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Harmonic weight enumerators of nonbinary codes
and MacWilliams identities

Christine Bachoc

ABSTRACT. We define harmonic weight enumerators asociated to codes defined
over a group alphabet F of size q. They generalize the classical Hamming
weight enumerator and are associated to the decomposition of the space L(F™)
under the action of the group Si_1 % Sn. They satisfy a MacWilliams type
identity, which leads to relative invariant polynomials in the case of self-dual
codes. Applications to the study of additive quaternary codes are developed.

1. Introduction

This paper extends the ideas and results of [1] to the case of non-binary linear
codes. Let C be a linear code of length n over an alphabet F' which is an abelian
group of size q. We introduce polynomials which generalize the Hamming weight
enumerator of the code, using “harmonic functions”, after the work of C. Dunkl on
harmonic analysis for the group Sj % S, and of H. Tarnanen, J. Aaltonen, J.-M.
Goethals on the non-binary Johnson scheme (in the setting of association schemes).

We prove a MacWilliams type identity for these polynomials (Theorem 4.1).
This identity involves an operator T" acting on harmonic functions; in Section 5 we
examine the case when T is homothetic. We prove that it corresponds to the binary,
ternary and quaternary codes. In Section 6, we study more precisely the ternary
and quaternary self-dual codes, because the harmonic weight enumerators are in
these cases relative invariant polynomials. In Corollary 6.1, 6.2, we extend results
due to P. Delsarte on the existence of generalized designs on the set of codewords
of fixed Hamming weight of extremal codes. Section 7 is devoted to the application
of this tool to the computation of intersection numbers. It makes use of the zonal
functions associated to the subgroup S;' ; % Sy, which are expressed in terms of
Krawtchouk and Hahn polynomials. We work out some examples in the case of
even self-dual additive quaternary codes.
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2. Group representation and the non-binary Johnson scheme

In this section we recall some notations and results on the Hamming and John-
son schemes previously settled by C. F. Dunkl ([6]) in the language of group repre-
sentations and by Tarnanen, Aaltonen and Goethals ([14]) in terms of association
schemes.

Let F be a finite alphabet of size ¢ > 2. We denote by F' := {ag,...,a,-1} its
elements. The group of permutations on ¢ elements S, acts on F by a;0 = a,-1(;.
We specify a series of subgroups of S, denoted {1} C --- C Sy_1 C S, where
S,—i is the subgroup of S, fixing ag,...,a;—1 and is isomorphic to the group of
permutations on ¢ — i elements.

Let L(F) be the space of complex valued functions on F', equiped with the
scalar product

1 -
<fg>=-> f(2)g(x).
q rzel
It is endowed with the left action of S, given by (o0.f)(z) = f(zo). The decompo-
sition into irreducible S;-modules of L(F) is given by

(1) L(F)=C1 L I,

where 1 is the all-one function. We set zg := 1 and we define by induction an
element z; in L;, and a subspace L;11 of L(F) such that the decomposition of L;
into S,—_;-irreducible modules, equals Cz; L L;;q, with trivial action on Cz;. We
normalize as in [6] the z; by (z;,2;) = 1/(¢ — 1). Note that the z; are determined
from the above properties up to the multiplication by a complex number of module
1. The recursive computation of their values shows that they can be assumed to
be real-valued, and hence are uniquely determined up to a sign. In particular, we
fix z1(ap) = 1 and z1(a;) = =1/(g—1) for i > 1. We shall make frequent use of the
following properties: for i > 2, z;(ag) = 0 and, for ¢ > 1, Z?;é zi(a;) = 0.

The functions z; are explicitly realized in [6] as coordinate functions on F, seen
as the regular simplex in R? !,

Let X := F™. The action of S,, on X given by

combined with the action of S; on F' gives rise to a transitive action of the group
G := S} xS, on X. We denote by H the subgroup of G stabilizing (ao, ..., ao). It
is isomorphic to Sy ; x S,. Again we consider the space L(X) together with the
induced action of G (note that it is the representation of G induced by the trivial
representation on H), and the hermitian product < f,g >= Dl(—‘ Yowex f(@)g(x).
Following [6], let, for all w € {0,1,...,q — 1}", 2, € L(X) be defined by

zu(z) := H Zu; (T5).

If |u| denotes the number of non-zero coordinates of u, then we have < z,,, z, >=
Suv(g—1)71%. From (1), the subspace P,, spanned by {z, | |u| = m} is G-invariant
and
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(2) L(X) = ®5=0Pm

is the decomposition of L(X) into G-irreducible subspaces.

We shall make use of the description given in [6] of the decomposition of each
P,, as H-modules. Moreover, the spaces P,, are linked to the Johnson schemes
via the following: for b € X, let |b| be the Hamming weight i.e. the number
of coordinates of b not equal to ag, and let S(b) be its support, i.e. the set of
coordinates ¢ such that b; # ag. Let

Un:={be X ||b =m}.
Note that the set Uy, is one orbit under the action of H. Then, as an H-module,
the space L(Upy,) is isomorphic to P, via the map: p: Py, — L(U,,) defined by

z,(b) if S(b) = S(u)

Let, for 0 <1 < m, Py, be the subspace of P,, spanned by the z, such that
u; = 1 for exactly m — I coordinates, and let L(Up,); be the image of P, ; by p. In
the special case ¢ = 2, of course we only consider the case | = 0 and Py, 0 = Py,.
From the fact that S, ; acts trivially on z;, the space P, is H-invariant. It is
worth noticing that P, is the space of functions f such that f(b) only depends
on S(b), and hence can be identified with the corresponding space P, over F}.

If z; denotes the function defined by x;(b) = 2z1(b;), the operator

"9
d::Z[‘)a}i

i=1

pall) = {o if S(b) # S(u)

commutes with the action of H and maps P, ; to P,_1,;. Its adjoint operator is
denoted by d*. Then, the decomposition of P,, into irreducible H-submodules is
given by ([6]):

(3) P = &g &1 ™" P
where
(4) Pk = (@)™ *(Py, Nkerd).

In the case ¢ = 2, there is only the summand [ = 0.
We define an incidence relation between the elements of X by:

x<uyif x; #ag = x; = y;.

