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Harmoni
 weight enumerators of nonbinary 
odesand Ma
Williams identitiesChristine Ba
ho
Abstra
t. We de�ne harmoni
 weight enumerators aso
iated to 
odes de�nedover a group alphabet F of size q. They generalize the 
lassi
al Hammingweight enumerator and are asso
iated to the de
omposition of the spa
e L(Fn)under the a
tion of the group Snq�1 o Sn. They satisfy a Ma
Williams typeidentity, whi
h leads to relative invariant polynomials in the 
ase of self-dual
odes. Appli
ations to the study of additive quaternary 
odes are developed.

1. Introdu
tionThis paper extends the ideas and results of [1℄ to the 
ase of non-binary linear
odes. Let C be a linear 
ode of length n over an alphabet F whi
h is an abeliangroup of size q. We introdu
e polynomials whi
h generalize the Hamming weightenumerator of the 
ode, using \harmoni
 fun
tions", after the work of C. Dunkl onharmoni
 analysis for the group Snq o Sn and of H. Tarnanen, J. Aaltonen, J.-M.Goethals on the non-binary Johnson s
heme (in the setting of asso
iation s
hemes).We prove a Ma
Williams type identity for these polynomials (Theorem 4.1).This identity involves an operator T a
ting on harmoni
 fun
tions; in Se
tion 5 weexamine the 
ase when T is homotheti
. We prove that it 
orresponds to the binary,ternary and quaternary 
odes. In Se
tion 6, we study more pre
isely the ternaryand quaternary self-dual 
odes, be
ause the harmoni
 weight enumerators are inthese 
ases relative invariant polynomials. In Corollary 6.1, 6.2, we extend resultsdue to P. Delsarte on the existen
e of generalized designs on the set of 
odewordsof �xed Hamming weight of extremal 
odes. Se
tion 7 is devoted to the appli
ationof this tool to the 
omputation of interse
tion numbers. It makes use of the zonalfun
tions asso
iated to the subgroup Snq�1 o Sn, whi
h are expressed in terms ofKrawt
houk and Hahn polynomials. We work out some examples in the 
ase ofeven self-dual additive quaternary 
odes.1991 Mathemati
s Subje
t Classi�
ation. Primary 94B05; Se
ondary 05B05, 05E35.
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2 CHRISTINE BACHOC2. Group representation and the non-binary Johnson s
hemeIn this se
tion we re
all some notations and results on the Hamming and John-son s
hemes previously settled by C. F. Dunkl ([6℄) in the language of group repre-sentations and by Tarnanen, Aaltonen and Goethals ([14℄) in terms of asso
iations
hemes.Let F be a �nite alphabet of size q � 2. We denote by F := fa0; : : : ; aq�1g itselements. The group of permutations on q elements Sq a
ts on F by ai� = a��1(i).We spe
ify a series of subgroups of Sq denoted f1g � � � � � Sq�1 � Sq, whereSq�i is the subgroup of Sq �xing a0; : : : ; ai�1 and is isomorphi
 to the group ofpermutations on q � i elements.Let L(F ) be the spa
e of 
omplex valued fun
tions on F , equiped with thes
alar produ
t < f; g >= 1q Xx2F f(x)g(x):It is endowed with the left a
tion of Sq given by (�:f)(x) = f(x�). The de
ompo-sition into irredu
ible Sq-modules of L(F ) is given byL(F ) = C 1 ? L1(1)where 1 is the all-one fun
tion. We set z0 := 1 and we de�ne by indu
tion anelement zi in Li, and a subspa
e Li+1 of L(F ) su
h that the de
omposition of Liinto Sq�i-irredu
ible modules, equals C zi ? Li+1, with trivial a
tion on C zi . Wenormalize as in [6℄ the zi by (zi; zi) = 1=(q � 1). Note that the zi are determinedfrom the above properties up to the multipli
ation by a 
omplex number of module1. The re
ursive 
omputation of their values shows that they 
an be assumed tobe real-valued, and hen
e are uniquely determined up to a sign. In parti
ular, we�x z1(a0) = 1 and z1(ai) = �1=(q� 1) for i � 1. We shall make frequent use of thefollowing properties: for i � 2, zi(a0) = 0 and, for i � 1, Pq�1j=0 zi(aj) = 0.The fun
tions zi are expli
itly realized in [6℄ as 
oordinate fun
tions on F , seenas the regular simplex in Rq�1 .Let X := Fn. The a
tion of Sn on X given by(x1; : : : ; xn):� = (x�(1); : : : ; x�(n));
ombined with the a
tion of Sq on F gives rise to a transitive a
tion of the groupG := Snq oSn on X . We denote by H the subgroup of G stabilizing (a0; : : : ; a0). Itis isomorphi
 to Snq�1 o Sn. Again we 
onsider the spa
e L(X) together with theindu
ed a
tion of G (note that it is the representation of G indu
ed by the trivialrepresentation on H), and the hermitian produ
t < f; g >= 1jXjPx2X f(x)g(x).Following [6℄, let, for all u 2 f0; 1; : : : ; q � 1gn, zu 2 L(X) be de�ned byzu(x) := nYi=1 zui(xi):If juj denotes the number of non-zero 
oordinates of u, then we have< zu; zv >=Æu;v(q�1)�juj. From (1), the subspa
e Pm spanned by fzu j juj = mg is G-invariantand



HARMONIC WEIGHT ENUMERATORS 3L(X) = �nm=0Pm(2)is the de
omposition of L(X) into G-irredu
ible subspa
es.We shall make use of the des
ription given in [6℄ of the de
omposition of ea
hPm as H-modules. Moreover, the spa
es Pm are linked to the Johnson s
hemesvia the following: for b 2 X , let jbj be the Hamming weight i.e. the numberof 
oordinates of b not equal to a0, and let S(b) be its support, i.e. the set of
oordinates i su
h that bi 6= a0. LetUm := fb 2 X j jbj = mg:Note that the set Um is one orbit under the a
tion of H . Then, as an H-module,the spa
e L(Um) is isomorphi
 to Pm via the map: � : Pm ! L(Um) de�ned by�zu(b) = (0 if S(b) 6= S(u)zu(b) if S(b) = S(u) :Let, for 0 � l � m, Pm;l be the subspa
e of Pm spanned by the zu su
h thatui = 1 for exa
tly m� l 
oordinates, and let L(Um)l be the image of Pm;l by �. Inthe spe
ial 
ase q = 2, of 
ourse we only 
onsider the 
ase l = 0 and Pm;0 = Pm.From the fa
t that Sq�1 a
ts trivially on z1, the spa
e Pm;l is H-invariant. It isworth noti
ing that Pm;0 is the spa
e of fun
tions f su
h that f(b) only dependson S(b), and hen
e 
an be identi�ed with the 
orresponding spa
e Pm over Fn2 .If xi denotes the fun
tion de�ned by xi(b) = z1(bi), the operatord := nXi=1 ��xi
ommutes with the a
tion of H and maps Pm;l to Pm�1;l. Its adjoint operator isdenoted by d�. Then, the de
omposition of Pm into irredu
ible H-submodules isgiven by ([6℄): Pm = �ml=0 �min(m;n+l�m)k=l Pm;l;k(3)where Pm;l;k := (d�)m�k(Pk;l \ ker d):(4)In the 
ase q = 2, there is only the summand l = 0.We de�ne an in
iden
e relation between the elements of X by:x � y if xi 6= a0 ) xi = yi:An easy 
omputation shows that the operator d indu
es via the isomorphism � anoperator again denoted d:L(Um)! L(Um�1)x! (df)(x) = � Xy2Umx�y f(y):(5)



