
Isodual Codes over Z2k and Isodual Latties(Revised Version 6)Christine BahoLaboratoire d'Algorithmique Arithm�etique, 351Cours de la Lib�erationF{33405 TaleneFrane,T. Aaron GulliverDepartment of Eletrial and Eletroni EngineeringUniversity of CanterburyPrivate Bag 4800Christhurh, New ZealandandMasaaki HaradaDepartment of Mathematial SienesYamagata UniversityYamagata 990{8560, JapanJune 7, 1999AbstratA ode is alled isodual if it is equivalent to its dual ode, and a lattie is alledisodual if it is isometri to its dual lattie. In this note, we investigate isodual odesover Z2k. These odes give rise to isodual latties; in partiular, we onstrut a 22-dimensional isodual lattie with minimum norm 3 and kissing number 2464.1 IntrodutionA ode is alled isodual if it is equivalent to its dual ode, and a lattie is alled isodual ifit is isometri to its dual lattie. Conway and Sloane [5℄ introdued the onept of isodual1



latties, whih is a generalization of unimodular latties. A lot of known dense latties areisodual [5℄, like the resaled Barnes-Wall lattie or the Coxeter-Todd lattie. In the odingtheory ontext, isodual odes play a similar role with respet to the extensively studiedfamily of self-dual odes (f. [10℄). In this note, we investigate a remarkable lass of isodualodes over Z2k, the double irulant ones, and use them to onstrut isodual latties. Inpartiular, we onstrut a 22-dimensional isodual lattie of minimum norm 3.In Setion 2, we study the properties of isodual odes and present double irulant odes.We investigate the symmetrized weight enumerators of isodual odes over Z2k, in partiular,for small k, we give a basis for the spae of invariants to whih the symmetrized weightenumerators belong.In Setion 3, we desribe how isodual latties an be onstruted from isodual odes overZ2k.In Setion 4, we onstrut double irulant odes over Z4 and Z6 with the highest mini-mum Eulidean weight among all double irulant odes of length up to 24. These examplesshow that there are isodual odes whih have a higher minimum Eulidean weight than anyself-dual ode of the same length.We then onsider the latties obtained from these odes. The most interesting are the22-dimensional isodual latties with minimum norm 3 and kissing number 2464 onstrutedfrom the double irulant odes over Z4 of length 22 and minimum Eulidean weight 12.In Setion 5, we show that there are up to equivalene exatly six double irulant odesover Z4 of length 22 and minimum Eulidean weight 12. We show that, from eah of theseodes, an extremal binary Type II odes of length 24 an be onstruted, pointing out alose onnetion between the 22-dimensional isodual latties and the Leeh lattie.Finally, in Setion 6 we show that these latties are all isometri to a single lattieL22 onstruted from the binary [22; 11; 6℄ self-dual ode. In partiular its automorphismgroup is proved to be isomorphi to f�1g11:M22:2, and it is araterised by the followingproperties: it is the unique up to isometry isodual 22-dimensional lattie of minimum norm3 and ontaining an integral sublattie of index 2.2 Isodual Codes2.1 CodesA linear ode C of length n over Z2k is a Z2k-submodule of Zn2k where Z2k is the ring ofintegers modulo 2k. We shall take for a representative set of the elements of Z2k eitherf0; 1; 2; � � � ; 2k � 1g or f0;�1;�2;�3; : : : ;�(k � 1); kg, using whihever set is onvenient.An element of C is alled a odeword of C. A generator matrix of C is a matrix whoserows generate C. The Hamming weight wtH(x) of a vetor x in Zn2k is just the number ofnon-zero omponents. The Eulidean weight wtE(x) of a vetor x = (x1; x2; : : : ; xn) over2



Z2k is Pni=1minfx2i ; (2k � xi)2g where Z2k = f0; 1; 2; : : : ; 2k � 1g. The minimum Hammingand Eulidean weights, dH and dE, of C are the smallest Hamming and Eulidean weightsamong all non-zero odewords of C, respetively. De�ne the inner produt of x and y inZn2k by x � y := x1y1 + � � �+ xnyn. The dual ode C? of C is then C? := fx 2 Zn2k j x � y =0 for all y 2 Cg.In view of some appliations, there is no need to distinguish between odeword ompo-nents whih di�er in sign, i.e., +1 and �1. Hene, two odes are said to be equivalent ifone an be obtained from the other by permuting and hanging signs on the oordinates.C is alled isodual if C is equivalent to C?, and C is alled self-dual if C = C?. Clearly aself-dual ode is isodual. We de�ne the symmetrized weight enumerator (swe) of C bysweC(x0; x1; : : : ; xk) := X2C xn0()0 xn1()1 � � �xnk�1()k�1 xnk()k ;where n0(x); n1(x); : : : ; nk�1(); nk() are the numbers of 0;�1; : : : ;�(k � 1); k omponentsof , respetively. Equivalent odes have idential symmetrized weight enumerators. TheHamming weight enumerator of C is de�ned as WC(x; y) := P2C xn�wtH()ywtH(). Anisodual ode and its dual ode have several idential weight enumerators (e.g., symmetrizedweight enumerators, Hamming weight enumerators and biweight enumerators).2.2 ConstrutionsLemma 2.1 If 2k is a square, then an isodual ode over Z2k exists for all lengths. If 2k isnot a square, then an isodual ode exists for length n if and only if n is even.Proof. If 2k is a square (say, �2) then a ode with generator matrix ( � ) is isodual. Fora ode C of length n over Z2k, it is known that jCjjC?j = 2kn. If C is an isodual odethen jCj = jC?j = 2kn=2. Thus n must be even if 2k is not a square. Moreover a ode withgenerator matrix ( 1 ; � ) is isodual where � 2 Z2k. 2Lemma 2.2 Suppose that C and D are isodual odes of lengths n and m with minimumEulidean weights dE and d0E, respetively. Then the diret sum C�D := f(; d) j  2 C; d 2Dg is an isodual ode of length n+m with minimum Eulidean weight minfdE; d0Eg.Proof. Let � and �0 be equivalent maps suh that C� = C? and D�0 = D?. ThenC� � D�0 = C? �D?. It is easy to see that (C �D)? = C? �D?. Therefore (C � D) isequivalent to (C �D)?. The minimum Eulidean weight follows from the onstrution. 2From the above lemma, when searhing for odes with high minimum Eulidean weight,it is suÆient to onsider only odes whih are not the diret sum of odes.3