An easy computation shows that the operator d induces via the isomorphism p an
operator again denoted d:

L(Um) = LU 1)
(5) z = (df)(@) =~ D f()

yEUm
z<y
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We take the following notations:

L(Um)l = p(Pm,l)

and
L(Un) (k1) = p(Prmyk) = (d*)™ " (L(Uk); N ker d)
so that
(6) L(Un) = @ LU k)
Lom
where
(7) Ly :={(k,1)|0<I <k <min(m,n+1—m)}.

The general notion of a design in an association scheme has, in the case of the
non-binary Johnson scheme, the following combinatorial significance:

PROPOSITION 2.1. Let B C Uy, and let f:= ) 5.5 B € L(Upy,) be the charac-
teristic function of B. The following conditions are equivalent:

1. For all T € Uy, card{B € B | T < B} only depends on t.
2. B is orthogonal to L(Up,) k) for all (k,1) € Ly, k < t, (I,k) # (0,0).
3. Y ges f(B) =0 for all (k,1) € Lim, k < t, (I,k) #(0,0).

ProOF. This is already proved in [13]. Note first that, in the decomposition
(6), L(Um)(0,0) = C.1 is the one-dimensional subspace spanned by the all-one func-
tion on U,,. Let 7 be the characteristic function of an element T" € U;. Clearly,
from the above interpretation of d : L(U,) — L(Un—1), the property required
in 1) is equivalent to ask that < f,(d*)" 't >, only depends on ¢. But
< (d)™ P11 >pp,)= A(t) < 1,1 >y, ) only depends on ¢ since it counts the
number of x € U, such that T < z. From the decomposition (6),

(8) T= Z Tra + A(t)1
(k,\)EL, k<t
(k,1)#(0,0)
where 74 € L(Up)(k,)- This shows the equivalence of 1) and 2). Point 3) follows
from < B, f >rw,)=1/|Un| X pep f(B)- O

REMARK 2.1. Note that this is also the notion of “gemeralized combinatorial
design” as introduced by Delsarte in [5]. The weaker property that the supports of
the blocks hold a t-design in the classical sense is equivalent to the orthogonality of
B with the subspaces L(Uy,)(k,0y for k <t (since, as was already mentionned, Py o
is the space of functions f such that f(B) only depends on S(B)).

3. The alphabet F is a group

In this section we assume that the alphabet F' has a structure of an abelian
group (F,+), for which ag = 0. We assume that F' is endowed with a non degene-
rated symmetric bilinear map

FxF— (C,x)
(z,y) = (z,y)

(9)
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The choice of such a duality is equivalent to a specification of an isomorphism
between F' and its group of characters, given by z — (., ). In particular, we shall
make frequent use of the orthogonality relations between the characters of F.

The space X = F" is endowed with (z,y) := [[\—, (z;,y;). If C is a linear code
in X, i.e. a subgroup of X, C* denotes its orthogonal code with respect to (,):

(10) Ct={ueX|(uv)=1VveC}

We define another operator on L(U,,) which will be of major importance in the
generalized MacWilliams formulas:

DEFINITION 3.1. Let f € L(Uy,). Let Tf be defined, for all u € Uy, by

(11) Tiw)= S (ub)f0)
5(2)€:U§"(u)

Note that the operator T' depends on the choice of the duality (,). We denote
by T the operator corresponding to the conjugate duality (z,).

ProrosiTIiON 3.1. The following properties hold for the operator T:

1. T1 = (g — V)z1, Tz1 = —z1, and, for i > 2, Tz; is a linear combination of
2250y 2g—1-

2. Iff = PZu;, Tf(’l)) = HiGS(u) Tzui (Ul)

3. The operator T is linear, and maps L(Uy,); into itself injectively.

4. For all f,g € L(Uyp), <Tf,g>=<f Tg>.

5. For all f € L(Uy), dTf = —Tdf and &*Tf = -Td*f.

ProOF. We first prove 4.

<Thg>=—— 3 @Hwe)

(12) S(b)=S(u)
= YO0 Y (wbg)
| m‘ beU,, UEU,
S(u)=5(b)
=< f7 Tg >

In order to prove 1., we compute Tz1(u). From the orthogonality relations,
Tz1(u) = Y pza, (U, 0)21(0) = =1/(q — 1) 32420, (u,b) = —2z1(u). The computation
of T'1 goes the same. The assertion on T'z; for ¢ > 2 follows from 4.

Let us prove 2.: we assume f = pz,. Let v € Uy, with S(v) = S(u). Then
f(v) = HiES(u) Zu; (Ul) and



6 CHRISTINE BACHOC

Tfw)= > (uv,b)f(b)
S(t)—8iw)

= § H Uz Zuz Uz

(13) biF#ag i€S(u)

=TI 3 i Nz, ()

i€S(u) A#ao

H Tzy, (v;)

i€S(u)

which proves 2. From 1. and 2., it follows that 7'f is a linear combination of some
pzy, where the number of coordinates of w which are not equal to 0, respectively
which are equal to 1, is the same as for u. Hence T maps L(U,,); into itself.
Assume T'f = 0. Let S be a fixed set of m coordinates. Since for all u € U,,,
such that S(u) = S, T'f(u) = 0, the following system of linear equations holds:

(14) > (u,b)f(b) =0 for all u € Uy,
bEU,
S(b)=S(u)

We only have to prove that the matrix of this linear system is invertible. But
this matrix is the (¢ — 1)™ x (¢ — 1)™-symetric matrix ((«,v))yvev,,; it is a subma-
trix of the matrix ((u,v))y ver~ which is invertible since the characters (.,v) span
L(F™), and hence it has full rank.

We prove the equality d*Tf = T'd*f; a similar proof can be given for d. Let
u € Um+1.

Td'f(u)= Y (u,e)d" f(c)

cEUm 41
S(c)=S(u)
== > (wo Y fb)
(15) c€Um41 bEUm
S(c)=S(u) b<c

== > (Y (wo)f®

beUm c€EUm 1
S(b)CS(u) S(c)=S(b)
b<c

For a fixed b € U, such that S(b) C S(u), let i, be the index in S(u) but not

in S(b) Then7 Z c€Um +1 (U,C) ( vb) Z F (ulb ) (uab):
S(e)=S(b) #ao

Td* fu)= Y (u,b)f(b).
beU,,
S(b)CS(u)

But, for a fixed b € Uy, with S(b) C S(u), we have (u,b) = (v,b) where v is the
only element in F" such that v < u and S(v) = S(b). Hence

(16)
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Td fu)= Y ( >, (@b)f(b)=-dTf(u).
U Sy

(17)

O

REMARK 3.1. The operator T doesn’t in general commute with the action of
H. We discuss this possibility in section 5.

