eah ontainthe irreduible module V �n (for the partitions � in even parts and of depthat most m) with multipliity 1 means for Zm;q that there exists a unique(up to a multipliative fator, whih we hoose in the ase m = q so thatPm;m� (p; p) = 1) non zero element Pm;q� in Zm;q, suh that for all p 2 Gm;n,Pm;q� (p; :) belongs to H�q;n, and for all p0 2 Gq;n, Pm;q� (:; p0) belongs to H�m;n.This element is omputed expliitly in [8, Theorem 15.1℄ and has the generalform
Pm;q� =X��� �m;q�;�C�:(11)

where � � �means that �i � �i for all i. The method used in [8℄ is to look foreigenvetors of the Laplae-Beltrami operator on the spae R[Y1 ; : : : ; Ym℄Sm .We shall keep the notation Pm;m� = P�. Sine the Pm;q� are onstant onthe orbits of O(n) on Gm;n � Gq;n and these orbits are haraterized by theprinipal angles between the subspaes, there is a symmetri polynomialpm;q� 2 R[Y1 ; : : : ; Ym℄Sm with Pm;q� (p; p0) = pm;q� (y1; : : : ; ym).In view of our appliations, we give the expliit expressions of a few of thepolynomials Pm;q� (p; p0) = pm;q� (y1; : : : ; ym), normalized by pm;m� (1; : : : ; 1) =1, respetively the polynomials �. The indies of p and  are the (at mostm) non zero parts of the orresponding partitions �. Note that m � q � n2 .



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 7
2 = 1m mXi=1 yipm;q2 = qq � n � nq � n24 = 3m(m+ 2)( X1�i�m y2i + 23 X1�i<j�m yiyj)pm;q4 = p04=p04(1 : : : 1); where p04 = 1� 2(n+ 2)q 2 + (n+ 2)(n+ 4)q(q + 2) 422 = 2m(m� 1) X1�i<j�m yiyjpm;q22 = p022=p022(1 : : : 1); where p022 = 1� 2(n� 1)q 2 + (n� 1)(n� 2)q(q � 1) 22

(12)

It is a lassial fat that the Pm;q� an also be onstruted in the followingway: Let � be a �xed partition, with depth(�) � m, and let d be thedimension of V �n . Let (e1; : : : ; ed) be an orthonormal basis (for the O(n)-invariant salar produt < f; g >:= RGm;n f(x)g(x)d�(x), where � is theHaar measure for O(n)) of H�m;n and let � : H�m;n ! H�q;n be an isomorphismof O(n)-modules. De�neZm;q� (p; p0) := 1d dXi=1 ei(p)�(ei)(p0):(13)This de�nition is independent of the hoie of the basis beause anotherorthonormal basis di�ers from (e1; : : : ; ed) by an orthogonal matrix of size d;another isomorphism between the subspaesH�m;n andH�q;n di�ers from � bya multipliative salar. By onstrution, Zm;q� (p; :) 2 H�q;n and Zm;q� (:; p0) 2H�m;n. If g 2 O(n), (g:e1; : : : ; g:ed) is again an orthonormal basis of H�m;n,so from the last remark we have Zm;q� (g(p); g(p0)) = Zm;q� (p; p0). Moreover,in the ase m = q, the value Z�(p; p) is independent of p beause O(n) istransitive on Gm;n, and from (13), Z�(p; p) =< Z�(p; p);1 >= 1dPdi=1 <ei; ei >= 1, so Z� = P�.The expression (13) shows that the operator f ! R Zm;q� (p; p0)f(p0)d�(p0)maps f 2 H�q;n to f 2 H�m;n, and ommutes with the ation of O(n).4. t-Designs and examplesIn this setion, we de�ne the designs in the Grassmannian spaes. Ourde�nition generalizes the notion of spherial designs given in [4℄.