Lemma 2.3 Let C be a ode over Z2k with generator matrix ( I ; A ) where I is the identitymatrix. If there are (0; 1;�1)-monomial matries P and Q suh that AT = PAQ then C isisodual where AT denotes the transpose of A.Proof. The matrix (�AT ; I ) is a generator matrix of the dual ode C?. Sine AT = PAQ,C and the ode with generator matrix ( I ; �AT ) are equivalent. 2If A is symmetri or skew-symmetri (that is, AT = A or AT = �A) then A satis�es theassumption of the above lemma.Double irulant odes are a remarkable lass of isodual odes. A pure double irulantode of length 2n has a generator matrix of the form ( I ; R ) where R is an n by n irulantmatrix. A ode with a generator matrix of the form0BBBBB� � � � � � �I ... R0
1CCCCCA ;(1)where R0 is an n� 1 by n� 1 irulant matrix, is alled a bordered double irulant ode oflength 2n. These two families of odes are olletively alled double irulant odes.Lemma 2.4 A double irulant ode is isodual.Proof. Follows from Lemma 2.3. 2quadrati2.3 Symmetrized Weight EnumeratorsWe now investigate the symmetrized weight enumerators of isodual odes over Z2k. Weobtain invariants to whih the symmetrized weight enumerators belongs. First de�ne thefollowing matrix:

M2k := 1p2k
0BBBBBBBBBBBBBB�

1 2 2 � � � 11 � + �2k�1 �2 + �2k�2 � � � �k1 �2 + �2(2k�1) �4 + �2(2k�2) � � � �2k1 �3 + �3(2k�1) �6 + �3(2k�2) � � � �3k... ... ... ...... ... ... ...1 �k + �k(2k�1) �2k + �k(2k�2) � � � �k2
1CCCCCCCCCCCCCCA ;4



where � is a primitive 2k-th root of unity. This matrix orresponds to the MaWilliamsidentities for odes over Z2k [1℄. In other words,swe?C(x0; x1; : : : ; xk) =M2ksweC(x0; x1; : : : ; xk):Thus the symmetrized weight enumerator of an isodual ode is invariant under transforma-tion by M2k. By Lemma 2.1, if 2k is not a square then the symmetrized weight enumeratoris also invariant under transformation by the diagonal matrix N := diag(�1;�1; : : : ;�1)derived from the restrition on the length. Therefore we have the following:Proposition 2.5 The symmetrized weight enumerator of an isodual ode over Z2k is in-variant under the group generated by M2k, whih has order 2. Moreover if 2k is not a squarethen the symmetrized weight enumerator of an isodual ode over Z2k is invariant under thegroup generated by M2k and N , whih has order 4.Magma an easily be used to ompute a basis for the invariant ring of small matrix groups.As examples, we give a basis for the invariant rings orresponding to the symmetrized weightenumerators of isodual odes over Z4 and Z6.Corollary 2.6 If C is an isodual ode over Z4, then the symmetrized weight enumeratorsweC(a; b; ) of C is an element of the ringC [a+ ; b� ; a2 + 4b� 2℄;with Molien series 1(1� �)2(1� �2) = 1 + 2�+ 4�2 + 6�3 + 9�4 + � � � :Remark. The set of symmetrized weight enumerators of all isodual latties over Z4 annotgenerate the above ring sine there is a unique isodual lattie of length 1.Corollary 2.7 If C is an isodual ode over Z6, then the symmetrized weight enumeratorsweC(a; b; ; d) of C is an element of the ringC [�6;1; �6;2; �6;3; �6;4℄� �6;5C [�6;1; �6;2; �6;3; �6;4℄��6;6C [�6;1; �6;2; �6;3; �6;4℄� �6;7C [�6;1; �6;2; �6;3; �6;4℄with Molien series 1 + 2�2 + �4(1� �2)4 = 1 + 6�2 + 19�4 + 44�6 + 85�8 + � � � ;
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where �6;1 = a2 + 4bd+ 82 � 12d+ 5d2;�6;2 = ab� d;�6;3 = a� bd� 42 + 6d� 2d2;�6;4 = ad+ b2 � 4bd� 32 + 8d� 3d2;�6;5 = ad� 2bd+ 2d� d2;�6;6 = b� bd� 32 + 5d� 2d2;�6;7 = abd� abd2 � 3a2d+ 5ad2 � 2ad3 � 2b2d+ 2b2d2 + 8b2d�13bd2 + 5bd3 � 63d+ 132d2 � 9d3 + 2d4:3 Constrution of Isodual LattiesIn this setion we reall some basi notions on latties and reall the basi onstrution oflatties from odes. For details, we refer to [4℄, [1℄.An n-dimensional lattie � in Rn is the set of integral linear ombinations of n linearlyindependent vetors v1; : : : ; vn. An n by nmatrix whose rows generate � is alled a generatormatrix G of �. The determinant of � is the determinant of the Gram matrix GGT of agenerator matrix G of �. The dual lattie �� of � is given by �� := fx 2 Rnj[x; a℄ 2Z for all a 2 �g where [x; a℄ is the standard inner produt of x and a. The norm of x is[x; x℄. A lattie � is integral if � � ��. An integral lattie with � = �� is alled unimodular.The minimum norm of � is the smallest norm among all nonzero vetors of �. The thetaseries ��(q) of � is the formal power series��(q) := Xx2� q[x;x℄ = 1Xm=0Nmqm;where Nm is the number of the vetors of norm m. The kissing number is the seondoeÆient of the theta series.lattie A lattie is said to be isodual if it is isometri to its dual lattie. This is anatural generalization of unimodular latties, introdued in [5℄ where isodual latties insmall dimensions are studied.In [9℄, H.-G. Quebbemann has introdued the notion of modular lattie of level l. Suh alattie L is araterized by the following property: both L and plL� are even latties, andare isometri. Famous examples are the Coxeter-Todd lattie K12 of level 3 and dimension12, and the Barnes-Wall lattie BW16 of level 2 and dimension 16. The resaled lattiel�1=4L is then isodual.isodual 6



