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Abstract
A code is called isodual if it is equivalent to its dual code, and a lattice is called
isodual if it is isometric to its dual lattice. In this note, we investigate isodual codes
over Zsr. These codes give rise to isodual lattices; in particular, we construct a 22-
dimensional isodual lattice with minimum norm 3 and kissing number 2464.

1 Introduction

A code is called isodual if it is equivalent to its dual code, and a lattice is called isodual if
it is isometric to its dual lattice. Conway and Sloane [5] introduced the concept of isodual

1



lattices, which is a generalization of unimodular lattices. A lot of known dense lattices are
isodual [5], like the rescaled Barnes-Wall lattice or the Coxeter-Todd lattice. In the coding
theory context, isodual codes play a similar role with respect to the extensively studied
family of self-dual codes (cf. [10]). In this note, we investigate a remarkable class of isodual
codes over Zsy, the double circulant ones, and use them to construct isodual lattices. In
particular, we construct a 22-dimensional isodual lattice of minimum norm 3.

In Section 2, we study the properties of isodual codes and present double circulant codes.
We investigate the symmetrized weight enumerators of isodual codes over Zsy, in particular,
for small k, we give a basis for the space of invariants to which the symmetrized weight
enumerators belong.

In Section 3, we describe how isodual lattices can be constructed from isodual codes over
Lo

In Section 4, we construct double circulant codes over Z, and Zg with the highest mini-
mum Euclidean weight among all double circulant codes of length up to 24. These examples
show that there are isodual codes which have a higher minimum Euclidean weight than any
self-dual code of the same length.

We then consider the lattices obtained from these codes. The most interesting are the
22-dimensional isodual lattices with minimum norm 3 and kissing number 2464 constructed
from the double circulant codes over Z4 of length 22 and minimum Euclidean weight 12.

In Section 5, we show that there are up to equivalence exactly six double circulant codes
over Z, of length 22 and minimum Euclidean weight 12. We show that, from each of these
codes, an extremal binary Type II codes of length 24 can be constructed, pointing out a
close connection between the 22-dimensional isodual lattices and the Leech lattice.

Finally, in Section 6 we show that these lattices are all isometric to a single lattice
Loy constructed from the binary [22,11, 6] self-dual code. In particular its automorphism
group is proved to be isomorphic to {£1}'1.M.2, and it is caracterised by the following
properties: it is the unique up to isometry isodual 22-dimensional lattice of minimum norm

3 and containing an integral sublattice of index 2.

2 Isodual Codes

2.1 Codes

A linear code C of length n over Zyy is a Zgy,-submodule of Z3, where Zsyy is the ring of
integers modulo 2k. We shall take for a representative set of the elements of Zy either
{0,1,2,---,2k — 1} or {0,+1,4+2,+3,...,+(k — 1), k}, using whichever set is convenient.
An element of C' is called a codeword of C. A generator matriz of C' is a matrix whose
rows generate C. The Hamming weight wty(z) of a vector x in Z3, is just the number of

non-zero components. The Euclidean weight wtg(x) of a vector x = (x1,29,...,x,) over



Loy, is S0 min{z?, (2k — z;)?} where Zg, = {0,1,2,...,2k — 1}. The minimum Hamming
and Euclidean weights, dy and dg, of C' are the smallest Hamming and Euclidean weights
among all non-zero codewords of C', respectively. Define the inner product of x and y in
Zy. by x -y =21y +++ + Tpyn. The dual code C+ of C'is then C+ :={z € Zj |z -y =
0 for all y € C'}.

In view of some applications, there is no need to distinguish between codeword compo-
nents which differ in sign, i.e., +1 and —1. Hence, two codes are said to be equivalent if
one can be obtained from the other by permuting and changing signs on the coordinates.
C is called isodual if C is equivalent to C*, and C is called self-dual if C = C+. Clearly a
self-dual code is isodual. We define the symmetrized weight enumerator (swe) of C' by

swec(To, L1, .., Tk) = ol gmle) -:ch’ll(c)xzk(c),
ceC
where ng(z), ni(x), ..., ng_1(c), nk(c) are the numbers of 0,+1,...,+(k — 1), k components

of ¢, respectively. Equivalent codes have identical symmetrized weight enumerators. The
Hamming weight enumerator of C is defined as We(z,y) = Yoeca™ Wta@ywtnle)  Ap
isodual code and its dual code have several identical weight enumerators (e.g., symmetrized

weight enumerators, Hamming weight enumerators and biweight enumerators).

2.2 Constructions

Lemma 2.1 If 2k is a square, then an isodual code over Zoy exists for all lengths. If 2k is
not a square, then an isodual code exists for length n if and only if n is even.

Proof. If 2k is a square (say, a?) then a code with generator matrix ( « ) is isodual. For
a code C of length n over Zg, it is known that |C||Ct| = 2k". If C is an isodual code
then |C| = |C| = 2k™2. Thus n must be even if 2k is not a square. Moreover a code with
generator matrix (1, 4 ) is isodual where 8 € Zy. O

Lemma 2.2 Suppose that C and D are isodual codes of lengths n and m with minimum
Fuclidean weights dp and d'y, respectively. Then the direct sum C® D := {(¢,d) |c € C, d €
D} is an isodual code of length n + m with minimum Euclidean weight min{dg, d,}.