4 CHRISTINE BACHOCWe take the following notations:L(Um)l := �(Pm;l)and L(Um)(k;l) := �(Pm;l;k) = (d�)m�k(L(Uk)l \ ker d)so that L(Um) =MLm L(Um)(k;l)(6)where Lm := f(k; l) j 0 � l � k � min(m;n+ l �m)g:(7) The general notion of a design in an asso
iation s
heme has, in the 
ase of thenon-binary Johnson s
heme, the following 
ombinatorial signi�
an
e:Proposition 2.1. Let B � Um and let � :=PB2B B 2 L(Um) be the 
hara
-teristi
 fun
tion of B. The following 
onditions are equivalent:1. For all T 2 Ut, 
ardfB 2 B j T � Bg only depends on t.2. � is orthogonal to L(Um)(k;l) for all (k; l) 2 Lm, k � t, (l; k) 6= (0; 0).3. PB2B f(B) = 0 for all (k; l) 2 Lm, k � t, (l; k) 6= (0; 0).Proof. This is already proved in [13℄. Note �rst that, in the de
omposition(6), L(Um)(0;0) = C :1 is the one-dimensional subspa
e spanned by the all-one fun
-tion on Um. Let � be the 
hara
teristi
 fun
tion of an element T 2 Ut. Clearly,from the above interpretation of d : L(Um) ! L(Um�1), the property requiredin 1) is equivalent to ask that < �; (d�)m�t� >L(Um) only depends on t. But< (d�)m�t�;1 >L(Um)= �(t) < 1;1 >L(Um) only depends on t sin
e it 
ounts thenumber of x 2 Um su
h that T � x. From the de
omposition (6),� = X(k;l)2Lm;k�t(k;l)6=(0;0) �k;l + �(t)1(8)where �k;l 2 L(Um)(k;l). This shows the equivalen
e of 1) and 2). Point 3) followsfrom < �; f >L(Um)= 1=jUmjPB2B f(B).Remark 2.1. Note that this is also the notion of \generalized 
ombinatorialdesign" as introdu
ed by Delsarte in [5℄. The weaker property that the supports ofthe blo
ks hold a t-design in the 
lassi
al sense is equivalent to the orthogonality of� with the subspa
es L(Um)(k;0) for k � t (sin
e, as was already mentionned, Pk;0is the spa
e of fun
tions f su
h that f(B) only depends on S(B)).3. The alphabet F is a groupIn this se
tion we assume that the alphabet F has a stru
ture of an abeliangroup (F;+), for whi
h a0 = 0. We assume that F is endowed with a non degene-rated symmetri
 bilinear map F � F ! (C � ;�)(x; y)! (x; y)(9)



HARMONIC WEIGHT ENUMERATORS 5The 
hoi
e of su
h a duality is equivalent to a spe
i�
ation of an isomorphismbetween F and its group of 
hara
ters, given by x! (:; x). In parti
ular, we shallmake frequent use of the orthogonality relations between the 
hara
ters of F .The spa
e X = Fn is endowed with (x; y) :=Qni=1(xi; yi). If C is a linear 
odein X , i.e. a subgroup of X , C? denotes its orthogonal 
ode with respe
t to (; ):C? := fu 2 X j (u; v) = 1 8 v 2 Cg(10)We de�ne another operator on L(Um) whi
h will be of major importan
e in thegeneralized Ma
Williams formulas:Definition 3.1. Let f 2 L(Um). Let Tf be de�ned, for all u 2 Um, byTf(u) := Xb2UmS(b)=S(u)(u; b)f(b)(11)Note that the operator T depends on the 
hoi
e of the duality (; ). We denoteby T the operator 
orresponding to the 
onjugate duality (x; y).Proposition 3.1. The following properties hold for the operator T :1. T1 = (q � 1)z1, Tz1 = �z1, and, for i � 2, Tzi is a linear 
ombination ofz2; : : : ; zq�1.2. If f = �zu, Tf(v) =Qi2S(u) Tzui(vi).3. The operator T is linear, and maps L(Um)l into itself inje
tively.4. For all f; g 2 L(Um), < Tf; g >=< f; Tg >.5. For all f 2 L(Um), dTf = �Tdf and d�Tf = �Td�f .Proof. We �rst prove 4.< Tf; g > = 1jUmj Xu2Um(Tf)(u)g(u)= 1jUmj Xu2Um( Xb2UmS(b)=S(u)(u; b)f(b))g(u)= 1jUmj Xb2Um f(b)( Xu2UmS(u)=S(b)(u; b)g(u))=< f; Tg > :(12)
In order to prove 1., we 
ompute Tz1(u). From the orthogonality relations,Tz1(u) = Pb6=a0(u; b)z1(b) = �1=(q � 1)Pb6=a0(u; b) = �z1(u). The 
omputationof T1 goes the same. The assertion on Tzi for i � 2 follows from 4.Let us prove 2.: we assume f = �zu. Let v 2 Um with S(v) = S(u). Thenf(v) =Qi2S(u) zui(vi) and



6 CHRISTINE BACHOCTf(v) = Xb2UmS(b)=S(u)(v; b)f(b)= Xbi 6=a0 Yi2S(u)(vi; bi)zui(vi)= Yi2S(u)(X�6=a0(vi; �)zui(vi))= Yi2S(u) Tzui(vi)(13)
whi
h proves 2. From 1. and 2., it follows that Tf is a linear 
ombination of some�zw, where the number of 
oordinates of w whi
h are not equal to 0, respe
tivelywhi
h are equal to 1, is the same as for u. Hen
e T maps L(Um)l into itself.Assume Tf = 0. Let S be a �xed set of m 
oordinates. Sin
e for all u 2 Um,su
h that S(u) = S, Tf(u) = 0, the following system of linear equations holds:Xb2UmS(b)=S(u)(u; b)f(b) = 0 for all u 2 Um(14)We only have to prove that the matrix of this linear system is invertible. Butthis matrix is the (q�1)m� (q�1)m-symetri
 matrix ((u; v))u;v2Um ; it is a subma-trix of the matrix ((u; v))u;v2Fm whi
h is invertible sin
e the 
hara
ters (:; v) spanL(Fm), and hen
e it has full rank.We prove the equality d�Tf = Td�f ; a similar proof 
an be given for d. Letu 2 Um+1. Td�f(u) = X
2Um+1S(
)=S(u)(u; 
)d�f(
)= � X
2Um+1S(
)=S(u)(u; 
) Xb2Umb�
 f(b)= � Xb2UmS(b)�S(u)( X
2Um+1S(
)=S(b)b�
 (u; 
))f(b)(15)

