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Summary. This chapter provides the reader with the necessary background for
dealing with semidefinite programs which have symmetry. The basic theory is given
and it is illustrated in applications from coding theory, combinatorics, geometry,
and polynomial optimization.

1 Introduction

In the last years many results in the area of semidefinite programming were
obtained for invariant semidefinite programs — semidefinite programs which
have symmetries. This was done for a variety of problems and applications.
The purpose of this handbook chapter is to give the reader the necessary back-
ground for dealing with semidefinite programs which have symmetry. Here the
focus is on the basic theory and on representative examples. We do not aim
at completeness of the presentation.

In all applications the underlying principles are similar: one simplifies the
original semidefinite program which is invariant under a group action by ap-
plying an algebra isomorphism mapping a “large” matrix algebra to a “small”
matrix algebra. Then it is sufficient to solve the semidefinite program using
the smaller matrices.

We start this chapter by developing the general framework in the intro-
duction where we give a step-by-step procedure for simplifying semidefinite
programs: Especially Step 2 (first version), Step 2 (second version), and Step
1 1

2 will be relevant in the later discussion. Both versions of Step 2 are based
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on the main structure theorem for matrix ∗-algebras. Step 11
2 is based on the

regular ∗-representation.
In Section 2 we give a proof of the main structure theorem for matrix

∗-algebras and we present the regular ∗-representation. Strictly speaking the
framework of matrix ∗-algebras is slightly too general for the applications we
have in mind. However, working with matrix ∗-algebras does not cause much
extra work and it also gives a numerical algorithm for finding an explicit
algebra isomorphism. Section 2 is mainly concerned with finite dimensional
invariant semidefinite programs. In Section 3 we show how one can extend
this to special classes of infinite dimensional invariant semidefinite programs,
namely those which arise from permutation actions of compact groups. We
focus on this case because of space limitations and because it suffices for
our examples. This section is connected to Step 2 (second version) of the
introduction.

The later sections contain examples coming from different areas: In Sec-
tion 4 we consider finding upper bounds for finite error-correcting codes and
in Section 5 we give lower bounds for the crossing number of complete bi-
partite graphs. Both applications are based on the methods explained in Sec-
tion 2 (Step 2 (first version) and Step 1 1

2 in the introduction). In Section 6
we use Step 2 (second version) for finding upper bounds for spherical codes
and other geometric packing problems on the sphere. For this application the
background in Section 3 is relevant. Section 4 and Section 6 both use the theta
number of Lovász for finding upper bounds for the independence number of
highly symmetric graphs. In Section 7 we show how one can exploit symmetry
in polynomial optimization: We give particular sum of squares representations
of polynomials which have symmetry.

This list of applications is not complete, and many more applications can
be found in the literature. In the last Section 8 we give literature pointers to
more applications.

1.1 Complex semidefinite programs

In order to present the theory as simple as possible we work with complex
semidefinite programs. We give the necessary definitions. A complex matrix
X ∈ Cn×n is Hermitian if X = X∗, where X∗ is the conjugate transpose of
X, i.e. Xij = Xji. It is called positive semidefinite, we write X � 0, if for all
(column) vectors (α1, . . . , αn) ∈ Cn we have

n∑
i=1

n∑
j=1

αiXijαj ≥ 0.

The space of complex matrices is equipped with a complex inner product, the
trace product 〈X,Y 〉 = trace(Y ∗X), which is linear in the first entry. The
inner product of two Hermitian matrices is always real.
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Definition 1.1 A (complex) semidefinite program is an optimization prob-
lem of the form

max{〈X,C〉 : X � 0, 〈X,A1〉 = b1, . . . , 〈X,Am〉 = bm}, (1)

where A1, . . . , Am ∈ Cn×n, and C ∈ Cn×n are given Hermitian matrices,
(b1, . . . , bm) ∈ Rm is a given vector and X ∈ Cn×n is a variable Hermitian
matrix.

A Hermitian matrix X ∈ Cn×n is called a feasible solution of (1) if it
is positive semidefinite and fulfills all m linear constraints. It is called an
optimal solution if it is feasible and if for every feasible solutions Y we have
〈X,C〉 ≥ 〈Y,C〉.

There is an easy reduction from complex semidefinite programs to semidef-
inite programs involving real matrices only, as noticed by Goemans and
Williamson [43]. A complex matrix X ∈ Cn×n defines a real matrix(

<(X) −=(X)
=(X) <(X)

)
∈ R2n×2n,

where <(X) ∈ Rn×n and =(X) ∈ Rn×n are the real and imaginary parts of X.
Then the properties of being Hermitian and being complex positive semidef-
inite translate into being symmetric and being real positive semidefinite: We
have for all real vectors α = (α1, . . . , α2n) ∈ R2n:

αT

(
<(X) −=(X)
=(X) <(X)

)
α ≥ 0.

On the other hand, complex semidefinite programs fit into the framework
of conic programming (see e.g. Nemirovski [76]). Here one uses the cone of
positive semidefinite Hermitian matrices instead of the cone of real positive
semidefinite matrices. There are implementations available, SeDuMi (Sturm
[89]) for instance, which can deal with complex semidefinite programs directly.

1.2 Semidefinite programs invariant under a group action

Now we present the basic framework for simplifying a complex semidefinite
program which has symmetry, i.e. which is invariant under the action of a
group.

Let us fix some notation first. Let G be a finite group. Let π : G→ Un(C)
be a unitary representation of G, that is, a group homomorphism from the
group G to the group of unitary matrices Un(C). The group G is acting on
the set of Hermitian matrices by

(g,A) 7→ π(g)Aπ(g)∗.

In general, a (left) action of a group G on a set M is a map
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G×M →M, (g, x) 7→ gx,

that satisfies the following properties: We have 1x = x for all x ∈ M where
1 denotes the neutral element of G. Furthermore, (g1g2)(x) = g1(g2x) for all
g1, g2 ∈ G and all x ∈M .

A matrix X is called G-invariant if X = gX for all g ∈ G, and we denote
the set of all G-invariant matrices by (Cn×n)G. We say that the semidefinite
program (1) is G-invariant if for every feasible solution X and for every g ∈ G
the matrix gX is again a feasible solution and if it satisfies 〈gX,C〉 = 〈X,C〉
for all g ∈ G.

One example, which will receive special attention because of its impor-
tance, is the case of a permutation action: The set of feasible solutions is
invariant under simultaneous permutations of rows and columns. Let G be a
finite group which acts on the index set [n] = {1, . . . , n}. So we can see G
as a subgroup of the permutation group on [n]. To a permutation σ on [n]
corresponds a matrix permutation Pσ ∈ Un(C) defined by

[Pσ]ij =
{

1, if i = σ(j),
0, otherwise.

and the underlying unitary representation is π(σ) = Pσ. In this case, the
action on matrices X ∈ Cn×n is

σ(X) = PσXP
∗
σ , where σ(X)ij = Xσ−1(ij) = Xσ−1(i),σ−1(j).

In the following, we give some background on unitary representations.
This part may be skipped at first reading. Let G be a finite group.
A representation of G is a finite dimensional complex vector space V
together with a homomorphism π : G → Gl(V ) from G to the group
of invertible linear maps on V . The space V is also called a G-space
or a G-module and π may be dropped in notations, replacing π(g)v
by gv. In other words, the group G acts on V and this action has the
additional property that g(λv + µw) = λgv + µgw for all (λ, µ) ∈ C2

and (v, w) ∈ V 2. The dimension of a representation is the dimension of
the underlying vector space V .
If V is endowed with an inner product 〈v, w〉 which is invariant under G,
i.e. satisfies 〈gv, gw〉 = 〈v, w〉 for all (v, w) ∈ V 2 and g ∈ G, V is called a
unitary representation of G. An inner product with this property always
exists on V , since it is obtained by taking the average

〈v, w〉 =
1

|G|
X
g∈G

〈gv, gw〉0

of an arbitrary inner product 〈v, w〉0 on V . So, with an appropriate

choice of a basis of V , any representation of V is isomorphic to one of

the form π : G → Un(C), the form in which unitary representations of

G where defined above.
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Step 1: Restriction to invariant subspace

Because of the convexity of (1), one can find an optimal solution of (1) in
the set of G-invariant matrices. In fact, if X is an optimal solution of (1), so
is its group average 1

|G|
∑
g∈G

gX. Hence, (1) is equivalent to

max{〈X,C〉 : X � 0, 〈X,A1〉 = b1, . . . , 〈X,Am〉 = bm, X ∈ (Cn×n)G}. (2)

The G-invariant matrices intersected with the Hermitian matrices form a
vector space. Let B1, . . . , BN be a basis of this space. Step 1 of simplifying a
G-invariant semidefinite program is rewriting (2) in terms of this basis.

Step 1: If the semidefinite program (1) is G-invariant, then it is equivalent
to

max
{
〈X,C〉 : x1, . . . , xN ∈ C,

X = x1B1 + · · ·+ xNBN � 0,
〈X,Ai〉 = bi, i = 1, . . . ,m

}
.

(3)

In the case of a permutation action there is a canonical basis of (Cn×n)G

which one can determine by looking at the orbits of the group action on pairs.
Then, performing Step 1 using this basis amounts to coupling the variable
matrix entries of X.

The orbit of the pair (i, j) ∈ [n]× [n] under the group G is given by

O(i, j) = {(σ(i), σ(j)) : σ ∈ G}.

The set [n]× [n] decomposes into the orbits R1, . . . , RM under the action of G.
For every r ∈ {1, . . . ,M} we define the matrix Cr ∈ {0, 1}n×n by (Cr)ij = 1
if (i, j) ∈ Rr and (Cr)ij = 0 otherwise. Then C1, . . . , CM forms a basis of
(Cn×n)G, the canonical basis. If (i, j) ∈ Rr we also write C[i,j] instead of Cr.
Then, CT

[j,i] = C[i,j].
Note here that C1, . . . , CM is a basis of (Cn×n)G. In order to get a basis of

the space of G-invariant Hermitian matrices we have to consider the orbits of
unordered pairs: We get the basis by setting B{i,j} = C[i,j] if (i, j) and (j, i)
are in the same orbit and B{i,j} = C[i,j] +C[j,i] if they are in different orbits.
The matrix entries of X in (3) are constant on the (unordered) orbits of pairs:
Xij = Xσ(ij) = Xσ(ji) = Xji for all (i, j) ∈ [n]× [n] and σ ∈ G.

Step 2: Reducing the matrix sizes by block diagonalization

The G-invariant subspace (Cn×n)G is closed under matrix multiplication.
This can be seen as follows: Let X,Y ∈ (Cn×n)G and let g ∈ G, then

g(XY ) = π(g)XY π(g)∗ = (π(g)Xπ(g)∗)(π(g)Y π(g)∗) = (gX)(gY ) = XY.

Moreover, it is also closed under taking the conjugate transpose, since, for
X ∈ (Cn×n)G, π(g)X∗π(g)∗ = (π(g)Xπ(g)∗)∗ = X∗. Thus (Cn×n)G has the
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structure of a matrix ∗-algebra. (However, not all matrix ∗-algebras are coming
from group actions.)

In general, a matrix ∗-algebra is a set of complex matrices that is closed
under addition, scalar multiplication, matrix multiplication, and taking the
conjugate transpose. The main structure theorem of matrix ∗-algebras is the
following:

Theorem 1.2 Let A ⊆ Cn×n be a matrix ∗-algebra. There are numbers d,
and m1, . . . ,md so that there is ∗-isomorphism between A and a direct sum
of complete matrix algebras

ϕ : A →
d⊕
k=1

Cmk×mk .

We will give a proof of this theorem in Section 2.5 which also will give
an algorithm for determining ϕ. In the case A = (Cn×n)G, the numbers d,
and m1, . . . ,md have a representation theoretic interpretation: The numbers
are determined by the unitary representation π : G → Un(C), where d is the
number of pairwise non-isomorphic irreducible representations contained in π
and where mk is the multiplicity of the k-th isomorphism class of irreducible
representations contained in π.

In the following we present background in representation theory which
is needed for the understanding of the numbers d and m1, . . . ,md in
Theorem 1.2. Again, this part may be skipped at first reading.

A G-homomorphism T between two G-spaces V and W is a linear map
that commutes with the actions of G on V and W : for all g ∈ G
and all v ∈ V we have T (gv) = gT (v). If T is invertible, then it is
a G-isomorphism and V and W are G-isomorphic. The set of all G-
homomorphisms is a linear space, denoted HomG(V,W ). If V = W ,
then T is said to be a G-endomorphism and the set EndG(V ) of G-
endomorphisms of V is moreover an algebra under composition. If
V = Cn, and if G acts on Cn by unitary matrices, then we have
EndG(V ) = (Cn×n)G = A.

A representation π : G → Gl(V ) of G (and the corresponding G-
space V ) is irreducible if it contains no proper subspace W such that
gW ⊂ W for all g ∈ G, i.e. V contains no G-subspace. If V contains a
proper G-subspace W , then also the orthogonal complement W⊥ rela-
tive to a G-invariant inner product, is a G-subspace and V is the direct
sum W ⊕W⊥. Inductively, one obtains Maschke’s theorem:

Every G-space is the direct sum of irreducible G-subspaces.

This decomposition is generally not unique: For example, if G acts triv-
ially on a vector space V (i.e. gv = v for all g ∈ G, v ∈ V ) of dimension
at least 2, the irreducible subspaces are the 1-dimensional subspaces and
V can be decomposed in many ways.



Invariant semidefinite programs 7

From now on, we fix a set R = {Rk : k = 1, . . . , d} of representatives
of the isomorphism classes of irreducible G-subspaces which are direct
summands of V . Starting from an arbitrary decomposition of V , we
consider, for k = 1, . . . , d, the sum of the irreducible subspaces which
are isomorphic to Rk. One can prove that this G-subspace of V , is
independent of the decomposition. It is called the isotypic component
of V associated to Rk and is denoted MIk. The integer mk such that
MIk ' R

mk
k is called the multiplicity of Rk in V . In other words, we

have

V =

dM
k=1

MIk and MIk =

mkM
i=1

Hk,i

where, Hk,i is isomorphic to Rk, and mk ≥ 1. The first decomposition
is orthogonal with respect to an invariant inner product and is uniquely
determined by V , while the decomposition ofMIk is not unique unless
mk = 1.