Proof. Let o and o' be equivalent maps such that C” = C* and D° = D+. Then
C’@® D7 = C* @ D*. Tt is easy to see that (C ® D)* = C* @ D*. Therefore (C @ D) is
equivalent to (C' @ D)*. The minimum Euclidean weight follows from the construction. O

From the above lemma, when searching for codes with high minimum Euclidean weight,
it is sufficient to consider only codes which are not the direct sum of codes.



Lemma 2.3 Let C be a code over Zgy, with generator matriz ( I, A ) where I is the identity
matriz. If there are (0,1, —1)-monomial matrices P and Q such that AT = PAQ then C is

isodual where AT denotes the transpose of A.

Proof. The matrix ( —AT | I') is a generator matrix of the dual code C*. Since AT = PAQ,
C and the code with generator matrix ( [ , —AT ) are equivalent. O

If A is symmetric or skew-symmetric (that is, A7 = A or A7 = —A) then A satisfies the
assumption of the above lemma.

Double circulant codes are a remarkable class of isodual codes. A pure double circulant
code of length 2n has a generator matrix of the form ( I, R ) where R is an n by n circulant
matrix. A code with a generator matrix of the form

a B --- B

Y
1 ;
@ IR

Y

where R' is an n — 1 by n — 1 circulant matrix, is called a bordered double circulant code of
length 2n. These two families of codes are collectively called double circulant codes.

Lemma 2.4 A double circulant code s isodual.

Proof. Follows from Lemma 2.3. O

quadratic

2.3 Symmetrized Weight Enumerators

We now investigate the symmetrized weight enumerators of isodual codes over Zs,. We
obtain invariants to which the symmetrized weight enumerators belongs. First define the

following matrix:

1 2 2 e 1
1 77 + 772]4371 ,',]2 + 772]4372 e nk
1 2 2@h=1) gty 206-2) L 2k
1 3 3(2k—1) 6 3(2k—2) 3k
My, = ——| 1 n°+n n+n UM
VG : . .
i nk + nlk(2k71) 77219 + 7.7k(2k72) . n;&



where 1 is a primitive 2k-th root of unity. This matrix corresponds to the MacWilliams
identities for codes over Zg [1]. In other words,

5weé($g,l‘1, v ;xk) = M2k5wec(l'0,l'1, R ,l‘k).

Thus the symmetrized weight enumerator of an isodual code is invariant under transforma-
tion by Ms,. By Lemma 2.1, if 2k is not a square then the symmetrized weight enumerator
is also invariant under transformation by the diagonal matrix N := diag(—1,—1,...,—1)
derived from the restriction on the length. Therefore we have the following:

Proposition 2.5 The symmetrized weight enumerator of an isodual code over Zoy s in-
variant under the group generated by Moy, which has order 2. Moreover if 2k is not a square
then the symmetrized weight enumerator of an isodual code over Zgy is invariant under the

group generated by My and N, which has order 4.

Magma can easily be used to compute a basis for the invariant ring of small matrix groups.
As examples, we give a basis for the invariant rings corresponding to the symmetrized weight
enumerators of isodual codes over Z, and Zg.

Corollary 2.6 If C' is an isodual code over Z4, then the symmetrized weight enumerator

swec(a, b, c) of C is an element of the ring
Cla + ¢, b—c,a® + 4bc — ¢?],

with Molien series

1
(1= 2201 - 2)

=142+ 4024613+ 9\ + ...

Remark. The set of symmetrized weight enumerators of all isodual lattices over Z, cannot
generate the above ring since there is a unique isodual lattice of length 1.

Corollary 2.7 If C' is an isodual code over Zg, then the symmetrized weight enumerator

swec(a, b, c,d) of C is an element of the ring

Cloe,1, 6,2, 96,3, P6,4] B 06,5ClP6.1, P62, P63, P6.4]
®06,6C[06,1, 06,2, 6,3, P6.4] B 06,7Cl6,1, D62, P63, P6,4]

with Molien series

14 2X\2 4+ )¢

=) =14+ 6)2 + 190" +44)° 4+ 85X° 4. -



where

b1 = a*+4bd+ 8c* — 12¢d + 5d?,

62 = ab— cd,

¢s3 = ac—bd— 4c* + 6ed — 2d?,

¢4 = ad-+b* — 4bd — 3¢* + 8cd — 3d?,

¢os = ad— 2bd+2cd — d?,

b6 = be—bd—3c*+ 5ed — 2d%,

¢67 = abed — abd® — 3ac*d + Sacd® — 2ad® — 2b%cd + 2b°d* + 8bc*d
—13bed? + 5bd® — 6¢*d + 13¢%d?* — 9ed® + 2d°.

3 Construction of Isodual Lattices

In this section we recall some basic notions on lattices and recall the basic construction of
lattices from codes. For details, we refer to [4], [1].

An n-dimensional lattice A in R" is the set of integral linear combinations of n linearly
independent vectors vy, ..., v,. Ann by n matrix whose rows generate A is called a generator
matrix G of A. The determinant of A is the determinant of the Gram matrix GG of a
generator matrix G of A. The dual lattice A* of A is given by A* := {z € R"|[z,a] €
Z for all a € A} where [z, a] is the standard inner product of x and a. The norm of z is
[z, x]. A lattice A is integral if A C A*. An integral lattice with A = A* is called unimodular.
The minimum norm of A is the smallest norm among all nonzero vectors of A. The theta
series ©4(¢q) of A is the formal power series

o0
Oa(q) ==Y ¢ = 3 Nug™,

zeA m=0
where N, is the number of the vectors of norm m. The kissing number is the second
coefficient of the theta series.

lattice A lattice is said to be isodual if it is isometric to its dual lattice. This is a
natural generalization of unimodular lattices, introduced in [5] where isodual lattices in
small dimensions are studied.