8 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEDe�nition 4.1. Let D be a �nite subset of Gm;n, and let t be an even num-ber. We say that D is a t-design if Pp2D f(p) = 0 for all f 2 H�m;n and forall � with 2 � deg(�) � t.Proposition 4.2. The following assertions are equivalent, where t is aneven integer, and D � Gm;n.1. D is a t-design2. 1jDjPp2D f(p) = RGm;n f(x)d�(x) for all f 2 Ht, where Ht is the sub-spae of L2(Gm;n) spanned by all H�m;n with deg(�) � t.3. For all � suh that 2 � deg(�) � t and 1 � depth(�) � m, thereexists m0, depth(�) � m0 � m suh that Pp2D Pm0;m� (p0; p) = 0 for allp0 2 Gm0;n.4. For all � suh that 2 � deg(�) � t and 1 � depth(�) � m, thereexists m0, depth(�) � m0 � m suh that Pp2D C�(p0; p) = �� for allp0 2 Gm0;n, , where �� is independent of the hoie of p0 2 Gm0;n.5. Pp1;p22D P�(p1; p2) = 0, for all � with 2 � deg(�) � t.Proof. 1 ) 2. Let f 2 Ht. We an write f = f1 + f0, where f1 2�2�deg(�)�tH�m;n and f0 2 H0:::0m;n = R1 (where 1 denotes the onstant fun-tion taking the value one on all the elements of Gm;n). So f = f1 + �1 andRGm;n f(x)d�(x) =< f;1 >= � < 1;1 >= �. Sine Pp2D f1(p) = 0, weobtain 2.2 ) 3. We an take f = Pm0;m� (p0; :) and use the fat that Pm0;m� (p0; :) 2H�m;n whih is orthogonal to 1.3 ) 4. Clearly, from (11) we have C�(p0; p) =P��� ��;�Pm0;m� (p0; p) forsome ��;� 2 R (also depending on m0, m). Sine Pm0;m0 (p0; p) = 1, we havePp2D C�(p0; p) = �0;�jDj.4) 1. From (11), the same property holds for Pm0;m� (p0; p); but Pm0;m� (:; p)belongs to H�m0;n, whih is orthogonal to 1 if deg(�) 6= 0. So we havePp2D Pm0;m� (p0; p) = 0, for all p0 2 Gm0;n and for all � with 2 � deg(�) � t.On the other hand, Pm0;m� (p0; :) 2 H�m;n whih is O(n)-irreduible, so H�m;nis spanned by the images by O(n) of this element. Clearly, g:Pm0 ;m� (p0; :) =Pm0;m� (g(p0); :) for all g 2 O(n), and we have proved that D is a t-design.3 ) 5 is obvious, taking m0 = m (note that we have proved that 3. isequivalent to 1., whih does not depend on m0, so we an freely hoosem0 = m).5) 3. We show that 3. holds for m0 = m, whih is enough. Let us de�neP := Pp2D P�(p; :). In order to prove that P = 0, we show that < P;P >is equal to a onstant timesPp1;p22D P�(p1; p2). It follows from the lemma:Lemma 4.3. For all �, there exists a onstant r� suh that, for all f 2H�m;n, < f; r�P�(p; :) >= f(p).Proof. The operator f ! R Pm;q� (p; p0)f(p0)d�(p0) maps H�m;n into H�q;n, andommutes with the ation of O(n) (see the end of Setion 3). Sine H�m;n is



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 9irreduible, it is homotheti, whih is exatly a rephrasement of the lemma.Corollary 4.4. If D is a t-design, then (3) of Proposition 4.2 holds for allm0 � m and all even partitions � of degree � t in at most m0 parts.Some t-designs in Gm;n an arise as orbits under a �nite subgroup of O(n)whose representations have speial properties.Theorem 4.5. Let G be a �nite subgroup of O(n). Let m0 � n=2 be a �xedinteger. The following properties are equivalent:1. For all m � m0, and for all p 2 Gm;n, the orbit G � p of p under theation of G is a 2k-design.2. The representation of G provided by the subspae of Homk(SMn) iso-morphi to �� even ;depth(�)�m0F �n ontains the trivial harater as ma-ny times as O(n) itself.Proof. We onsider the mappings:Homk(SMn) ��1
// Hom2k(Mn;m)O(m) �

// L2(Gm;n)(14)where ��1 is the GL(n;R)-morphism de�ned by: ��1P (X) = P (XXt). Thesurjetivity of ��1 is a lassial result of invariant theory (see [7, Chapter 4℄).From the deompositions (4) and (6), we see that its kernel is the sum ofthe F �n with depth(�) > m.Assume the ondition 2. holds. Then, HG2k = R1. Let us onsider, for �with 2 � deg(�) � 2k, S :=Pg2G g � P�(:; p); S is G-invariant and belongsto H�m;n so S = 0. So, for all p0 2 Gm;n, Pg2G P�(g(p0); p) = 0, whihis equivalent to Pg2G P�(p0; g�1(p)) = 0, whih from Proposition 4.2 (3).means that G � p is a 2k-design.Conversely, we assume that the subspae of Homk(SMn) isomorphi to��;depth(�)�m0V �n ontains aG-invariant element whih is notO(n)-invariant.We an assume that k is minimal and non zero for this property. Let � ofminimal depth m (m � m0), suh that the submodule of Homk(SMn) iso-morphi to F �n in (4) ontains a non zero G-invariant element. Beause k isminimal, this element belongs to the O(n)-submodule of F �n isomorphi toV �n . Hene its image by ���1 is a non zero G-invariant element in H�m;n (seeProposition 3.6). Let us all it f ; there exists p 2 Gm;n suh that f(p) 6= 0,whih by de�nition prevents G � p from being a 2k-design.Remark 4.6. � When m0 = 1, one reovers the usual riterion for theorbits of a group on the unit sphere modulo f�1g to be spherial de-signs, sine F (2k)n ' Sym2k(Rn).



10 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBE� The ondition 2. in previous theorem is equivalent to the ondition:dim((F �n )G) = 1 for all partition �, whih are even, of degree 2k anddepth at most m0� The multipliity of the trivial harater for O(n) in �F �n where thesum is over the partitions � whih are even, of degree 2k and depth atmost m0 is learly equal to the number of partitions of k into at mostm0 parts, sine dim(F �n )O(n) = 1 from Frobenius theorem.We point out two orollaries of Theorem 4.5. The �rst one is trivial butleads to several interesting examples, and the seond one links to a onditionon the representations of G whih appeared in [9℄.Corollary 4.7. Let G be a �nite subgroup of O(n). The following propertiesare equivalent:1. For all m � n=2, and for all p 2 Gm;n, the orbit G � p of p under theation of G is a 2k-design.2. The representation of G provided by Homk(SMn) ontains the trivialharater as many times as O(n) itself.Examples: The representation a�orded by Homk(SMn) is isomorphi tothe representation Symk(Sym2(V )), where V is the natural representation ofthe group G; standard formulas ompute its harater from the harater ofG, and hene the multipliity of the trivial harater in it. This omputationshows that the ondition 2. of Theorem 4.5 holds for Aut(D4) and k � 2,Aut(E6) and k � 2, Aut(E7) and k � 2, Aut(E8) and k � 3, Aut(K12)and k = 1, Aut(BW16) and k � 3, Aut(�24) the Leeh lattie and k � 5.In the ases D4, E6, E7, E8, BW16 and �24, the lowest degree G-invariantpolynomial appears for a partition � of depth equal to 1, so the degree ofthe design a�orded by the m-setions of the lattie is the same as the degreeof the design on the minimal vetors (whih is known from [12℄, [1℄). In thease of the Coxeter-Todd lattie K12, the minimal vetors form a 4-design,but a G-invariant polynomial appears for � = (2; 2; 0; : : : ; 0). One an hekthat the two orbits of G on the minimal planes of the lattie (of ardinality5040 and 126) do not form 4-designs (nor their union).Corollary 4.8. Let G be a �nite subgroup of O(n). The following propertiesare equivalent:1. For all p 2 G1;n [ G2;n, the orbit G � p of p under the ation of G is a2k-design.2. The representation of G provided by Sym2(Symk(Rn)) ontains thetrivial harater as many times as O(n) itself.Proof. There is an isomorphism of GL(n;R)-modules between the spaesHom2k(Mn;2)O(2) and Sym2(Symk(Rn)) (if X 2Mn;2, onsider Sj = Xj;1 +iXj;2 and Tj = Xj;1 � iXj;2; one easily sees that the O(2)-invariant homo-geneous of degree 2k polynomials in the Xi;j are the polynomials whih areof degree k in Si and in Tj and invariant under the exhange (Si; Ti)).