Schur’s lemma is the next crucial ingredient for the description of
EndG(V ):

If V is G-irreducible, then EndG(V ) = {λ Id : λ ∈ C} ' C.

In the general case, when V is not necessarily G-irreducible,

EndG(V ) '
dM

k=1

Cmk×mk .

This result will be derived in the next section, in an algorithmic way, as
a consequence of the more general theory of matrix ∗-algebras.

So we consider a ∗-isomorphism ϕ given by Theorem 1.2 applied to A =
(Cn×n)G:

ϕ : (Cn×n)G →
d⊕
k=1

Cmk×mk . (4)

Notice that since ϕ is a ∗-isomorphism between matrix algebras with unity,
ϕ preserves also eigenvalues and hence positive semidefiniteness. Indeed, let
X ∈ (Cn×n)G be G-invariant, then also X − λI is G-invariant, and X − λI
has an inverse if and only if ϕ(X)− λI has a inverse. This means that a test
whether a (large) G-invariant matrix is positive semidefinite can be reduced
to a test whether d (small) matrices are positive semidefinite. Hence, applying
ϕ to (3) gives the second and final step of simplifying (1):

Step 2 (first version): If the semidefinite program (1) is G-invariant,
then it is equivalent to

max
{
〈X,C〉 : x1, . . . , xN ∈ C,

X = x1B1 + · · ·+ xNBN � 0,
〈X,Ai〉 = bi, i = 1, . . . ,m,
x1ϕ(B1) + · · ·+ xNϕ(BN ) � 0

}
.

(5)
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Applying ϕ to a G-invariant semidefinite program is also called block di-
agonalization. The advantage of (5) is that instead of dealing with matrices
of size n × n one only has to deal with block diagonal matrices with d block
matrices of size m1, . . . ,md, respectively. So one reduces the dimension from
n2 to m2

1 + · · ·+m2
d. In the case of a permutation action this sum is also the

number of distinct orbits M . In many applications the latter is much smaller
than the former. In particular many practical solvers take advantage of the
block structure to speed up the numerical calculations.

Instead of working with the ∗-isomorphism ϕ and a basis B1, . . . , BN of the
Hermitian G-invariant matrices, one can also work with the inverse ϕ−1 and
the standard basis of

⊕d
k=1 Cmk×mk . This is given by the matrices Ek,uv ∈

Cmk×mk where all entries of Ek,uv are zero except the (u, v)-entry which
equals 1. This gives an explicit parametrization of the cone of G-invariant
positive semidefinite matrices.

Step 2 (second version): If the semidefinite program (1) is G-invariant,
then it is equivalent to

max
{
〈X,C〉 :

X =
d∑
k=1

mk∑
u,v=1

xk,uvϕ
−1(Ek,uv)

xk,uv = xk,vu, u, v = 1, . . . ,mk,(
xk,uv

)
1≤u,v≤mk

� 0, k = 1, . . . , d,

〈X,Ai〉 = bi, i = 1, . . . ,m
}
.

(6)

Hence, every G-invariant positive semidefinite matrix X is of the form

X =
d∑
k=1

mk∑
u,v=1

xk,uvϕ
−1(Ek,uv),

where the d matrices

Xk =
(
xk,uv

)
1≤u,v≤mk

, k = 1, . . . , d,

are positive semidefinite. Define for (i, j) ∈ [n] × [n] the matrix Ek(i, j) ∈
Cmk×mk componentwise by

[Ek(i, j)]uv =
[
ϕ−1(Ek,uv)

]
ij
.

By definition we have Ek(i, j)∗ = Ek(j, i). Then, in the case of a permutation
action, Ek(i, j) = Ek(σ(i), σ(j)) for all (i, j) ∈ [n]× [n] and σ ∈ G. With this
notation one can write the (i, j)-entry of X by
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Xij =
d∑
k=1

〈Xk, Ek(i, j)〉. (7)

In summary, finding a block diagonalization of a G-invariant semidefinite
program amounts to first identifying a basis of the Hermitian G-invariant
matrices and then in finding an explicit ∗-isomorphism (4) between the algebra
of G-invariant matrices and the direct sum of complete matrix algebras. In
the following sections we will mainly be concerned with different strategies to
find such a ∗-isomorphism.

Step 11
2 : Reducing the matrix sizes by the regular ∗-representation

In general finding a block diagonalization of a G-invariant semidefinite
program is a non-trivial task, especially because one has to construct an ex-
plicit ∗-isomorphism. In cases where one does not have this one can fall back
to a simpler ∗-isomorphism coming from the regular ∗-representation. In gen-
eral this does not provide the maximum possible simplification. However, for
instance in the case of a permutation action, it has the advantage that one
can compute it on the level of knowing the orbit structure of the group action
only.

For this we consider an orthogonal basis (with respect to the trace inner
product 〈·, ·〉) of the G-invariant algebra (Cn×n)G. For instance, we can use the
canonical basis C1, . . . , CM in the case of a permutation action. By considering
the multiplication table of the algebra we define the multiplication parameters
ptrs, sometimes also called structural parameters, by

CrCs =
M∑
t=1

ptrsCt.

In the case of a permutation action the structural parameters can be computed
by knowing the structure of orbits (if one chose the canonical basis):

ptrs = |{k ∈ [n] : (i, k) ∈ Rr, (k, j) ∈ Rs}|,

where (i, j) ∈ Rt. Here, ptrs does not depend on the choice of i and j. The
norms ||Cr|| =

√
〈Cr, Cr〉 equal the sizes of the corresponding orbits. We

define the matrices L(Cr)st ∈ CM×M by

(L(Cr))st =
〈CrCt, Cs〉
‖Ct‖ ‖Cs‖

=
‖Cs‖
‖Ct‖

psrt.

Theorem 1.3 Let L the algebra generated by the matrices L(C1), . . . , L(CM ).
Then the linear map

φ : (Cn×n)G → L, φ(Cr) = L(Cr), r = 1, . . . ,M,

is a ∗-isomorphism.
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We will give a proof of this theorem in Section 2.6. There we will show that
the ∗-isomorphism is the regular ∗-representation of the G-invariant algebra
associated with the orthonormal basis C1/‖C1‖, . . . , CM/‖CM‖. Again, since
φ is a ∗-isomorphism between algebras with unity it preserves eigenvalues.
This means that a test whether a G-invariant matrix of size n× n is positive
semidefinite can be reduced to testing whether an M ×M matrix is positive
semidefinite.

Step 11
2 : If the semidefinite program (1) is G-invariant, then it is equiv-

alent to (5) where the ∗-isomorphism ϕ is replaced by φ.

2 Matrix ∗-algebras

In Section 1.2 we saw that the process of block diagonalizing a semidefinite
program can be naturally done in the framework of matrix ∗-algebras using
the main structure theorem (Theorem 1.2). In this section we prove this main
structure theorem. Although we are mainly interested in the case when the
matrix ∗-algebra comes from a group, working in the more general framework
here, does not cause much extra work. Furthermore the proof of the main
structure theorem we give here provides an algorithmic way for finding a
block diagonalization.

We start by giving the basic definitions, examples, and results of matrix ∗-
algebras (Section 2.1–Section 2.4). In Section 2.5 we prove the main structure
theorem which gives a very efficient representation of a matrix ∗-algebra A:
We show that A is ∗-isomorphic to a direct sum of full matrix ∗-algebras.
The corresponding ∗-isomorphism is called a block diagonalization of A. This
corresponds to Step 2 in the introduction. After giving the proof we interpret
it in the context of groups and we discuss a numerical algorithm for finding a
block diagonalization which is based on the proof. In Section 2.6 we consider
the regular ∗-representation, which embeds A into CM×M , where M = dimA.
This corresponds to Step 1 1

2 in the introduction.

2.1 Definitions and examples

Definition 2.1 A matrix ∗-algebra is a linear subspace A ⊆ Cn×n of complex
n × n matrices, that is closed under matrix multiplication and under taking
the conjugate transpose. The conjugate transpose of a matrix A is denoted A∗.

Matrix ∗-algebras are finite dimensional C∗-algebras and many results
here can be extended to a more general setting. For a gentle introduction to
C∗-algebras we refer to Takesaki [92].

Trivial examples of matrix ∗-algebras are the full matrix algebra Cn×n and
the zero algebra {0}. From given matrix ∗-algebras A ⊆ Cn×n and B ⊆ Cm×m,
we can construct the direct sum A⊕ B and tensor product A⊗ B defined by



Invariant semidefinite programs 11

A⊕ B = {(A 0
0 B ) : A ∈ A, B ∈ B} ,

A⊗ B =

{
k∑
i=1

Ai ⊗Bi : k ∈ N, Ai ∈ A, Bi ∈ B

}
,

where A⊗B ∈ Cnm×nm denotes the Kronecker- or tensor product. The com-
mutant of A is the matrix ∗-algebra

A′ = {B ∈ Cn×n : BA = AB for all A ∈ A}.

Many interesting examples of matrix ∗-algebras come from unitary group
representations, as we already demonstrated in the introduction: Given a
unitary representation π : G → Gl(n,C), the set of invariant matrices
(Cn×n)G = {A ∈ Cn×n : π(g)Aπ(g)−1 = A} is a matrix ∗-algebra. It is
the commutant of the matrix ∗-algebra linearly spanned by the matrices π(g)
with g ∈ G. If the unitary group representation is given by permutation matri-
ces then the canonical basis of the algebra (Cn×n)G are the zero-one incidence
matrices of orbits on pairs C1, . . . , CM , see Step 1 in Section 1.2.

Other examples of matrix ∗-algebras, potentially not coming from groups,
include the (complex) Bose-Mesner algebra of an association scheme, see e.g.
Bannai, Ito [13], and Brouwer, Cohen, Neumaier [20] and more generally, the
adjacency algebra of a coherent configuration, see e.g. Cameron [22].

2.2 Commutative matrix ∗-algebras

A matrix ∗-algebra A is called commutative (or Abelian) if any pair of its
elements commute: AB = BA for all A,B ∈ A. Recall that a matrix A
is normal if AA∗ = A∗A. The spectral theorem for normal matrices states
that if A is normal, there exists a unitary matrix U such that U∗AU is a
diagonal matrix. More generally, a set of commuting normal matrices can be
simultaneously diagonalized (see e.g. Horn, Johnson [48]). Since any algebra
of diagonal matrices has a basis of zero-one diagonal matrices with disjoint
support, we have the following theorem.

Theorem 2.2 Let A ⊆ Cn×n be a commutative matrix ∗-algebra. Then there
exist a unitary matrix U and a partition [n] = S0∪S1∪· · ·∪Sk with S1, . . . , Sk
nonempty, such that

U∗AU = {λ1I1 + · · ·+ λkIk : λ1, . . . , λk ∈ C},

where Ii is the zero-one diagonal matrix with ones in positions from Si and
zeroes elsewhere.

The matrices Ei = UIiU
∗ satisfy E0 + E1 + · · · + Ek = I, EiEj = δijEi

and Ei = E∗i . The matrices E1, . . . , Ek are the minimal idempotents of A and
form an orthogonal basis of A. Unless S0 = ∅, E0 does not belong to A.
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Geometrically, we have an orthogonal decomposition

Cn = V0 ⊕ V1 ⊕ · · · ⊕ Vk,

where Ei is the orthogonal projection onto Vi or equivalently, Vi is the space
spanned by the columns of U corresponding to Si. The space V0 is the maximal
subspace contained in the kernel of all matrices in A.

2.3 Positive semidefinite elements

Recall that a matrix A is positive semidefinite (A � 0) if and only if A
is Hermitian (that is A∗ = A) and all eigenvalues of A are nonnegative.
Equivalently, A = U∗DU for some unitary matrix U and nonnegative diagonal
matrix D.

Let A be a matrix ∗-algebra. Positive semidefiniteness can be characterized
in terms of A.

Proposition 2.3 An element A ∈ A is positive semidefinite if and only if
A = B∗B for some B ∈ A.

Proof. The ‘if’ part is trivial. To see the ‘only if’ part, let A ∈ A be positive
semidefinite and write A = U∗DU for some unitary matrix U and (nonnega-
tive real) diagonal matrix D. Let p be a polynomial with p(λi) =

√
λi for all

eigenvalues λi of A. Then taking B = p(A) ∈ A we have B = U∗p(D)U and
hence B∗B = U∗p(D)p(D)U = U∗DU = A. ut

Considered as a cone in the space of Hermitian matrices in A, the cone of
positive semidefinite matrices is self-dual:

Theorem 2.4 Let A ∈ A be Hermitian. Then A � 0 if and only if 〈A,B〉 ≥ 0
for all B � 0 in A.

Proof. Necessity is clear. For sufficiency, let A ∈ A be Hermitian and let
B ⊆ A be the ∗-subalgebra generated by A. By Theorem 2.2 we can write
A = λ1E1 + · · ·+ λkEk, where the Ei are the minimal idempotents of B. The
Ei are positive semidefinite since their eigenvalues are zero or one. Hence by
assumption, λi = 〈A,Ei〉

〈Ei,Ei〉 ≥ 0. Therefore A is a nonnegative linear combination
of positive semidefinite matrices and hence positive semidefinite. ut

As a corollary we have:

Corollary 2.5 The orthogonal projection πA : Cn×n → A preserves positive
semidefiniteness.

This implies that if the input matrices of the semidefinite program (1) lie in
some matrix ∗-algebra, then we can assume that the optimization variable X
lies in the same matrix ∗-algebra: If (1) is given by matrices C,A1, . . . , Am ∈ A
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for some matrix ∗-algebra A, the variable X may be restricted to A with-
out changing the objective value. Indeed, any feasible X can be replaced by
πA(X), which is again feasible and has the same objective value. When A is
the invariant algebra of a group, this amounts to replacing X by the average
under the action of the group.