Here we use a generalized \Constrution A" to onstrut isodual latties from our isodualodes. Constrution A was �rst de�ned in [4℄ (see also [1℄ for the ase of Z2k-odes).First de�ne the redution modulo 2k � : Zn ! Zn2k by�(x1; : : : ; xn) := (x1 (mod 2k); : : : ; xn (mod 2k))We set A2k(C) := 1p2kfx 2 Zn j �(x) 2 Cg:Lemma 3.1 If C is an isodual ode over Z2k with minimum Eulidean weight dE thenA2k(C) is an isodual lattie with minimum norm minfdE=2k; 2kg.Proof. It is not diÆult to show that A2k(C?) = A2k(C)� for a ode C over Z2k. A ode-equivalent map from C to C? indues an isometry map from A2k(C) to A2k(C?). ThusA2k(C) is isodual. The assertion about the minimum norm follows from [1℄. 24 Double Cirulant Codes and Their LattiesIn this setion, we investigate the highest minimum norm of isodual latties onstrutedfrom double irulant odes of length up to 24 over Z4 and Z6. For example, onsider thedouble irulant ode D4;6 of length 6 over Z4 with 210 as the �rst row of R. This odehas minimum Eulidean weight 6. Thus the isodual lattie A4(D4;6) onstruted from D4;6by Constrution A4 has minimum norm 32 . The highest minimum norm among all knownsix-dimensional isodual latties is 1 +q13 (= 1:5773 : : :) [5℄.In Table 1, we present the �rst row of R or R0 for double irulant odes over Z4 withthe highest minimum Eulidean weight among all double irulant odes for eah length upto 24. This was done by onstruting all double irulant odes of that length. If the ode isbordered, the values of (�; �; ) are also given. Codes are given only for length 10 � 2n � 24beause densest isodual latties in dimensions up to 4 and 8 have been given in [5℄. Thefourth olumn of the table gives the minimum Eulidean weight dE of the ode.It is known in [10℄ that the highest minimum Eulidean weight among all self-dual odesof lengths 10 and 16 over Z4 are 4 and 8, respetively. D4;10 is an isodual ode of length 10with minimum Eulidean weight 8 and D4;16 is an isodual ode of length 16 with minimumEulidean weight 9. Thus we have the following:Proposition 4.1 There exist isodual odes over Z4 whih have a higher minimum Eulideanweight than any self-dual ode of the same length.
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Table 1: Double Cirulant Codes over Z4Code Length n First Row dED4;10 10 22100 8D4;12 12 221000 8D4;14 14 2210000 8D4;16 16 2312100 (�; �; ) = (1; 2; 2) 9D4;18 18 211200000 9D4;20 20 2112000000 10D4;22 22 31321121000 12D4;24 24 31321121000 (�; �; ) = (1; 2; 2) (self-dual) 16Double irulant odes over Z6 are given in Table 2. The �rst row of R or R0 for odeswith the highest minimum Eulidean weight are given for eah length up to 24. If the odeis bordered, the values of (�; �; ) are also given. The fourth olumn of these tables givesthe minimum Eulidean weight dE of the ode.Table 2: Double Cirulant Codes over Z6Code Length n First Row dED6;10 10 42100 10D6;12 12 513010 12D6;14 14 3321000 12D6;16 16 41431000 14D6;18 18 134010000 14D6;20 20 3013101000 16D6;22 22 35530010000 16D6;24 24 24313412010 (�; �; ) = (3; 2; 2) (self-dual) 18We next use these double irulant odes to onstrut dense isodual latties by Constru-tion A2k. Let �(D2k;2n) be the minimum norm of the isodual lattie A2k(D2k;2n) onstrutedfrom the double irulant ode D2k;2n. Let �(2n) := maxf�(D2k;2n) j k = 2; 3g, that is, �(2n)is the maximal number among the minimum norm of the latties A2k(D2k;2n) where k = 2; 3for eah dimension 2n.In Table 3, we list �(2n) for 10 � 2n � 24, and the third olumn gives the dou-ble irulant ode whih provides �(2n). The fourth and �fth olumns list the highestminimum norms �K(2n) and �U(2n) among known isodual latties and unimodular lat-ties, from [5℄, [11℄ and [3℄, respetively. Note that information on the highest minimum8