In the case of the binary alphabet F =y, and more generaly if | = 0, meaning
that f(u) only depends on S(u), one easily sees that T f(u) = (—1)I*/f(u).

4. A MacWilliams type identity

Let C be a linear code in F™ and let C* be its orthogonal code as defined in
previous section. We are going to define harmonic weight enumerators associated
to C and to prove a MacWilliams type identity for them.

Let f € L(U); Nkerd. We set, for all z € X = F",

(18) D*f(z) =Y f(u)
u€eUy
u<le
Note that, if || > k, D*f(z) = (= 1)1+ C 20t f(2). 1f |2] < k, D* f(2) = 0.

DEFINITION 4.1. Let f € L(U); Nkerd. The harmonic weight enumerator
associated to C' and f is

Zop(X,¥) = 3 D" fu) Xl bty lulk
uelC
REMARK 4.1. Note that it is not clear yet that Zc s is a polynomial. It will
derive from Proposition 4.1. In the binary case, | = 0 is the only possibility, and

Zc,s coincides with the notion introduced in [1]. The slightly more general case
I =0 over F, is actually treated in [12].

The following proposition is the key property needed to prove that Zc ¢ is
a polynomial satisfying a MacWilliams type transformation formula. Its proof is
postponed to Subsection 4.1.

PropPOSITION 4.1. Let f € L(U)i Nkerd and let u € X = F™.
Foralli=0,...,k,

(19) > woso=e-v("T o
beUy
1S(0)NS ()| =k—i

The main property of the Z¢ ¢ is the following:

THEOREM 4.1. Let f € L(Uy); Nkerd and let C be a linear subcode of F™.
Let C* be its orthogonal code. Then, Zc ;(X,Y) is a homogeneous polynomial of
degree n — 2k + 1, and

1 .
(20) Zo1 j(X,Y) = mqk "Zori(X 4+ (g —1)Y,X —Y)
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4.1. Proof of Proposition 4.1. We proceed by induction on i. The case
1 = 0 is the identity

> (wb)f(h) =D Tf(u)
beUy
S(b)CS(u)

which derives from (16) and (17) by iteration of d*. Let us now assume the identity
for all j <i—1. From the fact that f € kerd and from T'df = —dT f, we know that
Tf € kerd. Let y € Up_;. We have

(21) S TR =
teUy
y<t

which means

(22) > Y (BbfB) =0
telUy beUs
y<t S(b)=S(t)

We sum up these equations over the set of y < u, with y € Ug—;. Hence all the
b € Uy, such that |S(b)NS(u)| > k — i will contribute in the sum. We rearrange the
sum over j such that |[S(b) N S(u)| =k —j. We set

(23) S(u,j) :={be U | [S(b)NS(u)] =k - j}

and obtain:

(24) YooY At =

J=0beS(u,j)
where
(25) Ay = > > b1,
y€EUR—; teUy
y<u S(t)=5(b)

S(y)CS(u)NSb)  y<t

If we denote by bg(,) the element of F'™ which is equal to b over S(y) and to ag
outside, we have

STt =seyw) Y. [ (st

teUy ts#ao s€S(b)\S(y)

S(t)=S5(b)
:(bS(y)7u) H (Z (bsa/\))

y<t
s€S(b)\S(y) A#a,
:(bS(y)= u)(_l)l

and we are left with, if Sy_; := S(y) runs over subsets of size k — 1,



HARMONIC WEIGHT ENUMERATORS 9

(27) Ap = (_1)Z Z (bSk—iiu)‘

Sk_:CS(b)NS(u)

LemMA 4.1. If f € L(Uy),, for allu € F,

(28) S Afb >(k?l ‘.j)<q—1>” S (bu)f(b)

beS(u,j) bES(u,j)

PrOOF. The equality (28) is linear in f, so it is enough to verify it for f = pz,.
The fact that f € L(Uy); means that the number of non zero coordinates of v is k
and that the number of coordinates of v equal to 1is k — . Let S := S(v); from
the definition of pz,, the only b having a non zero contribution in the left or right
handsides are the ones with S(b) = S. Hence, if |S(u) N S| # k — j, both sides
are equal to 0, so we assume that |S(u) N S| = k — j. Then, if L denotes the left
handside of (28), and from the expression (27) for A,

)OS DR | CSHY | EMC

beUr Sk_;CSNS(u) s€ESk—i seS
S(b)=S
(29) = (_l)i Z Z H (bs, us)2, (bs) H zu, (bs)
Sk_iCSNS(u) beUr sESk_; SES\Sk_;:
S(b)=S
=(-1n" IT > gz, ) T (D 2. )
Sk— ,CSQS( )SGSk i A#aq SGS\S}C,,- A#ag

But 37y, v, (A) = —zu,(ao) since s € S, and 2y, (ag) = 1 or 0, respectively
if vs = 1 or vy > 2. Hence the only subsets S;_; having a non zero contribution
are the ones for which S\ Sx—; C {s | vs = 1}. Such subsets exist only if v, = 1
outside of S(u), and if I < k — 1 (since S—; must cover the coordinates s of v with
vs # 1). Moreover, in that case, since vs = 1 outside of Sy_;, since T'z; = —z; and
21\ = —1/(g - 1) if A # ao,

H (Z (A, us) 2y, (A H T2y, (us) = (g —1)"7 H Tzvs (us).