In [9], H.-G. Quebbemann has introduced the notion of modular lattice of level I. Such a
lattice L is caracterized by the following property: both L and v/IL* are even lattices, and
are isometric. Famous examples are the Coxeter-Todd lattice K5 of level 3 and dimension
12, and the Barnes-Wall lattice BWg of level 2 and dimension 16. The rescaled lattice
[=Y*L is then isodual.

isodual



Here we use a generalized “Construction A” to construct isodual lattices from our isodual
codes. Construction A was first defined in [4] (see also [1] for the case of Zgg-codes).
First define the reduction modulo 2k p : Z" — Z3, by

p(xy,...,2y) == (x; (mod 2k),...,z, (mod 2k))

We set

Ao (C) (x) € C}.

1
= —{zreZ"
\/ﬁ{ | p
Lemma 3.1 If C is an isodual code over Zsop with minimum Fuclidean weight dg then

Ao (C) is an isodual lattice with minimum norm min{dg/2k,2k}.

Proof. Tt is not difficult to show that Ay, (C1) = Ay (C)* for a code C over Zg. A code-
equivalent map from C to C'' induces an isometry map from Ay, (C) to Ag,(C*). Thus
Ay (C) is isodual. The assertion about the minimum norm follows from [1]. O

4 Double Circulant Codes and Their Lattices

In this section, we investigate the highest minimum norm of isodual lattices constructed
from double circulant codes of length up to 24 over Z, and Zg. For example, consider the
double circulant code D,¢ of length 6 over Z, with 210 as the first row of R. This code
has minimum Euclidean weight 6. Thus the isodual lattice A4(D,6) constructed from Dyg
by Construction A, has minimum norm % The highest minimum norm among all known
six-dimensional isodual lattices is 1 + \/g (=1.5773...) [5].

In Table 1, we present the first row of R or R' for double circulant codes over Z, with
the highest minimum Euclidean weight among all double circulant codes for each length up
to 24. This was done by constructing all double circulant codes of that length. If the code is
bordered, the values of («, 3, ) are also given. Codes are given only for length 10 < 2n < 24
because densest isodual lattices in dimensions up to 4 and 8 have been given in [5]. The
fourth column of the table gives the minimum Euclidean weight dg of the code.

It is known in [10] that the highest minimum Euclidean weight among all self-dual codes
of lengths 10 and 16 over Z4 are 4 and 8, respectively. Dy ;4 is an isodual code of length 10
with minimum Euclidean weight 8 and Dy 4 is an isodual code of length 16 with minimum

Euclidean weight 9. Thus we have the following;:

Proposition 4.1 There exist isodual codes over Z, which have a higher minimum Fuclidean
weight than any self-dual code of the same length.



Table 1: Double Circulant Codes over Z,

Code | Length n First Row dg
Dy 10 10 22100 8
Dy 19 12 221000 8
Dy 14 14 2210000 8
Dy 16 16 2312100 («, B,7v) = (1,2,2) 9
Dy s 18 211200000 9
Dy 20 20 2112000000 10
Dy 22 22 31321121000 12
Dy 24 24 31321121000 (e, B,7) = (1,2,2) (self-dual) 16

Double circulant codes over Zg are given in Table 2. The first row of R or R’ for codes
with the highest minimum Euclidean weight are given for each length up to 24. If the code
is bordered, the values of («, 3,7) are also given. The fourth column of these tables gives
the minimum Euclidean weight dg of the code.

Table 2: Double Circulant Codes over Zg

Code | Length n First Row dg
De 10 10 42100 10
De 12 12 513010 12
De¢ 14 14 3321000 12
De 16 16 41431000 14
De 18 18 134010000 14
De 20 20 3013101000 16
Dg 22 22 35530010000 16
Dg 24 24 24313412010 (e, B,7) = (3,2,2) (self-dual) 18

We next use these double circulant codes to construct dense isodual lattices by Construc-
tion Agy. Let p(Dag 2,) be the minimum norm of the isodual lattice Aoy (Do 2n) constructed
from the double circulant code Doy 9,,. Let 11(2n) := max{p(Dag 2n) | k = 2,3}, that is, (2n)
is the maximal number among the minimum norm of the lattices Agg (Do 2,) where k = 2,3
for each dimension 2n.

In Table 3, we list p(2n) for 10 < 2n < 24, and the third column gives the dou-
ble circulant code which provides p(2n). The fourth and fifth columns list the highest
minimum norms pg(2n) and pp(2n) among known isodual lattices and unimodular lat-
tices, from [5], [11] and [3], respectively. Note that information on the highest minimum



norm among isodual lattices in dimensions 17 to 22 is lacking in [5]. In that range of
dimensions, the best known isodual lattices are in the family of modular lattices of level
[. If such a lattice has minimum norm g, then the corresponding idodual one has mini-
mum norm z/v/1. We refer to the survey [11] for information on lattices with parameters:
(n,l,n) = (12,3,4), (14, 3,4), (16, 2,4), (18, 3,4), (20, 7, 8).

in lattice

Table 3: The Minimum Norm for Isodual Lattices from Double Circulant Codes

Dimension 2n | p(2n) Code pr(2n) | pr(2n)
10 2 Dy 10 2 1
12 2 Deg 12 16/3 2
14 2 Dyis,Deua \/16/3 2
16 I De.16 V38 2
18 I Dg. 18 16/3 2
20 I D20 8/V7T 2
22 3 Dy 16/3 2
24 4 Dy24 4 4

From Table 3, note the following:
Proposition 4.2 There is a 22-dimensional isodual lattice with minimum norm 3.