For a �xed b 2 Um su
h that S(b) � S(u), let ib be the index in S(u) but notin S(b). Then, P 
2Um+1S(
)=S(b)b�
 (u; 
) = (u; b)P�2F�6=a0(uib ; �) = �(u; b), soTd�f(u) = Xb2UmS(b)�S(u)(u; b)f(b):(16)But, for a �xed b 2 Um with S(b) � S(u), we have (u; b) = (v; b) where v is theonly element in Fn su
h that v � u and S(v) = S(b). Hen
e



HARMONIC WEIGHT ENUMERATORS 7Td�f(u) = Xv2Umv�u ( Xb2UmS(b)=S(v)(v; b)f(b)) = �d�Tf(u):(17)Remark 3.1. The operator T doesn't in general 
ommute with the a
tion ofH. We dis
uss this possibility in se
tion 5.In the 
ase of the binary alphabet F = F2 , and more generaly if l = 0, meaningthat f(u) only depends on S(u), one easily sees that Tf(u) = (�1)jujf(u).4. A Ma
Williams type identityLet C be a linear 
ode in Fn and let C? be its orthogonal 
ode as de�ned inprevious se
tion. We are going to de�ne harmoni
 weight enumerators asso
iatedto C and to prove a Ma
Williams type identity for them.Let f 2 L(Uk)l \ ker d. We set, for all x 2 X = Fn,D�f(x) := Xu2Uku�x f(u)(18)Note that, if jxj � k, D�f(x) = (�1)jxj�k (d�)jxj�k(jxj�k)! f(x). If jxj < k, D�f(x) = 0.Definition 4.1. Let f 2 L(Uk)l \ ker d. The harmoni
 weight enumeratorasso
iated to C and f isZC;f (X;Y ) := Xu2CD�f(u)Xn�juj�k+lY juj�kRemark 4.1. Note that it is not 
lear yet that ZC;f is a polynomial. It willderive from Proposition 4.1. In the binary 
ase, l = 0 is the only possibility, andZC;f 
oin
ides with the notion introdu
ed in [1℄. The slightly more general 
asel = 0 over Fq is a
tually treated in [12℄.The following proposition is the key property needed to prove that ZC;f isa polynomial satisfying a Ma
Williams type transformation formula. Its proof ispostponed to Subse
tion 4.1.Proposition 4.1. Let f 2 L(Uk)l \ kerd and let u 2 X = Fn.For all i = 0; : : : ; k, Xb2UkjS(b)\S(u)j=k�i(u; b)f(b) = (q � 1)i�k � li �D�Tf(u)(19)The main property of the ZC;f is the following:Theorem 4.1. Let f 2 L(Uk)l \ ker d and let C be a linear sub
ode of Fn.Let C? be its orthogonal 
ode. Then, ZC;f (X;Y ) is a homogeneous polynomial ofdegree n� 2k + l, andZC?;f (X;Y ) = 1jCjqk�lZC;Tf (X + (q � 1)Y;X � Y )(20)



8 CHRISTINE BACHOC4.1. Proof of Proposition 4.1. We pro
eed by indu
tion on i. The 
asei = 0 is the identity Xb2UkS(b)�S(u)(u; b)f(b) = D�Tf(u)whi
h derives from (16) and (17) by iteration of d�. Let us now assume the identityfor all j � i�1. From the fa
t that f 2 ker d and from Tdf = �dTf , we know thatTf 2 kerd. Let y 2 Uk�i. We haveXt2Uky�t Tf(t) = 0(21)whi
h means Xt2Uky�t Xb2UkS(b)=S(t)(t; b)f(b) = 0(22)We sum up these equations over the set of y � u, with y 2 Uk�i. Hen
e all theb 2 Uk su
h that jS(b)\S(u)j � k� i will 
ontribute in the sum. We rearrange thesum over j su
h that jS(b) \ S(u)j = k � j. We setS(u; j) := fb 2 Uk j jS(b) \ S(u)j = k � jg(23)and obtain: iXj=0 Xb2S(u;j)Abf(b) = 0(24)where Ab := Xy2Uk�iy�uS(y)�S(u)\S(b) Xt2UkS(t)=S(b)y�t (b; t):(25)If we denote by bS(y) the element of Fn whi
h is equal to b over S(y) and to a0outside, we have Xt2UkS(t)=S(b)y�t (b; t) =(bS(y); u) Xts 6=a0 Ys2S(b)nS(y)(bs; ts)=(bS(y); u) Ys2S(b)nS(y)(X�6=ao(bs; �))=(bS(y); u)(�1)i(26)and we are left with, if Sk�i := S(y) runs over subsets of size k � i,



HARMONIC WEIGHT ENUMERATORS 9Ab = (�1)i XSk�i�S(b)\S(u)(bSk�i ; u):(27)Lemma 4.1. If f 2 L(Uk)l, for all u 2 Fn,Xb2S(u;j)Abf(b) = (�1)j�k � l � ji� j �(q � 1)i�j Xb2S(u;j)(b; u)f(b)(28)Proof. The equality (28) is linear in f , so it is enough to verify it for f = �zv.The fa
t that f 2 L(Uk)l means that the number of non zero 
oordinates of v is kand that the number of 
oordinates of v equal to 1 is k � l. Let S := S(v); fromthe de�nition of �zv, the only b having a non zero 
ontribution in the left or righthandsides are the ones with S(b) = S. Hen
e, if jS(u) \ Sj 6= k � j, both sidesare equal to 0, so we assume that jS(u) \ Sj = k � j. Then, if L denotes the lefthandside of (28), and from the expression (27) for Ab,L = (�1)i Xb2UkS(b)=S XSk�i�S\S(u) Ys2Sk�i(bs; us)Ys2S zvs(bs)= (�1)i XSk�i�S\S(u) Xb2UkS(b)=S Ys2Sk�i(bs; us)zvs(bs) Ys2SnSk�i zvs(bs)= (�1)i XSk�i�S\S(u) Ys2Sk�i(X�6=a0(�; us)zvs(�)) Ys2SnSk�i(X�6=a0 zvs(�)):(29)
But P�6=a0 zvs(�) = �zvs(a0) sin
e s 2 S, and zvs(a0) = 1 or 0, respe
tivelyif vs = 1 or vs � 2. Hen
e the only subsets Sk�i having a non zero 
ontributionare the ones for whi
h S n Sk�i � fs j vs = 1g. Su
h subsets exist only if vs = 1outside of S(u), and if l � k� i (sin
e Sk�i must 
over the 
oordinates s of v withvs 6= 1). Moreover, in that 
ase, sin
e vs = 1 outside of Sk�i, sin
e Tz1 = �z1 andz1(�) = �1=(q � 1) if � 6= a0,Ys2Sk�i(X�6=a0(�; us)zvs(�)) = Ys2Sk�i Tzvs(us) = (q � 1)i�j Ys2S\S(u)Tzvs(us):One sees easily that the number of Sk�i with su
h a 
ontribution is equal to�k�l�ji�j �. Finally, L equals 0 if vs 6= 1 on S n S(u) and equals�k�l�ji �(q � 1)i�jQs2S\S(u) Tzvs(us) otherwise. Sin
e Tz1(a0) = �z1(a0) = �1while, for s � 2, Tzs(a0) = 0, in any 
ase,L = (�1)j�k � l� ji� j �(q � 1)i�jYs2S Tzvs(us):The right handside of (28) is easily 
omputed:



10 CHRISTINE BACHOCXb2S(u;j)(b; u)f(b) = Xb2UkS(b)=SYs2S(bs; us)zvs(bs)=Ys2S(X�6=a0(�; us)zvs(�))=Ys2S Tzvs(us):(30)
We return to the proof of Proposition 4.1. Equation (24) be
omes, applyingLemma 4.1, iXj=0(�1)j�k � l � ji� j �(q � 1)i�j Xb2S(u;j)(b; u)f(b) = 0(31)and, applying the indu
tion hypothesis to j � i� 1,(�1)i Xb2S(u;i)(b; u)f(b) = �(q � 1)i i�1Xj=0(�1)j�k � l � ji� j ��k � lj �D�Tf(u):(32)From �k�l�ji�j ��k�lj � = �k�li ��ij�, we get(�1)i Xb2S(u;i)(b; u)f(b) = �(q � 1)i�k � li �D�Tf(u) i�1Xj=0(�1)j�ij�= (q � 1)i�k � li �D�Tf(u)(�1)i(33)whi
h is the expression of Proposition 4.1.4.2. Proof of Theorem 4.1. We �rst prove that ZC;f (X;Y ) is a polynomial.If u 2 C satis�es n � juj � k + l < 0, let i be an integer with n� juj < i � k � l.Equation (19) of Proposition 4.1 proves that D�Tf(u) = 0, sin
e no b 2 Uk withjS(b) \ S(u)j = k � i 
an exist. We 
on
lude from the property D�Tf = �TD�fand from the inje
tivity of T (see Proposition 3.1).Now we prove the transformation formula (20). Therefore, as in [1℄, we 
omputethe Fourier transform (over Fn) of�(u) := D�f(u)Xn�juj�k+lY juj�k(34)whi
h is �̂(u) := Xv2Fn(u; v)�(v):(35)The formula will then derive dire
tly from the Poisson summation formula:



HARMONIC WEIGHT ENUMERATORS 11Xu2C?�(u) = 1jCjXv2C �̂(v):(36)Just like in the binary 
ase [1℄, we �rst 
onsider the 
ase f = Æb where Æb isde�ned by Æb(u) = 1 if u = b and 0 if u 6= b. We denote by uS(b) the element of Fnwhi
h is equal to u on the 
omplementary set of S(b) and to a0 elsewhere.Lemma 4.2. Let f = Æb 2 L(Uk). Then�̂(u) = (u; b)X�k+l(X + (q � 1)Y )n�k�juS(b) j(X � Y )juS(b)j(37)Proof. Sin
e D�Æb(u) = 1 if b � u and 0 otherwise,�̂(u) = Xv2Fnb�v (u; v)Xn�jvj�k+lY jvj�k:(38)We 
an write v = b+ v0, where S(v0) is the 
omplementary set of S(b). Hen
e(u; v) = (u; b)(u; v0) and v0 
an be 
onsidered to run over Fn�k.�̂(u) = (u; b) Xv02Fn�k(u; v0)Xn�2k+l�jv0jY jv0j= (u; b)X�k+l(X + (q � 1)Y )n�k�juS(b) j(X � Y )juS(b)j(39)where the last equality is the usual 
omputation of the Fourier transform of thefun
tion x! Xn�k�jxjY jxj over Fn�k.Lemma 4.3. Let f 2 L(Uk)l \ ker d.�̂(u) = qk�lD�Tf(u)(X + (q � 1)Y )n�juj�k+l(X � Y )juj�k(40)Proof. Sin
e f =Pb2Uk f(b)Æb and from (37),�̂(u) = X�k+l Xb2Uk(u; b)f(b)(X + (q � 1)Y )n�k�juS(b)j(X � Y )juS(b)j:(41)Then juS(b)j = juj � jS(u) \ S(b)j; we set jS(u) \ S(b)j = k � i and sum overi 2 f0 : : : kg. We get�̂(u) = X�k+l(X + (q � 1)Y )n�k+l�juj(X � Y )juj�k	(u)(42)where 	(u) := kXi=0( Xb2UkjS(b)\S(u)j=k�i(u; b)f(b))(X + (q � 1)Y )k�l�i(X � Y )i(43)whi
h be
omes, by Proposition 4.1,



12 CHRISTINE BACHOC	(u) = kXi=0(q � 1)i�k � li �D�Tf(u)(X + (q � 1)Y )k�l�i(X � Y )i= D�Tf(u) k�lXi=0 �k � li �(X + (q � 1)Y )k�l�i((q � 1)(X � Y ))i= D�Tf(u)(X + (q � 1)Y + (q � 1)(X � Y ))k�l= D�Tf(u)(qX)k�l:(44)
Repla
ing (44) in (42), we obtain (40).5. The operator TWe study in this se
tion the possibility for the operator T to be homotheti
 onthe spa
es L(Uk)l \ ker d. This 
ase is espe
ially interesting be
ause Theorem 4.1
an in that 
ase be read as a linear invarian
e property for a 
ertain polynomial(see next se
tion).Proposition 5.1. The following statements are equivalent:� For all k, l, there exists �k;l 2 C su
h that, for all f 2 L(Uk)l \ ker d,Tf = �k;lf .� F = F2 ; F3 and (x; y) = �(xy), where � is a non-trivial 
hara
ter of F , orF = F4 and (x; y) = �(tra
e(xy2)) and � is the non-trivial 
hara
ter of F2 .If F = F2 ; F4 , �k;l = (�1)k�l2l , and, if F = F3 , �k;l = (�1)k�l(p�3)l.Remark 5.1. In terms of 
oding theory, the 
ases of the proposition are thebinary, ternary, and quaternary additive 
odes, with the terminology of [11℄. Wehave kept the usual notation for F , although the �eld stru
ture has no importan
ehere. In parti
ular, the quaternary additive 
odes are the same as the Kleinian
odes studied in [9℄.Proof. From [6℄, we know that L(Uk)l \ kerd is a H-irredu
ible module.Hen
e, T is homotheti
 over L(Uk)l \ ker d if and only if T 
ommutes with thea
tion of H , i.e. if and only if T (h:f) = h:T (f) for all h 2 H , f 2 L(Uk)l \ ker d. Ifthis is true for all k; l, sin
e we have already seen that Td� = �d�T , and from thede
omposition (6), it must be true for all f 2 L(Uk). The spa
e L(Uk) is generatedby fÆb; b 2 Ukg. We have h:Æb = Æbh�1 , and TÆb(u) = (b; u) if S(u) = S(b), and0 otherwise. Hen
e it turns out that T 
ommutes with H over L(Uk) if and onlyif (u; v) = (uh; vh) for all h 2 H and u; v 2 Uk with S(u) = S(v). Sin
e thepermutation on the 
oordinates of the elements of Fn has no in
iden
e on theduality (be
ause we assume (u; v) =Qi(ui; vi)), we are left with the 
ondition that(; ) must be 
onstant on the orbits of F �F under the a
tion of Sq�1, whi
h meansthat � := (x; x) is independant of the 
hoi
e of x 6= 0 in F , and � := (x; y) isindependant of the 
hoi
e of x 6= y 6= 0 in F . Hen
e, (; ) takes at most three values:f1; �; �g. Sin
e they form a subgroup of C � of order d = 2; 3, sin
e dF = 0 andsin
e, for ea
h x 6= 0, the kernel of (:; x) has order q=d, one easily sees that the onlypossibilities left are the ones listed in the proposition.We now 
ompute �k;l. We have already seen that Tz1 = �z1. If i � 2,Tzi(x) = Py 6=a0(x; y)zi(y) = �zi(x) + �Py 6=a0;x zi(y). But Py 6=a0 zi(y) = 0, so