SESK—i AFaop SESk_i seESNS(u

One sees easily that the number of S;_; with such a contribution is equal to
("= 7) Finally, L equals 0 if vs # 1 on S\ S(u) and equals

i—

(*~ l, N(g—1)=7 [iesnsu )Tzvs(us) otherwise. Since T'zi(ag) = —z1(ag) = —1

(2
while, for s > 2, Tzs(ag) = 0, in any case,

=0 (T ) - 0 [ o),

7 —
J seS

The right handside of (28) is easily computed:
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Z (b,u) f(b) = Z H(bSaUs)sz(bs)

beS (u,5) b(E)Uk s€S
S(b)=S

T vug)ze, )

SES Aao

=[] 720 (us).

seS

—
o
S

=

I

O

We return to the proof of Proposition 4.1. Equation (24) becomes, applying
Lemma 4.1,

(31) S (1) (’“ - ‘j) G- Y (bwit) =0

. i—j
Jj=0 J beS(u,j)

and, applying the induction hypothesis to j <i—1,

Y U — (0 i'__jk_l_j k=1 p- u
@) 0 T 60s0)= -0 T s e e i)
From (*7157) (*7") = (*7) (7). we get

o S s =5 ) e ()

(33) beS(u,i)

which is the expression of Proposition 4.1.

4.2. Proof of Theorem 4.1. We first prove that Z¢ ¢(X,Y) is a polynomial.
If u € C satisfies n — |u| — k +1 < 0, let i be an integer with n — |u| < i <k —1.
Equation (19) of Proposition 4.1 proves that D*T f(u) = 0, since no b € Uy with
|S(b) N S(u)| = k — i can exist. We conclude from the property D*Tf = —TD* f
and from the injectivity of T (see Proposition 3.1).

Now we prove the transformation formula (20). Therefore, as in [1], we compute
the Fourier transform (over F™) of

(34) ®(u) := D* f(u) X"yl

which is

(35) b(u) = > (u,0)8(v).
veEF™

The formula will then derive directly from the Poisson summation formula:
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(36) S du) = %Z@(v).

ueC+ ved

Just like in the binary case [1], we first consider the case f = J, where d; is
defined by dp(u) = 1if u = b and 0 if u # b. We denote by ug(y) the element of F
which is equal to u on the complementary set of S(b) and to ag elsewhere.

LeEmMA 4.2, Let f = 0y € L(Ug). Then

(B B) = (@ hX X + (g - DY) H ol -yl

PRrROOF. Since D*0p(u) = 1 if b < u and 0 otherwise,

(38) O(u) = > (u,v) X" VITRHy =R

vEF™
b<v

We can write v = b+ v', where S(v') is the complementary set of S(b). Hence
(u,v) = (u,b)(u,v') and v' can be considered to run over F"~*,

&)(u) — (’LL, b) Z (u,v/)an%Jrlf\v"Y\v,‘
(39) ,U/EFn—k
= (u, b)X*k“(X +(q— 1)Y)n—’f—\U§(b)\(X _ y)\u§(b)\
where the last equality is the usual computation of the Fourier transform of the

function z — X" k-lzlylel gyer Fr—k,
O

LEMMA 4.3. Let f € L(Uy); Nkerd.

(40) b(u) = ¢" DT f(u) (X + (g — DY) (X — vl
ProOF. Since f =3y, f(b)dp and from (37)

(1) ) = XS () )X + (g — DY) 0l (x - v,
beUy
Then [|ugq,| = |u| = [S(u) N S(b)]; we set |S(u) N S(b)| = k — i and sum over
i€{0...k}. We get

(42) b(u) = XX + (g = 1Y) A (X = )R ()

where
k

(43) T(u) = ( > (u,0) f(D))(X + (¢ = DY) (X =Y
i=0 beUy

|S(6)NS (u)|=k—i

which becomes, by Proposition 4.1,
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k

W(w) =) (¢-1) (k . l)D*Tf(u)(X + (g - DY) (X =Y
i=0
* g (Ft k—l—i i
(44) =D Tf(u)z< ; )(X+(q—1)Y) (g —1)(X —=Y))
i=0

= D*Tf(u)(X + (¢ =Y + (g = (X = V))*!
= D*T f(u)(gX)*~".
Replacing (44) in (42), we obtain (40).

5. The operator T

We study in this section the possibility for the operator T' to be homothetic on
the spaces L(Uy); Nkerd. This case is especially interesting because Theorem 4.1
can in that case be read as a linear invariance property for a certain polynomial
(see next section).

PROPOSITION 5.1. The following statements are equivalent:

e For all k, 1, there exists A,y € C such that, for all f € L(Ug); N kerd,
Tf=Aaf.

o FF =Ty, F; and (z,y) = x(zy), where x is a non-trivial character of F, or
F =Ty and (2,y) = x(trace(zy?)) and x is the non-trivial character of Fy.

IfF =T, Fy, Ay = (=1)F120 and, if F =3, Ay = (-1)"1(/=3)"

REMARK 5.1. In terms of coding theory, the cases of the proposition are the
binary, ternary, and quaternary additive codes, with the terminology of [11]. We
have kept the usual notation for F, although the field structure has no importance
here. In particular, the quaternary additive codes are the same as the Kleinian
codes studied in [9].

PrOOF. From [6], we know that L(Uy); N kerd is a H-irreducible module.
Hence, T is homothetic over L(U); Nkerd if and only if 7' commutes with the
action of H, i.e. if and only if T'(h.f) = h.T(f) forall h € H, f € L(Uy); Nkerd. If
this is true for all k,[, since we have already seen that T'd* = —d*T, and from the
decomposition (6), it must be true for all f € L(Uy). The space L(Uy) is generated
by {05,b € U}. We have h.d, = &yp—1, and Tép(u) = (b,u) if S(u) = S(b), and
0 otherwise. Hence it turns out that T commutes with H over L(Uj) if and only
if (u,v) = (uh,vh) for all h € H and u,v € Uy with S(u) = S(v). Since the
permutation on the coordinates of the elements of F™ has no incidence on the
duality (because we assume (u,v) = [, (u;, v;)), we are left with the condition that
(,) must be constant on the orbits of F' x F' under the action of S,_1, which means
that a := (z,z) is independant of the choice of z # 0 in F, and § := (x,y) is
independant of the choice of z # y # 0 in F. Hence, (,) takes at most three values:
{1,, f}. Since they form a subgroup of C* of order d = 2,3, since dF = 0 and
since, for each = # 0, the kernel of (., ) has order ¢/d, one easily sees that the only
possibilities left are the ones listed in the proposition.