It appears that A4(Dy ) is the first example of an isodual lattice with minimum norm 3
in dimension 22. Isodual lattices in dimensions 23 and 24 with minimum norm 3 are known,
namely the shorter Leech lattice and the odd Leech lattice. Thus A4(Dy290) is the smallest

known isodual lattice with minimum norm 3.

The theta series ©4,(c)(¢q) of the lattice constructed from a code C' over Z; can be
obtained from the symmetrized weight enumerator swec(a, b, ¢) of C by replacing a, b and
¢ respectively by Y,ci7 0% Cocazar 0 and ¥,caz40 ¢/t The symmetrized weight
enumerator swep, ,, and the theta series © a,(p, ,,)(q) of A4(Dy22) are given below.

swep,,, = a*?+1232a'°0' 4 5632a7b'° + 2464a°b'° + 616705 + 14784a'%b" ¢
+12320a°b"%¢c + 14784a°b'%c + 2464a'2b"c? + 400402 b3 c? + 554400 b2 2
+118272a°b"%¢? + 369600 b'0c? + 147840 683 + 221760a%b' ' ¢ + 14784047 b2 3
+49280a°b1%¢® + 295684167 c* + 406564 °6%c* + 258720a°b'2c* + 197120a°b10¢?
+36960a2b"%c* + 83160a°b%¢° + 620928a°h' ' c® + 310464a°b'%c® + 14784ab'®
+110880a”b" ¢ + 1247408638 + 2587204028 + 39424ab'5 8 + 24646



+176a'%¢" + 140800a"b8¢™ + 4435204 b ¢” + 147840a%b'2¢” + 33004 ®
+140800a7b7c® + 1232006563 c® + 55440a%b'2¢% + 83160a°b%c” + 73920420 ¢
+12320ab'2¢? 4 66528a°b7 !0 + 41580a*b3c!0 + 123261210 + 6724 M
+14784a3b8¢! + 1344b' ¢ 4 616a'%¢'? + 9856a°b7¢!? + 369602052
+616ab%c'? + 352ab" ¢! + 4468 4+ 17647 ¢ + T7a8 16,

O ay(Dan)(@) = 1+ 2464¢ +45056¢'%/* + 43164¢" + 394240¢°
+3198976¢%3/* + 2444288¢° + 11470272¢" + 633937924°1/*
+435848604° + 141182976¢° + 629342208¢>°/* + 4049633284
+1052468320¢" " + 4066979840¢*7/* + 251233628842
+5583148032¢™ + - - - .

Define the Buclidean weight enumerator Ec(s) of a code O as Eg(s) := ¥ ,ec sV#(). To
save space, we only list the first few terms in the Euclidean weight enumerators for Dy ;g
and Dg . Note that Ag(Dg 13) and A4(Dy 92) have higher minimum norms than px(18) and
pr(22), respectively.

Epgo(s) = 1+288s'" 4 7925'0 + 1338s'® + 36185%" + 7380s>? + 131345 + 230945°°
+371885%% + 6111650 + 846365°2 4 1268465>* + 1747195 4 2143805
+287478510 + 35470252 4 39475851 + 468576510 4 536778518 + 5482085°
+60345055% + 6207935 + 6071045°% + 626058558 + 58106450 + 54941452
+5194625% + 4569125%6 + 4085105%% + 35717457 + 293511572 + - - -,

O ag(peis)(@) = 1+288¢7/% +810¢%% + 1356¢° + 4032¢'%/3 + 8298¢"/?
+15762¢" + 30870¢'3/3 + 542164/ + 956044° + 1602184"'%/3
+266112¢'7/% + 414794¢° + 6277864/ + 980604¢°%/% + - .-

As described in Section 2, the supplemented quadratic residue code QQRy; over Z4 of
length 17 has minimum FEuclidean weight 8. Thus this code gives an isodual lattice with

minimum norm 2 in dimension 17.

5 Classification of Double Circulant Codes of Length
22 and Some 3-Designs

In this section, we classify the double circulant codes of length 22 over Z, with minimum Eu-
clidean weight 12. We also show that some of these codes contain 3-designs with parameters
(22,7,4), (22,8,12), (22,9,84) and (22,10, 156).
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The following lemma is useful in classifying double circulant codes.

Lemma 5.1 If the matriz (I, A) generates an isodual code C over Loy, then the matrices
(I, —-A), (I, AT ) and (I, —AT) generate isodual codes which are equivalent to C.

Proof. Since C is isodual, the matrices ( I , A ) and ( I, —A” ) generate equivalent
codes. Obviously (I, A)and (I, —A ) also generate equivalent codes. O

By exhaustive search, we have found all distinct double circulant codes of length 22
over Z, with minimum FEuclidean weight 12. This was done by considering all 11 by 11
(resp. 10 by 10) circulant matrices over Z4 for pure (resp. bordered) double circulant codes.
Lemma 5.1 establishes the equivalence of a large number of these codes. To save space,
Table 4 lists only those codes which must be checked further for equivalence to complete
the classification. The symmetrized weight enumerators (column SWE) are also identified
in the table, and these are listed at the end of this section. Note that C; is the same as
Dy 2.