2.4 ∗-Homomorphisms and block diagonalization

Definition 2.6 A map φ : A → B between two matrix ∗-algebras A and B is
called a ∗-homomorphism if

(i) φ is linear,
(ii) φ(AB) = φ(A)φ(B) for all A,B ∈ A,

(iii) φ(A∗) = φ(A)∗ for all A ∈ A.

If φ is a bijection, the inverse map is also a ∗-homomorphism and φ is called
a ∗-isomorphism.

It follows directly from Proposition 2.3 that ∗-homomorphisms preserve
positive semidefiniteness: Let φ : A → B be a ∗-homomorphism. Then φ(A)
is positive semidefinite for every positive semidefinite A ∈ A.

The implication of this for semidefinite programming is the following.
Given a semidefinite program with matrix variable restricted to a matrix
∗-algebra A and a ∗-isomorphism A → B, we can rewrite the semidefinite
program in terms of matrices in B. This can be very useful if the matrices in
B have small size compared to those in A. In the following, we will discuss
two such efficient representations of a general matrix ∗-algebra.

2.5 Block diagonalization

In this section, we study the structure of matrix ∗-algebras in some more
detail. The main result is, that any matrix ∗-algebra is ∗-isomorphic to a
direct sum of full matrix algebras:

Theorem 2.7 (= Theorem 1.2) Let A ⊆ Cn×n be a matrix ∗-algebra.
There are numbers d, and m1, . . . ,md so that there is ∗-isomorphism between
A and a direct sum of complete matrix algebras

ϕ : A →
d⊕
k=1

Cmk×mk .

This theorem is well-known in the theory of C∗-algebras, where it is gen-
eralized to C∗-algebras of compact operators on a Hilbert space (cf. Davidson
[28, Chapter I.10]).

Some terminology: Let A be a matrix ∗-algebra. A matrix ∗-algebra B
contained in A is called a ∗-subalgebra of A. An important example is the
center of A defined by
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CA = {A ∈ A : AB = BA for all B ∈ A}.

There is a unique element E ∈ A such that EA = AE = A for everyA ∈ A,
which is called the unit of A. If A is non-zero and CA = CE (equivalently: A
has no nontrivial ideal), the matrix ∗-algebra A is called simple.

We shall prove that every matrix ∗-algebra is the direct sum of simple
matrix ∗-algebras:

A =
d⊕
i=1

EiA,

where the Ei are the minimal idempotents of CA. Every simple matrix ∗-
algebra is ∗-isomorphic to a full matrix algebra. Together these facts imply
Theorem 2.7.

To conclude this section, we will give an elementary and detailed proof of
Theorem 2.7.

Proof. Let B ⊆ A be an inclusionwise maximal commutative ∗-subalgebra
of A. Then any A ∈ A that commutes with every element of B, is itself
an element of B. Indeed, if A is normal, this follows from the maximality
of B since B ∪ {A,A∗} generates a commutative ∗-algebra containing B. If
A is not normal, then A + A∗ ∈ B by the previous argument and hence
A(A+A∗) = (A+A∗)A, contradicting the fact that A is not normal.

By replacing A by U∗AU for a suitable unitary matrix U , we may assume
that B is in diagonal form as in Theorem 2.2. For any A ∈ A and i, j = 0, . . . , k,
denote by Aij ∈ C|Si|×|Sj | the restriction of IiAIj to the rows in Si and
columns in Sj . Let A ∈ A and i, j ∈ {0, . . . , k}. We make the following
observations:

(i) Aii is a multiple of the identity matrix and A00 = 0,
(ii) A0i and Ai0 are zero matrices,
(iii) Aij is either zero or a nonzero multiple of a (square) unitary matrix.

Item (i) follows since IiAIi commutes with I0, . . . , Ik and therefore belongs
to B. Hence IiAIi is a multiple of Ii and I0AI0 = 0 since I0BI0 = {0}.
Similarly, I0AA∗I0 = 0, which implies that I0A = 0, showing (ii). For item
(iii), suppose that Aij is nonzero and assume without loss of generality that
|Si| ≥ |Sj |. Then by (i), AijA∗ij = λI for some positive real λ, and therefore
has rank |Si|. This implies that |Sj | = |Si| and

√
λ ·Aij is unitary.

Observe that (ii) shows that I1 + · · ·+ Ik is the unit of A.
Define the relation ∼ on {1, . . . , k} by setting i ∼ j if and only if

IiAIj 6= {0}. This is an equivalence relation. Indeed, ∼ is reflexive by (i)
and symmetric since IiAIj = (IjAIi)∗. Transitivity follows from (iii) since
IhAIj ⊇ (IhAIi)(IiAIj) and the product of two unitary matrices is unitary.

Denote by {E1, . . . , Ed} = {
∑
j∼i Ij : i = 1, . . . , k} the zero-one diagonal

matrices induced by the equivalence relation. Since the center CA of A is
contained in B = CI1 + · · ·+ CIk, it follows by construction that E1, . . . , Ed
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span the center, and are its minimal idempotents. We find the following block
structure of A:

A = {0} ⊕ E1A⊕ · · · ⊕ EdA,

where the matrix ∗-algebras EiA are simple. For the rest of the proof we may
assume that A is simple (d = 1) and that E0 = 0.

Since ∼ has only one equivalence class, for every matrix A = (Aij)ki,j=1 ∈
A, the ‘blocks’ Aij are square matrices of the same size. Furthermore, we can
fix an A ∈ A for which all the Aij are unitary. For any B ∈ A, we have
A1iBij(A1j)∗ = (AIiBIjA∗)11. By (i), it follows that {A1iBij(A1j)∗ : B ∈
B} = CI. Hence setting U to be the unitary matrix U := diag(A11, . . . , A1k),
we see that UAU∗ = {(aijI)ki,j=1 : ai,j ∈ C}, which shows that A is ∗-
isomorphic to Ck×k. ut

Relation to group representations

In the case that A = (Cn×n)G, where π : G → Un(C) is a unitary represen-
tation, the block diagonalization can be interpreted as follows. The diagonal-
ization of the maximal commutative ∗-subalgebra B, gives a decomposition
Cn = V1 ⊕ · · · ⊕ Vk into irreducible submodules. Observe that V0 = {0} since
A contains the identity matrix. The equivalence relation ∼ yields the isotypic
components ImE1, . . . , ImEd, where the sizes of the equivalence classes corre-
spond to the block sizes mi in Theorem 2.7. Here Schur’s lemma is reflected
by the fact that IiAIj = CIi if i ∼ j and {0} otherwise.

Algorithmic aspects

If a matrix ∗-algebra A is given explicitly by a basis, then the above proof of
Theorem 2.7 can be used to find a block diagonalization of A computationally.
Indeed, it suffices to find an inclusion-wise maximal commutative ∗-subalgebra
B ⊆ A and compute a common system of eigenvectors for (basis) elements
of B. This can be done by standard linear algebra methods. For example
finding a maximal commutative ∗-subalgebra of A can be done by starting
with B = 〈A〉, the ∗-subalgebra generated by an arbitrary Hermitian element
in A. As long as B is not maximal, there is a Hermitian element in A \ B
that commutes with all elements in (a basis of) B, hence extending B. Such
an element can be found by solving a linear system in O(dimA) variables and
O(dimB) constraints. In at most dimA iterations, a maximal commutative
∗-subalgebra is found.

Practically more efficient is to find a “generic” Hermitian element A ∈ A.
Then the matrix ∗-algebra B generated by A will be a maximal commutative
∗-subalgebra of A and diagonalizing the matrix A also diagonalizes B. Such a
generic element can be found by taking a random Hermitian element from A
(with respect to the basis), see Murota et. al. [74]. If a basis for the center of
A is known a priori (or by solving a linear system in O(dimA) variables and
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equations), as an intermediate step the center could be diagonalized, followed
by a block diagonalization of the simple components of A, see Dobre, de Klerk,
Pasechnik [34].

2.6 Regular ∗-representation

Let A be a matrix ∗-algebra of dimension M and let C1, . . . , CM be an or-
thonormal basis of A with respect to the trace product 〈·, ·〉. For fixed A ∈ A,
left-multiplication by A defines a linear map B 7→ AB on A. With respect
to the orthonormal basis C1, . . . , CM , this linear map is represented by the
matrix L(A) ∈ CM×M given by

L(A)st = 〈ACt, Cs〉.

The map
L : A → CM×M

is an injective ∗-homomorphism called the regular ∗-representation of A. The
fact that L is linear and preserves matrix products is clear. Injectivity follows
from the fact that L(A) = 0 implies AA∗ = 0 and hence A = 0. Finally, the
equations

L(A∗)st = 〈A∗Ct, Cs〉 = 〈Ct, ACs〉 = 〈ACs, Ct〉 = L(A)ts

show that L(A∗) = L(A)∗. Because L is linear, it is determined by the images
L(C1), . . . , L(CM ).

In many applications, for example in the case of a permutation action with
the canonical basis C1, . . . , CM (Step 11

2 in the introduction), one only has an
orthogonal basis which is not orthonormal. In that case, the map L is given
by

L(Cr)st =
〈CrCt, Cs〉
||Cs|| ||Ct||

=
||Cs||
||Ct||

psrt,

where the ptrs are the multiplication parameters defined by CrCs =
∑
t p
t
rsCt.

If we denote φ(Cr) = L(Cr), we obtain Theorem 1.3.

3 Invariant positive definite functions on compact spaces

Until now we considered only finite dimensional invariant semidefinite pro-
grams and the question: How can symmetry coming from the action of a
finite group be exploited to simplify the semidefinite program? In several sit-
uations, some given in Section 6, one wants to work with infinite dimensional
invariant semidefinite programs. In these situations using the symmetry com-
ing from the action of an infinite, continuous group is a must if one wants to
do explicit computations. In this section we introduce the cone of continuous,
positive definite functions on a compact set M , as a natural generalization
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of the cone of positive semidefinite matrices. When a compact group G acts
continuously on M , we use the representation theory of G to describe the
subcone of G-invariant positive definite functions on M . This is the infinite
dimensional analog of Step 2 (second version), given in the introduction, in
the case of a permutation representation.

In general, this method evidences interesting links between the geometry
of M , the representations of G and the theory of orthogonal polynomials.
We will review the spaces M , finite and infinite, where this method has been
completely worked out.

3.1 Positive definite functions

Let M be a compact space. We denote the space of continuous functions on
M taking complex values by C(M).

Definition 3.1 We say that F ∈ C(M2) is positive definite, F � 0, if
F (x, y) = F (y, x) and, for all n, for all n-tuples (x1, . . . , xn) ∈ Mn and
vectors (α1, . . . , αn) ∈ Cn,

n∑
i,j=1

αiF (xi, xj)αj ≥ 0.

In other words, for all choices of finite subsets {x1, . . . , xn} of M , the matrix(
F (xi, xj)

)
1≤i,j≤n

is Hermitian and positive semidefinite. The set of continuous positive definite
functions on M is denoted C(M2)�0.

In particular, if M is a finite set with the discrete topology, the elements of
C(M2)�0 coincide with the Hermitian positive semidefinite matrices indexed
by M . In general, C(M2)�0 is a closed convex cone in C(M2).

We now assume that a compact group G acts continuously on M . Here we
mean that, in addition to the properties of a group action (see introduction),
the map G×M → M , with (g, x) 7→ gx, is continuous. We also assume that
M is endowed with a regular Borel measure µ which is G-invariant.

We recall here the basic notions on measures that will be needed. If
M is a topological space, a Borel measure is a measure defined on the
σ-algebra generated by the open sets of M . A regular Borel measure is
one which behaves well with respect to this topology, we refer to Rudin
[83] for the precise definition.
If M is a finite set, the topology on M is chosen to be the discrete
topology, i.e. every subset of M is an open set, and the measure µ on M
is the counting measure defined by µ(A) = |A|.
On a compact group G, there is a regular Borel measure λ which is
left and right invariant, meaning that λ(gA) = λ(Ag) = λ(A) for all
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g ∈ G and A ⊂ G measurable, and such that the open sets have positive
measure. This measure is unique up to a positive multiplicative constant
and is called the Haar measure on G (see e.g. Conway [25, Theorem
11.4]). If G is finite, the counting measure on G provides a measure
with these properties.

3.2 Unitary representations of compact groups

The definitions and properties of representations given in the introduction
extend naturally to compact groups. We only have to modify the definition
of a finite dimensional representation by asking that the homomorphism π :
G→ Gl(V ) is continuous.

In the proofs, integrating with the Haar measure λ of G replaces averaging
on finite groups. For example, in the introduction, we have seen that every
representation V of a finite group G is unitary. The argument was, starting
from an arbitrary inner product 〈u, v〉0 on V , to average it over all elements
of G, in order to transform it into a G-invariant inner product. In the case
of a more general compact group, we average over G using the Haar measure
(normalized so that λ(G) = 1), thus taking:

〈u, v〉 :=
∫
G

〈gu, gv〉dλ(g).

So Maschke’s theorem holds: every finite dimensional G-space is the direct
sum of irreducible G-subspaces. In contrast to the case of finite groups, the
number of isomorphism classes of irreducible G-spaces is generally infinite.
We fix a set R = {Rk : k ≥ 0} of representatives, assuming for simplicity that
this set is countable (it is the case e.g. if G is a Lie group). Here R0 is the
trivial representation, i.e. V = C with gz = z for all g ∈ G, z ∈ C.

However, infinite dimensional representations arise naturally in the study
of infinite compact groups. We shall be primarily concerned with one of them,
namely the representation of G defined by the space C(M) with the action of
G defined by π(g)(f)(x) = f(g−1x) (of course it has infinite dimension only
if M itself is not a finite set). It is a unitary representation for the standard
inner product on C(M):

〈f1, f2〉 =
1

µ(M)

∫
M

f1(x)f2(x)dµ(x).