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 11The ondition 2 of Corollary 4.8 is the same as the ondition (ii) of [9,Th 2.6℄. In partiular, the almost irreduible groups listed in [9℄ give riseto 4-designs in both the Grassmannians G1;n and G2;n. When G is theautomorphism group of a lattie L, the lattie is strongly 1- and 2-perfet(see next setion). 5. The Rankin funtion n;mBeside the lassial Hermite funtion  (= 1 in what follows), Rankin[10℄ de�ned a olletion of funtions m, in the following way : let L be alattie in a Eulidean spae E, endowed with a salar produt denoted x � y,and m an integer in f1; � � � ; ng. One de�nesÆm(L) = infp2L(m) det p;(15)in whih L(m) stands for the set of m-dimensional sublatties of L, andm(L) = Æm(L)=(detL)mn(16)Thus, for m = 1, 1(L) is the lassial Hermite invariant of L. It an beproved ([10℄) that m is bounded as a funtion on the set of n-dimensionalpositive de�nite latties. The supremum, whih atually is a maximum,is denoted by m;n. In [3℄, a notion of m-perfetion and m-eutaxy wereproposed, whih we reall below, and a haraterization of the loal maximaof m was derived.We de�ne the set of minimal m-setions of L asSm(L) = fp 2 L(m) j det p = Æm(L)g(17)whih is a �nite set. If p is an m-setion, we denote by prp the orthogonalprojetion on p, seen as an element of the spae Ends(E) of the symmetriendomorphisms of the Eulidean spae E. We reall the de�nitions given in[3℄:De�nition 5.1. 1. A lattie L is alled m-perfet if the endomorphismsprp generate Ends(E)2. A lattie L is m-eutati if there exist positive oeÆients �p, p 2Sm(L) suh that Pp2Sm(L) �p prp = Id.3. A lattie L is alled m-extreme, if m ahieves a loal maximum at L.Reall ([3, Theorem 3.2.3℄) that L is m-extreme if and only if L is bothm-perfet and m-eutati.6. Strongly m-perfet lattiesIn this setion, we study the onnetion between the notion of design onGrassmannians introdued in Setion 4, and the Rankin invariant of latties.Our goal is to generalise the result of Boris Venkov, whih asserts that, if theminimal vetors of a lattie are a 4-spherial design, i.e. a 4-design in G1;n,