Table 4: Double Circulant Codes of Length 22

Code | First row of R SWE Code | First row of R SWE

Cy1 | 31321121000  swep, ,,(a,b,c) | Cio | 21330112100  swep,,,(a,b,c)

Chs | 20311231010  swep,,,(a,b,c) | Cia | 32021310110  swep, ,,(a,b,c)

Ci5 | 31032201110  swep, ,,(a,b,c) | Cig | 23312110100  swep,,,(a,b,c)

Ci7 | 23211031100  swep, ,,(a,b,c) | Cig | 23011211300  swep,,,(a,b,c)
(a,b,c) (a,b,c)
(a,b,c) (a,b,c)
(a,b,c) (a,b,c)
(a,b,c)

Cho | 22131031010  swep,,, Crio | 20121303110 swep, ,, (a,b,c
Cru | 13212223110 swep, ,,(a,b.c) | Ciia | 22333231210  swep,,,
Cris | 31231122210 swep, ,,(a,b.c) | Ciag | 22123121310  swep,,,
Cris | 21233211120 swep, ,,(a,b.c) | Coy | 31333321111  swec, , (a,b,c)
Cop | 33113332111 sweg,, ( ) | Caz | 31313133211  swec,,(a,b,c)
Coy | 31133133211  swec,,(a,b,c) | Cos | 33131231311  swec,,(a,b,c)
Csi | 33331231111 swee,,(a,bc) | Cso | 31313332111 swec,, (a,b,c)
Cs3 32133313111 swecsy, (a,b,¢) | C34 33131133211 swecs , (a, b, c)
Css | 32133131311  swec,,(a.b,c) | Cyy | 33313213111 swec,,(a,b,c)

Let R and R’ be two square matrices of the same order. If there are (0,1, —1)-monomial
matrices P and @ such that R = PR'Q, then (I, R ) and (I, R') generate equiv-
alent codes over Zsy,. For the codes in Table 4, let R;; be R in the generator matrix
of C;;. Permutation matrices P; and (); can be found such that R,; = P;R; j41Q; for
j=1,2,3,4,6,7,8,9,11,12,13 and 14. Thus the codes C; (i = 1,2,3,4,5) are equivalent,
the codes Cy; (i = 6,7,8,9,10) are equivalent, and the codes Cy; (i = 11,12,13, 14, 15) are

11



equivalent. Similarly, it can be shown that the codes Cy; (i = 1,2,3,4,5) are equivalent and
the codes Cy; (i =1,2,3,4,5) are equivalent. Note that Cy; is the unique double circulant
code with swec, , (a,b,c).

It is now shown that Cy 1, C} g and C 1, are inequivalent using the methods in [6] and [7].
Let C be a code of length 2n. Let M, := (m;;) be the A; by 2n matrix with rows composed
of the codewords of Hamming weight ¢ in C, where A; denotes the number of codewords of
Hamming weight ¢ in C'. For an integer k£ (1 < k < 2n), let ny(j1, ..., jx) be the number of
r (1 <r < A;) such that m,j, ---m,;, # 0 over Z for 1 < j; < -+ < jx < 2n. We consider
the set

Sy = {m(j1,...,jx)| for any k distinct columns ji,...,jx }.

Let M;(k) and m;(k) be the maximal and minimal numbers in S;, respectively. Since two
equivalent codes over Z4 have the same values for S;, these numbers are invariant under the
equivalence of codes. Table 5 gives some values of M;(k) and m;(k) for codes Cy 1, C ¢ and
Ci.

Now let ¢;1,¢9,...,¢ia; be the codewords of Hamming weight ¢ in C'. Let

di(g) == F#{wt(cip, — Cig,) =J |1 < ki <ky <A},

where wt(z) denotes the Hamming weight of a vector z. The numbers d;(j) are also invariant

under the equivalence of codes for any ¢ and j. Table 6 gives some values of d;(j) for codes
Cl,l and 01,6-

Table 5: Inequivalence values for C; and C 13

Code | My(3) mg(3) My(4) mo(d) | Mio(3) muo(3) Mio(d) muo(4)
Cia 168 168 60 44 312 312 124 108
Cig 168 168 60 44 312 312 124 108
Cin | 168 168 60 42 312 312 126 108

From Tables 5 and 6, C;, C16 and C41; are inequivalent, and this completes the clas-
sification.

Proposition 5.2 There are exactly six inequivalent double circulant codes of length 22 over
Zy with minimum Euclidean weight 12.

Remark. We denote the six inequivalent double circulant codes C 1, Cig, Ci 11, Ca1, Cs1
and Cy by C3y, ..., C5, and C%,, respectively.

A t-(v,k, ) design D is a set of v points with a collection of k-subsets called blocks,
so that any ¢-points are contained in exactly A blocks. The incidence matrix of D is the
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Table 6: Inequivalence values for C'; ; and C 6

Code | dy(0) dg (1) dy(2) dy(3) dg (4) dy (5) dy (6) dy(7)
Cia 0 0 0 0 0 0 0 8624
Ci 0 0 0 0 0 0 0 8624

Code | do(8)  dg(9) do(10) do(11) do(12) do(13) do(14)  dy(15)
Cip | 7700 143616 219824 657712 837760 761376 1215806 500168
Cie | 7700 144672 219384 655952 837320 762432 1217480 508640
Code | do(16) do(17) do(18) do(19) dp(20) do(21)  do(22)
Ci: | 292688 85888 1408 0 0 0 0
Cie | 202072 86064 1320 0 0 0 0

matrix M = (m;;) with m;; = 1 if the j-th point is contained in the ¢-th block and m;; =0
otherwise. A design may be identified by its incidence matrix. Two designs are isomorphic
if the incidence matrix of one design can be obtained from the incidence matrix of the other

by permuting its rows and columns.

