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tA 
ode is 
alled isodual if it is equivalent to its dual 
ode, and a latti
e is 
alledisodual if it is isometri
 to its dual latti
e. In this note, we investigate isodual 
odesover Z2k. These 
odes give rise to isodual latti
es; in parti
ular, we 
onstru
t a 22-dimensional isodual latti
e with minimum norm 3 and kissing number 2464.1 Introdu
tionA 
ode is 
alled isodual if it is equivalent to its dual 
ode, and a latti
e is 
alled isodual ifit is isometri
 to its dual latti
e. Conway and Sloane [5℄ introdu
ed the 
on
ept of isodual1



latti
es, whi
h is a generalization of unimodular latti
es. A lot of known dense latti
es areisodual [5℄, like the res
aled Barnes-Wall latti
e or the Coxeter-Todd latti
e. In the 
odingtheory 
ontext, isodual 
odes play a similar role with respe
t to the extensively studiedfamily of self-dual 
odes (
f. [10℄). In this note, we investigate a remarkable 
lass of isodual
odes over Z2k, the double 
ir
ulant ones, and use them to 
onstru
t isodual latti
es. Inparti
ular, we 
onstru
t a 22-dimensional isodual latti
e of minimum norm 3.In Se
tion 2, we study the properties of isodual 
odes and present double 
ir
ulant 
odes.We investigate the symmetrized weight enumerators of isodual 
odes over Z2k, in parti
ular,for small k, we give a basis for the spa
e of invariants to whi
h the symmetrized weightenumerators belong.In Se
tion 3, we des
ribe how isodual latti
es 
an be 
onstru
ted from isodual 
odes overZ2k.In Se
tion 4, we 
onstru
t double 
ir
ulant 
odes over Z4 and Z6 with the highest mini-mum Eu
lidean weight among all double 
ir
ulant 
odes of length up to 24. These examplesshow that there are isodual 
odes whi
h have a higher minimum Eu
lidean weight than anyself-dual 
ode of the same length.We then 
onsider the latti
es obtained from these 
odes. The most interesting are the22-dimensional isodual latti
es with minimum norm 3 and kissing number 2464 
onstru
tedfrom the double 
ir
ulant 
odes over Z4 of length 22 and minimum Eu
lidean weight 12.In Se
tion 5, we show that there are up to equivalen
e exa
tly six double 
ir
ulant 
odesover Z4 of length 22 and minimum Eu
lidean weight 12. We show that, from ea
h of these
odes, an extremal binary Type II 
odes of length 24 
an be 
onstru
ted, pointing out a
lose 
onne
tion between the 22-dimensional isodual latti
es and the Lee
h latti
e.Finally, in Se
tion 6 we show that these latti
es are all isometri
 to a single latti
eL22 
onstru
ted from the binary [22; 11; 6℄ self-dual 
ode. In parti
ular its automorphismgroup is proved to be isomorphi
 to f�1g11:M22:2, and it is 
ara
terised by the followingproperties: it is the unique up to isometry isodual 22-dimensional latti
e of minimum norm3 and 
ontaining an integral sublatti
e of index 2.2 Isodual Codes2.1 CodesA linear 
ode C of length n over Z2k is a Z2k-submodule of Zn2k where Z2k is the ring ofintegers modulo 2k. We shall take for a representative set of the elements of Z2k eitherf0; 1; 2; � � � ; 2k � 1g or f0;�1;�2;�3; : : : ;�(k � 1); kg, using whi
hever set is 
onvenient.An element of C is 
alled a 
odeword of C. A generator matrix of C is a matrix whoserows generate C. The Hamming weight wtH(x) of a ve
tor x in Zn2k is just the number ofnon-zero 
omponents. The Eu
lidean weight wtE(x) of a ve
tor x = (x1; x2; : : : ; xn) over2



Z2k is Pni=1minfx2i ; (2k � xi)2g where Z2k = f0; 1; 2; : : : ; 2k � 1g. The minimum Hammingand Eu
lidean weights, dH and dE, of C are the smallest Hamming and Eu
lidean weightsamong all non-zero 
odewords of C, respe
tively. De�ne the inner produ
t of x and y inZn2k by x � y := x1y1 + � � �+ xnyn. The dual 
ode C? of C is then C? := fx 2 Zn2k j x � y =0 for all y 2 Cg.In view of some appli
ations, there is no need to distinguish between 
odeword 
ompo-nents whi
h di�er in sign, i.e., +1 and �1. Hen
e, two 
odes are said to be equivalent ifone 
an be obtained from the other by permuting and 
hanging signs on the 
oordinates.C is 
alled isodual if C is equivalent to C?, and C is 
alled self-dual if C = C?. Clearly aself-dual 
ode is isodual. We de�ne the symmetrized weight enumerator (swe) of C bysweC(x0; x1; : : : ; xk) := X
2C xn0(
)0 xn1(
)1 � � �xnk�1(
)k�1 xnk(
)k ;where n0(x); n1(x); : : : ; nk�1(
); nk(
) are the numbers of 0;�1; : : : ;�(k � 1); k 
omponentsof 
, respe
tively. Equivalent 
odes have identi
al symmetrized weight enumerators. TheHamming weight enumerator of C is de�ned as WC(x; y) := P
2C xn�wtH(
)ywtH(
). Anisodual 
ode and its dual 
ode have several identi
al weight enumerators (e.g., symmetrizedweight enumerators, Hamming weight enumerators and biweight enumerators).2.2 Constru
tionsLemma 2.1 If 2k is a square, then an isodual 
ode over Z2k exists for all lengths. If 2k isnot a square, then an isodual 
ode exists for length n if and only if n is even.Proof. If 2k is a square (say, �2) then a 
ode with generator matrix ( � ) is isodual. Fora 
ode C of length n over Z2k, it is known that jCjjC?j = 2kn. If C is an isodual 
odethen jCj = jC?j = 2kn=2. Thus n must be even if 2k is not a square. Moreover a 
ode withgenerator matrix ( 1 ; � ) is isodual where � 2 Z2k. 2Lemma 2.2 Suppose that C and D are isodual 
odes of lengths n and m with minimumEu
lidean weights dE and d0E, respe
tively. Then the dire
t sum C�D := f(
; d) j 
 2 C; d 2Dg is an isodual 
ode of length n+m with minimum Eu
lidean weight minfdE; d0Eg.Proof. Let � and �0 be equivalent maps su
h that C� = C? and D�0 = D?. ThenC� � D�0 = C? �D?. It is easy to see that (C �D)? = C? �D?. Therefore (C � D) isequivalent to (C �D)?. The minimum Eu
lidean weight follows from the 
onstru
tion. 2From the above lemma, when sear
hing for 
odes with high minimum Eu
lidean weight,it is suÆ
ient to 
onsider only 
odes whi
h are not the dire
t sum of 
odes.3