HARMONIC WEIGHT ENUMERATORS 13Tzi(x) = (���)zi(x). Hen
e, if f = �zu 2 L(Uk)l, from property 2. of Proposition3.1, Tf = (�1)k�l(� � �)lf . In the 
ases F = F2 ; F4 , � � � = 1 � (�1) = 2, andin the 
ase F = F3 , �� � = �(j � j2) = �ip3 where j is a 
ubique root of 1.Remark 5.2. In the ternary 
ase, there are two 
onjugate 
hoi
es for the du-ality (; ). Sin
e Tf(�u) = Tf(u), we have ZC;Tf = ZC;(Tf+Tf)=2. The eigenvalueof T over L(Uk)l is the 
onjugate of the one asso
iated to T ; but, we have seen that�k;l has a trivial real part in the 
ase l � 1 mod 2. Hen
e, in this 
ase, ZC;Tf = 0,and so ZC;f = 0. Note that it �ts with the fa
t that the set C? only depends on the
hoi
e of the duality up to 
onjugation.6. Appli
ations to self-dual 
odesIn this se
tion, we 
onsider the 
ase of self-dual ternary and additive quater-nary 
odes. The binary 
ase was previously studied in [1℄. In these 
ases, Theorem4.1 shows that the polynomials ZC;f are relative invariants for the group of trans-formation a
ting on the Hamming weight enumerator.6.1. Ternary self-dual 
odes. Let M = 1p3 � 1 21 �1 � and D = � 1 00 j � wherej = e2i�=3. Let G3 be the group generated byM and D. It is well-known that, if Cis a self-dual ternary 
ode, then its weight enumerator WC is invariant under G3,and hen
e belongs to its algebra of invariants IG3 , whi
h is the polynomial ring inthe polynomials g4 := x4 + 8xy3, g12 := y3(x3 � y3)3 (see [11℄).We de�ne the following 
hara
ters  u;v of the group G3: u;v(M) = (�1)u  u;v(D) = jv(45)and we denote by IG3; u;v the spa
e of relative invariants:IG3; u;v := fP (x; y) 2 C [x; y℄ j P:M =  u;v(M)P for all M 2 G3g:(46)The following polynomials are relative invariants, as one 
an 
he
k easily:p4 = y(x3 � y3) 2 IG3; 0;1p6 = x6 � 20x3y3 � 8y6 2 IG3; 1;0(47)Lemma 6.1. The spa
es of relative invariants IG3; u;v are free modules overIG3 . More pre
isely:� IG3; 0;1 = p4C [g4 ; g12℄� IG3; 0;2 = p24C [g4 ; g12℄� IG3; 1;0 = p6C [g4 ; g12℄� IG3; 1;1 = p4p6C [g4 ; g12℄� IG3; 1;2 = p24p6C [g4 ; g12℄Proof. It follows easily from the 
omputation of the Molien series of the
orresponding spa
es (see [11℄ and [1℄ for examples of su
h 
omputations).Proposition 6.1. Let C be a self-dual ternary 
ode of length n. Let f belongto L(Uk)l \ ker d. If l � 1 mod 2, ZC;f = 0. If l � 0 mod 2, let u 2 f0; 1g beequal to k + l=2 modulo 2, and let v 2 f0; 1; 2g be equal to �k modulo 3. Then



14 CHRISTINE BACHOCZC;f 2 IG3; u;v :Proof. Straightforward from Theorem 4.1, Remark 5.2 and Proposition 5.1.In the spe
ial 
ase of extremal 
odes, we 
an derive from previous propositionthat ZC;f = 0 for 
ertain values of (k; l). We brie
y re
all what an extremal 
odeis (see [11℄): if C is a self-dual ternary 
ode of length n, then n is a multiple of 4.Write n = 12q + 4r with r = 0; 1; 2. Then the fa
t that WC belongs to IG3 showsthat the minimum weight w(C) of C satis�esw(C) � 3q + 3:(48)A 
ode meeting this bound is 
alled extremal. Its weight enumerator is thenuniquely determined.Corollary 6.1. Let C be an extremal self-dual ternary 
ode of length n =12q + 4r. Let f 2 L(Uk)l \ ker d. Then ZC;f = 0 when l � 1 mod 2 from Remark5.2, but also in the following 
ases:� If r = 0: for k = 1; 2; 3 and all l � k, and for (k; l) = (4; 0); (4; 2),(5; 0); (5; 4); (6; 2); (7; 0).� If r = 1: for k = 1; 2 and all l � k, and for (k; l) = (3; 0); (4; 2); (5; 0).� If r = 2: for (k; l) = (1; 0); (2; 2); (3; 0).Remark 6.1. In view of Proposition 2.1, the property ZC;f = 0 is related tothe fa
t that the set of 
odewords of �xed Hamming weight form a design. Were
over here results already known from [5℄ and [3℄, namely that extremal ternaryself-dual 
odes hold generalized 3-designs and 
lassi
al f1; 2; 3; 4; 5; 7g-designs whenr = 0 (respe
tively for the 
orresponding weaker results when r = 1; 2), whi
hwere derived from generalized Assmus-Mattson theorems. We obtain here someadditional properties; in parti
ular it is worth noti
ing that, for instan
e in the
ase r = 0, the generalized 3-designs are a
tually nearly 4-designs sin
e the onlyproperty missing is orthogonality with L(U4)4 \ ker d.6.2. Even quaternary additive self-dual 
odes. Here we follow the sameline as for ternary 
odes, so we omit the proofs and some 
omments sin
e theyare 
ompletely similar. Let M = 12 � 1 31 �1 � and D = � 1 00 �1 �. Let G4 be the groupgenerated by M and D. If C is a self-dual even quaternary additive 
ode, thenits weight enumerator WC is invariant under G4, and hen
e belongs to its algebraof invariants IG4 , whi
h is the polynomial ring in the polynomials h2 := x2 + 3y2,h6 := y2(x2 � y2)2 (see [11℄).We de�ne the following 
hara
ters  u;v of the group G4: u;v(M) = (�1)u  u;v(D) = (�1)v(49)and we denote by IG4; u;v the spa
e of relative invariants. The following polyno-mials are relative invariants, as one 
an 
he
k easily:q3 = y(x2 � y2) 2 IG4; 0;1r3 = x3 � 9xy2 2 IG4; 1;0(50)