Moreover C(M) is a dense subspace of the Hilbert space L2(M) of measur-
able functions f on M such that |f |2 is µ-integrable (see e.g. Conway [25,
Chapter 1] or Rudin [83, Chapter 4]). It turns out that the theory of finite
dimensional representations of compact groups extends nicely to the unitary
representations on Hilbert spaces:

Theorem 3.2 Every unitary representation of a compact group G on a
Hilbert space is the direct sum (in the sense of Hilbert spaces) of finite di-
mensional irreducible G-subspaces.
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The above theorem is in fact a consequence of the celebrated Theorem of
Peter and Weyl (see e.g. Bump [21]), which states that the matrix coefficients
of finite dimensional irreducible representations of a compact group G span a
subspace of C(G) which is dense for the topology of uniform convergence.

3.3 G-invariant positive definite functions on M

Now we come to our main concern, which is to describe the elements of
C(M2)G�0, i.e. the G-invariant positive definite functions, in terms of the struc-
ture of the G-space M . In order to avoid technicalities with convergence issues,
we shall systematically work in finite dimensional subspaces of C(M). So let
V be a G-subspace of C(M) of finite dimension. Let V (2) denote the subspace
of C(M2) spanned by elements of the form f1(x)f2(y), where f1 and f2 belong
to V .

We take the following notations for an irreducible decomposition of V :

V =
⊕
k∈IV

mk⊕
i=1

Hk,i, (8)

where for 1 ≤ i ≤ mk, the subspaces Hk,i are pairwise orthogonal and G-iso-
morphic to Rk, and where IV is the finite set of indices k ≥ 0 such that the
multiplicities mk are not equal to 0. For all k, i, we choose an orthonormal
basis (ek,i,1, . . . , ek,i,dk) of Hk,i, where dk = dim(Rk), such that the complex
numbers 〈gek,i,s, ek,i,t〉 do not depend on i (such a basis exists precisely be-
cause the G-isomorphism class of Hk,i does not depend on i). From this data,
we introduce the mk ×mk matrices Ek(x, y) with coefficients Ek,ij(x, y):

Ek,ij(x, y) =
dk∑
s=1

ek,i,s(x)ek,j,s(y). (9)

Then V (2) obviously contains the elements ek,i,s(x)ek,j,s(y), which moreover
form an orthonormal basis of this space.

Theorem 3.3 Let F ∈ V (2). Then F is a G-invariant positive definite func-
tion if and only if there exist Hermitian positive semidefinite matrices Fk such
that

F (x, y) =
∑
k∈IV

〈Fk, Ek(x, y)〉. (10)

Before we give a sketch of the proof, several comments are in order:

1. If M = [n], then we recover the parametrization of G-invariant positive
semidefinite matrices given in (7).

2. The main point of the above theorem is to replace the property of a contin-
uous function being positive definite with the property that the mk ×mk
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matrices Fk are positive semidefinite. In the introduction, we have al-
ready seen in the finite case M = [n] that it allows to reduce the size
of invariant semidefinite programs (following Step 2 (second version) of
the introduction). In the general case, this theorem allows to replace a
conic linear program involving the cone C(M2)�0 with standard semidef-
inite programs (see Section 6 for examples where M is the unit sphere of
Euclidean space).

3. One might wonder to what extent the above matrices Ek(x, y) depend on
the choices involved in their definition. Indeed, one can prove that a differ-
ent choice of orthonormal basis in Hk,i does not affect Ek(x, y). One could
also start from another decomposition of the isotypic componentMIk of
V . The new decomposition does not need to be orthogonal; the matrix
Ek(x, y) would then change to AEk(x, y)A∗ for some A ∈ Glmk(C). So,
up to an action of Glmk(C), the matrix Ek(x, y) is canonically associated
to MIk.

4. The statement implies that the matrices Ek(x, y) themselves are G-
invariant. In other words, they can be expressed in terms of the orbits
O(x, y) of the action of G on M2 in the form:

Ek(x, y) = Yk(O(x, y)) (11)

for some matrices Yk. It is indeed the expression we are seeking for.

Proof. F (x, y) is a linear combination of the ek,i,s(x)el,j,t(y) since these ele-
ments form an orthonormal basis of V (2). In a first step, one shows that the
G-invariance property F (gx, gy) = F (x, y) results in an expression for F of
the form (10) for some matrices Fk = (fk,ij); the proof involves the orthog-
onality relations between matrix coefficients of irreducible representations of
G (see e.g. Bump [21]). In a second step, F � 0 is shown to be equivalent to
Fk � 0 for all k ∈ IV . Indeed, for α(x) =

∑mk
i=1 αiek,i,s(x), we have

mk∑
i,j=1

αifk,ijαj =
1

µ(M)2

∫
M2

α(x)F (x, y)α(y)dµ(x, y) ≥ 0.

ut

Remark 3.4 1. A straightforward generalization of the main structure the-
orem for matrix ∗-algebras to the ∗-algebra EndG(V ) shows that

EndG(V ) ' (V (2))G '
⊕
k∈IV

Cmk×mk . (12)

An isomorphism from (V (2))G to the direct sum of matrix algebras is con-
structed in the proof of Theorem 3.3, in an explicit way, from the decom-
position (8). This isomorphism is given by the map sending (Fk)k∈IV ∈
⊕k∈IV Cmk×mk to F ∈ (V (2))G defined by:
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F (x, y) =
∑
k∈IV

〈Fk, Ek(x, y)〉

thus completing Step 2 (second version) of the introduction for compact
groups.

2. Theorem 3.3 shows, jointly with Theorem 3.2, that any element of the cone
C(M2)G�0 is a sum (in the sense of L2 convergence) of the form (10) with
possibly infinitely many terms. Moreover, under the additional assumption
that G acts transitively on M , Bochner [17] proves that the convergence
holds in the stronger sense of uniform convergence, i.e. for the supremum
norm.

3.4 Examples: the commutative case

We mean here the case when EndG(C(M)) is a commutative algebra. From
Theorem 3.3, this condition is equivalent to the commutativity of EndG(V ) for
all finite dimensional G-subspace of C(M). So, from the isomorphism (12), and
since a matrix algebra Cm×m is commutative if and only if m = 0 or m = 1,
the commutative case corresponds to non vanishing multiplicities equal to 1 in
the decomposition of C(M). The G-space C(M) is said to be multiplicity-free.
Then the matrices Fk in (10) have only one coefficient fk and F ∈ C(M2)G�0

is of the form
F (x, y) =

∑
k≥0

fkEk(x, y), fk ≥ 0. (13)

We say that M is G-symmetric, if G acts transitively on M (i.e. there is only
one orbit in M ; equivalently M is said to be a homogeneous space), and if
moreover, for all (x, y) ∈M2, there exists g ∈ G such that gx = y and gy = x.
In other words (y, x) belongs to the G-orbit O(x, y) of the pair (x, y). This
nonstandard terminology (sometimes it is also called a generously transitive
group action) covers the case of compact symmetric Riemannian manifolds
(see e.g. Berger [16]) as well as a large number of finite spaces. We provide
many examples of such spaces below. The functions Yk (11) are often referred
to as the spherical functions or zonal spherical functions of the homogeneous
space M (see e.g. Vilenkin, Klimyk [98]).

Lemma 3.5 If M is G-symmetric then for all V ⊂ C(M), (V (2))G is com-
mutative.

Proof. Since F ∈ (V (2))G is G-invariant and M is G-symmetric, F (x, y) =
F (y, x). The multiplication on the algebra (V (2))G ' EndG(M) is the convo-
lution F ∗ F ′ of functions, given by:

(F ∗ F ′)(x, y) =
∫
M

F (x, z)F ′(z, y)dµ(z).

A straightforward computation shows that F ∗ F ′ = F ′ ∗ F . ut
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An important subclass of symmetric spaces is provided by the two-point homo-
geneous spaces. These spaces are metric spaces, with distance d(x, y) invariant
by G, and moreover satisfy that two pairs of elements (x, y) and (x′, y′) be-
long to the same G-orbit if and only if d(x, y) = d(x′, y′). They are obviously
G-symmetric since d(x, y) = d(y, x). In other words, the distance function
parametrizes the orbits of G acting on pairs, thus the expression (13) of pos-
itive definite functions specializes to

F (x, y) =
∑
k≥0

fkYk(d(x, y)), fk ≥ 0, (14)

for some functions Yk in one variable. The functions Yk are explicitly known for
many spaces, and are usually given by a certain family of orthogonal polynomi-
als (see e.g. Szegö [91], Andrews, Askey, Roy [1]). The orthogonality property
arises because the associated irreducible subspaces are pairwise orthogonal.

The complete list of real, compact, connected two-point homogeneous
spaces was established by Wang [99]: the unit sphere of Euclidean space
Sn−1 ⊂ Rn, which is treated in Section 6, the projective spaces over the
fields of real, complex and quaternion numbers (denoted Pn−1(K), with re-
spectively K = R, C, H), and the projective plane over the octonions P 2(O),
are the only spaces having these properties. In each of these cases the functions
Yk are given by Jacobi polynomials (see Table 1). These polynomials depend
on two parameters (α, β) and are orthogonal for the measure (1−t)α(1+t)βdt
on the interval [−1, 1]. We denote by P

(α,β)
k (t) the Jacobi polynomial of de-

gree k, normalized by the condition P
(α,β)
k (1) = 1. When α = β = λ − 1/2,

these polynomials are equal (up to a nonnegative multiplicative factor) to the
Gegenbauer polynomials Cλk (t).

Space Group α β

Sn−1 On(R) (n− 3)/2 (n− 3)/2
Pn−1(R) On(R) (n− 3)/2 −1/2
Pn−1(C) Un(C) n− 2 0
Pn−1(H) Un(H) 2n− 3 1
P 2(O) F4(R) 7 3

Table 1. The real compact two-point homogeneous spaces, their groups and their
spherical functions Yk.

The finite two-point homogeneous spaces are not completely classified, but
several of them are relevant spaces for coding theory. The most prominent one
is the Hamming space qn, associated to the Krawtchouk polynomials, which
is discussed in Section 4. It is the space of n-tuples, over a finite set q of q
elements. An element of the Hamming space qn is usually called a word, and
q is called the alphabet. The closely related Johnson spaces are the subsets of



Invariant semidefinite programs 23

binary words of fixed length and weight. The Hamming and Johnson spaces
are endowed with the Hamming distance, counting the number of coordinates
where to words disagree. The Johnson spaces have q-analogues, the q-Johnson
spaces, the subsets of linear subspaces of Fnq of fixed dimension. The distance
between two subspaces of the same dimension is measured by the difference
between this dimension and the dimension of their intersection. Other spaces
are related to finite geometries and to spaces of matrices. In the later case,
the distance between two matrices will be the rank of the difference of the
matrices.

The spherical functions have been worked out, initially in the framework of
association schemes with the work of Delsarte [29], and later in relation with
harmonic analysis of finite classical groups with the work of Delsarte, Dunkl,
Stanton and others. We refer to Conway, Sloane [26, Chapter 9] and to Stanton
[88] for surveys on these topics. Table 2 displays the most important families
of these spaces, together with their groups of isometries and the family of
orthogonal polynomials to which their spherical functions belong; see Stanton
[88] for additional information.

Space Group Polynomial Reference

Hamming space qn Sq o Sn Krawtchouk [29]
Johnson space Sn Hahn [29],[31]
q-Johnson space Gln(Fq) q-Hahn [31]
Maximal totally isotropic subspaces of dimension k, for a nonsingular bilinear form:
Symmetric SO2k+1(Fq) q-Krawtchouk [88]

SO2k(Fq) q-Krawtchouk [88]
SO−2k+2(Fq) q-Krawtchouk [88]

Symplectic Sp2k(Fq) q-Krawtchouk [88]
Hermitian SU2k(Fq2) q-Krawtchouk [88]

SU2k+1(Fq2) q-Krawtchouk [88]
Spaces of matrices:

Fk×n
q Fk×n

q .(Glk(Fq)×Gln(Fq)) Affine q-Krawtchouk [32], [88]
Skewn(Fq) skew-symmetric Skewn(Fq).Gln(Fq) Affine q-Krawtchouk [30], [88]
Hermn(Fq2) Hermitian Hermn(Fq2).Gln(Fq2) Affine q-Krawtchouk [88]

Table 2. Some finite two-point homogeneous spaces, their groups and their spherical
functions Yk.

Symmetric spaces which are not two-point homogeneous give rise to func-
tions Yk depending on several variables. A typical example is provided by
the real Grassmann spaces, the spaces of m-dimensional subspaces of Rn,
m ≤ n/2, under the action of the orthogonal group O(Rn). Then, the func-
tions Yk are multivariate Jacobi polynomials, with m variables representing
the principal angles between two subspaces (see James, Constantine [49]).
A similar situation occurs in coding theory when nonhomogeneous alphabets
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are considered, involving multivariate Krawtchouk polynomials. Table 3 shows
some examples of these spaces with references to coding theory applications.

Space Group Polynomial Reference

Nonbinary Johnson Sq−1 o Sn Eberlein/Krawtchouk [93]
Permutation group S2

n Characters of Sn [94]
Lee space Dq o Sn Multivariate Krawtchouk [3]

Ordered Hamming space (Fk
q .Bk) o Sn Multivariate Krawtchouck [71], [14]

Real Grassmann space On(R) Multivariate Jacobi [49], [4]
Complex Grassmann space Un(C) Multivariate Jacobi [49], [81], [82]
Unitary group Un(C)2 Schur [27]

Table 3. Some symmetric spaces, their groups and their spherical functions Yk.

3.5 Examples: the noncommutative case

Only a few cases have been completely worked out. Among them, the Eu-
clidean sphere Sn−1 under the action of the subgroup of the orthogonal group
fixing one point is treated in Bachoc, Vallentin [6]. We come back to this case
in Section 6. These results have been extended to the case of fixing many
points in Musin [75]. The case of the binary Hamming space under the action
of the symmetric group is treated in the framework of group representations
in Vallentin [96], shedding a new light on the results of Schrijver [86]. A very
similar case is given by the set of linear subspaces of the finite vector space
Fnq , treated as a q-analogue of the binary Hamming space in Bachoc, Vallentin
[8].