Lemma 2.3 Let C be a 
ode over Z2k with generator matrix ( I ; A ) where I is the identitymatrix. If there are (0; 1;�1)-monomial matri
es P and Q su
h that AT = PAQ then C isisodual where AT denotes the transpose of A.Proof. The matrix (�AT ; I ) is a generator matrix of the dual 
ode C?. Sin
e AT = PAQ,C and the 
ode with generator matrix ( I ; �AT ) are equivalent. 2If A is symmetri
 or skew-symmetri
 (that is, AT = A or AT = �A) then A satis�es theassumption of the above lemma.Double 
ir
ulant 
odes are a remarkable 
lass of isodual 
odes. A pure double 
ir
ulant
ode of length 2n has a generator matrix of the form ( I ; R ) where R is an n by n 
ir
ulantmatrix. A 
ode with a generator matrix of the form0BBBBB� � � � � � �
I ... R0

1CCCCCA ;(1)where R0 is an n� 1 by n� 1 
ir
ulant matrix, is 
alled a bordered double 
ir
ulant 
ode oflength 2n. These two families of 
odes are 
olle
tively 
alled double 
ir
ulant 
odes.Lemma 2.4 A double 
ir
ulant 
ode is isodual.Proof. Follows from Lemma 2.3. 2quadrati
2.3 Symmetrized Weight EnumeratorsWe now investigate the symmetrized weight enumerators of isodual 
odes over Z2k. Weobtain invariants to whi
h the symmetrized weight enumerators belongs. First de�ne thefollowing matrix:

M2k := 1p2k
0BBBBBBBBBBBBBB�

1 2 2 � � � 11 � + �2k�1 �2 + �2k�2 � � � �k1 �2 + �2(2k�1) �4 + �2(2k�2) � � � �2k1 �3 + �3(2k�1) �6 + �3(2k�2) � � � �3k... ... ... ...... ... ... ...1 �k + �k(2k�1) �2k + �k(2k�2) � � � �k2
1CCCCCCCCCCCCCCA ;4



where � is a primitive 2k-th root of unity. This matrix 
orresponds to the Ma
Williamsidentities for 
odes over Z2k [1℄. In other words,swe?C(x0; x1; : : : ; xk) =M2ksweC(x0; x1; : : : ; xk):Thus the symmetrized weight enumerator of an isodual 
ode is invariant under transforma-tion by M2k. By Lemma 2.1, if 2k is not a square then the symmetrized weight enumeratoris also invariant under transformation by the diagonal matrix N := diag(�1;�1; : : : ;�1)derived from the restri
tion on the length. Therefore we have the following:Proposition 2.5 The symmetrized weight enumerator of an isodual 
ode over Z2k is in-variant under the group generated by M2k, whi
h has order 2. Moreover if 2k is not a squarethen the symmetrized weight enumerator of an isodual 
ode over Z2k is invariant under thegroup generated by M2k and N , whi
h has order 4.Magma 
an easily be used to 
ompute a basis for the invariant ring of small matrix groups.As examples, we give a basis for the invariant rings 
orresponding to the symmetrized weightenumerators of isodual 
odes over Z4 and Z6.Corollary 2.6 If C is an isodual 
ode over Z4, then the symmetrized weight enumeratorsweC(a; b; 
) of C is an element of the ringC [a+ 
; b� 
; a2 + 4b
� 
2℄;with Molien series 1(1� �)2(1� �2) = 1 + 2�+ 4�2 + 6�3 + 9�4 + � � � :Remark. The set of symmetrized weight enumerators of all isodual latti
es over Z4 
annotgenerate the above ring sin
e there is a unique isodual latti
e of length 1.Corollary 2.7 If C is an isodual 
ode over Z6, then the symmetrized weight enumeratorsweC(a; b; 
; d) of C is an element of the ringC [�6;1; �6;2; �6;3; �6;4℄� �6;5C [�6;1; �6;2; �6;3; �6;4℄��6;6C [�6;1; �6;2; �6;3; �6;4℄� �6;7C [�6;1; �6;2; �6;3; �6;4℄with Molien series 1 + 2�2 + �4(1� �2)4 = 1 + 6�2 + 19�4 + 44�6 + 85�8 + � � � ;
5



where �6;1 = a2 + 4bd+ 8
2 � 12
d+ 5d2;�6;2 = ab� 
d;�6;3 = a
� bd� 4
2 + 6
d� 2d2;�6;4 = ad+ b2 � 4bd� 3
2 + 8
d� 3d2;�6;5 = ad� 2bd+ 2
d� d2;�6;6 = b
� bd� 3
2 + 5
d� 2d2;�6;7 = ab
d� abd2 � 3a
2d+ 5a
d2 � 2ad3 � 2b2
d+ 2b2d2 + 8b
2d�13b
d2 + 5bd3 � 6
3d+ 13
2d2 � 9
d3 + 2d4:3 Constru
tion of Isodual Latti
esIn this se
tion we re
all some basi
 notions on latti
es and re
all the basi
 