HARMONIC WEIGHT ENUMERATORS 15Lemma 6.2. The spa
es of relative invariants IG4; u;v are free modules overIG4 . More pre
isely:� IG4; 0;1 = q3C [h2 ; h6℄� IG4; 1;0 = r3C [h2 ; h6℄� IG4; 1;1 = q3r3C [h2 ; h6℄Proposition 6.2. Let C be a self-dual even quaternary additive 
ode of lengthn. Let f 2 L(Uk)l \ ker d. Let u 2 f0; 1g be equal to k � l modulo 2, and letv 2 f0; 1g be equal to k modulo 2. ThenZC;f 2 IG4; u;v :Here the extremal 
odes have weight w(C) = 2q + 2, where n = 6q + 2r.Corollary 6.2. Let C be an extremal self-dual even quaternary additive 
odeof length n = 6q+2r. Let f 2 L(Uk)l\ker d. Then ZC;f = 0 in the following 
ases:� If r = 0: for k = 1; 2 and all l � k, and for (k; l) = (3; 0); (3; 1); (3; 2),(4; 0); (4; 1); (4; 3); (5; 0); (5; 2); (6; 1); (7; 0).� If r = 1: for (k; l) = (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 2); (4; 1); (5; 0).� If r = 2: for (k; l) = (1; 0); (2; 1); (3; 0).7. Interse
tion numbersJust like in the binary 
ase [1℄, the polynomials ZC;f and their invarian
eproperties 
an be used to 
ompute 
ertain invariants asso
iated to a �xed elementv 2 Fn and to a 
ode C. We �x v 2 Ut.Definition 7.1. Let v 2 Ut and u 2 Uw. We de�nen(u; v) := 
ard(S(u) \ S(v))e(u; v) := 
ardfs 2 [1::n℄ j us = vs 6= 0gand Let i = i(u; v) := t�e(u; v) and j := j(u; v) = t�n(u; v). The group H a
ts onUt�Uw and one 
an see easily that the orbits of this a
tion are given by the valuesof (i; j). Equivalently, in the 
ase t = w, (i; j) gives the relations of the non-binaryJohnson s
heme [14℄. Clearly, the values of (i(u; v); j(u; v)) belong to the setKt;w := f(i; j) j 0 � j � i � t; t� w � j � n� wg:(51)Let Kt := Kt;t := f(i; j) j 0 � j � i � t; j � n� tg(52)and Lt := f(k; l) j 0 � l � k � min(t; n+ l � t)g:(53)The de
omposition of the spa
e L(Ut) into irredu
ible H-subspa
es given byL(Ut) = �(k;l)2LtL(Ut)(k;l) (see (6)) allows us to 
onsider the zonal elements asso-
iated to this de
omposition. These are fun
tions gk;l having the 
hara
teristi




16 CHRISTINE BACHOCproperty that gk;l(u) only depends on i(u; v), j(u; v). In our situation they areuniquely determined up to a s
alar multiple be
ause the subspa
es L(Ut)(k;l) arepairwise non isomorphi
. We re
all that they 
an be 
onstru
ted the following way:take any orthonormal basis (fi) of L(Ut)(k;l), and set E(k;l)(u; v) :=Pi fi(u)fi(v).This de�nition is independant of the 
hoi
e of the basis, and hen
e is invariant underthe a
tion of H on (u; v) 2 U2t . Hen
e E(k;l)(u; v) is a fun
tion of (i(u; v); j(u; v)).In the setting of asso
iation s
hemes, the E(k;l) are the idempotents of the non-binary Johnson s
heme and its expression in terms of (i(u; v); j(u; v)) is given bythe se
ond eigenvalues, whi
h are 
omputed in [14℄. We re
all in next propositiontheir expression in terms of Hahn and Krawt
houk polynomials.Proposition 7.1. [14℄E(k;l)(u; v) = h(k;l);t(i(u; v); j(u; v));(54)where, for all (k; l) 2 Lt and (i; j) 2 Kt,h(k;l);t(i; j) = �nl��tl�Kl(t� j; q � 1; i� j)Qk�l(n� l; t� l; j)(55)where Kk, Qk are respe
tively Krawt
houk and Hahn polynomials, given by thefollowing formulas:Kk(n; q; x) := kXi=0(�1)i(q � 1)k�i�n� xk � i��xi�Ek(n; t; x) := kXr=0(�1)r�xr��t� xk � r��n� t� xk � r �Qk(n; t; i) = �nk�� � nk�1��ti��n�ti � Ei(n; t; k)(56)
In view of appli
ations to 
odes, we shall make use of the polynomials ZC;f forf 2 L(Uk)l\ker d su
h that D�f(u) = E(k;l)(u; v) for u 2 Ut. We denote by H(k;l);vsu
h a fun
tion f . Therefore we need to 
ompute D�f(u) for u 2 Uw for any w � k(and not only for w = t). From last proposition, D�H(k;l);v(u) = h(k;l);t(i; j) foru 2 Ut and i = i(u; v), j = j(u; v). For the general 
ase u 2 Uw, we have a more
ompli
ated and rather ugly formula:Proposition 7.2. For all w � k and all u 2 Uw, the value of D�H(k;l);v(u)only depends on (i(u; v); j(u; v)). We set againD�H(k;l);v(u) = hw(k;l);t(i(u; v); j(u; v));(57)where hw(k;l);t(i; j) = 
XI (q � 2)i2+j2+l2(q � 3)k3(q � 1)t�s:�w + j � ti1; i2 �� t� ij1; j2�� i� jk1; k2; k3�� jl1; l2��n� w � jt� s ��i1 + j1 + k1k �:h(k;l);t(t� j1 � k2 � l1; t� j1 � j2 � k1 � k2 � k3 � l1 � l2)(58)