12 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEthen this lattie is a loal maximum of the Hermite funtion ([11, Theorem6.4℄).De�nition 6.1. Let L be a lattie of dimension n, and let Sm(L) � Gm;nbe the set of its minimal setions of dimension m. We say that L is stronglym-perfet if Sm(L) is a 4-design in the sense of De�nition 4.1.Examples: The latties D4, E6, E7, E8, BW16, �24 are strongly m-perfetfor all m � n=2 from Setion 4. The Coxeter-Todd lattie, whih is strongly1-perfet ([1℄), is not strongly 2-perfet (see the examples in Setion 4).Despite of that, the assoiated orthogonal projetions span the spae ofsymmetri endomorphisms, and the lattie is 2-extreme.Theorem 6.2. If L is strongly m-perfet, then it is m-extreme, i.e. itahieves a loal maximum of the Rankin funtion m.Proof. We use the haraterization of m-extreme latties realled in Setion5. If p belongs to Gm;n, we denote, as in Setion 5, prp the orthogonal pro-jetion on p. The spae Ends(E) is endowed with the usual salar produtA � B = trae(AB). The main ingredient for the proof is the following re-mark: for all p, p0 in Gm;n, mC2(p; p0) = prp �pr0p, and it is obvious in viewof Setion 2 and from the expression of 2 (12).We �rst prove that, if Sm(L) is a 2-design, then L is m-eutati. Tothat end, we prove that Pp2Sm(L) prp = �Id for some � 2 R. It is worthnotiing that � is fored to be positive beause prp �Id = m, and hene� = jSm(L)jm=n. Beause Ends(E) is generated by all the prp0 when p0 runsover Gm;n, it is enough to prove that, for all p0 2 Gm;n, Pp2Sm(L) prp �prp0 =�Id � prp0 , whih is equivalent to Pp2Sm(L) C2(p; p0) = �. But this lastondition is exatly the ondition 4. of Proposition 4.2.Let C := (C2(p; p0))p;p02Sm(L). Sine the Gram matrix of the projetionsprp equals mC, the m-perfetion is equivalent to the property that C hasrank equal to dimEnds(E) = n(n+ 1)=2. Let J denote the matrix with alloeÆients equal to 1. The property that Sm(L) is a 4-design atually leadsto a linear relation between C, C2 and J :Lemma 6.3. Assume Sm(L) is a 4-design and let C := (C2(p; p0))p;p02Sm(L).Let d := dim(H2m;n) = n(n+ 1)=2 � 1 and let sm := jSm(L)j. ThenC2 = sm(n�mnd C + m2d+m2 � nmn2d J):(18)Proof. We introdue the matrix P := (P2(p; p0))p;p02Sm(L) where P2 = Zm;m2is de�ned in (13) and we ompute P 2. For all p, p0 in Sm(L),



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 13P 2(p; p0) = Xp002Sm(L)P2(p; p00)P2(p00; p0)= 1d2 Xp002Sm(L)Xi;j ei(p)ei(p00)ej(p00)ej(p0)= 1d2 Xi;j ei(p)ej(p0) Xp002Sm(L) ei(p00)ej(p00):(19)
Clearly, the funtion p ! ei(p)ej(p) belongs to H4. Aording to thedeomposition H4 = R1 ? H2m;n ? H22m;n ? H4m;n, eiej = �01+f2+f22+f4.Beause Sm(L) is assumed to be a 4-design, the sums Pp002Sm(L) f2(p00),Pp002Sm(L) f22(p00), Pp002Sm(L) f4(p00) are equal to zero. Moreover, sineÆi;j =< ei; ej >=< eiej ;1 >= �0 < 1;1 >= �0,P 2(p; p0) = 1d2 Xi ei(p)ei(p0)sm= smd P (p; p0)(20)and we have proved the matrix relation P 2 = smd P . In order to prove thelemma, we need to ompute C in terms of P and J . From (12) we haveC = mn J + n�mn P:(21)Finally, the property that JP = PJ = 0, whih holds beause Sm(L) is a2-design, together with (20) and (21) ends the proof of the lemma.The matries C, C2, J are real symmetri matries whih pairwise om-mute, so they are simultaneously diagonalizable. The eigenvalues of J aresm with multipliity one, and 0. Let us denote �1, �2, : : : the eigenvaluesof C, where �1 orresponds to the eigenvetor (1; 1; : : : ; 1). From the iden-tity CJ = m=nJ2 = smm=nJ , we derive �1 = smm=n. From the identity(18), for i � 2, �2i = smn�mnd �i, so �i = 0 or �i = smn�mnd . Let us denotek the multipliity of smn�mnd . We have trae(C) = sm = smmn + ksmn�mnd ,from whih k = d. Finally, the rank of the matrix C is equal to 1 + d =n(n+ 1)=2 = dim(Ends(E)), whih ends the proof of the theorem.7. Bounds for the minimaIn this setion we obtain analogous bounds as the ones given in [11,Th�eor�eme 10.4℄. There it is shown that for a strongly 1-perfet lattie L,