onstru
tion oflatti
es from 
odes. For details, we refer to [4℄, [1℄.An n-dimensional latti
e � in Rn is the set of integral linear 
ombinations of n linearlyindependent ve
tors v1; : : : ; vn. An n by nmatrix whose rows generate � is 
alled a generatormatrix G of �. The determinant of � is the determinant of the Gram matrix GGT of agenerator matrix G of �. The dual latti
e �� of � is given by �� := fx 2 Rnj[x; a℄ 2Z for all a 2 �g where [x; a℄ is the standard inner produ
t of x and a. The norm of x is[x; x℄. A latti
e � is integral if � � ��. An integral latti
e with � = �� is 
alled unimodular.The minimum norm of � is the smallest norm among all nonzero ve
tors of �. The thetaseries ��(q) of � is the formal power series��(q) := Xx2� q[x;x℄ = 1Xm=0Nmqm;where Nm is the number of the ve
tors of norm m. The kissing number is the se
ond
oeÆ
ient of the theta series.latti
e A latti
e is said to be isodual if it is isometri
 to its dual latti
e. This is anatural generalization of unimodular latti
es, introdu
ed in [5℄ where isodual latti
es insmall dimensions are studied.In [9℄, H.-G. Quebbemann has introdu
ed the notion of modular latti
e of level l. Su
h alatti
e L is 
ara
terized by the following property: both L and plL� are even latti
es, andare isometri
. Famous examples are the Coxeter-Todd latti
e K12 of level 3 and dimension12, and the Barnes-Wall latti
e BW16 of level 2 and dimension 16. The res
aled latti
el�1=4L is then isodual.isodual 6



Here we use a generalized \Constru
tion A" to 
onstru
t isodual latti
es from our isodual
odes. Constru
tion A was �rst de�ned in [4℄ (see also [1℄ for the 
ase of Z2k-
odes).First de�ne the redu
tion modulo 2k � : Zn ! Zn2k by�(x1; : : : ; xn) := (x1 (mod 2k); : : : ; xn (mod 2k))We set A2k(C) := 1p2kfx 2 Zn j �(x) 2 Cg:Lemma 3.1 If C is an isodual 
ode over Z2k with minimum Eu
lidean weight dE thenA2k(C) is an isodual latti
e with minimum norm minfdE=2k; 2kg.Proof. It is not diÆ
ult to show that A2k(C?) = A2k(C)� for a 
ode C over Z2k. A 
ode-equivalent map from C to C? indu
es an isometry map from A2k(C) to A2k(C?). ThusA2k(C) is isodual. The assertion about the minimum norm follows from [1℄. 24 Double Cir
ulant Codes and Their Latti
esIn this se
tion, we investigate the highest minimum norm of isodual latti
es 
onstru
tedfrom double 
ir
ulant 
odes of length up to 24 over Z4 and Z6. For example, 
onsider thedouble 
ir
ulant 
ode D4;6 of length 6 over Z4 with 210 as the �rst row of R. This 
odehas minimum Eu
lidean weight 6. Thus the isodual latti
e A4(D4;6) 
onstru
ted from D4;6by Constru
tion A4 has minimum norm 32 . The highest minimum norm among all knownsix-dimensional isodual latti
es is 1 +q13 (= 1:5773 : : :) [5℄.In Table 1, we present the �rst row of R or R0 for double 
ir
ulant 
odes over Z4 withthe highest minimum Eu
lidean weight among all double 
ir
ulant 
odes for ea
h length upto 24. This was done by 
onstru
ting all double 
ir
ulant 
odes of that length. If the 
ode isbordered, the values of (�; �; 
) are also given. Codes are given only for length 10 � 2n � 24be
ause densest isodual latti
es in dimensions up to 4 and 8 have been given in [5℄. Thefourth 
olumn of the table gives the minimum Eu
lidean weight dE of the 
ode.It is known in [10℄ that the highest minimum Eu
lidean weight among all self-dual 
odesof lengths 10 and 16 over Z4 are 4 and 8, respe
tively. D4;10 is an isodual 
ode of length 10with minimum Eu
lidean weight 8 and D4;16 is an isodual 
ode of length 16 with minimumEu
lidean weight 9. Thus we have the following:Proposition 4.1 There exist isodual 
odes over Z4 whi
h have a higher minimum Eu
lideanweight than any self-dual 
ode of the same length.
7



Table 1: Double Cir
ulant Codes over Z4Code Length n First Row dED4;10 10 22100 8D4;12 12 221000 8D4;14 14 2210000 8D4;16 16 2312100 (�; �; 
) = (1; 2; 2) 9D4;18 18 211200000 9D4;20 20 2112000000 10D4;22 22 31321121000 12D4;24 24 31321121000 (�; �; 
) = (1; 2; 2) (self-dual) 16Double 
ir
ulant 
odes over Z6 are given in Table 2. The �rst row of R or R0 for 
odeswith the highest minimum Eu
lidean weight are given for ea
h length up to 24. If the 
odeis bordered, the values of (�; �; 
) are also given. The fourth 
olumn of these tables givesthe minimum Eu
lidean weight dE of the 
ode.Table 2: Double Cir
ulant Codes over Z6Code Length n First Row dED6;10 10 42100 10D6;12 12 513010 12D6;14 14 3321000 12D6;16 16 41431000 14D6;18 18 134010000 14D6;20 20 3013101000 16D6;22 22 35530010000 16D6;24 24 24313412010 (�; �; 
) = (3; 2; 2) (self-dual) 18We next use these double 
ir
ulant 
odes to 
onstru
t dense isodual latti
es by Constru
-tion A2k. Let �(D2k;2n) be the minimum norm of the isodual latti
e A2k(D2k;2n) 
onstru
tedfrom the double 
ir
ulant 
ode D2k;2n. Let �(2n) := maxf�(D2k;2n) j k = 2; 3g, that is, �(2n)is the maximal number among the minimum norm of the latti
es A2k(D2k;2n) where k = 2; 3for ea
h dimension 2n.In Table 3, we list �(2n) for 10 � 2n � 24, and the third 
olumn gives the dou-ble 
ir
ulant 
ode whi
h provides �(2n). The fourth and �fth 
olumns list the highestminimum norms �K(2n) and �U(2n) among known isodual latti
es and unimodular lat-ti
es, from [5℄, [11℄ and [3℄, respe
tively. Note that information on the highest minimum8