HARMONIC WEIGHT ENUMERATORS 17where 
 = 1(q � 1)t�k�n+l�2kt�k �(59)and I =f(i1; i2; j1; j2; k1; k2; k3; l1; l2) ji1 2 [0::w + j � t℄; i2 2 [0::w + j � t� i1℄;j1 2 [0::t� i℄; j2 2 [0::t� i� j1℄;k1 2 [0::i� j℄; k2 2 [0::i� j � k1℄; k3 2 [0::i� j � k1 � k2℄;l1 2 [0::j℄; l2 2 [0::j � l1℄;i1 + j1 + k1 � k; t� (j1 + j2 + k1 + k2 + k3 + l1 + l2) � n� t;s := i1 + i2 + j1 + j2 + k1 + k2 + k3 + l1 + l2 � tg:(60)
Proof. We use the formula (dd� � d�d)jL(Uk)l = (q � 1)(n+ l � 2k)Id([6, Proposition 2.6℄). Taking a

ount of the fa
t that H(k;l);v 2 ker d, and iteratingit, we get(q � 1)t�k�n+ l � 2kt� k �H(k;l);v = ((�1)t�k dt�k(t� k)! )((�1)t�k d�t�k(t� k)! )H(k;l);v :(61)Let K := (�1)t�k d�t�k(t�k)!H(k;l);v 2 L(Ut). For all u 2 Ut,K(u) = D�H(k;l);v(u) = h(k;l);t(i(u; v); j(u; v)). We get, for all u 2 Uw,D�H(k;l);v(u) = 1(q � 1)t�k�n+l�2kt�k � Xuk2Ukuk�u Xz2Utuk�zK(z)= 1(q � 1)t�k�n+l�2kt�k � Xz2Ute(z;u)�k�e(z; u)k �K(z):(62)The parameters e(z; u), i(z; v), j(z; v) express easily in terms of:i1 := 
ardfi j zi = ui 6= 0; vi = 0g, i2 := 
ardfi j zi 6= ui 6= 0; vi = 0g,j1 := 
ardfi j zi = ui = vi 6= 0g, j2 := 
ardfi j zi 6= ui 6= 0; vi = uig,k1 := 
ardfi j zi = ui 6= 0; vi 6= ui 6= 0g, k2 := 
ardfi j zi 6= ui 6= vi 6= 0g,k3 := 
ardfi j zi 6= ui 6= 0; zi = vig, l1 := 
ardfi j zi = vi 6= 0; ui = 0g,l2 := 
ardfi j zi 6= vi 6= 0; ui = 0g.The formula then follows from the enumeration of all possibilities.Remark 7.1. In the 
ase when t � w, there is a more simple formula forD�H(k;l);v(u) 
oming from: d�w�kH(k;l);v = d�w�td�t�kH(k;l);v.Let Cw denote the set of words in C of Hamming weight w, i.e. Cw = C \Uw.Let v 2 Ut. We set, for (i; j) 2 Kt;w,nw;(i;j)(v) := 
ardfu 2 Cw j (i(u; v); j(u; v)) = (i; j)g:(63)



18 CHRISTINE BACHOCTable 1. The nw;(i;j)(v) for jvj = 1(i; j) (0; 0) (1; 0) (1; 1)w = 6 66 132 198w = 8 330 660 495w = 10 550 1100 330w = 12 78 156 0Table 2. The nw;(i;j)(v) for jvj = 2(i; j) (0; 0) (1; 0) (1; 1) (2; 0) (2; 1) (2; 2)w = 6 10 40 72 40 144 90w = 8 70 280 240 280 480 135w = 10 150 600 200 600 400 30w = 12 26 104 0 104 0 0From Proposition 7.2, for ea
h (k; l) 2 Lt, the 
oeÆ
ient of xn�w�k+lyw�k inZC;H(k;l);v is: X(i;j)2Kt;w h�(k;l);t(i; j)nw;(i;j)(v):(64)The 
laims in Propositions 6.1, 6.2, and the des
riptions of the spa
es of relativeinvariants involved, 
an then be turned out into linear relations between the un-knowns nw;(i;j)(v). See [1℄ for examples in the binary 
ase. We work out examplesin the 
ase of even quaternary additive self-dual 
odes.7.1. The dode
a
ode. Let n = 12. It is known ([11℄) that there is up toequivalen
e only one [12; 6; 6℄ even self-dual quaternary additive 
ode, the so-
alleddode
a
ode. We show what 
an be said a priori on the interse
tion numbersnw;(i;j)(v) de�ned in (63) of su
h a 
ode C by use of the method des
ribed inse
tion 7. We �x an element v 2 Ut.From Corollary 6.2, all the linear forms in (64) are equal to zero for t � 2 and(k; l) 2 Lt. Moreover, the knowledge of the weight enumerator of su
h a 
ode CWC(x; y) = x12 + 396x6y6 + 1485x4y8 + 1980x2y10 + 234y12(65)leads to more equations: X(i;j)2Kt;w nw;(i;j)(v) = 
ard(Cw):(66)We �nd for t = 1; 2 uniquely determined interse
tion numbers (see Table 1 and2), in a

ordan
e with the fa
t that, for all w, Cw holds 2-generalized designs (seeCorollary 6.2).If t = 3, the interse
tion numbers are not uniquely determined (Table 3). Theydepend on one parameter x(v) = x whi
h is the number of weight 3 words in the



HARMONIC WEIGHT ENUMERATORS 19Table 3. The nw;(i;j)(v) for jvj = 3(i; j) (0; 0) (1; 0) (1; 1) (2; 0) (2; 1) (2; 2)w = 6 x� 1 �3x+ 15 18 3x+ 9 72 54w = 8 �3x+ 21 9x+ 63 84 �9x+ 189 336 108w = 10 3x+ 133 �9x+ 261 90 9x+ 459 360 30w = 12 �x+ 11 3x+ 45 0 �3x+ 111 0 0(i; j) (3; 0) (3; 1) (3; 2) (3; 3)w = 6 �x+ 13 72 108 36w = 8 3x+ 105 336 216 27w = 10 �3x+ 327 360 60 0w = 12 x+ 67 0 0 0
oset v+C (be
ause 
learly this number equals 1+n6;(0;0)(v)). Clearly, x 
an takethe values 1; 2; 3; 4.If t = 4, we moreover assume that v is a minimum weight word in its 
oset v+C.Again, the interse
tion numbers are 
omputed from one of them. We don't give thefull details of their expression but noti
e that the number of weight 6 
odewords,the support of whi
h 
ontain the support of v, is a 
onstant (be
ause the supportshold 
lassi
al 5-design from Assmus-Mattson theorem) and that this number equalsn6;(2;0)+n6;(3;0)+n6;(4;0). The 
omputation shows that the interse
tion numbers 
anall be expressed aÆnely in x := n6;(4;0) like n6;(2;0) = x+4 and n6;(3;0) = �2x+ 8.The weight distribution of v+C itself doesn't depend on x (see Table 4). Note that,in general, the weight distribution of v + C derives from the interse
tion numbersbe
ause ju+ vj = juj+ i(u; v) + j(u; v)� t.We display in Table 4 the 
oset distribution of su
h a 
ode. The weight of the
osets is at most 4. This 
an be proved dire
tly by elementary 
ounting arguments,or derives from [5℄. Note that the 
oset distribution 
ould also be 
omputed usingDelsarte method explained in [5℄. If the 
oset has weight 3, it may 
ontain 1; 2; 3or 4 
oset leaders. For the dode
a
ode, one �nds respe
tively 792, 1314, 756, 63
osets of weight 3 with respe
tively 1, 2, 3, 4 leaders. Hen
e the dode
a
ode hasgot 540 
osets of weight 4.7.2. Length 14. The extremal even self-dual 
odes of length 14 have weight6 and weight enumeratorWC(x; y) = x14 + 273x8y6 + 2457x6y8 + 7098x4y10 + 6006x2y12 + 549y14:(67)It is known that there is a unique one whi
h is F4 -linear hermitian ([11℄). Thewhole number of extremal additive 
odes seems huge, sin
e we have found 490 su
h
odes with the additional 
ondition that at least two 
odewords of weight 6 havethe same support ([2℄). Information on the 
oset distribution of su
h 
odes 
ouldbe 
omputed in the same way as for n = 12. Here, we take v to be a 
odewordof weight 6. Be
ause v is in the 
ode C, additional 
onstraints hold for nw;(i;j)(v):sin
e (u; v) = i(u; v) � j(u; v) mod 2, we have nw;(i;j)(v) = 0 if i+ j � 1 mod 2;also, sin
e ju+ vj = juj+ i+ j � t, we have nw;(i;j)(v) = 0 if 0 < w + i+ j � t < 6.