We now compute A,;. We have already seen that Tz = —z;. If i > 2,

T2i(%) = 3 yzao (@ y)2i(y) = azi(®) + BY, 200 2 2i(y). But 32, zi(y) = 0, so
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Tz(xz) = (a—B)z;i(x). Hence, if f = pz, € L(Uy);, from property 2. of Proposition
3.1, Tf = (—1)*!(a— B)'f. In the cases F = Fy,F;, a — 3 =1—(=1) = 2, and
in the case F = F3, a — f = £(j — j?) = +iy/3 where j is a cubique root of 1.

O

REMARK 5.2. In the ternary case, there are two conjugate choices for the du-
ality (,). Since Tf(—u) = Tf(u), we have Zc7p = Zors+75) )2 The eigenvalue
of T over L(Uy,); is the conjugate of the one associated to T; but, we have seen that
Ak, has a trivial real part in the case | =1 mod 2. Hence, in this case, Zc 1y = 0,
and so Zc,p = 0. Note that it fits with the fact that the set C+ only depends on the
choice of the duality up to conjugation.

6. Applications to self-dual codes

In this section, we consider the case of self-dual ternary and additive quater-
nary codes. The binary case was previously studied in [1]. In these cases, Theorem
4.1 shows that the polynomials Zc ; are relative invariants for the group of trans-
formation acting on the Hamming weight enumerator.

6.1. Ternary self-dual codes. Let M = % (1 %) and D = (%) where

j = e¥7/3 Let G5 be the group generated by M and D. Tt is well-known that, if C
is a self-dual ternary code, then its weight enumerator W¢ is invariant under G3,
and hence belongs to its algebra of invariants Zg,, which is the polynomial ring in
the polynomials g4 := 2* + 8213, 912 := y*(2% — °)® (see [11]).

We define the following characters ), , of the group Gf:

(45) Yuo(M) = (-1)" Yuu(D) =j"
and we denote by Zg, 4, , the space of relative invariants:

(46) Ty = {P(x,y) € Clz,y] | P.M = 1)y, (M)P for all M € G3}.

The following polynomials are relative invariants, as one can check easily:

DPa = y(xS - yS) € IG3J/’0,1

47
( ) Pe = z® - 20373?/3 - 8y6 € IG371/)1,0

LeMMA 6.1. The spaces of relative invariants Lg, .y, , are free modules over
Ia,. More precisely:

Tas,40., = PaClg4, g12]
Las 0.0 = PaClga, g12]
Tas,41.0 = PeClg4, g12]
IG3,¢1,1 = p4p6(c[g4 s 912]
Tas 2 = PapeCloa, g12]

Proor. It follows easily from the computation of the Molien series of the
corresponding spaces (see [11] and [1] for examples of such computations). O

PROPOSITION 6.1. Let C be a self-dual ternary code of length n. Let f belong
to L(Ug); Nkerd. Ifl =1 mod?2, Zcy =0. Ifl =0 mod 2, let u € {0,1} be
equal to k +1/2 modulo 2, and let v € {0,1,2} be equal to —k modulo 3. Then
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Zo,f € Lag .-

PROOF. Straightforward from Theorem 4.1, Remark 5.2 and Proposition 5.1.
O

In the special case of extremal codes, we can derive from previous proposition
that Z¢ y = 0 for certain values of (k,l). We briefly recall what an extremal code
is (see [11]): if C is a self-dual ternary code of length n, then n is a multiple of 4.
Write n = 12¢ + 4r with » = 0,1,2. Then the fact that W¢ belongs to Zg, shows
that the minimum weight w(C') of C satisfies

(48) w(C) < 3q+ 3.

A code meeting this bound is called extremal. Its weight enumerator is then
uniquely determined.

COROLLARY 6.1. Let C be an extremal self-dual ternary code of length n =
12g + 4r. Let f € L(Uy); Nkerd. Then Z¢c,y =0 when ! =1 mod 2 from Remark
5.2, but also in the following cases:

e Ifr = 0: for k = 1,2,3 and all | < k, and for (k,1) = (4,0),(4,2),

(5,0), (5,4), (6,2),(7,0).
o Ifr=1: for k=1,2 and all | <k, and for (k,1) = (3,0),(4,2),(5,0).
o Ifr=2: for (k,1) = (1,0),(2,2),(3,0).

REMARK 6.1. In view of Proposition 2.1, the property Zc ¢ = 0 is related to
the fact that the set of codewords of fived Hamming weight form a design. We
recover here results already known from [5] and [3], namely that extremal ternary
self-dual codes hold generalized 3-designs and classical {1,2,3,4,5,7}-designs when
r = 0 (respectively for the corresponding weaker results when r = 1,2), which
were derived from generalized Assmus-Mattson theorems. We obtain here some
additional properties; in particular it is worth noticing that, for instance in the
case r = 0, the generalized 3-designs are actually nearly 4-designs since the only
property missing is orthogonality with L(Uy)4 N ker d.

6.2. Even quaternary additive self-dual codes. Here we follow the same
line as for ternary codes, so we omit the proofs and some comments since they
are completely similar. Let M = (1 ) and D = ({ % ). Let G4 be the group
generated by M and D. If C is a self-dual even quaternary additive code, then
its weight enumerator We is invariant under G4, and hence belongs to its algebra
of invariants Zg,, which is the polynomial ring in the polynomials hy := 2% + 3y2,
he = y?(2® — y?)? (see [11]).

We define the following characters ¢, , of the group Gjy:

(49) wu,v(M) =(-1)" d)u’v(D) = (-1)"
and we denote by Zg, y, , the space of relative invariants. The following polyno-
mials are relative invariants, as one can check easily:

qz = y(xQ - y2) € IG4J/’0,1

(50)
rg = z® — Q:Ey2 €L, o
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LEMMA 6.2. The spaces of relative invariants Iq, y, , are free modules over
Iag,. More precisely:

¢ IG4’1/’0,1 = QSC[h2,h6]

¢ IG4’1/’1,0 = TSC[h2,h6]

* IG4’1/’1,1 = q3r3Clhs, he]

PROPOSITION 6.2. Let C be a self-dual even quaternary additive code of length

n. Let f € L(Ug) Nkerd. Let u € {0,1} be equal to k — 1 modulo 2, and let
v € {0,1} be equal to k modulo 2. Then

Z0o.f € Lasipy,.-
Here the extremal codes have weight w(C) = 2¢q + 2, where n = 6q + 2r.