Corollary 5.3 The supports of Hamming weights 7, 8, 9 and 10 in Cy 1, Cy g and Cy 11 form
3-designs with parameters (22,7,4), (22,8,12), (22,9,84) and (22,10, 156), respectively.

Proof. Let C be one of (', Ci¢ and C; ;1. The residue code CW and the torsion code
C®@ of C are {¢ (mod 2)|c € C} and {c/2|c =0 (mod 2),c € C}, respectively. It is
casy to see that C() = C® and C is the binary isodual [22,11,7] code B which has
the Mathieu group Msy as its automorphism group. From swec(a, b, c), the codewords of
Hamming weights 7 and 8 are in C®. It is known that the codewords of Hamming weights
7 and 8 in B form a 3-(22,7,4) design and a 3-(22,8,12) design, respectively. Thus the
supports of Hamming weights 7 and 8 in C' form a 3-(22,7,4) design and a 3-(22,8,12)
design, respectively.

Let x be a codeword in C' of Hamming weight 9 (resp. 10). Then it follows from
swec(a, b, c) that 3z is a codeword of Hamming weight 9 (resp. 10), but 2z is not. Thus
Table 5 shows that the supports of Hamming weight 9 and 10 in C form a 3-(22, 9, 84) design
and a 3-(22,10, 156) design without repeated blocks, respectively. O

Now we prove that the codes Ci, (i = 1,...,6) are closely related to extremal Type II
codes of length 24 and that A,(Ci,) are closely related to the Leech lattice where C&, are
the six inequivalent double circulant codes in Proposition 5.2.

Let Cy, be any of C%, (i =1,...,6).

Lemma 5.4 Let Gy, be the generator matriz ( I, Ry ) of Coy. Then Ry RL, = 3J — 1
where J s the all-ones matrix.

13



The following matrix

G :
Gaz 1= 22 )
1

generates a self-orthogonal code Cs; of length 23. Since Cyy does not contain the all-2’s
vector (2,2,2,...,2), Cys is self-dual. The symmetrized weight enumerator of the self-
orthogonal code C}; generated by the first eleven rows in Ga3 can be obtained from the
symmetrized weight enumerator of Cyg, since the Euclidean weight of the codewords in Cl;,
must be divisible by 4. For any vector = over Z4, no(z + 2j) = na(z), ni(z + 2j) = ns(z),
na(z + 2j) = no(z) and ns(z + 2j) = ny(z) where 2j is the all-2’s vector. Hence the
symmetrized weight enumerator of Cs; can be obtained directly from swec,,(a,b,c). The
minimum Euclidean weight of Cy; is 12. The following matrix

10

G24 = G22 : )
10

1 - 1 11

generates a Type IT code Uy, of length 24, i.e., a self-dual code with all Euclidean weights
divisible by 8.

Proposition 5.5 Cyy is a Type Il code of length 24 with minimum Fuclidean weight 16,

and so is extremal.

Proof.  Let C), be the bordered double circulant code with R' = Ry and borders
(a, B,7y) = (2,3,1). Tt is easy to see that C}, is a Type II code. All extremal Type II
double circulant codes of length 24 have been classified in [6], and the list in [6] shows that
(Y, is an extremal Type II double circulant code. The lemma follows from the fact that Cy,
and C!, are equivalent. O

Remark. For codes C),, C2, and C3, of length 22, the supports of Hamming weight 10 in
the corresponding bordered double circulant codes of length 24 form 5-(24, 10, 36) designs
[6]. The 3-(22,9,84) and 3-(22, 10, 156) designs found in Corollary 5.3 are the derived and
residual designs, respectively, of the 4-(23,10,84) designs which are the residual designs of
the above 5-designs.

By the above proposition, A4(Cs3) (resp. A4(Cyy)) is the unique extremal unimodular
lattice in dimension 23 (resp. 24), which is called the shorter Leech lattice (resp. the Leech
lattice). Thus the 22-dimensional isodual lattices A4(Cyy) are related to the Leech lattice.
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swee,, = a*® +1408a'%" 4 7040a°b'® + 5632a%b*° + 176a'*b%c + 22528a'°b' ' ¢
+8448a°b 2 ¢ + 28160a°b'%c + 11264ab*°c + 176a°b*c? + 38724120 ?
+43648a%b'?¢® + 77440a*b'®c* + 56326%°¢* + 352a'5b* P
+13728a 1% ¢® + 3379204801 ¢ + 10700847012 + 112640600 ¢® + 55a!8¢*
+1584a bt ¢ + 44704008 ¢t + 191488a°p12 ¢ + 774404301 ¢t + 2816a3b% P
+84304a°b%¢® + 946176a50" @ + 2421764°b'?¢® + 28160ab'c® + 8272a'?b* 8
+120384a%bc® + 191488a’b'2c 4 7040b'5¢8 + 13728a''b*¢” 4 14150407087
+675840a"b' ¢” + 107008a°b'2¢” + 330atc® + 18128a!°b¢c® + 120384a°18 (8
+43648a%b'2¢® + 22528a”b ¢ + 84304a°b%® + 1126404 ® + 8448ab'2c’
+18128a%b* ¢! + 44704a*b8¢'0 + 14085'%¢'0 + 1024a' ' 4 137287 b c!!
+13728a°b8 ¢! 4 2048 ¢!t + 462a'0¢!? 4 8272a%b¢!? + 3872408 ¢!
+2816a°b?c'? + 176ab®c'? + 1584a'b ™ + 352a°b e + 165a5¢1°
+176a%b* ' + 1162620