norm among isodual latties in dimensions 17 to 22 is laking in [5℄. In that range ofdimensions, the best known isodual latties are in the family of modular latties of levell. If suh a lattie has minimum norm �, then the orresponding idodual one has mini-mum norm �=pl. We refer to the survey [11℄ for information on latties with parameters:(n; l; �) = (12; 3; 4); (14; 3; 4); (16; 2; 4); (18; 3; 4); (20; 7; 8).in lattieTable 3: The Minimum Norm for Isodual Latties from Double Cirulant CodesDimension 2n �(2n) Code �K(2n) �U (2n)10 2 D4;10 2 112 2 D6;12 p16=3 214 2 D4;14;D6;14 p16=3 216 73 D6;16 p8 218 73 D6;18 p16=3 220 73 D6;20 8=p7 222 3 D4;22 p16=3 224 4 D4;24 4 4From Table 3, note the following:Proposition 4.2 There is a 22-dimensional isodual lattie with minimum norm 3.It appears that A4(D4;22) is the �rst example of an isodual lattie with minimum norm 3in dimension 22. Isodual latties in dimensions 23 and 24 with minimum norm 3 are known,namely the shorter Leeh lattie and the odd Leeh lattie. Thus A4(D4;22) is the smallestknown isodual lattie with minimum norm 3.The theta series �A4(C)(q) of the lattie onstruted from a ode C over Z4 an beobtained from the symmetrized weight enumerator sweC(a; b; ) of C by replaing a; b and respetively by Px24Z qx2=4, Px24Z+1 qx2=4 and Px24Z+2 qx2=4. The symmetrized weightenumerator sweD4;22 and the theta series �A4(D4;22)(q) of A4(D4;22) are given below.sweD4;22 = a22 + 1232a10b12 + 5632a7b15 + 2464a6b16 + 616a13b8+ 14784a10b11+12320a9b12+ 14784a5b16+ 2464a13b72 + 4004a12b82 + 55440a8b122+118272a5b152 + 36960a4b162 + 14784a11b83 + 221760a8b113 + 147840a7b123+49280a3b163 + 29568a11b74 + 40656a10b84 + 258720a6b124 + 197120a3b154+36960a2b164 + 83160a9b85 + 620928a6b115 + 310464a5b125 + 14784ab165+110880a9b76 + 124740a8b86 + 258720a4b126 + 39424ab156 + 2464b1669



+176a157 + 140800a7b87 + 443520a4b117 + 147840a3b127 + 330a148+140800a7b78 + 123200a6b88 + 55440a2b128 + 83160a5b89 + 73920a2b119+12320ab129 + 66528a5b710 + 41580a4b810 + 1232b1210 + 672a1111+14784a3b811 + 1344b1111 + 616a1012 + 9856a3b712 + 3696a2b812+616ab813 + 352ab714 + 44b814 + 176a715 + 77a616;�A4(D4;22)(q) = 1 + 2464q3 + 45056q15=4 + 43164q4 + 394240q5+3198976q23=4 + 2444288q6 + 11470272q7 + 63393792q31=4+43584860q8 + 141182976q9 + 629342208q39=4 + 404963328q10+1052468320q11 + 4066979840q47=4 + 2512336288q12+5583148032q13 + � � � :De�ne the Eulidean weight enumerator EC(s) of a ode C as EC(s) := P2C swtE(). Tosave spae, we only list the �rst few terms in the Eulidean weight enumerators for D6;18and D6;20. Note that A6(D6;18) and A4(D4;22) have higher minimum norms than �K(18) and�K(22), respetively.ED6;18(s) = 1 + 288s14 + 792s16 + 1338s18 + 3618s20 + 7380s22 + 13134s24 + 23094s26+37188s28 + 61116s30 + 84636s32 + 126846s34 + 174719s36 + 214380s38+287478s40 + 354702s42 + 394758s44 + 468576s46 + 536778s48 + 548208s50+603450s52 + 620793s54 + 607104s56 + 626058s58 + 581064s60 + 549414s62+519462s64 + 456912s66 + 408510s68 + 357174s70 + 293511s72 + � � � ;�A6(D6;18)(q) = 1 + 288q7=3 + 810q8=3 + 1356q3 + 4032q10=3 + 8298q11=3+15762q4 + 30870q13=3 + 54216q14=3 + 95604q5 + 160218q16=3+266112q17=3 + 414794q6 + 627786q19=3 + 980604q20=3 + � � � :As desribed in Setion 2, the supplemented quadrati residue ode QR17 over Z4 oflength 17 has minimum Eulidean weight 8. Thus this ode gives an isodual lattie withminimum norm 2 in dimension 17.5 Classi�ation of Double Cirulant Codes of Length22 and Some 3-DesignsIn this setion, we lassify the double irulant odes of length 22 over Z4 with minimum Eu-lidean weight 12. We also show that some of these odes ontain 3-designs with parameters(22; 7; 4), (22; 8; 12), (22; 9; 84) and (22; 10; 156).10