norm among isodual latti
es in dimensions 17 to 22 is la
king in [5℄. In that range ofdimensions, the best known isodual latti
es are in the family of modular latti
es of levell. If su
h a latti
e has minimum norm �, then the 
orresponding idodual one has mini-mum norm �=pl. We refer to the survey [11℄ for information on latti
es with parameters:(n; l; �) = (12; 3; 4); (14; 3; 4); (16; 2; 4); (18; 3; 4); (20; 7; 8).in latti
eTable 3: The Minimum Norm for Isodual Latti
es from Double Cir
ulant CodesDimension 2n �(2n) Code �K(2n) �U (2n)10 2 D4;10 2 112 2 D6;12 p16=3 214 2 D4;14;D6;14 p16=3 216 73 D6;16 p8 218 73 D6;18 p16=3 220 73 D6;20 8=p7 222 3 D4;22 p16=3 224 4 D4;24 4 4From Table 3, note the following:Proposition 4.2 There is a 22-dimensional isodual latti
e with minimum norm 3.It appears that A4(D4;22) is the �rst example of an isodual latti
e with minimum norm 3in dimension 22. Isodual latti
es in dimensions 23 and 24 with minimum norm 3 are known,namely the shorter Lee
h latti
e and the odd Lee
h latti
e. Thus A4(D4;22) is the smallestknown isodual latti
e with minimum norm 3.The theta series �A4(C)(q) of the latti
e 
onstru
ted from a 
ode C over Z4 
an beobtained from the symmetrized weight enumerator sweC(a; b; 
) of C by repla
ing a; b and
 respe
tively by Px24Z qx2=4, Px24Z+1 qx2=4 and Px24Z+2 qx2=4. The symmetrized weightenumerator sweD4;22 and the theta series �A4(D4;22)(q) of A4(D4;22) are given below.sweD4;22 = a22 + 1232a10b12 + 5632a7b15 + 2464a6b16 + 616a13b8
+ 14784a10b11
+12320a9b12
+ 14784a5b16
+ 2464a13b7
2 + 4004a12b8
2 + 55440a8b12
2+118272a5b15
2 + 36960a4b16
2 + 14784a11b8
3 + 221760a8b11
3 + 147840a7b12
3+49280a3b16
3 + 29568a11b7
4 + 40656a10b8
4 + 258720a6b12
4 + 197120a3b15
4+36960a2b16
4 + 83160a9b8
5 + 620928a6b11
5 + 310464a5b12
5 + 14784ab16
5+110880a9b7
6 + 124740a8b8
6 + 258720a4b12
6 + 39424ab15
6 + 2464b16
69



+176a15
7 + 140800a7b8
7 + 443520a4b11
7 + 147840a3b12
7 + 330a14
8+140800a7b7
8 + 123200a6b8
8 + 55440a2b12
8 + 83160a5b8
9 + 73920a2b11
9+12320ab12
9 + 66528a5b7
10 + 41580a4b8
10 + 1232b12
10 + 672a11
11+14784a3b8
11 + 1344b11
11 + 616a10
12 + 9856a3b7
12 + 3696a2b8
12+616ab8
13 + 352ab7
14 + 44b8
14 + 176a7
15 + 77a6
16;�A4(D4;22)(q) = 1 + 2464q3 + 45056q15=4 + 43164q4 + 394240q5+3198976q23=4 + 2444288q6 + 11470272q7 + 63393792q31=4+43584860q8 + 141182976q9 + 629342208q39=4 + 404963328q10+1052468320q11 + 4066979840q47=4 + 2512336288q12+5583148032q13 + � � � :De�ne the Eu
lidean weight enumerator EC(s) of a 
ode C as EC(s) := P
2C swtE(
). Tosave spa
e, we only list the �rst few terms in the Eu
lidean weight enumerators for D6;18and D6;20. Note that A6(D6;18) and A4(D4;22) have higher minimum norms than �K(18) and�K(22), respe
tively.ED6;18(s) = 1 + 288s14 + 792s16 + 1338s18 + 3618s20 + 7380s22 + 13134s24 + 23094s26+37188s28 + 61116s30 + 84636s32 + 126846s34 + 174719s36 + 214380s38+287478s40 + 354702s42 + 394758s44 + 468576s46 + 536778s48 + 548208s50+603450s52 + 620793s54 + 607104s56 + 626058s58 + 581064s60 + 549414s62+519462s64 + 456912s66 + 408510s68 + 357174s70 + 293511s72 + � � � ;�A6(D6;18)(q) = 1 + 288q7=3 + 810q8=3 + 1356q3 + 4032q10=3 + 8298q11=3+15762q4 + 30870q13=3 + 54216q14=3 + 95604q5 + 160218q16=3+266112q17=3 + 414794q6 + 627786q19=3 + 980604q20=3 + � � � :As des
ribed in Se
tion 2, the supplemented quadrati
 residue 
ode QR17 over Z4 oflength 17 has minimum Eu
lidean weight 8. Thus this 
ode gives an isodual latti
e withminimum norm 2 in dimension 17.5 Classi�
ation of Double Cir
ulant Codes of Length22 and Some 3-DesignsIn this se
tion, we 
lassify the double 
ir
ulant 
odes of length 22 over Z4 with minimum Eu-
lidean weight 12. We also show that some of these 
odes 
ontain 3-designs with parameters(22; 7; 4), (22; 8; 12), (22; 9; 84) and (22; 10; 156).10