20 CHRISTINE BACHOCTable 4. Coset distribution of a [12; 6; 6℄ even self-dual 
ode1 2 3 4 5 6 7 81 66 132 528 6601 10 40 182 424 760x 15� 3x 48 8x+ 148 432� 6x 810� 6x15 48 148 432 8109 10 11 121045 1100 408 1561080 961 504 1341040 + 8x 948 528� 3x 127 + x1040 948 528 127Altogether, the interse
tion numbers for v 2 C6 depend on three positive andintegral parameters x; y; z. One of them is 2x := n6;(6;0)(v) and 
ounts the numberof 
odewords with the same support as v. Clearly this number is either 0 or 2 (they
ome by pairs (u; u+v) and they are minimal). The general expression shows that,if x = 1, i.e. if the support of v is also the support of some other word in C, theny and z are uniquely determined. Note that, if C is F4 -linear, then it is the 
asefor all v 2 C sin
e wv and w2v would provide 
odewords with the same supportas v. If x = 0, then the fa
t that the interse
tion numbers are natural numbersshow that y 2 [0::3℄ and z 2 [0::4℄. Among the 490 non equivalent 
odes found, allthese possiblities for (y; z) o

ur. Table 5 gives the expression of the nw;(i;j) for theweights w = 6; 8. Note that the nw;(i;j)(v) for j = 6 give the weight distribution ofthe sub
ode Cv := fu 2 C j S(u) \ S(v) = ?g:(68)7.3. Length 18. The weight of the extremal 
odes of length 18 is 8. There isa unique F4 -linear hermitian 
ode of weight 8, named S18 ([11℄). It is not knownwhether other additive self-dual 
odes meet this bound. We 
ompute the 
osetdistribution with the help of the interse
tion numbers. Table 6 gathers the resultsup to weight 9.Proposition 7.3. Let C be an even self-dual additive quaternary 
ode of weight8. Then the 
overing radius R of C satis�es 5 � R � 6:Proof. For all i, we denote 
i a 
oset of C of weight i and by ni the numberof 
osets of weight i. Let Xi denote the set of weight i words in F 18. Of 
ourse,
ard(Xi) = �18i �3i. Note that, for i = 1; 2; 3, ni = 
ard(Xi). We start with theweight enumerators of the 
osets of C of weight up to 6, 
omputed with the helpof the interse
tion numbers. With the notations of Table 6, we 
ount the words ofweight 4, 5, 6. We have:



HARMONIC WEIGHT ENUMERATORS 21Table 5. Computation of nw;(i;j)(v) for v 2 C6 and w = 6; 8w = 6(i; j) x = 1 x = 0(0; 0) 1 1(3; 3) 0 �4z + 16(4; 2) 24 �4y + 2z + 24(4; 4) 42 2z + 18(5; 1) 0 2y(5; 3) 96 8y + 4z + 72(5; 5) 0 �2y + 24(6; 0) 2 0(6; 2) 12 �3y � 2z + 24(6; 4) 84 �2y � 2z + 90(6; 6) 12 y + 4
w = 8(i; j) x = 1 x = 0(2; 2) 42 2z + 18(3; 1) 96 8y + 4z + 72(3; 3) 0 4y + 8z + 48(4; 0) 12 �3y � 2z + 24(4; 2) 528 �16y � 10z + 564(4; 4) 156 �y � 4z + 84(5; 1) 192 2y � 4z + 192(5; 3) 768 �8z + 816(5; 5) 0 2y + 24(6; 0) 0 2z(6; 2) 348 5y + 8z + 312(6; 4) 312 4z + 300(6; 6) 3 �y + 3Table 6. Coset distribution for a [18; 9; 8℄ even self-dual 
ode1 2 3 4 5 6 7 8 91 408 816 49301 56 224 1304 33601 x 63� 3x 303� 2x 978 + 14x 3730 � 5xy z 84� 7y � 3z 288� 8y � 2z 936 + 45y + 14z 3680 + 8y � 5zt 84� 3t 288� 2t 936 + 14t 3680� 5t84 288 936 3680
ard(X4) =X
4 y
ard(X5) =X
3 x+X
4 z +X
5 t
ard(X6) = 56n2 +X
3 (63� 3x) +X
4 (84� 7y � 3z) +X
5 (84� 3z) + 84n6(69)From these equations, we getn4 + n5 + n6 = 238680:(70)But we 
an 
he
k that 1+n1+n2+n3+n4+n5+n6 = 218, so we have provedthat R � 6 (it derives also from [5℄ sin
e 6 is the number of di�erent weights ofC? = C). Now we assume that R � 4, so that n5 = n6 = 0. For y 2 [1::4℄,we denote ny4 the number of 
osets of weight 4 
ontaining exa
tly y 
oset leaders.Clearly, two 
oset leaders in a 
oset of weight 4 have disjoint supports be
ause the
ode has minimal weight 8, so their number is upper bounded by 4. And the sum



22 CHRISTINE BACHOCof two su
h words is a 
odeword of weight 8, so, if v is a 
oset leader of a �xed 
osetof weight 4, y = 1 + 
ardfu; u 2 C8 j v � ug = n8;(0;0)(v):(71)If C8 was a 4-design, the 
ardinality of fu; u 2 C8 j v � ug would be a 
onstant.However, we 
an 
ompute its average value� := 1
ard(X4) Xv2X4 
ardfu; u 2 C8 j v � ug(72)by the usual formula: � = �62��2�162 �32(73)where, for v 2 U2, �2 = 
ardfu; u 2 C8 j v � ug = 55. This last value 
an be readin Table 6. Now, we haveXv2X4 y =X
4 y2 = 
ard(X4)(1 + �):(74)Finally, we obtain the following system of equations:n14 + n24 + n34 + n44 = 238680n14 + 2n24 + 3n34 + 4n44 = 
ard(X4)n14 + 4n24 + 9n34 + 16n44 = 
ard(X4)(1 + �)(75)One 
an parametrize the solutions by n14 and see that it doesn't admit anypositive integral solutions.Remark 7.2. In the 
ase of the 
ode S18, one 
an 
ompute all these parame-ters. One �nds: (n14; n24; n34; n44) = (122400; 36720; 12240; 3865), and, with obviousnotations, (n105 ; n125 ; n165 ) = (24480; 38250; 765). Hen
e the 
overing radius of S18is equal to 5. It would be interesting to know if a non F4 -linear 
ode with 
overingradius 6 exists. Referen
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