The following lemma is useful in lassifying double irulant odes.Lemma 5.1 If the matrix ( I ; A ) generates an isodual ode C over Z2k, then the matries( I ; �A ), ( I ; AT ) and ( I ; �AT ) generate isodual odes whih are equivalent to C.Proof. Sine C is isodual, the matries ( I ; A ) and ( I ; �AT ) generate equivalentodes. Obviously ( I ; A ) and ( I ; �A ) also generate equivalent odes. 2By exhaustive searh, we have found all distint double irulant odes of length 22over Z4 with minimum Eulidean weight 12. This was done by onsidering all 11 by 11(resp. 10 by 10) irulant matries over Z4 for pure (resp. bordered) double irulant odes.Lemma 5.1 establishes the equivalene of a large number of these odes. To save spae,Table 4 lists only those odes whih must be heked further for equivalene to ompletethe lassi�ation. The symmetrized weight enumerators (olumn SWE) are also identi�edin the table, and these are listed at the end of this setion. Note that C1;1 is the same asD4;22. Table 4: Double Cirulant Codes of Length 22Code First row of R SWE Code First row of R SWEC1;1 31321121000 sweD4;22(a; b; ) C1;2 21330112100 sweD4;22(a; b; )C1;3 20311231010 sweD4;22(a; b; ) C1;4 32021310110 sweD4;22(a; b; )C1;5 31032201110 sweD4;22(a; b; ) C1;6 23312110100 sweD4;22(a; b; )C1;7 23211031100 sweD4;22(a; b; ) C1;8 23011211300 sweD4;22(a; b; )C1;9 22131031010 sweD4;22(a; b; ) C1;10 20121303110 sweD4;22(a; b; )C1;11 13212223110 sweD4;22(a; b; ) C1;12 22333231210 sweD4;22(a; b; )C1;13 31231122210 sweD4;22(a; b; ) C1;14 22123121310 sweD4;22(a; b; )C1;15 21233211120 sweD4;22(a; b; ) C2;1 31333321111 sweC2;1(a; b; )C2;2 33113332111 sweC2;1(a; b; ) C2;3 31313133211 sweC2;1(a; b; )C2;4 31133133211 sweC2;1(a; b; ) C2;5 33131231311 sweC2;1(a; b; )C3;1 33331231111 sweC3;1(a; b; ) C3;2 31313332111 sweC3;1(a; b; )C3;3 32133313111 sweC3;1(a; b; ) C3;4 33131133211 sweC3;1(a; b; )C3;5 32133131311 sweC3;1(a; b; ) C4;1 33313213111 sweC4;1(a; b; )Let R and R0 be two square matries of the same order. If there are (0; 1;�1)-monomialmatries P and Q suh that R = PR0Q, then ( I ; R ) and ( I ; R0 ) generate equiv-alent odes over Z2k. For the odes in Table 4, let Ri;j be R in the generator matrixof Ci;j. Permutation matries Pj and Qj an be found suh that R1;j = PjR1;j+1Qj forj = 1; 2; 3; 4; 6; 7; 8; 9; 11; 12; 13 and 14. Thus the odes C1;i (i = 1; 2; 3; 4; 5) are equivalent,the odes C1;i (i = 6; 7; 8; 9; 10) are equivalent, and the odes C1;i (i = 11; 12; 13; 14; 15) are11



equivalent. Similarly, it an be shown that the odes C2;i (i = 1; 2; 3; 4; 5) are equivalent andthe odes C3;i (i = 1; 2; 3; 4; 5) are equivalent. Note that C4;1 is the unique double irulantode with sweC4;1(a; b; ).It is now shown that C1;1, C1;6 and C1;11 are inequivalent using the methods in [6℄ and [7℄.Let C be a ode of length 2n. Let Mt := (mij) be the At by 2n matrix with rows omposedof the odewords of Hamming weight t in C, where Ai denotes the number of odewords ofHamming weight i in C. For an integer k (1 � k � 2n), let nt(j1; : : : ; jk) be the number ofr (1 � r � At) suh that mrj1 � � �mrjk 6= 0 over Z for 1 � j1 < � � � < jk � 2n. We onsiderthe set St := fnt(j1; : : : ; jk)j for any k distint olumns j1; : : : ; jk g:Let Mt(k) and mt(k) be the maximal and minimal numbers in St, respetively. Sine twoequivalent odes over Z4 have the same values for St, these numbers are invariant under theequivalene of odes. Table 5 gives some values of Mt(k) and mt(k) for odes C1;1, C1;6 andC1;11.Now let i;1; i;2; : : : ; i;Ai be the odewords of Hamming weight i in C. Letdi(j) := #fwt(i;k1 � i;k2) = j j 1 � k1 < k2 � Aig;where wt(x) denotes the Hamming weight of a vetor x. The numbers di(j) are also invariantunder the equivalene of odes for any i and j. Table 6 gives some values of di(j) for odesC1;1 and C1;6. Table 5: Inequivalene values for C1;1 and C1;11Code M9(3) m9(3) M9(4) m9(4) M10(3) m10(3) M10(4) m10(4)C1;1 168 168 60 44 312 312 124 108C1;6 168 168 60 44 312 312 124 108C1;11 168 168 60 42 312 312 126 108From Tables 5 and 6, C1;1, C1;6 and C1;11 are inequivalent, and this ompletes the las-si�ation.Proposition 5.2 There are exatly six inequivalent double irulant odes of length 22 overZ4 with minimum Eulidean weight 12.Remark. We denote the six inequivalent double irulant odes C1;1, C1;6, C1;11, C2;1, C3;1and C4;1 by C122; : : : ; C522 and C622, respetively.A t-(v; k; �) design D is a set of v points with a olletion of k-subsets alled bloks,so that any t-points are ontained in exatly � bloks. The inidene matrix of D is the12