4 Block codes

In this section, we give an overview of symmetry reduction in semidefinite
programming bounds for (error correcting) codes. We fix an alphabet q =
{0, 1, . . . , q − 1} for some integer q ≥ 2. The Hamming space qn is equipped
with a metric d(·, ·) called the Hamming distance which is given by

d(u, v) = |{i : ui 6= vi}| for all u, v ∈ qn.

The isometry group of the Hamming space will be denoted Aut(q, n) and
is a wreath product Sq o Sn of symmetric groups. That is, the isometries are
obtained by taking a permutation of the n positions followed by independently
permuting the symbols 0, . . . , q− 1 at each of the n positions. The group acts
transitively on qn and the orbits of pairs are given by the Hamming distance.

A subset C ⊆ qn is called a code of length n. For a (nonempty) code C,
min{d(u, v) : u, v ∈ C distinct} is the minimum distance of C. An important



Invariant semidefinite programs 25

quantity in coding theory is the maximum size Aq(n, d) of a code of length n
and minimum distance at least d:

Aq(n, d) = max{|C| : C ⊆ qn has minimum distance at least d}.

These codes are often called block codes since they can be used to encode
messages into fixed-length blocks of words from a code C. The most studied
case is that of binary codes, that is q = 2 and q = {0, 1}. In this case q is
suppressed from the notation. An excellent reference work on coding theory
is MacWilliams, Sloane [70].

Lower bounds for Aq(n, d) are mostly obtained using explicit construc-
tion of codes. Our focus here is on upper bounds obtained using semidefinite
programming.

4.1 Lovász’ ϑ and Delsarte’s linear programming bound

Let Γq(n, d) be the graph on vertex set qn, connecting two words u, v ∈ qn

if d(u, v) < d. Then the codes of minimum distance at most d correspond
exactly to the independent sets in Γq(n, d) and hence

Aq(n, d) = α(Γq(n, d)),

where α denotes the independence number of a graph. The graph parameter
ϑ′, defined in Schrijver [86], is a slight modification of the Lovász theta num-
ber discussed in more detail in Section 6. It can be defined by the following
semidefinite program

ϑ′(Γ ) = max{〈X, J〉 : 〈X, I〉 = 1, Xuv = 0 if uv ∈ E(Γ ), X ≥ 0, X � 0},

and it is a by-now classical lemma of Lovász [69] that for any graph Γ the
inequality α(Γ ) ≤ ϑ′(Γ ) ≤ ϑ(Γ ) holds.

Hence ϑ′(Γq(n, d)) is an (exponential size) semidefinite programming up-
per bound for Aq(n, d). Using symmetry reduction, this program can be solved
efficiently. For this, observe that the SDP is invariant under the action of
Aut(q, n). Hence we may restrict X to belong to the matrix ∗-algebra A of
invariant matrices (the Bose-Mesner algebra of the Hamming scheme). The
zero-one matrices A0, . . . , An corresponding to the orbits of pairs:

(Ai)u,v =

{
1 if d(u, v) = i,

0 otherwise,

form the canonical basis of A. Writing X = 1
qn (x0A0 + · · ·+xnAn), we obtain

an SDP in n+ 1 variables:

ϑ′(Γq(n, d)) = max
{ n∑
i=0

xi
(
n
i

)
: x0 = 1,x1 = · · · = xd−1 = 0,

xd, . . . , xn ≥ 0,
n∑
i=0

xiAi � 0
}
.
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The second step is to block diagonalize the algebra A. In this case A is commu-
tative, which means that the Ai can be simultaneously diagonalized, reducing
the positive semidefinite constraint to the linear constraints

n∑
i=0

xiPi(j) ≥ 0 for j = 0, . . . , n,

in the eigenvalues Pi(j) of the matrices Ai. The Pi are the Krawtchouk poly-
nomials and are given by

Pi(x) =
i∑

k=0

(−1)k
(
x
k

)(
n−x
i−k
)
(q − 1)i−k.

Thus the semidefinite program is reduced to a linear program, which is pre-
cisely the Delsarte bound [29]. This relation between ϑ′ and the Delsarte bound
was recognized independently in McEliece, Rodemich, Rumsey [72] and Schri-
jver [85]. In the more general setting of (commutative) association schemes,
Delsarte’s linear programming bound is obtained from a semidefinite program
by symmetry reduction and diagonalizing the Bose-Mesner algebra.

4.2 Stronger bounds through triples

Delsarte’s bound is based on the distance distribution of a code, that is, on
the number of code word-pairs for each orbit of pairs. Using orbits of triples,
the bound can be tightened as was shown in Schrijver [86]. We describe this
method for the binary case (q = 2).

Denote by Stab(0,Aut(2, n)) ⊆ Aut(2, n) the stabilizer of 0. That is,
Stab(0,Aut(2, n)) consists of just the permutations of the n positions.

For any u, v, w ∈ {0, 1}n, denote by O(u, v, w) the orbit of the triple
(u, v, w) under the action of Aut(2, n). Observe that since Aut(2, n) acts tran-
sitively on {0, 1}n, the orbits of triples are in bijection with the orbits of pairs
under Stab(0,Aut(2, n)), since we may assume that u is mapped to 0. There
are

(
n+3

3

)
such orbits, indexed by integers 0 ≤ t ≤ i, j ≤ n. Indeed, the or-

bit of (v, w) under Stab(0,Aut(2, n)) is determined by the sizes i, j and t of
respectively the supports of v and w and their intersection.

Let C ⊆ {0, 1}n be a code. We denote by λti,j the number of triples
(u, v, w) ∈ C3 in the orbit indexed by i, j and t. This is the analogue for
triples of the distance distribution.

Denote byMC the zero-one {0, 1}n×{0, 1}n matrix defined by (MC)u,v = 1
if and only if u, v ∈ C. So MC is a rank 1 positive semidefinite matrix. Now
consider the following two matrices

M ′ =
∑

σ∈Aut(2,n),0∈σC

MσC , M ′′ =
∑

σ∈Aut(2,n),06∈σC

MσC .
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Clearly, M ′ and M ′′ are nonnegative and positive semidefinite. Furthermore,
by construction M ′ and M ′′ are invariant under the action of the stabilizer
Stab(0,Aut(2, n)). Equivalently, any entry M ′uv (or M ′′uv) only depends on the
orbit of (0, u, v) under the action of Aut(2, n). In fact, M ′uv equals (up to a
factor depending on the orbit) the number of triples (c, c′, c′′) ∈ C3 in that
orbit.

The matrix ∗-algebra An of complex {0, 1}n × {0, 1}n matrices invariant
under Stab(0,Aut(2, n)) has a basis of zero-one matrices corresponding to the
orbits of pairs under the action of Stab(0,Aut(2, n)): {Ati,j : 0 ≤ t ≤ i, j ≤ n}.
This algebra is called the Terwilliger algebra of the (binary) Hamming scheme.
The facts about M ′ and M ′′ above lead to a semidefinite programming bound
for A(n, d), in terms of variables xti,j . Nonnegativity of M ′,M ′′ translates
into nonnegativity of the xti,j . Excluding positive distances smaller than d
translates into setting xti,j = 0 for orbits containing two words at distance 1
through d− 1. Semidefiniteness of M ′ and M ′′ translate into∑

i,j,t

xti,jA
t
i,j � 0,

∑
i,j,t

(x0
i+j−t,0 − xti,j)Ati,j � 0.

There are some more constraints. In particular, for u, v, w ∈ {0, 1}n the vari-
ables of the orbits of (u, v, w) and (w, u, v) (or any other reordering) must
be equal. This further reduces the number of variables. For more details, see
Schrijver [86].

Having reduced the SDP-variables by using the problem symmetry, the
second step is to replace the positive semidefinite constraints by equivalent
conditions on smaller matrices using a block diagonalization of An. The block
diagonalization of An is given explicitly in Schrijver [86] (see also Vallentin
[96], Dunkl [36]). The number of blocks equals 1+bn2 c, with sizes n+1−2k for
k = 0, . . . , bn2 c. Observe that the sum of the squares of these numbers indeed
equals

(
n+3

3

)
, the dimension of An.

For the non-binary case, an SDP upper bound for Aq(n, d) can be defined
similarly. The main differences are, that the orbits or triples are now indexed
by four parameters i, j, p, t satisfying 0 ≤ p ≤ t ≤ i, j, i + j − t ≤ n. Hence
the corresponding invariant algebra is a matrix ∗-algebra of dimension

(
n+4

4

)
.

In that case the block diagonalization is a bit more involved having blocks
indexed by the integers a, k with 0 ≤ a ≤ k ≤ n+a−k, and size n+a+1−2k.
See Gijswijt, Schrijver, Tanaka [42] for details.

4.3 Hierarchies and k-tuples

Moment matrices

Let V be a finite set and denote by P(V ) its power set. For any y : P(V )→ C,
denote by M(y) the P(V )× P(V ) matrix given by

[M(y)]S,T = yS∪T .
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Such a matrix is called a combinatorial moment matrix (see Laurent [66]).
Let C ⊆ V and denote by x = χC ∈ {0, 1}V the zero-one incidence vector

of C. The vector x can be “lifted” to y ∈ {0, 1}P(V ) by setting yS =
∏
v∈S xv

for all S ∈ P(V ). Note that y∅ = 1. Then the moment matrix M(y) is positive
semidefinite since M(y) = yyT. This observation has an important converse
(see Laurent [66]).

Theorem 1. Let M(y) be a moment matrix with y∅ = 1 and M(y) � 0. Then
M(y) is a convex combination of moment matrices M(y1), . . . ,M(yk), where
yi is obtained from lifting a vector in {0, 1}V .

Let Γ = (V,E) be a graph on V . Theorem 1 shows that the independence
number is given by

α(Γ ) = max
{∑
v∈V

y{v} : y∅ = 1, yS = 0 if S contains an edge,

M(y) � 0
}
.

(15)

By replacing M(y) by suitable principal submatrices, this (exponential size)
semidefinite program can be relaxed to obtain more tractable upper bounds
on α(Γ ). For example, restricting rows and columns to sets of size at most 1
(and restricting y to sets of size ≤ 2), we obtain the Lovász ϑ number (adding
nonnegativity of yS for S of size 2 gives ϑ′).

To describe a large class of useful submatrices, fix a nonnegative integer
s and a set T ⊆ V . Define Ms,T = Ms,T (y) to be the matrix with rows and
columns indexed by sets S of size at most s, defined by

[Ms,T ]S,S′ = yS∪S′∪T . (16)

So Ms,T is a principal submatrix of M(y), except that possibly some rows
and columns are duplicated. For fixed k, we can restrict y to subsets of size
at most k and replace M(y) � 0 in (15) by conditions

Ms,T � 0 for all T of size at most t,

where 2s+t ≤ k. This yields upper bounds on α(Γ ) defined in terms of subsets
of V of size at most k. The constraints (16) can be strengthened further to

M̃s,T =
(
Ms,T ′∪T ′′

)
T ′,T ′′⊆T � 0 for all T of size t. (17)

Here M̃s,T is a 2|T | × 2|T | matrix of smaller matrices, which can be seen as
a submatrix of M(y) (again up to duplication of rows and columns). By the
moment-structure of M̃s,T , condition (17) is equivalent to∑

R′⊆R

(−1)|R\R
′|Ms,R′ � 0 for all R of size at most t.



Invariant semidefinite programs 29

Using SDP constraints of the form (16) and (17) with 2s+ t ≤ k, we can
obtain the (modified) theta number (k = 2), Schrijver’s bound using triples
(k = 3), or rather a strengthened version from Laurent [65], and the bound
from Gijswijt, Mittelmann, Schrijver [41] (k = 4).

Several hierarchies of upper bounds have been proposed. The hierarchy
introduced by Lasserre [64] (also see Laurent [65]) is obtained using (16)
by fixing t = 0 and letting s = 1, 2, . . . run over the positive integers. The
hierarchy described in Gijswijt, Mittelmann, Schrijver [41] is obtained using
(16) by letting k = 1, 2, . . . run over the positive integers and restricting s and t
by 2s+t ≤ k. Finally, the hierarchy defined in Gvozdenović, Laurent, Vallentin
[47] fixes s = 1 and considers the constraints (17), where t = 0, 1, . . . runs over
the nonnegative integers. There, also computational results are obtained for
Paley graphs in the case t = 1, 2.

A slight variation is obtained by restricting y to sets of at least one element,
deleting the row and column corresponding to the empty set from (submatrices
of) M(y). The normalization y∅ = 1 is then replaced by

∑
v∈V y{v} = 1

and the objective is replaced by
∑
u,v∈V y{u,v}. Since M1,∅ � 0 implies that

(
∑
v∈V y{v})

2 ≤ y∅
∑
u,v∈V y{u,v}, this gives a relaxation. This variation was

used in Schrijver [86] and Gijswijt, Schrijver, Tanaka [42].

Symmetry reduction

Application to the graph Γ = Γq(n, d) with vertex set V = qn, gives semidef-
inite programming bounds for Aq(n, d). A priory, this gives an SDP that has
exponential size in n. However, using the symmetries of the Hamming space,
it can be reduced to polynomial size as follows.

The action of Aut(q, n) on the Hamming space V , extends to an action
on P(V ) and hence on vectors and matrices indexed by P(V ). Since the
semidefinite program in (15) is invariant under Aut(q, n), we may restrict
y (and hence M(y)) to be invariant under Aut(q, n), without changing the
optimum value. The same holds for any of the bounds obtained using principal
submatrices. Thus M(y)S,T only depends on the orbit of S ∪T . In particular,
for any fixed integer k, the matrices Ms,T with 2s+|T | ≤ k are described using
variables corresponding to the orbits of sets of size at most k. Two matrices
Ms,T and Ms,T ′ are equal (up to permutation of rows and columns) when T
and T ′ are in the same orbit under Aut(q, n). Hence, the number of variables
is bounded by the number of orbits of sets of size at most k (O(n2k−1−1) in
the binary case), and for each such orbit there are at most a constant number
of distinct constraints of the form (16,17). This concludes the first step in the
symmetry reduction.