The following lemma is useful in 
lassifying double 
ir
ulant 
odes.Lemma 5.1 If the matrix ( I ; A ) generates an isodual 
ode C over Z2k, then the matri
es( I ; �A ), ( I ; AT ) and ( I ; �AT ) generate isodual 
odes whi
h are equivalent to C.Proof. Sin
e C is isodual, the matri
es ( I ; A ) and ( I ; �AT ) generate equivalent
odes. Obviously ( I ; A ) and ( I ; �A ) also generate equivalent 
odes. 2By exhaustive sear
h, we have found all distin
t double 
ir
ulant 
odes of length 22over Z4 with minimum Eu
lidean weight 12. This was done by 
onsidering all 11 by 11(resp. 10 by 10) 
ir
ulant matri
es over Z4 for pure (resp. bordered) double 
ir
ulant 
odes.Lemma 5.1 establishes the equivalen
e of a large number of these 
odes. To save spa
e,Table 4 lists only those 
odes whi
h must be 
he
ked further for equivalen
e to 
ompletethe 
lassi�
ation. The symmetrized weight enumerators (
olumn SWE) are also identi�edin the table, and these are listed at the end of this se
tion. Note that C1;1 is the same asD4;22. Table 4: Double Cir
ulant Codes of Length 22Code First row of R SWE Code First row of R SWEC1;1 31321121000 sweD4;22(a; b; 
) C1;2 21330112100 sweD4;22(a; b; 
)C1;3 20311231010 sweD4;22(a; b; 
) C1;4 32021310110 sweD4;22(a; b; 
)C1;5 31032201110 sweD4;22(a; b; 
) C1;6 23312110100 sweD4;22(a; b; 
)C1;7 23211031100 sweD4;22(a; b; 
) C1;8 23011211300 sweD4;22(a; b; 
)C1;9 22131031010 sweD4;22(a; b; 
) C1;10 20121303110 sweD4;22(a; b; 
)C1;11 13212223110 sweD4;22(a; b; 
) C1;12 22333231210 sweD4;22(a; b; 
)C1;13 31231122210 sweD4;22(a; b; 
) C1;14 22123121310 sweD4;22(a; b; 
)C1;15 21233211120 sweD4;22(a; b; 
) C2;1 31333321111 sweC2;1(a; b; 
)C2;2 33113332111 sweC2;1(a; b; 
) C2;3 31313133211 sweC2;1(a; b; 
)C2;4 31133133211 sweC2;1(a; b; 
) C2;5 33131231311 sweC2;1(a; b; 
)C3;1 33331231111 sweC3;1(a; b; 
) C3;2 31313332111 sweC3;1(a; b; 
)C3;3 32133313111 sweC3;1(a; b; 
) C3;4 33131133211 sweC3;1(a; b; 
)C3;5 32133131311 sweC3;1(a; b; 
) C4;1 33313213111 sweC4;1(a; b; 
)Let R and R0 be two square matri
es of the same order. If there are (0; 1;�1)-monomialmatri
es P and Q su
h that R = PR0Q, then ( I ; R ) and ( I ; R0 ) generate equiv-alent 
odes over Z2k. For the 
odes in Table 4, let Ri;j be R in the generator matrixof Ci;j. Permutation matri
es Pj and Qj 
an be found su
h that R1;j = PjR1;j+1Qj forj = 1; 2; 3; 4; 6; 7; 8; 9; 11; 12; 13 and 14. Thus the 
odes C1;i (i = 1; 2; 3; 4; 5) are equivalent,the 
odes C1;i (i = 6; 7; 8; 9; 10) are equivalent, and the 
odes C1;i (i = 11; 12; 13; 14; 15) are11



equivalent. Similarly, it 
an be shown that the 
odes C2;i (i = 1; 2; 3; 4; 5) are equivalent andthe 
odes C3;i (i = 1; 2; 3; 4; 5) are equivalent. Note that C4;1 is the unique double 
ir
ulant
ode with sweC4;1(a; b; 
).It is now shown that C1;1, C1;6 and C1;11 are inequivalent using the methods in [6℄ and [7℄.Let C be a 
ode of length 2n. Let Mt := (mij) be the At by 2n matrix with rows 
omposedof the 
odewords of Hamming weight t in C, where Ai denotes the number of 
odewords ofHamming weight i in C. For an integer k (1 � k � 2n), let nt(j1; : : : ; jk) be the number ofr (1 � r � At) su
h that mrj1 � � �mrjk 6= 0 over Z for 1 � j1 < � � � < jk � 2n. We 
onsiderthe set St := fnt(j1; : : : ; jk)j for any k distin
t 
olumns j1; : : : ; jk g:Let Mt(k) and mt(k) be the maximal and minimal numbers in St, respe
tively. Sin
e twoequivalent 
odes over Z4 have the same values for St, these numbers are invariant under theequivalen
e of 
odes. Table 5 gives some values of Mt(k) and mt(k) for 
odes C1;1, C1;6 andC1;11.Now let 
i;1; 
i;2; : : : ; 
i;Ai be the 
odewords of Hamming weight i in C. Letdi(j) := #fwt(
i;k1 � 
i;k2) = j j 1 � k1 < k2 � Aig;where wt(x) denotes the Hamming weight of a ve
tor x. The numbers di(j) are also invariantunder the equivalen
e of 
odes for any i and j. Table 6 gives some values of di(j) for 
odesC1;1 and C1;6. Table 5: Inequivalen
e values for C1;1 and C1;11Code M9(3) m9(3) M9(4) m9(4) M10(3) m10(3) M10(4) m10(4)C1;1 168 168 60 44 312 312 124 108C1;6 168 168 60 44 312 312 124 108C1;11 168 168 60 42 312 312 126 108From Tables 5 and 6, C1;1, C1;6 and C1;11 are inequivalent, and this 
ompletes the 
las-si�
ation.Proposition 5.2 There are exa
tly six inequivalent double 
ir
ulant 
odes of length 22 overZ4 with minimum Eu
lidean weight 12.Remark. We denote the six inequivalent double 
ir
ulant 
odes C1;1, C1;6, C1;11, C2;1, C3;1and C4;1 by C122; : : : ; C522 and C622, respe
tively.A t-(v; k; �) design D is a set of v points with a 
olle
tion of k-subsets 
alled blo
ks,so that any t-points are 
ontained in exa
tly � blo
ks. The in
iden
e matrix of D is the12