Table 6: Inequivalene values for C1;1 and C1;6Code d9(0) d9(1) d9(2) d9(3) d9(4) d9(5) d9(6) d9(7)C1;1 0 0 0 0 0 0 0 8624C1;6 0 0 0 0 0 0 0 8624Code d9(8) d9(9) d9(10) d9(11) d9(12) d9(13) d9(14) d9(15)C1;1 7700 143616 219824 657712 837760 761376 1215896 509168C1;6 7700 144672 219384 655952 837320 762432 1217480 508640Code d9(16) d9(17) d9(18) d9(19) d9(20) d9(21) d9(22)C1;1 292688 85888 1408 0 0 0 0C1;6 292072 86064 1320 0 0 0 0matrix M = (mij) with mij = 1 if the j-th point is ontained in the i-th blok and mij = 0otherwise. A design may be identi�ed by its inidene matrix. Two designs are isomorphiif the inidene matrix of one design an be obtained from the inidene matrix of the otherby permuting its rows and olumns.Corollary 5.3 The supports of Hamming weights 7, 8, 9 and 10 in C1;1, C1;6 and C1;11 form3-designs with parameters (22; 7; 4), (22; 8; 12), (22; 9; 84) and (22; 10; 156), respetively.Proof. Let C be one of C1;1, C1;6 and C1;11. The residue ode C(1) and the torsion odeC(2) of C are f (mod 2) j  2 Cg and f=2 j  � 0 (mod 2);  2 Cg, respetively. It iseasy to see that C(1) = C(2) and C(1) is the binary isodual [22; 11; 7℄ ode B whih hasthe Mathieu group M22 as its automorphism group. From sweC(a; b; ), the odewords ofHamming weights 7 and 8 are in C(2). It is known that the odewords of Hamming weights7 and 8 in B form a 3-(22; 7; 4) design and a 3-(22; 8; 12) design, respetively. Thus thesupports of Hamming weights 7 and 8 in C form a 3-(22; 7; 4) design and a 3-(22; 8; 12)design, respetively.Let x be a odeword in C of Hamming weight 9 (resp. 10). Then it follows fromsweC(a; b; ) that 3x is a odeword of Hamming weight 9 (resp. 10), but 2x is not. ThusTable 5 shows that the supports of Hamming weight 9 and 10 in C form a 3-(22; 9; 84) designand a 3-(22; 10; 156) design without repeated bloks, respetively. 2Now we prove that the odes Ci22 (i = 1; : : : ; 6) are losely related to extremal Type IIodes of length 24 and that A4(Ci22) are losely related to the Leeh lattie where Ci22 arethe six inequivalent double irulant odes in Proposition 5.2.Let C22 be any of Ci22 (i = 1; : : : ; 6).Lemma 5.4 Let G22 be the generator matrix ( I ; R22 ) of C22. Then R22RT22 = 3J � Iwhere J is the all-ones matrix. 13



The following matrix G23 := 0BBBBB� 1G22 ...12 � � � 2 2
1CCCCCA ;generates a self-orthogonal ode C23 of length 23. Sine C22 does not ontain the all-2'svetor (2; 2; 2; : : : ; 2), C23 is self-dual. The symmetrized weight enumerator of the self-orthogonal ode C 023 generated by the �rst eleven rows in G23 an be obtained from thesymmetrized weight enumerator of C22, sine the Eulidean weight of the odewords in C 023must be divisible by 4. For any vetor x over Z4, n0(x + 2j) = n2(x), n1(x + 2j) = n3(x),n2(x + 2j) = n0(x) and n3(x + 2j) = n1(x) where 2j is the all-2's vetor. Hene thesymmetrized weight enumerator of C23 an be obtained diretly from sweC22(a; b; ). Theminimum Eulidean weight of C23 is 12. The following matrixG24 := 0BBBBB� 10G22 ...101 � � � 1 11
1CCCCCA ;generates a Type II ode C24 of length 24, i.e., a self-dual ode with all Eulidean weightsdivisible by 8.Proposition 5.5 C24 is a Type II ode of length 24 with minimum Eulidean weight 16,and so is extremal.Proof. Let C 024 be the bordered double irulant ode with R0 = R22 and borders(�; �; ) = (2; 3; 1). It is easy to see that C 024 is a Type II ode. All extremal Type IIdouble irulant odes of length 24 have been lassi�ed in [6℄, and the list in [6℄ shows thatC 024 is an extremal Type II double irulant ode. The lemma follows from the fat that C24and C 024 are equivalent. 2Remark. For odes C122, C222 and C322 of length 22, the supports of Hamming weight 10 inthe orresponding bordered double irulant odes of length 24 form 5-(24; 10; 36) designs[6℄. The 3-(22; 9; 84) and 3-(22; 10; 156) designs found in Corollary 5.3 are the derived andresidual designs, respetively, of the 4-(23; 10; 84) designs whih are the residual designs ofthe above 5-designs.By the above proposition, A4(C23) (resp. A4(C24)) is the unique extremal unimodularlattie in dimension 23 (resp. 24), whih is alled the shorter Leeh lattie (resp. the Leehlattie). Thus the 22-dimensional isodual latties A4(C22) are related to the Leeh lattie.14