14 CHRISTINE BACHOC, RENAUD COULANGEON, AND GABRIELE NEBEthe produt of the minima of the lattie L and its dual lattie satis�esmin(L)min(L�) � n+23 .Using analogous methods we obtainTheorem 7.1. Let L be a strongly 2-perfet lattie of dimension n. Letm be its minimum, let d be the minimal determinant of a 2-dimensionalsublattie of L and m0 be the minimum of the dual lattie L�. Thendm0 � mn+ 24 :Proof. Let � be a minimal vetor of L� and D denote the set of minimal 2-setions of L. We onsider p0 := h�i 2 G1;n and D � G2;n. The polynomialsp1;22 and p1;24 are polynomials in one variable y1 whih an be alulated withequation (2): Let p := he1; e2i 2 D be a minimal 2-setion of determinant din L. Then the prinipal angle between p and p0 is(�; �)�1d�1 � (�; e1) ; (�; e2) �� (e2; e2) �(e1; e2)�(e1; e2) (e1; e1) �� (�; e1)(�; e2) �= (�; �)�1d�1jj(�; e1)e2 � (�; e2)e1jj2:To shorten the notation we de�ne N(p) := jj(�; e1)e2 � (�; e2)e1jj2: ThenN(p) is the squared length of a vetor in L and hene it is either 0 or� min(L) = m. Using Corollary 4.4 we alulate with the equations (12)Xp2DN(p) = 2n(�; �)djDjand Xp2DN(p)2 = 8n(n+ 2)(�; �)2d2jDj:From this we �nd thatXp2DN(p)2 �mN(p) = 8n(n+ 2)(�; �)2d2jDj �m 2n(�; �)djDj= 2mn (�; �)djDj( 4m(n + 2)(�; �)d � 1):Sine the left hand side is a sum over nonnegative real numbers, also theright hand side is a nonnegative number. Hene 4m(n+2) (�; �)d � 1 or equiv-alently (�; �)d � m(n+2)4 .Examples For L = D4 one has m = 2 hene dm0 � 2(4+2)4 = 3, whihis sharp sine d = 3 and m0 = 1. For L = E8 the formula yields the bound5, whereas dm0 = 6, for K12 one �nds 16 � 14 and for BW16 one has24 � 18. Theorem 7.1 also allows to onlude that ertain latties are notstrongly 2-perfet. For instane for L = A4 one �nds dm0 = 345 whih is not� 2(4+2)4 = 3.



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 15In the ase L is integral, one an take a minimal vetor � 2 L instead of� 2 L� in the proof of Theorem 7.1, and get the following lower bound:Corollary 7.2. Let L be an integral strongly 2-perfet lattie of dimensionn and put d := Æ2(L). Then d � n+ 24 :Theorem 7.3. Let L be an integral strongly 2-perfet lattie of dimensionn and put d := Æ2(L) and d0 := Æ2(L�). Thendd0 � (n+ 2)(n� 1)2(3n� 2)Æwhere Æ 2 N is the least ommon multiple of the denominator of the Grammatries of the minimal 2-setions on L�.Proof. We denote by D the set of minimal 2-setions of L. Let p0 :=hf1; f2i � L� be a minimal plane of L� of determinant d0 and let p :=he1; e2i 2 D.Denote by y1, y2 the squares of the osines of the prinipal angles betweenp and p0. Theny1y2 = 1dd0 det(� (e1; f1) (e1; f2)(e2; f1) (e2; f2) �)2 = 1dd0D(p; p0)with D(p; p0) 2 Z and y1 + y2 = 1dd0N(p; p0)where N(p; p0) an be alulated from (2) and is in 1ÆZ where Æ is the de-nominator of the Gram matrix of p0.From equations (12) we �nd thatXp2DN(p; p0) = dd0jDj 4nXp2DD(p; p0) = dd0jDj 2n(n� 1)Xp2D(N(p; p0))2 = (dd0)2jDj 8(3n� 2)n(n+ 2)(n� 1)From this one gets thatXp2D(N(p; p0))2 � 1ÆN(p; p0) = dd0jDj 4Æn(dd0 2(3n� 2)Æ(n+ 2)(n� 1) � 1) � 0and hene dd0 � (n+2)(n�1)2(3n�2)Æ .
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