Table 6: Inequivalen
e values for C1;1 and C1;6Code d9(0) d9(1) d9(2) d9(3) d9(4) d9(5) d9(6) d9(7)C1;1 0 0 0 0 0 0 0 8624C1;6 0 0 0 0 0 0 0 8624Code d9(8) d9(9) d9(10) d9(11) d9(12) d9(13) d9(14) d9(15)C1;1 7700 143616 219824 657712 837760 761376 1215896 509168C1;6 7700 144672 219384 655952 837320 762432 1217480 508640Code d9(16) d9(17) d9(18) d9(19) d9(20) d9(21) d9(22)C1;1 292688 85888 1408 0 0 0 0C1;6 292072 86064 1320 0 0 0 0matrix M = (mij) with mij = 1 if the j-th point is 
ontained in the i-th blo
k and mij = 0otherwise. A design may be identi�ed by its in
iden
e matrix. Two designs are isomorphi
if the in
iden
e matrix of one design 
an be obtained from the in
iden
e matrix of the otherby permuting its rows and 
olumns.Corollary 5.3 The supports of Hamming weights 7, 8, 9 and 10 in C1;1, C1;6 and C1;11 form3-designs with parameters (22; 7; 4), (22; 8; 12), (22; 9; 84) and (22; 10; 156), respe
tively.Proof. Let C be one of C1;1, C1;6 and C1;11. The residue 
ode C(1) and the torsion 
odeC(2) of C are f
 (mod 2) j 
 2 Cg and f
=2 j 
 � 0 (mod 2); 
 2 Cg, respe
tively. It iseasy to see that C(1) = C(2) and C(1) is the binary isodual [22; 11; 7℄ 
ode B whi
h hasthe Mathieu group M22 as its automorphism group. From sweC(a; b; 
), the 
odewords ofHamming weights 7 and 8 are in C(2). It is known that the 
odewords of Hamming weights7 and 8 in B form a 3-(22; 7; 4) design and a 3-(22; 8; 12) design, respe
tively. Thus thesupports of Hamming weights 7 and 8 in C form a 3-(22; 7; 4) design and a 3-(22; 8; 12)design, respe
tively.Let x be a 
odeword in C of Hamming weight 9 (resp. 10). Then it follows fromsweC(a; b; 
) that 3x is a 
odeword of Hamming weight 9 (resp. 10), but 2x is not. ThusTable 5 shows that the supports of Hamming weight 9 and 10 in C form a 3-(22; 9; 84) designand a 3-(22; 10; 156) design without repeated blo
ks, respe
tively. 2Now we prove that the 
odes Ci22 (i = 1; : : : ; 6) are 
losely related to extremal Type II
odes of length 24 and that A4(Ci22) are 
losely related to the Lee
h latti
e where Ci22 arethe six inequivalent double 
ir
ulant 
odes in Proposition 5.2.Let C22 be any of Ci22 (i = 1; : : : ; 6).Lemma 5.4 Let G22 be the generator matrix ( I ; R22 ) of C22. Then R22RT22 = 3J � Iwhere J is the all-ones matrix. 13



The following matrix G23 := 0BBBBB� 1G22 ...12 � � � 2 2
1CCCCCA ;generates a self-orthogonal 
ode C23 of length 23. Sin
e C22 does not 
ontain the all-2'sve
tor (2; 2; 2; : : : ; 2), C23 is self-dual. The symmetrized weight enumerator of the self-orthogonal 
ode C 023 generated by the �rst eleven rows in G23 
an be obtained from thesymmetrized weight enumerator of C22, sin
e the Eu
lidean weight of the 
odewords in C 023must be divisible by 4. For any ve
tor x over Z4, n0(x + 2j) = n2(x), n1(x + 2j) = n3(x),n2(x + 2j) = n0(x) and n3(x + 2j) = n1(x) where 2j is the all-2's ve
tor. Hen
e thesymmetrized weight enumerator of C23 
an be obtained dire
tly from sweC22(a; b; 
). Theminimum Eu
lidean weight of C23 is 12. The following matrixG24 := 0BBBBB� 10G22 ...101 � � � 1 11
1CCCCCA ;generates a Type II 
ode C24 of length 24, i.e., a self-dual 
ode with all Eu
lidean weightsdivisible by 8.Proposition 5.5 C24 is a Type II 
ode of length 24 with minimum Eu
lidean weight 16,and so is extremal.Proof. Let C 024 be the bordered double 
ir
ulant 
ode with R0 = R22 and borders(�; �; 
) = (2; 3; 1). It is easy to see that C 024 is a Type II 
ode. All extremal Type IIdouble 
ir
ulant 
odes of length 24 have been 
lassi�ed in [6℄, and the list in [6℄ shows thatC 024 is an extremal Type II double 
ir
ulant 
ode. The lemma follows from the fa
t that C24and C 024 are equivalent. 2Remark. For 
odes C122, C222 and C322 of length 22, the supports of Hamming weight 10 inthe 
orresponding bordered double 
ir
ulant 
odes of length 24 form 5-(24; 10; 36) designs[6℄. The 3-(22; 9; 84) and 3-(22; 10; 156) designs found in Corollary 5.3 are the derived andresidual designs, respe
tively, of the 4-(23; 10; 84) designs whi
h are the residual designs ofthe above 5-designs.By the above proposition, A4(C23) (resp. A4(C24)) is the unique extremal unimodularlatti
e in dimension 23 (resp. 24), whi
h is 
alled the shorter Lee
h latti
e (resp. the Lee
hlatti
e). Thus the 22-dimensional isodual latti
es A4(C22) are related to the Lee
h latti
e.14