COROLLARY 6.2. Let C' be an extremal self-dual even quaternary additive code
of length n = 6g+2r. Let f € L(Uy)iNkerd. Then Zcy = 0 in the following cases:

e Ifr = 0: for k = 1,2 and all Il < k, and for (k,1) = (3,0),(3,1),(3,2),

(4,0),(4,1),(4,3),(5,0), (5,2),(6,1),(7,0).
b If’l“ =1: fOT( l) = (170) ( ) ) (270) ( ) ( ) (372)1(471)1(570)
o Ifr=2: for (k,1) = (1,0),(2,1),(3,0).

7. Intersection numbers

Just like in the binary case [1], the polynomials Z¢ ; and their invariance
properties can be used to compute certain invariants associated to a fixed element
v € F™ and to a code C. We fix v € Uy.

DEFINITION 7.1. Let v € Uy and u € U,,. We define
n(u,v) := card(S(u) N S(v))

e(u,v) := card{s € [1..n] | us = vs # 0}
and

Let i = i(u,v) :=t—e(u,v) and j := j(u,v) = t—n(u,v). The group H acts on
U; x U, and one can see easily that the orbits of this action are given by the values
of (4, ). Equivalently, in the case t = w, (7, j) gives the relations of the non-binary
Johnson scheme [14]. Clearly, the values of (i(u,v), j(u,v)) belong to the set

(51) Kiw:={(i,j) |0<j<i<t t—w<j<n-—w}
Let

(52) Kt:Kt,t:{(Zaj)‘OSJSZStaJSn_t}
and

(53) L= {(k,)|0<1<k<min(t,n+1—1)}.

The decomposition of the space L(U;) into irreducible H-subspaces given by
L(Ut) = ®kpyer, L(Ut) (k1) (see (6)) allows us to consider the zonal elements asso-
ciated to this decomposition. These are functions g;; having the characteristic
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property that g ;(u) only depends on i(u,v), j(u,v). In our situation they are
uniquely determined up to a scalar multiple because the subspaces L(Uj),) are
pairwise non isomorphic. We recall that they can be constructed the following way:
take any orthonormal basis (f;) of L(Ut) k), and set Eg ) (u,v) := 2, fi(u) fi(v).
This definition is independant of the choice of the basis, and hence is invariant under
the action of H on (u,v) € UZ. Hence E ) (u,v) is a function of (i(u,v),j(u,v)).
In the setting of association schemes, the E(k ;) are the idempotents of the non-
binary Johnson scheme and its expression in terms of (i(u,v),j(u,v)) is given by
the second eigenvalues, which are computed in [14]. We recall in next proposition
their expression in terms of Hahn and Krawtchouk polynomials.

PROPOSITION 7.1. [14]

(54) By (w,v) = hgy ¢ (i(u, v), j(u,v)),
where, for all (k,1) € L; and (i,j) € K,

(55) hray,e(i,5) = (n)Kl(t—J q—1,i—)Qrot(n =1t =1,7)

(1)

where Ky, Qp are respectively Krawtchouk and Hahn polynomials, given by the
following formulas:

Ke(g,0) = 3"(-1i(a 14 G200

i=0

k
t—x\/n—-t—=
56 Ey(n,t,z) =S (1) (©
( ) k(n: ,.’L‘) TZ:O( ) r k—’l‘ k—T‘
(Z) B (kﬁl)
B
In view of applications to codes, we shall make use of the polynomials Z¢, ¢ for
[ € L(Ug)iNkerd such that D* f(u) = E ;) (u,v) for u € Up. We denote by H; gy o
such a function f. Therefore we need to compute D* f(u) for u € U, for any w > k
(and not only for w = t). From last proposition, D*Hj ).,(u) = bk (7, 5) for
w € Uy and i = i(u,v), j = j(u,v). For the general case u € U, we have a more
complicated and rather ugly formula:

Qk(n,t,i) = Ei(n,t,k)

PROPOSITION 7.2. For all w > k and all u € Uy, the value of D*H ), (u)
only depends on (i(u,v),j(u,v)). We set again

(57) D*H g, 1y,0(u) = hig g 4 (i(u, v), j(u, v)),

where

h 1 (65) = ¢ (g —2)=T2 7 (g = 3)ks (g — 1)!7*
I

o) ) G (22 )
01,12 Ji,J2) \k1,k2,k3) \l1,l> t—s k '

h(k,l),t(t_jl — kQ —ll,t—jl —j2 — kl — kQ — k3 —ll —lg)
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where
1
(59) c= —
(¢ = 1) ("57)
and

I ={(i1,i2, 41,72, k1, ko, ks, 11, 12) |
i1 €E[0.w+j —t]ia € [0.w+j—t—i],
Jj1 €10..t—1i],j2 € [0..t —i — j1],
(60) ki € 0. — j] ks € [0nd — j — Ka] g € [0nd — j — kr — Ko,
li € [0..],12 € 0.5 — L],
i+ +hk >kt—(Gi+jo+ki+ke+ks+h+1) <n-—t,
si=dy+iz+j1+jo+ ki +ka+ks+ 1+l <t}
ProoF. We use the formula (dd* — d*d)|v,), = (¢ —1)(n +1 - 2k)Id

([6, Proposition 2.6]). Taking account of the fact that H ) , € kerd, and iterating
it, we get

(61)
+1 -2k dtfk d*t—k
-1 t—k (T H = ((=1 t—k -1 t—k H .
(1) < Pk ) (k.0 = (0 G50 e Huen .o
Let K = (—1)" " &5 H gy o € L(U;). For all u € Uy,

K(u) = D*Hj1y,0(w) = h(gy,¢(i(u,v),5(u,v)). We get, for all u € Uy,

1
D™ H1),0(u) = (¢ — 1)k (T > D K@)

- up €U, 2€U:
up<u up<z

_ 1 e(z,u)
T 2 ( ¢ >K(Z)'
e(z,u)>k

The parameters e(z, u), i(z,v), j(z,v) express easily in terms of:
i1 :=card{i | z; = u; # 0,v; = 0}, ip := card{i | z; # u; # 0,v; = 0},
g1 :=card{i| z; = u; = v; # 0}, jo 1= card{i | z; # u; # 0,v; = u;},
ki :=card{i | z; = u; # 0,v; # u; # 0}, ko := card{i | z; # u; # v; # 0},
ks :=card{i | z; # u; #0,2; = v;}, Iy :=card{i | z; = v; # 0,u; = 0},
lo :=card{i | z; # v; # 0,u; = 0}.