swec,, = a*> +1056a'°b'* 4 7040a°b'° + 5632a°0*° + 528a'?b°c + 22528a'b' ¢
+7744a°b" ¢ + 28160a°b'%c + 11264ab* ¢ + 88a'%b* ¢ + 4576a'%b® ¢
+44704a802 ¢ + 7744000 + 56326%0c? 4 176a°b e 4 130240103 c?
+337920a%b' ¢ 4 109824a"b'2 ¢ + 112640606 + 55a'8¢* + 1672a b
+42592a'°b%¢* + 190784a%b'2¢* + 77440020 ¢* + 316843 ¢® + 83952a°b% P
+946176a°b" ' ¢® 4 237952a°b' ¢ + 28160ab'Sc® + 8536a'%b* c® + 12179208585
+190784a*b'2¢5 + 70400168 + 13904at b e + 1429124708 ¢" + 675840a*b 7
+109824a°b'2¢” + 330a'c® + 17864a'°b*¢® + 12179200 ¢® + 44704a%p*2 8
+21824a°b*® + 83952a°b%¢® + 112640a%b" ' ¢® + 7744ab"?c® + 17864a%b*c'°
+42592a*b%¢'0 + 10566'2¢'0 + 1024a' ' + 13904a7b? e 4 13024a%b8c!!
+2048b' et + 462a1%¢!? + 8536a5b 12 + 4576420812 + 3168a°b1c!?
+528ab®c'? 4+ 1672a* b ¢ + 176a°b* ¢"® + 165a5¢'¢ + 88ab* ¢! + 114%™

swec,, = a*®+704a'%b"® +7040a°0'® + 5632a°b>° + 880a'*b3c + 225284'%' ' ¢
+7040ab*% ¢ + 28160a°b ¢ + 11264ab*°c + 5280a'?b%c? + 45760a°b'*¢?
+77440a%b'%? + 56320%°¢2 + 12320a'10%¢ + 337920a%b' ¢ + 112640a7b12c3
+112640a°b'5¢2 + 55a'%¢* + 1760a'*b" c* + 40480a'°08¢* + 190080a°b'2¢*
+774406b"%c¢* 4 352030 c® + 83600a°b%¢® + 946176a%b' > + 233728a°b2¢°
+28160ab*®c® 4+ 8800a 20 ¢’ + 123200a%0%¢5 + 190080a’p*2c® + 7040605
+14080a'tbte™ + 144320a7b3¢™ + 675840ab M 7 + 112640a°b'2¢” + 330a'c®
+17600a'%b"c® + 123200a°b%® + 4576000 %c® + 21120a°b*¢® + 83600a°b%¢°
+112640a%b"1 ¢ + 7040ab'%c® + 17600a%b*¢'® + 40480a*b%¢'® + 7045210
+1024a' et + 14080a"b et + 12320003 ¢t + 20480 et + 4624102
+8800ab*ct? + 5280a%b8¢!? + 3520a°b*c'? + 880ab®c'? + 1760a'h*
+165a5¢'¢ 4 11ac*°.
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6 Uniqueness of the six lattices A4(C5,)

Let Ci (i = 1,...,6) be the six inequivalent double circulant codes in Proposition 5.2.
In this section, we show that the lattices A4(C%,) are all isometric to some lattice Lo
constructed below. Loy is constructed from the unique binary self-dual [22, 11, 6] code (also
called the shorter Golay code [10]) in a very similar way as the Leech lattice is constructed
from the binary Golay code. Lyy is not unimodular, but has a higher minimum norm than
the unimodular lattices, and its automorphism group is not larger than the group arising
from the automorphism group of the code.

Let C be the unique binary self-dual [22,11, 6] code, and let Uy := Ay(C') be the uni-
modular lattice constructed from C by Construction A. Recall that the automorphism group
of the code C is the group Ms,.2. Now consider the sublattice

22
NQQ = BQ(C) = {(l‘l,...,l'QQ) € UQQ | ZZCZEO (rnod 4)}
i—1
of index 2 in Uy obtained by Construction B (see [3] for Constructions A and B). Ny no

longer contains roots and has minimum norm 3. Set
LQQ = NQQ + Zx

where z = (1/2,...,1/2,5/2) — 2s, the coordinates of s are 0 or 1, and s (mod 2) belongs
to the shadow of C' (see [4] for the shadows of binary self-dual codes).

Theorem 6.1 Let Los and Usy be as above. Then we have:

(1) Ly is an isodual lattice with minimum norm 3, and Aut(Lgy) ~ {£1}'".My.2 is a

subgroup of the automorphism group of the lattice Uss.

(2) Any 22-dimensional isodual lattice of minimum norm 3, containing an integral lattice

of determinant 4, is isometric to Los.

Proof. Lete; :=(0,...,0,1,0,...,0) for all i, where the 1 stands at coordinate i. Clearly,
Aut(Up) = {£1}*2.Aut(C) since the only roots of Uy are +2¢;. Let e := (1,...,1) =
S22, e;. Then Noy = (Up)e := {2 € Uy | [u,e] =0 (mod 2)} and N3, = Usy + Ze/2. Since
e/2 has norm 11/42, the minimum norm of N, is 2 and its norm 2 vectors are the ones in
Us,. Hence Aut(Nyy) induces a permutation of them and Aut(Ng) ~ {£1}'"". Aut(C) since
the sign changes preserving Nyy are in one-to-one correspondence with the elements of C.