sweC2;1 = a22 + 1408a10b12 + 7040a6b16 + 5632a2b20 + 176a13b8
+ 22528a10b11
+8448a9b12
+ 28160a5b16
+ 11264ab20
+ 176a16b4
2 + 3872a12b8
2+43648a8b12
2 + 77440a4b16
2 + 5632b20
2 + 352a15b4
3+13728a11b8
3 + 337920a8b11
3 + 107008a7b12
3 + 112640a3b16
3 + 55a18
4+1584a14b4
4 + 44704a10b8
4 + 191488a6b12
4 + 77440a2b16
4 + 2816a13b4
5+84304a9b8
5 + 946176a6b11
5 + 242176a5b12
5 + 28160ab16
5 + 8272a12b4
6+120384a8b8
6 + 191488a4b12
6 + 7040b16
6 + 13728a11b4
7 + 141504a7b8
7+675840a4b11
7 + 107008a3b12
7 + 330a14
8 + 18128a10b4
8 + 120384a6b8
8+43648a2b12
8 + 22528a9b4
9 + 84304a5b8
9 + 112640a2b11
9 + 8448ab12
9+18128a8b4
10 + 44704a4b8
10 + 1408b12
10 + 1024a11
11 + 13728a7b4
11+13728a3b8
11 + 2048b11
11 + 462a10
12 + 8272a6b4
12 + 3872a2b8
12+2816a5b4
13 + 176ab8
13 + 1584a4b4
14 + 352a3b4
15 + 165a6
16+176a2b4
16 + 11a2
20sweC3;1 = a22 + 1056a10b12 + 7040a6b16 + 5632a2b20 + 528a13b8
+ 22528a10b11
+7744a9b12
+ 28160a5b16
+ 11264ab20
+ 88a16b4
2 + 4576a12b8
2+44704a8b12
2 + 77440a4b16
2 + 5632b20
2 + 176a15b4
3 + 13024a11b8
3+337920a8b11
3 + 109824a7b12
3 + 112640a3b16
3 + 55a18
4 + 1672a14b4
4+42592a10b8
4 + 190784a6b12
4 + 77440a2b16
4 + 3168a13b4
5 + 83952a9b8
5+946176a6b11
5 + 237952a5b12
5 + 28160ab16
5 + 8536a12b4
6 + 121792a8b8
6+190784a4b12
6 + 7040b16
6 + 13904a11b4
7 + 142912a7b8
7 + 675840a4b11
7+109824a3b12
7 + 330a14
8 + 17864a10b4
8 + 121792a6b8
8 + 44704a2b12
8+21824a9b4
9 + 83952a5b8
9 + 112640a2b11
9 + 7744ab12
9 + 17864a8b4
10+42592a4b8
10 + 1056b12
10 + 1024a11
11 + 13904a7b4
11 + 13024a3b8
11+2048b11
11 + 462a10
12 + 8536a6b4
12 + 4576a2b8
12 + 3168a5b4
13+528ab8
13 + 1672a4b4
14 + 176a3b4
15 + 165a6
16 + 88a2b4
16 + 11a2
20sweC4;1 = a22 + 704a10b12 + 7040a6b16 + 5632a2b20 + 880a13b8
+ 22528a10b11
+7040a9b12
+ 28160a5b16
+ 11264ab20
+ 5280a12b8
2 + 45760a8b12
2+77440a4b16
2 + 5632b20
2 + 12320a11b8
3 + 337920a8b11
3 + 112640a7b12
3+112640a3b16
3 + 55a18
4 + 1760a14b4
4 + 40480a10b8
4 + 190080a6b12
4+77440a2b16
4 + 3520a13b4
5 + 83600a9b8
5 + 946176a6b11
5 + 233728a5b12
5+28160ab16
5 + 8800a12b4
6 + 123200a8b8
6 + 190080a4b12
6 + 7040b16
6+14080a11b4
7 + 144320a7b8
7 + 675840a4b11
7 + 112640a3b12
7 + 330a14
8+17600a10b4
8 + 123200a6b8
8 + 45760a2b12
8 + 21120a9b4
9 + 83600a5b8
9+112640a2b11
9 + 7040ab12
9 + 17600a8b4
10 + 40480a4b8
10 + 704b12
10+1024a11
11 + 14080a7b4
11 + 12320a3b8
11 + 2048b11
11 + 462a10
12+8800a6b4
12 + 5280a2b8
12 + 3520a5b4
13 + 880ab8
13 + 1760a4b4
14+165a6
16 + 11a2
20: 15



6 Uniqueness of the six latti
es A4(C i22)Let Ci22 (i = 1; : : : ; 6) be the six inequivalent double 
ir
ulant 
odes in Proposition 5.2.In this se
tion, we show that the latti
es A4(Ci22) are all isometri
 to some latti
e L22
onstru
ted below. L22 is 
onstru
ted from the unique binary self-dual [22; 11; 6℄ 
ode (also
alled the shorter Golay 
ode [10℄) in a very similar way as the Lee
h latti
e is 
onstru
tedfrom the binary Golay 
ode. L22 is not unimodular, but has a higher minimum norm thanthe unimodular latti
es, and its automorphism group is not larger than the group arisingfrom the automorphism group of the 
ode.Let C be the unique binary self-dual [22; 11; 6℄ 
ode, and let U22 := A2(C) be the uni-modular latti
e 
onstru
ted from C by Constru
tion A. Re
all that the automorphism groupof the 
ode C is the group M22:2. Now 
onsider the sublatti
eN22 := B2(C) := f(x1; : : : ; x22) 2 U22 j 22Xi=1 xi � 0 (mod 4)gof index 2 in U22 obtained by Constru
tion B (see [3℄ for Constru
tions A and B). N22 nolonger 
ontains roots and has minimum norm 3. SetL22 := N22 + Zxwhere x = (1=2; : : : ; 1=2; 5=2)� 2s, the 
oordinates of s are 0 or 1, and s (mod 2) belongsto the shadow of C (see [4℄ for the shadows of binary self-dual 
odes).Theorem 6.1 Let L22 and U22 be as above. Then we have:(1) L22 is an isodual latti
e with minimum norm 3, and Aut(L22) ' f�1g11:M22:2 is asubgroup of the automorphism group of the latti
e U22.(2) Any 22-dimensional isodual latti
e of minimum norm 3, 
ontaining an integral latti
eof determinant 4, is isometri
 to L22.Proof. Let ei := (0; : : : ; 0; 1; 0; : : : ; 0) for all i, where the 1 stands at 
oordinate i. Clearly,Aut(U22) = f�1g22:Aut(C) sin
e the only roots of U22 are �2ei. Let e := (1; : : : ; 1) =P22i=1 ei. Then N22 = (U22)e := fx 2 U22 j [u; e℄ � 0 (mod 2)g and N�22 = U22+Ze=2. Sin
ee=2 has norm 11=42, the minimum norm of N�22 is 2 and its norm 2 ve
tors are the ones inU22. Hen
e Aut(N22) indu
es a permutation of them and Aut(N22) ' f�1g11:Aut(C) sin
ethe sign 
hanges preserving N22 are in one-to-one 
orresponden
e with the elements of C.We 
onsider latti
es of the form L := N22 + Zw=2, where w 2 N22 is de�ned modulo2N22. We sear
h for latti
es L su
h that L and L� both have minimum norm 3.16