The formula then follows from the enumeration of all possibilities.

(SIS

O

REMARK 7.1. In the case when t < w, there is a more simple formula for
D*H . 1y,0(u) coming from: d*“’ka(k’l),v = d*wftd*tka(k,l)’v.

Let C\ denote the set of words in C' of Hamming weight w, i.e. Cyy = CNUy,.
Let v € U;. We set, for (i,j) € Ky,

(63) N, (5,5) (V) 1= card{u € Cy | (i(u,v), j(u,v)) = (i,5)}.



18 CHRISTINE BACHOC

TABLE 1. The n,, (; ;) (v) for [v] =1

(i,4) 1(0,0)](1,0) | (1,1)
w=6 | 66 | 132 | 198
w=28 | 330 | 660 | 495
w =10 550 | 1100 | 330
w=12| 78 [ 156 | 0

TABLE 2. The n,, (; ;) (v) for |v] =2

1,3

(i,4) 1(0,0)](1,0)](1,1)|(2,0)](21)|(22)
w=6| 10 | 40 [ 72 | 40 [ 144 | 90
w=8 | 70 | 280 | 240 | 280 | 480 | 135
w=10| 150 | 600 | 200 | 600 | 400 | 30
w=12] 26 | 104 | 0 [ 104 | 0 0

From Proposition 7.2, for each (k,l) € L;, the coefficient of z7~w—k+lyw=F in
ZC:H(k,l),v is:

(64) Z hz‘k,l)ﬂ: (iaj)nw,(z’7j)(v)'
(4,§)EK ¢, w
The claims in Propositions 6.1, 6.2, and the descriptions of the spaces of relative
invariants involved, can then be turned out into linear relations between the un-
knowns n,,,(; j)(v). See [1] for examples in the binary case. We work out examples
in the case of even quaternary additive self-dual codes.

7.1. The dodecacode. Let n = 12. It is known ([11]) that there is up to
equivalence only one [12, 6, 6] even self-dual quaternary additive code, the so-called
dodecacode. We show what can be said a priori on the intersection numbers
N, (i,5)(v) defined in (63) of such a code C' by use of the method described in
section 7. We fix an element v € Uy.

From Corollary 6.2, all the linear forms in (64) are equal to zero for ¢ < 2 and
(k,1) € L;. Moreover, the knowledge of the weight enumerator of such a code C

(65) We(z,y) = 212 + 39625y% + 1485218 + 198022510 + 234y'2

leads to more equations:

(66) Z N (i,5) (V) = card(Cy).

(i,4) €Kt w

We find for ¢t = 1,2 uniquely determined intersection numbers (see Table 1 and
2), in accordance with the fact that, for all w, C,, holds 2-generalized designs (see
Corollary 6.2).

If t = 3, the intersection numbers are not uniquely determined (Table 3). They
depend on one parameter z(v) = x which is the number of weight 3 words in the
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TABLE 3. The n,, (; ;) (v) for [v| =3

) | 00 [ L0 [LO] 20 [EGD][@2
w=~6 r—1 -3z + 15 18 3x+9 72 54
w=8 | —3r+21 9x + 63 84 —9z 4+ 189 | 336 108
w=10 | 3z + 133 | —9z + 261 90 9z + 459 360 30
w=12 | —x +11 3z + 45 0 —3x + 111 0 0

(4,4) 3,0 |B1]62]G3
w=6 | —z+13 | 72 | 108 | 36
w=8 | 3zx+105 | 336 | 216 | 27
w=10| —32+327 | 360 | 60 0
w=12| x+67 0 0 0

coset v+ C (because clearly this number equals 1+ ng (,0)(v)). Clearly,  can take
the values 1,2, 3, 4.

If t = 4, we moreover assume that v is a minimum weight word in its coset v+C.
Again, the intersection numbers are computed from one of them. We don’t give the
full details of their expression but notice that the number of weight 6 codewords,
the support of which contain the support of v, is a constant (because the supports
hold classical 5-design from Assmus-Mattson theorem) and that this number equals
N6, (2,0)+M6,(3,0)+ M6, (4,0)- The computation shows that the intersection numbers can
all be expressed affinely in = := ng (4,0 like ng 2,0y = = +4 and ng (30) = =2z + 8.
The weight distribution of v+ C itself doesn’t depend on z (see Table 4). Note that,
in general, the weight distribution of v + C' derives from the intersection numbers
because |u + v| = |u| + i(u,v) + j(u,v) — t.

We display in Table 4 the coset distribution of such a code. The weight of the
cosets is at most 4. This can be proved directly by elementary counting arguments,
or derives from [5]. Note that the coset distribution could also be computed using
Delsarte method explained in [5]. If the coset has weight 3, it may contain 1,2,3
or 4 coset leaders. For the dodecacode, one finds respectively 792, 1314, 756, 63
cosets of weight 3 with respectively 1, 2, 3, 4 leaders. Hence the dodecacode has
got 540 cosets of weight 4.

7.2. Length 14. The extremal even self-dual codes of length 14 have weight
6 and weight enumerator

(67) Wel(z,y) =2 + 2732895 + 245725¢® + 70982%y'° + 60062°y'> + 549y'*.

It is known that there is a unique one which is Fy-linear hermitian ([11]). The
whole number of extremal additive codes seems huge, since we have found 490 such
codes with the additional condition that at least two codewords of weight 6 have
the same support ([2]). Information on the coset distribution of such codes could
be computed in the same way as for n = 12. Here, we take v to be a codeword
of weight 6. Because v is in the code C', additional constraints hold for n,, (; ;) (v):
since (u,v) = i(u,v) — j(u,v) mod 2, we have n,, (; j(v) =0if i+j =1 mod 2;
also, since |u +v| = |u| 4+ i+ j —t, we have n,, ; j)(v) =0if 0 <w+i+j—1t<6.