The matrices Ms,T are invariant under the subgroup of Stab(T,Aut(q, n))
that fixes each of the elements of T . The dimension of the matrix ∗-algebra of
invariant matrices is polynomial in n and hence the size of the matrices can
be reduced to polynomial size using the regular ∗-representation.



30 C. Bachoc, D.C. Gijswijt, A. Schrijver, F. Vallentin

By introducing more duplicate rows and columns and disregarding the row
and column indexed by the empty set, we may index the matrices Ms,T by
ordered s-tuples and view Ms,T as an (qn)s × (qn)s matrix. Let As,T be the
matrix ∗-algebra of (qn)s × (qn)s matrices invariant under the the subgroup
of Stab(T,Aut(q, n)). This matrix ∗-algebra can be block diagonalized using
techniques from Gijswijt [40].

4.4 Generalizations

The semidefinite programs discussed in the previous sections, are based on
the distribution of pairs, triples and k-tuples in a code. For each tuple (up to
isometry) there is a variable that reflects the number of occurrences of that
tuple in the code. Exclusion of pairs at distance 1, . . . , d − 1, is modeled by
setting variables for violating tuples to zero.

Bounds for other types of codes in the Hamming space can be obtained by
setting the variables for excluded tuples to zero. This does not affect the under-
lying algebra of invariant matrices or the symmetry reduction. For triples in
the binary Hamming space, this method was applied to orthogonality graphs
in de Klerk, Pasechnik [58] and to pseudo-distances in Bachoc, Zémor [10].
Lower bounds on (nonbinary) covering codes have been obtained in Gijswijt
[39] by introducing additional linear constraints.

Bounds on constant weight binary codes were given in Schrijver [86].
In the nonbinary Hamming space, the symbols 0, . . . , q − 1 are all in-

terchangeable. In the case of Lee-codes, the dihedral group Dq acts on the
alphabet, which leads to a smaller isometry group Dq o Sn. The Bose-Mesner
algebra of the Lee-scheme is still commutative. The corresponding linear pro-
gramming bound was studied in Astola [3]. To the best knowledge of the
author, stronger bounds using triples have not been studied in this case.

5 Crossing numbers

We describe an application of the regular ∗-representation to obtain a lower
bound on the crossing number of complete bipartite graphs. This was de-
scribed in de Klerk, Pasechnik, Schrijver [59], and extends a method of de
Klerk, et. al. [55].

The crossing number cr(Γ ) of a graph Γ is the minimum number of in-
tersections of edges when Γ is drawn in the plane such that all vertices
are distinct. The complete bipartite graph Km,n is the graph with vertices
1, . . . ,m, u1, . . . , un and edges all pairs iuj for i ∈ [m] and j ∈ [n]. (This
notation will be convenient for our purposes.)

This relates to the problem raised by the paper of Zarankiewicz [101],
asking if

cr(Km,n) ?= Z(m,n) = b 14 (m− 1)2cb 14 (n− 1)2c. (18)
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In fact, Zarankiewicz claimed to have a proof, which however was shown to be
incorrect. In (18), ≤ follows from a direct construction. Equality was proved
by Kleitman [53] if min{m,n} ≤ 6 and by Woodall [100] if m ∈ {7, 8} and
n ∈ {7, 8, 9, 10}.

Consider any m,n. Let Zm be the set of cyclic permutations of [m] (that
is, the permutations with precisely one orbit). For any drawing of Km,n in the
plane and for any ui, let γ(ui) be the cyclic permutation (1, i2, . . . , im) such
that the edges leaving ui in clockwise order, go to 1, i2, . . . , im respectively.

For σ, τ ∈ Zm, let Cσ,τ be equal to the minimum number of crossings when
we draw Km,2 in the plane such that γ(u1) = σ and γ(u2) = τ . This gives a
matrix C = (Cσ,τ ) in RZm×Zm . Then the number αm is defined by:

αm = min{〈X,C〉 : X ∈ RZm×Zm+ , X � 0, 〈X,J〉 = 1}, (19)

where J is the all-one matrix in RZm×Zm .
Then αm gives a lower bound on cr(Km,n), as was shown by de Klerk, et.

al. [55].

Theorem 5.1 cr(Km,n) ≥ 1
2n

2αm − 1
2nb

1
4 (m− 1)2c for all m,n.

Proof. Consider a drawing of Km,n in the plane with cr(Km,n) crossings. For
each cyclic permutation σ, let dσ be the number of vertices ui with γ(ui) = σ.
Consider d as column vector in RZm , and define the matrix X in RZm×Zm by

X = n−2ddT.

Then X satisfies the constraints in (19), hence αm ≤ 〈X,C〉. For i, j =
1, . . . , n, let βi,j denote the number of crossings of the edges leaving ui with
the edges leaving uj . So if i 6= j, then βi,j ≥ Cγ(ui),γ(uj). Hence

n2〈X,C〉 = 〈ddTC〉) = dTCd =
n∑

i,j=1

Cγ(ui),γ(uj)

≤
n∑

i,j=1
i 6=j

βi,j +
n∑
i=1

Cγ(ui),γ(ui) = 2cr(Km,n) + nb 14 (m− 1)2c.

Therefore,

cr(Km,n) ≥ 1
2n

2〈X,C〉 − 1
2nb

1
4 (m− 1)2c ≥ 1

2αmn
2 − 1

2nb
1
4 (m− 1)2c. �

The semidefinite programming problem (19) defining αm has order (m −
1)!. Using the regular ∗-representation, we can reduce the size. Fix m ∈ N.
Let G = Sm × {−1,+1}, and define h : G→ SZm by

hπ,i(σ) = πσiπ−1
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for π ∈ Sm, i ∈ {−1,+1}, σ ∈ Zm. So G acts on Zm. It is easy to see that C
and (trivially) J are G-invariant.

Using the regular ∗-representation, αm up to m = 9 was computed. For
m = 8, α8 = 5.8599856444 . . ., implying

cr(K8,n) ≥ 2.9299n2 − 6n.

This implies for each fixed m ≥ 8, with an averaging argument over all sub-
graphs K8,n:

lim
n→∞

cr(Km,n)
Z(m,n)

≥ 0.8371
m

m− 1
.

Moreover, α9 = 7.7352126 . . ., implying

cr(K9,n) ≥ 3.8676063n2 − 8n,

and for each fixed m ≥ 9:

lim
n→∞

cr(Km,n)
Z(m,n)

≥ 0.8594
m

m− 1
.

Thus we have an asymptotic approximation to Zarankiewicz’s problem.
The orbits of the action of G onto Zm × Zm can be identified as follows.

Each orbit contains an element (σ0, τ) with σ0 = (1, . . . ,m). So there are at
most (m − 1)! orbits. Next, (σ0, τ) and (σ0, τ

′) belong to the same orbit if
and only if τ ′ = τg for some g ∈ G that fixes σ0. (There are only few of such
g.) In this way, the orbits can be identified by computer, for m not too large.
The corresponding values Cσ,τ for each orbit [σ, τ ], and the multiplication
parameters, also can be found using elementary combinatorial algorithms.
The computer does this all within a few minutes, for m ≤ 9. But the resulting
semidefinite programming problem took, in 2006, seven days. It was the largest
SDP problem solved by then.

6 Spherical codes

Finding upper bounds for codes on the sphere is our next application. Here
one deals with infinite-dimensional semidefinite programs which are invariant
under the orthogonal group which is continuous and compact. So we are in
the situation for which the techniques of Section 3 work.

We start with some definitions: The unit sphere Sn−1 of the Euclidean
space Rn equipped with its standard inner product x · y =

∑n
i=1 xiyi, is

defined as usual by:

Sn−1 = {(x1, . . . , xn) ∈ Rn : x · x = 1}.

It is a compact space, on which the orthogonal group On(R) acts homo-
geneously. The stabilizer Stab(x0, On(R)) of one point x0 ∈ Sn−1 can be
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identified with the orthogonal group of the orthogonal complement (Rx0)⊥

of the line Rx0 thus with On−1(R), leading to an identification between the
sphere and the quotient space On(R)/On−1(R). The unit sphere is endowed
with the standard On(R)-invariant Lebesgue measure µ with the normaliza-
tion µ(Sn−1) = 1. The angular distance dθ(x, y) of (x, y) ∈ (Sn−1)2 is defined
by

dθ(x, y) = arccos(x · y)

and is On(R)-invariant. Moreover, the metric space (Sn−1, dθ) is two-point
homogeneous (see Section 3.4) under On(R).

The minimal angular distance dθ(C) of a subset C ⊂ Sn−1 is by definition
the minimal angular distance of pairs of distinct elements of C. It is a classical
problem to determine the maximal size of C, subject to the condition that
dθ(C) is greater or equal to some given minimal value θmin. This problem is the
fundamental question of the theory of error correcting codes (see e.g. Conway,
Sloane [26], Ericson, Zinoviev [37]). In this context, the subsets C ⊂ Sn−1 are
referred to as spherical codes. In geometry, the case θmin = π/3 corresponds
to the famous kissing number problem which asks for the maximal number of
spheres that can simultaneously touch a central sphere without overlapping,
all spheres having the same radius (see e.g. Conway, Sloane [26]).

We introduce notations in a slightly more general framework. We say that
C ⊂ Sn−1 avoids Ω ⊂ (Sn−1)2 if, for all (x, y) ∈ C2, (x, y) /∈ Ω. We define,
for a measure λ,

A(Sn−1, Ω, λ) = sup
{
λ(C) : C ⊂ Sn−1 measurable, C avoids Ω

}
.

We have in mind the following situations of interest:

(i) Ω = {(x, y) : dθ(x, y) ∈]0, θmin[} and λ is the counting measure denoted
µc. Then, the Ω-avoiding sets are exactly the spherical codes C such that
dθ(C) ≥ θmin.

(ii) Ω = {(x, y) : dθ(x, y) = θ} for some value θ 6= 0, and λ = µ. Here we
consider subsets avoiding only one value of distance, so these subsets can
be infinite. This case has interesting connections with the famous problem
of finding the chromatic number of Euclidean space (see Soifer [87], Bachoc
et. al. [11], Oliveira, Vallentin [79], Oliveira [78])

(iii) Ω = {(x, y) : dθ(x, y) ∈]0, θmin[ or (x, y) /∈ Cap(e, φ)2}, and λ = µc. Here
Cap(e, φ) denotes the spherical cap with center e and radius φ:

Cap(e, φ) =
{
x ∈ Sn−1 : dθ(e, x) ≤ φ

}
and we are dealing with subsets of a spherical cap with given minimal
angular distance.

The computation of A(Sn−1, Ω, λ) is a difficult and unsolved problem in
general, so one aims at finding lower and upper bounds for this number.
To that end, for finding upper bounds, we borrow ideas from combinatorial
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optimization. Indeed, if one thinks of the pair (Sn−1, Ω) being a graph with
vertex set Sn−1 and edge set Ω, then a set C avoiding Ω corresponds to an
independent set, and A(Sn−1, Ω, λ) to the independence number of this graph.
In general, for a graph Γ with vertex set V and edge set E, an independent set
is a subset S of V such that no pairs of elements of S are connected by an edge,
and the independence number α(Γ ) of Γ is the maximal number of elements of
an independent set. The Lovász theta number ϑ(Γ ) was introduced by Lovász
[69]. It gives an upper bound of the independence number α(Γ ) of a graph
Γ , and it is the optimal solution of a semidefinite program. We review Lovász
theta number in Section 6.1. Then, in Section 6.2, we introduce generalizations
of this notion, in the form of conic linear programs, that provide upper bounds
for A(Sn−1, Ω, λ). Using symmetry reduction, in the cases (i), (ii), (iii) above,
it is possible to approximate these conic linear programs with semidefinite
programs, that can be practically computed when the dimension n is not too
large. This step is explained in Section 6.5. It involves the description of the
cones of G-invariant positive definite functions, for the groups G = On(R)
and G = Stab(x0, On(R)). We provide this description, following the lines of
Section 3, in Sections 6.3 and 6.4. Finally, in Section 6.6 we indicate further
applications.

6.1 Lovász ϑ

This number can be defined in many equivalent ways (see Lovász [69], Knuth
[62]). We present here the most appropriate one in view of our purpose, which
is the generalization to Sn−1.

Definition 6.1 The theta number of the graph Γ = (V,E) with vertex set
V = {1, 2, . . . , n} is defined by

ϑ(Γ ) = max
{
〈X,Jn〉 : X � 0, 〈X, In〉 = 1, Xij = 0 for all (i, j) ∈ E

}
(20)

where In and Jn denote respectively the identity and the all-one matrices of
size n.

The dual program gives another expression of ϑ(Γ ) (there is no duality
gap here because X = In is a strictly feasible solution of (20) so the Slater
condition is fulfilled):

ϑ(Γ ) = min
{
t : X � 0, Xii = t− 1, Xij = −1 for all (i, j) /∈ E

}
. (21)

We have already mentioned that this number provides an upper bound for the
independence number α(Γ ) of the graph Γ . It also provides a lower bound
for the chromatic number χ(Γ ) of the complementary graph Γ (the chromatic
number of a graph is the minimal number of colors needed to color its vertices
so that two connected vertices receive different colors); this is the content of
the celebrated Sandwich theorem of Lovász [69]:
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Theorem 6.2
α(Γ ) ≤ ϑ(Γ ) ≤ χ(Γ ) (22)

By modifying the definition of the theta number we get the strengthening
α(Γ ) ≤ ϑ′(Γ ) ≤ ϑ(Γ ), where

ϑ′(Γ ) = max
{
〈X, Jn〉 : X � 0, X ≥ 0,

〈X, In〉 = 1, Xij = 0 for all (i, j) ∈ E
}
.

(23)

Again, this program has an equivalent dual form:

ϑ′(Γ ) = min
{
t : X � 0, Xii ≤ t− 1,

Xij ≤ −1 for all (i, j) /∈ E
}
.