Lemma 6.2 There is a unique 
lass w 2 N22=2N22 su
h that L and L� have minimumnorm 3.Proof. Sin
e �4ei � 4ej and �8ei belong to 2N22, the 21 �rst 
oordinates of w 
an betaken in f0;�1; 2g while w22 2 f0;�1;�2;�3; 4g. If one 
oordinate wi of w is even, sin
e[2ei; w=2℄ = wi=2 2 Z, 2ei 2 L� whi
h 
ontradi
ts the 
ondition that the minimum norm ofL� is 3. Hen
e we 
an assume wi 2 f�1g for 1 � i � 21 and w22 2 f�1;�3g. Moreover, ifw22 = �1, w2 = 11 and the minimum norm of L is smaller than 3. Hen
e w22 = �3, andthe minimum norm of L is 3 if and only if w is minimal in its 
lass w+2N22. If this is so, wenoti
e that sin
e w2=4 = 15=43, the minimal ve
tors of L will be the ones of N22, and hen
ethat Aut(L) � Aut(N22). For 
onvenien
e, we assume now that w22 2 f3; 5g. Hen
e we 
anwrite w = w(u) := e � 2Pi2u ei + 4e22 where u 2 F 222 is identi�ed with its set of non-zero
oordinates. It is worth noti
ing here that w(u) 2 N22 if and only if 2wtH(u) � 22 (mod 4)and w(u) � w(u1) (mod 2N22) if and only if u � u1 (mod C) and wtH(u) � wtH(u1)(mod 4). 2Lemma 6.3 Let w be as above. The 
lass w + 2N22 has minimum norm 15 if and only ifu belongs to the shadow of C.Proof. As mentioned previously, the minimum norm of the 
lass w+2N22 is lower than 15if and only if it 
ontains an element with 
oordinates �1, i.e. of the type w0 = e� 2Pi2u0 eiwhere u0 2 F 222 . Then w0 2 N22 if and only if wtH(u0) � 1 (mod 2), and w0 2 w + 2N22if and only if Pi2u0 ei �Pi2u ei + 2e22 2 N22. This last 
ondition is equivalent to the two
onditions: u0 + u 2 C and wtH(u0) + wtH(u) + 2 � 0 (mod 4). By setting 
 := u0 + u,we get 
 2 C and wtH(
) + 2
 � u � 2 (mod 4). Hen
e, su
h a 
odeword does not exist ifand only if u is in the shadow of C. Note that in this 
ase, 2wtH(u) � 22 (mod 8), whi
hinsures that w 2 N22. Now two elements of the shadow are 
ongruent modulo C and de�nea single 
lass modulo 2N22 from previous remarks. 2We have proved the two lemmas, and the fa
t that the minimum norm of L22 is 3. Wehave already seen that Aut(L22) is a subgroup of Aut(N22). Sin
e the 
lass of N22=2N22 isthe unique one su
h that L and L� have minimum norm 3, it is preserved by Aut(N22) andhen
e we have equality.Now we prove that L�22 has minimum norm 3. Sin
e L22 = N22 +Zw=2, (w = w(u), u inthe shadow of C), L�22 = (N�22)w = (U22)w [ (U22 + e=2)w. Elements of norm lower than 3 inthis latti
e 
an only have the form x = e=2�Pi2u0 ei with u0 2 C and the same 
omputationshows that [x; w℄ � wtH(u)=2 + u0 � u + 1 � 1 (mod 2) and hen
e that x does not belongto L�22. 17



Let P be a 22-dimensional latti
e of determinant 1 su
h that P and P � have minimumnorm 3, and 
ontaining an integral sublatti
e N with index 2. We shall prove that P isisometri
 to L22. Sin
e N is integral, the quotient group N�=N has order 4 and 
ontainsa subgroup of order 2 
orresponding to an integral latti
e U . Hen
e N � U � N� and Uis unimodular. The latti
e U 
ontains at most one norm 1 ve
tor and 
an 
ontain norm 2ve
tors only if they are pairwise orthogonal (be
ause, if x1; x2 2 U , x1 � x2 2 N whi
h hasminimum norm 3). A look at the 
lassi�
ation of 22-dimensional unimodular latti
es (
f. [3,Chapter 16℄) shows that the only possibility is U ' U22. Hen
e N ' N22 whi
h is the onlysublatti
e (up to isometry) of index 2 of U22 not 
ontaining roots. The previous dis
ussionshows then that P ' L22.The last assertion to prove is that L22 is isodual. Sin
e L�22 
ontains Uw whi
h is anintegral sublatti
e of index 2, we 
an take P = L�22 and 
on
lude that L�22 ' L22. Thereforethe theorem follows. 2Remark. More pre
isely, the latti
es Uw and N22 are ex
hanged by an automorphism ofU of type (x1; : : : ; x22)! (�1x1; : : : ; �22x22) where �i = �1, and the �1 de�nes the supportof an element of the shadow of C. Su
h an automorphism also ex
hanges L22 and its duallatti
e.Corollary 6.4 For all i = 1; : : : ; 6, A4(Ci22) is isometri
 to L22.Proof. We only have to prove that these latti
es 
ontain integral sublatti
es of index 2.These latti
es A4(Ci22) are generated by the rows of matri
es of the formG := 12 0� I RO 4I 1A ;where R is 
ir
ulant matri
es and the �rst rows are listed in Table 4. R = (Ri;j) has integral
oeÆ
ients and by Lemma 5.4 RRT = 3J � I.Let r1; : : : ; r11 be the �rst eleven rows of G and let s1; : : : ; s11 be the last eleven rows ofG. We have [si; sj℄ = 4Æi;j, [si; rj℄ = Rj;i and [ri; rj℄ = 3=4. Hen
e, one 
an verify that thesublatti
e of index 2 spanned by fri � rj; si; g1�i;j�11 is integral. 2A
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