sweC2;1 = a22 + 1408a10b12 + 7040a6b16 + 5632a2b20 + 176a13b8+ 22528a10b11+8448a9b12+ 28160a5b16+ 11264ab20+ 176a16b42 + 3872a12b82+43648a8b122 + 77440a4b162 + 5632b202 + 352a15b43+13728a11b83 + 337920a8b113 + 107008a7b123 + 112640a3b163 + 55a184+1584a14b44 + 44704a10b84 + 191488a6b124 + 77440a2b164 + 2816a13b45+84304a9b85 + 946176a6b115 + 242176a5b125 + 28160ab165 + 8272a12b46+120384a8b86 + 191488a4b126 + 7040b166 + 13728a11b47 + 141504a7b87+675840a4b117 + 107008a3b127 + 330a148 + 18128a10b48 + 120384a6b88+43648a2b128 + 22528a9b49 + 84304a5b89 + 112640a2b119 + 8448ab129+18128a8b410 + 44704a4b810 + 1408b1210 + 1024a1111 + 13728a7b411+13728a3b811 + 2048b1111 + 462a1012 + 8272a6b412 + 3872a2b812+2816a5b413 + 176ab813 + 1584a4b414 + 352a3b415 + 165a616+176a2b416 + 11a220sweC3;1 = a22 + 1056a10b12 + 7040a6b16 + 5632a2b20 + 528a13b8+ 22528a10b11+7744a9b12+ 28160a5b16+ 11264ab20+ 88a16b42 + 4576a12b82+44704a8b122 + 77440a4b162 + 5632b202 + 176a15b43 + 13024a11b83+337920a8b113 + 109824a7b123 + 112640a3b163 + 55a184 + 1672a14b44+42592a10b84 + 190784a6b124 + 77440a2b164 + 3168a13b45 + 83952a9b85+946176a6b115 + 237952a5b125 + 28160ab165 + 8536a12b46 + 121792a8b86+190784a4b126 + 7040b166 + 13904a11b47 + 142912a7b87 + 675840a4b117+109824a3b127 + 330a148 + 17864a10b48 + 121792a6b88 + 44704a2b128+21824a9b49 + 83952a5b89 + 112640a2b119 + 7744ab129 + 17864a8b410+42592a4b810 + 1056b1210 + 1024a1111 + 13904a7b411 + 13024a3b811+2048b1111 + 462a1012 + 8536a6b412 + 4576a2b812 + 3168a5b413+528ab813 + 1672a4b414 + 176a3b415 + 165a616 + 88a2b416 + 11a220sweC4;1 = a22 + 704a10b12 + 7040a6b16 + 5632a2b20 + 880a13b8+ 22528a10b11+7040a9b12+ 28160a5b16+ 11264ab20+ 5280a12b82 + 45760a8b122+77440a4b162 + 5632b202 + 12320a11b83 + 337920a8b113 + 112640a7b123+112640a3b163 + 55a184 + 1760a14b44 + 40480a10b84 + 190080a6b124+77440a2b164 + 3520a13b45 + 83600a9b85 + 946176a6b115 + 233728a5b125+28160ab165 + 8800a12b46 + 123200a8b86 + 190080a4b126 + 7040b166+14080a11b47 + 144320a7b87 + 675840a4b117 + 112640a3b127 + 330a148+17600a10b48 + 123200a6b88 + 45760a2b128 + 21120a9b49 + 83600a5b89+112640a2b119 + 7040ab129 + 17600a8b410 + 40480a4b810 + 704b1210+1024a1111 + 14080a7b411 + 12320a3b811 + 2048b1111 + 462a1012+8800a6b412 + 5280a2b812 + 3520a5b413 + 880ab813 + 1760a4b414+165a616 + 11a220: 15



6 Uniqueness of the six latties A4(C i22)Let Ci22 (i = 1; : : : ; 6) be the six inequivalent double irulant odes in Proposition 5.2.In this setion, we show that the latties A4(Ci22) are all isometri to some lattie L22onstruted below. L22 is onstruted from the unique binary self-dual [22; 11; 6℄ ode (alsoalled the shorter Golay ode [10℄) in a very similar way as the Leeh lattie is onstrutedfrom the binary Golay ode. L22 is not unimodular, but has a higher minimum norm thanthe unimodular latties, and its automorphism group is not larger than the group arisingfrom the automorphism group of the ode.Let C be the unique binary self-dual [22; 11; 6℄ ode, and let U22 := A2(C) be the uni-modular lattie onstruted from C by Constrution A. Reall that the automorphism groupof the ode C is the group M22:2. Now onsider the sublattieN22 := B2(C) := f(x1; : : : ; x22) 2 U22 j 22Xi=1 xi � 0 (mod 4)gof index 2 in U22 obtained by Constrution B (see [3℄ for Construtions A and B). N22 nolonger ontains roots and has minimum norm 3. SetL22 := N22 + Zxwhere x = (1=2; : : : ; 1=2; 5=2)� 2s, the oordinates of s are 0 or 1, and s (mod 2) belongsto the shadow of C (see [4℄ for the shadows of binary self-dual odes).Theorem 6.1 Let L22 and U22 be as above. Then we have:(1) L22 is an isodual lattie with minimum norm 3, and Aut(L22) ' f�1g11:M22:2 is asubgroup of the automorphism group of the lattie U22.(2) Any 22-dimensional isodual lattie of minimum norm 3, ontaining an integral lattieof determinant 4, is isometri to L22.Proof. Let ei := (0; : : : ; 0; 1; 0; : : : ; 0) for all i, where the 1 stands at oordinate i. Clearly,Aut(U22) = f�1g22:Aut(C) sine the only roots of U22 are �2ei. Let e := (1; : : : ; 1) =P22i=1 ei. Then N22 = (U22)e := fx 2 U22 j [u; e℄ � 0 (mod 2)g and N�22 = U22+Ze=2. Sinee=2 has norm 11=42, the minimum norm of N�22 is 2 and its norm 2 vetors are the ones inU22. Hene Aut(N22) indues a permutation of them and Aut(N22) ' f�1g11:Aut(C) sinethe sign hanges preserving N22 are in one-to-one orrespondene with the elements of C.We onsider latties of the form L := N22 + Zw=2, where w 2 N22 is de�ned modulo2N22. We searh for latties L suh that L and L� both have minimum norm 3.16