20 CHRISTINE BACHOC

TABLE 4. Coset distribution of a [12, 6, 6] even self-dual code

(12[8] 4 [5] 6 | 7 | 8 |
1 66 | 132 528 660
1 10 J40] 182 424 760
z [ 15— 3z | 48 [ 8z + 148 [ 432 — 6z | 810 — 6z
15 [48] 148 432 810
| 9 [ 10 | 11 | 12 |
1045 [ 1100 | 408 156
1080 961 504 134
1040 +8z | 948 [ 528 —3z [ 127+ =
1040 948 528 127

Altogether, the intersection numbers for v € Cg depend on three positive and
integral parameters x,y, 2. One of them is 22 := ng (5,0)(v) and counts the number
of codewords with the same support as v. Clearly this number is either 0 or 2 (they
come by pairs (u, u+v) and they are minimal). The general expression shows that,
if z = 1, i.e. if the support of v is also the support of some other word in C', then
y and z are uniquely determined. Note that, if C' is F4-linear, then it is the case
for all v € C since wv and w?v would provide codewords with the same support
as v. If z = 0, then the fact that the intersection numbers are natural numbers
show that y € [0..3] and z € [0..4]. Among the 490 non equivalent codes found, all
these possiblities for (y, z) occur. Table 5 gives the expression of the n,, (; ;) for the
weights w = 6,8. Note that the n,, (; j)(v) for j = 6 give the weight distribution of
the subcode

(68) C,:={ueC|Su)nSw) =}

7.3. Length 18. The weight of the extremal codes of length 18 is 8. There is
a unique Fy-linear hermitian code of weight 8, named Sig ([11]). It is not known
whether other additive self-dual codes meet this bound. We compute the coset
distribution with the help of the intersection numbers. Table 6 gathers the results
up to weight 9.

PROPOSITION 7.3. Let C be an even self-dual additive quaternary code of weight
8. Then the covering radius R of C' satisfies 5 < R < 6.

ProoF. For all i, we denote ¢; a coset of C of weight i and by n; the number
of cosets of weight i. Let X; denote the set of weight i words in F'®. Of course,
card(X;) = (1i8)3i. Note that, for i = 1,2,3, n; = card(X;). We start with the
weight enumerators of the cosets of C' of weight up to 6, computed with the help
of the intersection numbers. With the notations of Table 6, we count the words of
weight 4, 5, 6. We have:
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TABLE 5. Computation of n,, ; ;) (v) for v € Cs and w = 6,8

| | w=8 |
| | w=6 | (,7) |z =1 z=0

(4,7) |z=1 =0 (2,2) | 42 22+ 18
0,00 | 1 1 (3,1) | 9 Sy +4z+ 72
(3,3) 4z + 16 3,3 0 Ay + 8z + 48
(4,2)| 24 | —dy+2-+24 4,0) | 12 3y — 22+ 24
(4,4)| 42 22 + 18 (4,2) | 528 | —16y — 10z + 564
G, 1) | 0 2% (4,4) | 156 —y—4z+84
(5,3) | 96 | Sy+4z+72 (5,1) | 192 | 2y — 4z + 192
(5,5 0 —2y+24 (5,3) | 768 —8z + 816
(6,0) | 2 0 (5,5 | 0 2y + 24
(6,2) | 12 | —8y—2z+24 6,00 0 22
(6,4) | 84 | —2y—22+90 (6,2) | 348 | by 8z + 312
(6,6) | 12 y+4 (6,4) | 312 4z + 300

(6,6) | 3 —y+3

TABLE 6. Coset distribution for a [18,9, 8] even self-dual code

[1]2[3[4]5] 6 | 7 | 8 | 9 |
1 408 816 4930
1 56 224 1304 3360
1 x| 63-—3z 303 — 2z 978 + 14z 3730 — bz
y |z | 84—Ty—32z| 288 — 8y — 2z | 936 + 45y + 14z | 3680 + 8y — 5z
t| sd—3t 288 — 2t 936 + 14¢ 3680 — bt
84 288 936 3680

card(Xy) = Zy
(69) card(Xs) = Zx + Zz + Zt

card(Xg) = 56n, + Y (63— 32) + Y (84— Ty —32) + > _(84 — 3z) + 84ng

c3 Cq Cs

From these equations, we get

(70) n4 + ns +ng = 238680.

But we can check that 1 +mn; +ns +n3 +n4 +n5 +ng = 2'8, so we have proved
that R < 6 (it derives also from [5] since 6 is the number of different weights of
C+ = (). Now we assume that R < 4, so that n5 = ng = 0. For y € [1..4],
we denote nj the number of cosets of weight 4 containing exactly y coset leaders.
Clearly, two coset leaders in a coset of weight 4 have disjoint supports because the
code has minimal weight 8, so their number is upper bounded by 4. And the sum
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of two such words is a codeword of weight 8, so, if v is a coset leader of a fixed coset
of weight 4,

(71) y =1+ card{u,u € Cg | v < u} = ng (0,0)(v).

If Cg was a 4-design, the cardinality of {u,u € Cs | v < u} would be a constant.
However, we can compute its average value

1
2 = —— <
(72) 1 card(X3) v; card{u,u € Cs | v < u}
by the usual formula:
6
_ (2)/\2
i SRNCGER

where, for v € Uz, Ay = card{u,u € Cs | v < u} = 55. This last value can be read
in Table 6. Now, we have

(74) S y=> v’ =card(Xy)(1+ p).

vEXy c4

Finally, we obtain the following system of equations:

nj +n3 +nj +nj = 238680
(75) ny + 2ni + 3nj + 4nj = card(X,)

ny +4n3 +9n3 + 16n; = card(Xy)(1 + )

One can parametrize the solutions by n} and see that it doesn’t admit any
positive integral solutions.

REMARK 7.2. In the case of the code Sig, one can compute all these parame-
ters. One finds: (ny,n3,n3,nj) = (122400,36720, 12240, 3865), and, with obvious
notations, (ni°% ni? nlb) = (24480,38250,765). Hence the covering radius of Sis
is equal to 5. It would be interesting to know if a non Fy-linear code with covering
radius 6 exists.

O
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