(24)

6.2 Generalizations of Lovász ϑ to the sphere

In order to obtain the wanted generalization, it is natural to replace in (23)
the cone of positive semidefinite matrices indexed by the vertex set V of the
underlying graph, with the cone of continuous, positive definite functions on
the sphere, defined in Section 3.1. In fact, there is a small difficulty here due to
the fact that, in contrast with a finite dimensional Euclidean space, the space
C(X) of continuous functions on an infinite compact space cannot be identi-
fied with its topological dual. Indeed, the topological dual C(X)∗ of C(X) (i.e.
the space of continuous linear forms on C(X)) is the spaceM(X) of complex
valued Borel regular measures on X (see e.g. Rudin [83, Theorem 6.19], Con-
way [25, Appendix C]). Consequently, the two forms of ϑ′(Γ ) given by (23)
and (24) lead in the infinite case to two pairs of conic linear programs. As we
shall see, the right choice between the two in order to obtain an appropriate
bound for A(Sn−1, Ω, λ) depends on the set Ω.

Definition 6.3 Let Ωc = {(x, y) : (x, y) /∈ Ω and x 6= y}. Let

ϑ1(Sn−1, Ω) = inf
{
t : F � 0, F (x, x) ≤ t− 1,

F (x, y) ≤ −1 for all (x, y) ∈ Ωc
}
,

(25)

and

ϑ2(Sn−1, Ω) = sup
{
〈F, 1〉 : F � 0, F ≥ 0,

〈F,1∆〉 = 1,
F (x, y) = 0 for all (x, y) ∈ Ω

}
.

(26)

In the above programs, F belongs to C((Sn−1)2). The notation F ≥ 0 stands
for “F takes nonnegative values”. The function taking the constant value 1 is
denoted 1, so that 〈F, 1〉 equals the integral of F over (Sn−1)2. In contrast,
with 〈F,1∆〉 we mean the integral of the one variable function F (x, x) over
∆ = {(x, x) : x ∈ Sn−1}. Let us notice that, since F is continuous in both
programs, the sets Ω and Ωc can be replaced by their topological closures Ω
and Ωc.
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A positive semidefinite measure on (Sn−1)2 is one that satisfies 〈λ, f〉 ≥ 0
for all f � 0, where

〈λ, f〉 =
∫
X

f(x)dλ(x).

and this property is denoted λ � 0. In a similar way a nonnegative measure
λ is denoted λ ≥ 0.

Theorem 6.4 With the above notations and definitions, we have:

1. If Ωc ∩∆ = ∅, then the program dual to ϑ1 reads

ϑ∗1(Sn−1, Ω) = sup
{
〈λ, 1〉 : λ � 0, λ ≥ 0,

λ(∆) = 1,
supp(λ) ⊂ Ωc ∪∆

}
and

A(Sn−1, Ω, µc) ≤ ϑ1(Sn−1, Ω) = ϑ∗1(Sn−1, Ω). (27)

2. If Ω ∩∆ = ∅, then the program dual to ϑ2 reads

ϑ∗2(Sn−1, Ω) = inf
{
t : λ � 0,
λ ≤ tµ∆ − µ2 over (Sn−1)2 \Ω

}
,

and
A(Sn−1, Ω, µ) ≤ ϑ2(Sn−1, Ω) = ϑ∗2(Sn−1, Ω). (28)

Proof. The dual programs are computed in a standard way (see Duffin [35],
Barvinok [15]). In order to prove that there is no duality gap, one can apply
the criterion [15, Theorem 7.2].

For the inequality (27), let C be a maximal spherical code avoiding Ω.
Then, the measure λ = δC2/|C|, where δ denotes the Dirac measure, is a
feasible solution of ϑ∗1 with optimal value |C| = A(Sn−1, Ω, µc).

For the inequality (28), let (t, λ) be a feasible solution of ϑ∗2. Then, if C
avoids Ω, C2 ⊂ (Sn−1)2 \ Ω. Thus, 0 ≤ λ(C2) ≤ tµ(C) − µ(C)2, leading to
the wanted inequality µ(C) ≤ t. ut

Example 6.5 In the situations (i) and (ii) above, the set Ω fulfills the con-
dition 1. of Theorem 6.4 while for (iii) we are in the case 2.

6.3 Positive definite functions invariant under the full orthogonal
group

It is a classical result of Schoenberg [84] that these functions, in the variables
(x, y) ∈ (Sn−1)2, are exactly the nonnegative linear combinations of Gegen-
bauer polynomials (Section 3.4) evaluated at the inner product x·y. We briefly
review this classical result, following the lines of Section 3.

The space Homn
k of polynomials in n variables x1, . . . , xn which are ho-

mogeneous of degree k affords an action of the group On(R) acting linearly



Invariant semidefinite programs 37

on the n variables. The Laplace operator ∆ =
∑n
i=1

∂2

∂x2
i

commutes with this
action, thus the subspace Harmn

k defined by:

Harmn
k = {P ∈ Homn

k : ∆P = 0}

is a representation of On(R) which turns out to be irreducible (see e.g. An-
drews, Askey, Roy [1]). Going from polynomials to polynomial functions on
the sphere, we introduce Hn

k , the subspace of C(Sn−1) arising from elements
of Harmn

k . Then, for d ≥ k, Hn
k is a subspace of the space Vd = Pol≤d(Sn−1)

of polynomial functions on Sn−1 of degree up to d. We have:

Theorem 6.6 The irreducible On(R)-decomposition of Pol≤d(Sn−1) is given
by:

Pol≤d(Sn−1) = Hn
0 ⊥ Hn

1 ⊥ · · · ⊥ Hn
d , (29)

where, for all k ≥ 0, Hn
k ' Harmn

k is of dimension hnk =
(
n+k−1

k

)
−
(
n+k−3
k−2

)
.

The function Yk(dθ(x, y)) associated to Hn
k following (14) equals:

Yk(dθ(x, y)) = hnkP
((n−3)/2,(n−3)/2)
k (x · y). (30)

Proof. For the sake of completeness we sketch a proof. Because Sn−1 is two-
point homogeneous under On(R), the algebra (Vd)(2) related to the finite
dimensional On(R)-space Vd is equal to the set of polynomial functions in the
variable t = x · y of degree up to d, thus has dimension d + 1. On the other
hand, it can be shown that the d+1 subspaces Hn

k , for 0 ≤ k ≤ d, are non zero
and pairwise distinct. Then, the statement (29) follows from the equality of
the dimensions of (Vd)(2) and of EndOn(R)(Vd) which are isomorphic algebras
(12). It is worth to notice that we end up with a proof that the spaces Hn

k are
irreducible, without referring to the irreducibility of the spaces Harmn

k (which
can be proved in a similar way). The formula for hnk follows by induction.

The functions Yk(dθ(x,y)) associated to the decomposition (29) must be
polynomials in the variable x · y of degree k; let us denote them temporary
by Qk(t). A change of variables shows that, for a function f(x) ∈ C(Sn−1) of
the form f(x) = ϕ(x · y) for some y ∈ Sn−1,∫

Sn−1
f(x)dµ(x) = cn

∫ 1

−1

ϕ(t)(1− t2)(n−3)/2dt

for some constant cn. Then, because the subspaces Hn
k are pairwise orthogo-

nal, the polynomials Qk must satisfy the orthogonality conditions∫ 1

−1

Qk(t)Ql(t)(1− t2)(n−3)/2dt = 0

for all k 6= l thus they must be equal to the Gegenbauer polynomials up to a
multiplicative factor. Integrating over Sn−1 the formula (9) when x = y shows
that Yk(0) = hnk thus computes this factor. ut
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Corollary 6.7 Let Pnk (t) = P
((n−3)/2,(n−3)/2)
k (t). Then, F ∈ C(Sn−1)On(R)

�0 if
and only if

F (x, y) =
∑
k≥0

fkP
n
k (x · y), with fk ≥ 0 for all k ≥ 0. (31)

6.4 Positive definite functions invariant under the stabilizer of one
point

We fix an element e ∈ Sn−1 and let G = Stab(e,On(R)). Then, the orbit O(x)
of x ∈ Sn−1 under G is the set

O(x) = {y ∈ Sn−1 : e · y = e · x}.

The orbit O((x, y)) of (x, y) ∈ Sn−1 equals

O((x, y)) = {(z, t) ∈ (Sn−1)2 : (e · z, e · t, z · t) = (e · x, e · y, x · y)}.

In other words, the orbits of G on (Sn−1)2 are parametrized by the triple of
real numbers (e · x, e · y, x · y). So the G-invariant positive definite functions
on Sn−1 are functions of the three variables u = e ·x, v = e ·y, t = x ·y. Their
expression is computed in Bachoc, Vallentin [6].

Theorem 6.8 The irreducible decomposition of Vd = Pol≤d(Sn−1) under the
action of G = Stab(e, Sn−1) ' On−1(R) is given by:

Pol≤d(Sn−1) '
d⊕
k=0

(Harmn−1
k )d−k+1. (32)

The coefficients of the matrix Yk = Y nk of size d−k+1 associated to Harmn−1
k

are equal to:
Y nk,ij(u, v, t) = uivjQn−1

k (u, v, t) (33)

where 0 ≤ i, j ≤ d− k, and

Qn−1
k (u, v, t) =

(
(1− u2)(1− v2)

)k/2
Pn−1
k

( t− uv√
(1− u2)(1− v2)

)
Proof. We refer to Bachoc, Vallentin [6] for the details. In order to obtain
the G-decomposition of the space Pol≤d(Sn−1) we can start from the On(R)-
decomposition (29). The On(R)-irreducible subspaces Hn

k split into smaller
subspaces following the On−1(R)-isomorphisms (see e.g. Vilenkin, Klimyk
[98]):

Harmn
k '

k⊕
i=0

Harmn−1
i (34)

leading to (32). The expression (33) follows from the definition (9) of Ek,ij(x, y)
and from the construction of convenient basis (ek,i,s)s. These basis arise from
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explicit embeddings of Hn−1
k into Vd, defined as follows. For x ∈ Sn−1, let

x = ue+
√

1− u2ζ where ζ ∈ (Re)⊥ and ζ · ζ = 1. Let ϕk,i send f ∈ Hn−1
k to

ϕk,i(f) where
ϕk,i(f)(x) = ui(1− u2)k/2f(ζ).

Then, {ek,i,s : 1 ≤ s ≤ hn−1
k } is taken to be the image by ϕk,i of an orthonor-

mal basis of Hn−1
k . ut

6.5 Reduction using symmetries

If the set Ω is invariant under a subgroup G of On(R), then the feasible
sets of the conic linear programs (25) and (26) can be restricted to the G-
invariant positive definite functions F . Indeed, symmetry reduction of finite
dimensional semidefinite programs extends to infinite compact spaces, with
the now familiar trick that replaces the finite average over the elements of a
finite group by the integral for the Haar measure of the group. We apply this
general principle to the programs (25) and (26) and we focus on the cases
(i)–(iii) above.

Case (i): Ω = {(x, y) : dθ(x, y) ∈]0, θmin[}.

The set Ω is invariant under On(R). According to Theorem 6.4 we consider
the program (25) where F � 0 can be replaced by (31). The program ϑ1

becomes after a few simplifications:

ϑ1(Sn−1, Ω) = inf
{

1 +
∑
k≥1

fk : fk ≥ 0,

1 +
∑
k≥1

fkP
n
k (t) ≤ 0 t ∈ [−1, s]

}
,

(35)

where s = cos(θmin). One recognises in (35) the so-called Delsarte linear pro-
gramming bound for the maximal number of elements of a spherical code with
minimal angular distance θmin, see Delsarte, Goethals, Seidel [33], Kabatian-
sky, Levenshtein [51], Conway, Sloane [26, Chapter 9]. The optimal value of
the linear program (35) is not known in general, although explicit feasible
solutions leading to very good bounds and also to asymptotic bounds have
been constructed (Kabatiansky, Levenshtein [51], Levenshtein [67], Odlyzko,
Sloane [77]). Moreover, this infinite dimensional linear program can be effi-
ciently approximated by semidefinite programs defined in the following way:
in order to deal with only a finite number of variables fk, one restricts to
k ≤ d (it amounts to restrict to G-invariant positive definite functions of
V

(2)
d ). Then the polynomial 1 +

∑d
k=1 fkP

n
k is required in (35) to be non-

positive over a certain interval of real numbers. By the theorem of Lukács
concerning non-negative polynomials (see e.g. Szegö [91, Chapter 1.21], this
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can be expressed as a sums of square condition, hence as a semidefinite pro-
gram. Then, when d varies, one obtains a sequence of semidefinite programs
approaching ϑ1(Sn−1, Ω) from above.

Case (ii): Ω = {(x, y) : dθ(x, y) = θ}.

The set Ω is again invariant under On(R) but now we deal with (26), which
becomes:

ϑ2(Sn−1, Ω) = sup
{
f0 : fk ≥ 0,

∑
k≥0

fk = 1,∑
k≥0

fkP
n
k (s) = 0

} (36)

where s = cos(θ). This linear program has infinitely many variables but only
two constraints. Its optimal value turns to be easy to determine (we refer to
Bachoc et. al. [11] for a proof).

Theorem 6.9 Let m(s) be the minimum of Pnk (s) for k = 0, 1, 2, . . . . Then

ϑ2(Sn−1, Ω) =
m(s)

m(s)− 1
.

Case (iii): Ω = {(x, y) : dθ(x, y) ∈]0, θmin[ or (x, y) /∈ Cap(e, φ)2}.

This set is invariant by the smaller group G = Stab(e,On(R)). Like in case
(i), the program ϑ1 must be considered and in this program F can be assumed
to be G-invariant.

From Stone-Weierstrass theorem (see e.g. Conway [25, Theorem 8.1]), the
elements of C((Sn−1)2) can be uniformly approximated by those of V (2)

d . In
addition, one can prove that the elements of C((Sn−1)2)�0 can be uniformly
approximated by positive definite functions belonging to V (2)

d . We introduce:

ϑ
(d)
1 (Sn−1, Ω) = inf

{
t : F ∈

(
V

(2)
d

)
�0
,

F (x, x) ≤ t− 1,
F (x, y) ≤ −1 for all (x, y) ∈ Ωc

}
.