Lemma 6.2 There is a unique lass w 2 N22=2N22 suh that L and L� have minimumnorm 3.Proof. Sine �4ei � 4ej and �8ei belong to 2N22, the 21 �rst oordinates of w an betaken in f0;�1; 2g while w22 2 f0;�1;�2;�3; 4g. If one oordinate wi of w is even, sine[2ei; w=2℄ = wi=2 2 Z, 2ei 2 L� whih ontradits the ondition that the minimum norm ofL� is 3. Hene we an assume wi 2 f�1g for 1 � i � 21 and w22 2 f�1;�3g. Moreover, ifw22 = �1, w2 = 11 and the minimum norm of L is smaller than 3. Hene w22 = �3, andthe minimum norm of L is 3 if and only if w is minimal in its lass w+2N22. If this is so, wenotie that sine w2=4 = 15=43, the minimal vetors of L will be the ones of N22, and henethat Aut(L) � Aut(N22). For onveniene, we assume now that w22 2 f3; 5g. Hene we anwrite w = w(u) := e � 2Pi2u ei + 4e22 where u 2 F 222 is identi�ed with its set of non-zerooordinates. It is worth notiing here that w(u) 2 N22 if and only if 2wtH(u) � 22 (mod 4)and w(u) � w(u1) (mod 2N22) if and only if u � u1 (mod C) and wtH(u) � wtH(u1)(mod 4). 2Lemma 6.3 Let w be as above. The lass w + 2N22 has minimum norm 15 if and only ifu belongs to the shadow of C.Proof. As mentioned previously, the minimum norm of the lass w+2N22 is lower than 15if and only if it ontains an element with oordinates �1, i.e. of the type w0 = e� 2Pi2u0 eiwhere u0 2 F 222 . Then w0 2 N22 if and only if wtH(u0) � 1 (mod 2), and w0 2 w + 2N22if and only if Pi2u0 ei �Pi2u ei + 2e22 2 N22. This last ondition is equivalent to the twoonditions: u0 + u 2 C and wtH(u0) + wtH(u) + 2 � 0 (mod 4). By setting  := u0 + u,we get  2 C and wtH() + 2 � u � 2 (mod 4). Hene, suh a odeword does not exist ifand only if u is in the shadow of C. Note that in this ase, 2wtH(u) � 22 (mod 8), whihinsures that w 2 N22. Now two elements of the shadow are ongruent modulo C and de�nea single lass modulo 2N22 from previous remarks. 2We have proved the two lemmas, and the fat that the minimum norm of L22 is 3. Wehave already seen that Aut(L22) is a subgroup of Aut(N22). Sine the lass of N22=2N22 isthe unique one suh that L and L� have minimum norm 3, it is preserved by Aut(N22) andhene we have equality.Now we prove that L�22 has minimum norm 3. Sine L22 = N22 +Zw=2, (w = w(u), u inthe shadow of C), L�22 = (N�22)w = (U22)w [ (U22 + e=2)w. Elements of norm lower than 3 inthis lattie an only have the form x = e=2�Pi2u0 ei with u0 2 C and the same omputationshows that [x; w℄ � wtH(u)=2 + u0 � u + 1 � 1 (mod 2) and hene that x does not belongto L�22. 17



Let P be a 22-dimensional lattie of determinant 1 suh that P and P � have minimumnorm 3, and ontaining an integral sublattie N with index 2. We shall prove that P isisometri to L22. Sine N is integral, the quotient group N�=N has order 4 and ontainsa subgroup of order 2 orresponding to an integral lattie U . Hene N � U � N� and Uis unimodular. The lattie U ontains at most one norm 1 vetor and an ontain norm 2vetors only if they are pairwise orthogonal (beause, if x1; x2 2 U , x1 � x2 2 N whih hasminimum norm 3). A look at the lassi�ation of 22-dimensional unimodular latties (f. [3,Chapter 16℄) shows that the only possibility is U ' U22. Hene N ' N22 whih is the onlysublattie (up to isometry) of index 2 of U22 not ontaining roots. The previous disussionshows then that P ' L22.The last assertion to prove is that L22 is isodual. Sine L�22 ontains Uw whih is anintegral sublattie of index 2, we an take P = L�22 and onlude that L�22 ' L22. Thereforethe theorem follows. 2Remark. More preisely, the latties Uw and N22 are exhanged by an automorphism ofU of type (x1; : : : ; x22)! (�1x1; : : : ; �22x22) where �i = �1, and the �1 de�nes the supportof an element of the shadow of C. Suh an automorphism also exhanges L22 and its duallattie.Corollary 6.4 For all i = 1; : : : ; 6, A4(Ci22) is isometri to L22.Proof. We only have to prove that these latties ontain integral sublatties of index 2.These latties A4(Ci22) are generated by the rows of matries of the formG := 12 0� I RO 4I 1A ;where R is irulant matries and the �rst rows are listed in Table 4. R = (Ri;j) has integraloeÆients and by Lemma 5.4 RRT = 3J � I.Let r1; : : : ; r11 be the �rst eleven rows of G and let s1; : : : ; s11 be the last eleven rows ofG. We have [si; sj℄ = 4Æi;j, [si; rj℄ = Rj;i and [ri; rj℄ = 3=4. Hene, one an verify that thesublattie of index 2 spanned by fri � rj; si; g1�i;j�11 is integral. 2Aknowledgment. The third author would like to thank Manabu Oura for helpful on-versations.Referenes[1℄ E. Bannai, S.T. Dougherty, M. Harada and M. Oura, \Type II odes, even unimodularlatties and invariant rings," IEEE Trans. Inform. Theory, (to appear).18
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