We consider lattices of the form L := Ny + Zw/2, where w € Nay is defined modulo
2N99. We search for lattices L such that L and L* both have minimum norm 3.
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Lemma 6.2 There is a unique class W € Ny /2Noy such that L and L* have minimum
norm 3.

Proof. Since +4e; &+ 4e; and £8e¢; belong to 2Nyy, the 21 first coordinates of w can be
taken in {0,+1,2} while wyy € {0,+1,+2,+3,4}. If one coordinate w; of w is even, since
[2e;,w/2] = w;/2 € Z, 2¢; € L* which contradicts the condition that the minimum norm of
L* is 3. Hence we can assume w; € {+1} for 1 <i < 21 and wyy € {£1,£3}. Moreover, if
wee = +1, w? = 11 and the minimum norm of L is smaller than 3. Hence wy = +3, and
the minimum norm of L is 3 if and only if w is minimal in its class w + 2Nas. If this is so, we
notice that since w?/4 = 15/43, the minimal vectors of L will be the ones of Nay, and hence
that Aut(L) C Aut(Ny). For convenience, we assume now that wsy € {3,5}. Hence we can
write w = w(u) 1= e — 2, € + 4ex where u € F3” is identified with its set of non-zero
coordinates. It is worth noticing here that w(u) € Ny if and only if 2wty (u) =22 (mod 4)
and w(u) = w(uy) (mod 2N) if and only if u = u;  (mod C) and wty(u) = wty(uy)
(mod 4). O

Lemma 6.3 Let w be as above. The class w + 2Nyg has minimum norm 15 if and only if
u belongs to the shadow of C.

Proof. As mentioned previously, the minimum norm of the class w + 2N is lower than 15
if and only if it contains an element with coordinates 1, i.e. of the type w' =€ —23 ;. €
where u' € F32. Then w' € Ny if and only if wtg(u') =1 (mod 2), and w' € w + 2Ny,
if and only if > ,c €, — Y ;c. €i + 299 € Nyy. This last condition is equivalent to the two
conditions: v’ +u € C and wty(u') + wty(u) +2 =0 (mod 4). By setting ¢ := u' + u,
we get ¢ € C' and wty(c) +2c-u =2 (mod 4). Hence, such a codeword does not exist if
and only if u is in the shadow of C. Note that in this case, 2wtg(u) = 22 (mod 8), which
insures that w € Nyy. Now two elements of the shadow are congruent modulo C' and define
a single class modulo 2Ny, from previous remarks. O

We have proved the two lemmas, and the fact that the minimum norm of Loy is 3. We
have already seen that Aut(Lys) is a subgroup of Aut(Ny). Since the class of Ngy /2Ny is
the unique one such that L and L* have minimum norm 3, it is preserved by Aut(/Nsy) and
hence we have equality.

Now we prove that L3, has minimum norm 3. Since Lsy = Ny + Zw /2, (w = w(u), u in
the shadow of C'), L3, = (N3y)w = (Usa)w U (Use + €/2),,. Elements of norm lower than 3 in
this lattice can only have the form z = e/2 -3, ; with v’ € C' and the same computation
shows that [z, w] = wtg(u)/24+u' -u+1=1 (mod 2) and hence that x does not belong
to L3,.
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Let P be a 22-dimensional lattice of determinant 1 such that P and P* have minimum
norm 3, and containing an integral sublattice N with index 2. We shall prove that P is
isometric to Loy. Since N is integral, the quotient group N*/N has order 4 and contains
a subgroup of order 2 corresponding to an integral lattice U. Hence N C U C N* and U
is unimodular. The lattice U contains at most one norm 1 vector and can contain norm 2
vectors only if they are pairwise orthogonal (because, if x1,29 € U, x; + 5 € N which has
minimum norm 3). A look at the classification of 22-dimensional unimodular lattices (cf. [3,
Chapter 16]) shows that the only possibility is U =~ Usy. Hence N ~ N,y which is the only
sublattice (up to isometry) of index 2 of Uy not containing roots. The previous discussion
shows then that P ~ Lo,.

The last assertion to prove is that Lgy is isodual. Since L}, contains U, which is an
integral sublattice of index 2, we can take P = L}, and conclude that L3, ~ Lyy. Therefore
the theorem follows. a

Remark. More precisely, the lattices U,, and Ny are exchanged by an automorphism of
U of type (1,...,%9) — (€121, ..., €29%99) where ¢; = +1, and the —1 defines the support
of an element of the shadow of C'. Such an automorphism also exchanges Ly and its dual
lattice.

Corollary 6.4 For alli=1,...,6, Ay(C%,) is isometric to Las.

Proof. We only have to prove that these lattices contain integral sublattices of index 2.
These lattices A4(C%,) are generated by the rows of matrices of the form

1 ({1 R
Gi=3 ( O 41 ) ’
where R is circulant matrices and the first rows are listed in Table 4. R = (R; ;) has integral
coefficients and by Lemma 5.4 RR" = 3.J — I.
Let r1,...,7r11 be the first eleven rows of G and let sq,..., s;; be the last eleven rows of
G. We have [s;, s;| = 49, j, [si, ;] = R;; and [r;, ;] = 3/4. Hence, one can verify that the
sublattice of index 2 spanned by {r; = 7, s;, }1<ij<11 is integral. O
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versations.
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