(37)

So, ϑ1(Sn−1, Ω) ≤ ϑ
(d)
1 (Sn−1, Ω), and the limiting value of ϑ(d)

1 (Sn−1, Ω)
when d goes to infinity equals ϑ1(Sn−1, Ω). Since Ω and Vd are invariant by
G, one can moreover assume that F is G-invariant. From Theorems 3.3 and
6.8, we have an expression for F :

F (x, y) =
d∑
k=0

〈Fk, Yk(u, v, t)〉, Fk � 0,
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where the matrices Fk are of size d− k + 1. Replacing in ϑ
(d)
1 leads to:

ϑ
(d)
1 (Sn−1, Ω) = inf

{
t : Fk � 0,

d∑
k=0

〈Fk, Yk(u, u, 1)〉 ≤ t u ∈ [s′, 1],

d∑
k=0

〈Fk, Yk(u, v, t))〉 ≤ −1 s′ ≤ u ≤ v ≤ 1

−1 ≤ t ≤ s
}

with s = cos(θ) and s′ = cos(φ). The left hand sides of the inequalities are
polynomials in three variables. Again, these constraints can be relaxed using
sums of squares in order to boil down to true semidefinite programs. We refer
to Bachoc, Vallentin [7] for the details, and for numerical computations of
upper bounds for codes in spherical caps with given minimal angular distance.

6.6 Further applications

In Bachoc, Vallentin [6] it is shown how Delsarte linear programming bound
[29] can be improved with semidefinite constraints arising from the matrices
Y nk (33). The idea is very much the same as for the Hamming space given in
Schrijver [86] and explained in Section 4 : instead of considering constraints
on pairs of points only, one exploits constraints on triples of points. More pre-
cisely, if Snk (u, v, t) denotes the symmetrization of Y nk (u, v, t) in the variables
(u, v, t), then the following semidefinite property holds for all spherical code
C: ∑

(x,y,z)∈C3

Snk (x · y, y · z, z · x) � 0. (38)

From (38), it is possible to define a semidefinite program whose optimal value
upper bounds the number of elements of a code with given minimal angu-
lar distance. In Bachoc, Vallentin [6], Mittelmann, Vallentin [73], new upper
bounds for the kissing number have been obtained for the dimensions n ≤ 24
with this method. We give next a simplified version of the semidefinite pro-
gram used in [6]. Another useful version is given in Bachoc, Vallentin [9] for
proving that the maximal angular distance of 10 points on S3 is cos(1/6).

Theorem 6.10 The optimal value of the semidefinite program:

inf
{

1 + 〈F0, Jd+1〉 : Fk � 0
d∑
k=0

〈Fk, Snk (u, u, 1)〉 ≤ −1
3
, −1 ≤ u ≤ s

d∑
k=0

〈Fk, Snk (u, v, t)〉 ≤ 0, −1 ≤ u, v, t ≤ s }

(39)
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is an upper bound for the number A(Sn−1, Ω, µc) where Ω = {(x, y) ∈
(Sn−1)2 : s < x·y < 1}, i.e. for the maximal number of elements of a spherical
code with minimal angular distance at least equal to θmin = arccos(s).

Proof. Let (F0, . . . , Fk) a feasible solution of (39). Let

F (x, y, z) =
d∑
k=0

〈Fk, Snk (x · y, y · z, z · x)〉.

If C is a spherical code, we consider Σ =
∑

(x,y,z)∈C3 F (x, y, z). We have:

0 ≤ Σ =
∑
x∈C

F (x, x, x) +
∑

|{x,y,z}|=2

F (x, x, y) +
∑

|{x,y,z}|=3

F (x, y, z)

where the inequality holds because of (38). Then, taking Sn0 (1, 1, 1) = Jd+1

and Snk (1, 1, 1) = 0 for k ≥ 1 into account, we have F (x, x, x) = 〈F0, Jd+1〉.
If moreover dθ(C) ≥ θmin, we can apply the constraint inequalities of the
program to the second and third terms of the right hand side. We obtain:

0 ≤ Σ ≤ 〈F0, Jd+1〉|C| − |C|(|C| − 1)

leading to the inequality |C| ≤ 1 + 〈F0, Jd+1〉. ut

7 Sums of squares

A fundamental task in polynomial optimization and in real algebraic geom-
etry is to decide and certify whether a polynomial with real coefficients in n
indeterminates can be written as a sum of squares: Given p ∈ R[x1, . . . , xn]
do there exist polynomials q1, . . . , qm ∈ R[x1, . . . , xn] so that

p = q21 + q22 + · · ·+ q2m ?

This problem can be reformulated as a semidefinite feasibility problem: Let
z be a vector containing a basis of R[x1, . . . , xn]≤d the space of polynomials
of degree at most d. For example, let z be the vector containing the monomial
basis

z = (1, x1, x2, . . . , xn, x
2
1, x1x2, x

2
2, . . . , x

d
n)

which has length
(
n+d
d

)
. A polynomial p ∈ R[x1, . . . , xn] of degree 2d is a

sum of square if and only if there is a positive semidefinite matrix X of size(
n+d
d

)
×
(
n+d
d

)
so that the

(
n+2d

2d

)
linear — linear in the entries ofX — equations

p(x1, . . . , xn) = zTXz

hold.
This semidefinite feasibility problem can be simplified if the polynomial p

has symmetries. The method has been worked out by Gatermann and Parrilo
in [38]. In this section we give the main ideas of the method. For details and
further we refer to the original article.
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7.1 Basics from invariant theory

We start by explaining what we mean that a polynomial has symmetries.
Again to simplify the presentation of the theory we consider the complex case
only.

Let G be a finite group acting on Cn. This group action induces a group
action on the polynomial ring C[x1, . . . , xn] by

(gp)(x1, . . . , xn) = p(g−1(x1, . . . , xn)),

and we say that a polynomial p is G-invariant if gp = p for all g ∈ G. The set
C[x1, . . . , xn]G of all G-invariant polynomials is a ring, the invariant ring. By
Hilbert’s finiteness theorem it is generated by finitely many G-invariant poly-
nomials. Even more is true: Since the invariant ring has the Cohen-Macaulay
property it admits a Hironaka decomposition: There are G-invariant polyno-
mials ηi, θj ∈ C[x1, . . . , xn] so that

C[x1, . . . , xn]G =
r⊕
i=1

ηiC[θ1, . . . , θs], (40)

hence, every invariant polynomial can be uniquely written as a polynomial in
the polynomials ηi and θj where ηi only occurs linearly. We refer to Sturmfels
[90, Chapter 2.3] for the definitions and proofs; we only need the existence of
a Hironaka decomposition here.

7.2 Sums of squares with symmetries

We consider the action of the finite groupG restricted to the
(
n+d
d

)
-dimensional

vector space of complex polynomials of degree at most d. This defines a uni-
tary representation

π : G→ Gl(C[x1, . . . , xn]≤d).

From now on, by using the monomial basis, we see π(g) as a regular matrix
in C(n+d

d )×(n+d
d ).

Example 7.1 For instance, the matrix g−1 = ( 1 2
3 4 ) acts on C2 and so on the

polynomial p = 1 + x1 + x2 + x2
1 + x1x2 + x2

2 ∈ C[x1, x2]≤2 by

(gp)(x1, x2) = p(x1 + 2x2, 3x1 + 4x2)

= 1 + (x1 + 2x2) + (3x1 + 4x2) + (x1 + 2x2)2

+ (x1 + 2x2)(3x1 + 4x2) + (3x1 + 4x2)2

= 1 + (x1 + 2x2) + (3x1 + 4x2) + (x2
1 + 4x1x2 + 4x2

2)

+ (3x2
1 + 10x1x2 + 8x2

2) + (9x2
1 + 24x1x2 + 16x2

2).

and so defines the matrix
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π(g) =


1 0 0 0 0 0
0 1 3 0 0 0
0 2 4 0 0 0
0 0 0 1 3 9
0 0 0 4 10 24
0 0 0 4 8 16

 .

Let p ∈ R[x1, . . . , xn] be a polynomial which is a sum of squares and which
is G-invariant. Thus we have a positive semidefinite matrix X ∈ R(n+d

d )×(n+d
d )

so that
p(x1, . . . , xn) = zTXz = z∗Xz,

and for every g ∈ G we have

gp(x1, . . . , xn) = (π(g)∗z)∗X(π(g)∗z) = z∗π(g)Xπ(g)∗z.

Hence, X is G-invariant and lies in
(
C(n+d

d )×(n+d
d )
)G

, the commutant algebra
of the matrix ∗-algebra spanned by the matrices π(g) with g ∈ G. So by
Theorem 2.7 there are numbers D, m1, . . . ,mD and a ∗-isomorphism

ϕ :
(
C(n+d

d )×(n+d
d )
)G
→

D⊕
k=1

Cmk×mk .

Hence, cf. Step 2 (second version) in Section 1.2, we can write the polynomial
p in the form

p(x1, . . . , xn) = z∗

(
D∑
k=1

mk∑
u,v=1

xk,uvϕ
−1(Ek,uv)

)
z

with D positive semidefinite matrices

Xk = (xk,uv)1≤u,v≤mk , k = 1, . . . , D.

We define D matrices E1, . . . , ED ∈ (C[x1, . . . , xn]G)mk×mk with G-invariant
polynomial entries by

(Ek)uv =
(
ϕ−1(Ek,uv)

)Q
i x
αi
i ,

Q
i x
βi
i

∏
i

xαi+βii ,

where we consider matrices in C(n+d
d )×(n+d

d ) as matrices whose rows and
columns are indexed by monomials

∏
i x

αi
i . Then, the polynomial p has a

representation of the form

p(x1, . . . , xn) =
D∑
k=1

〈Xk, Ek〉.

Since the entries of Ek are G-invariant polynomials we can use a Hironaka
decomposition to represent them in terms of the invariants ηi and θj . We
summarize our discussion in the following theorem.
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Theorem 7.2 Let p be a G-invariant polynomial of degree 2d which is a sum
of squares. Then there are numbers D, m1, . . . ,mD so that p has a represen-
tation of the form

p(x1, . . . , xn) =
D∑
k=1

〈Xk, Ek〉,

where Xk ∈ Cmk×mk are positive semidefinite Hermitian matrices, and where

Ek ∈

(
r⊕
i=1

ηiC[θ1, . . . , θs]

)mk×mk
are matrices whose entries are polynomials (determined by a Hironaka decom-
position of C[x1, . . . , xn]G and by the ∗-isomorphism ϕ).

8 More applications

In the last years many results were obtained for semidefinite programs which
are symmetric. This was done for a variety of problems and applications. In
this final section we want to give a brief, and definitely not complete, guide
to the extensive and growing literature.

8.1 Interior point algorithms

Kanno, Ohsaki, Murota, Katoh [52] consider structural properties of search
directions in primal-dual interior-point methods for solving invariant semidef-
inite programs and apply this to truss optimization problems. de Klerk,
Pasechnik [57] show how the dual scaling method can be implemented to
exploit the particular data structure where the data matrices come from a
low-dimensional matrix algebra.

8.2 Combinatorial optimization

Using symmetry in semidefinite programs has been used in combinatorial op-
timization for a variety of problems: quadratic assignment problem (de Klerk,
Sotirov [61]), travelling salesman problem (de Klerk, Pasechnik, Sotirov [60]),
graph coloring (Gvozdenović, Laurent [45], [46], Gvozdenović [44]), Lovász
theta number (de Klerk, Newman, Pasechnik, Sotirov [56]).

8.3 Polynomial optimization

Jansson, Lasserre, Riener, Theobald [50] work out how constrained polyno-
mial optimization problems behave which are invariant under the action of
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the symmetric group or the cyclic group. Among many other things, Cim-
pric̆, Kuhlmann, Scheiderer [24] extend the discussion of Gatermann, Parrilo
[38] from finite groups to compact groups. Cimpric̆ [23] transfers the method
to compute minima of the spectra of differential operators. In [18] Bosse
constructs symmetric polynomials which are non-negative but not sums of
squares.

8.4 Low distortion geometric embedding problems

Linial, Magen, Naor [68] give lower bounds for low distortion embedding of
graphs into Euclidean space depending on the girth. Vallentin [95] finds ex-
plicit optimal low distortion embeddings for several families of distance regular
graphs. Both papers construct feasible solutions of semidefinite programs by
symmetry reduction and by using the theory of orthogonal polynomials.

8.5 Miscellaneous

Bai, de Klerk, Pasechnik, Sotirov [12] exploit symmetry in truss topology
optimization and Boyd, Diaconis, Parrilo, Xiao [19] in the analysis of fast
mixing Markov chains on graphs.

8.6 Software

Pasechnik, Kini [80] develop a software package for the computer algebra
system GAP for computing with the regular ∗-representation for matrix ∗-
algebras coming from coherent configurations.

8.7 Surveys and lecture notes

Several surveys and lecture notes on symmetry in semidefinite programs with
different aims were written in the last years. The lecture notes of Bachoc [5]
especially discuss applications in coding theory and extend those of Vallentin
[97] which focuses on aspects from harmonic analysis. The survey [54] of de
Klerk discusses next to symmetry also the exploitation of other structural
properties of semidefinite programs like low rank or sparsity.
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nomials and the Erdős-Ko-Rado theorem, Algebraic methods in graph theory
Vol. I, II (Szeged, 1978), pp. 671–688, Colloq. Math. Soc. János Bolyai 25,
North-Holland, Amsterdam-New York, 1981.

86. A. Schrijver, New code upper bounds from the Terwilliger algebra and semidef-
inite programming, IEEE Trans. Inform. Theory 51 (2005), 2859–2866.

87. A. Soifer, The mathematical coloring book, Springer-Verlag, 2008.
88. D. Stanton, Orthogonal polynomials and Chevalley groups, in Special functions:

group theoretical aspects and applications, R.A. Askey, T.H. Koornwinder and
W. Schempp (Eds.), Reidel Publishing Compagny, 1984.

89. J.F. Sturm, Using SeDuMi 1.02, A Matlab toolbox for optimization over sym-
metric cones, Optimization Methods and Software 11 (1999), 625–653.

90. B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, 1993.
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