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Harmoni weight enumerators of nonbinary odesand MaWilliams identitiesChristine BahoAbstrat. We de�ne harmoni weight enumerators asoiated to odes de�nedover a group alphabet F of size q. They generalize the lassial Hammingweight enumerator and are assoiated to the deomposition of the spae L(Fn)under the ation of the group Snq�1 o Sn. They satisfy a MaWilliams typeidentity, whih leads to relative invariant polynomials in the ase of self-dualodes. Appliations to the study of additive quaternary odes are developed.

1. IntrodutionThis paper extends the ideas and results of [1℄ to the ase of non-binary linearodes. Let C be a linear ode of length n over an alphabet F whih is an abeliangroup of size q. We introdue polynomials whih generalize the Hamming weightenumerator of the ode, using \harmoni funtions", after the work of C. Dunkl onharmoni analysis for the group Snq o Sn and of H. Tarnanen, J. Aaltonen, J.-M.Goethals on the non-binary Johnson sheme (in the setting of assoiation shemes).We prove a MaWilliams type identity for these polynomials (Theorem 4.1).This identity involves an operator T ating on harmoni funtions; in Setion 5 weexamine the ase when T is homotheti. We prove that it orresponds to the binary,ternary and quaternary odes. In Setion 6, we study more preisely the ternaryand quaternary self-dual odes, beause the harmoni weight enumerators are inthese ases relative invariant polynomials. In Corollary 6.1, 6.2, we extend resultsdue to P. Delsarte on the existene of generalized designs on the set of odewordsof �xed Hamming weight of extremal odes. Setion 7 is devoted to the appliationof this tool to the omputation of intersetion numbers. It makes use of the zonalfuntions assoiated to the subgroup Snq�1 o Sn, whih are expressed in terms ofKrawthouk and Hahn polynomials. We work out some examples in the ase ofeven self-dual additive quaternary odes.1991 Mathematis Subjet Classi�ation. Primary 94B05; Seondary 05B05, 05E35.0000 (opyright holder)1



2 CHRISTINE BACHOC2. Group representation and the non-binary Johnson shemeIn this setion we reall some notations and results on the Hamming and John-son shemes previously settled by C. F. Dunkl ([6℄) in the language of group repre-sentations and by Tarnanen, Aaltonen and Goethals ([14℄) in terms of assoiationshemes.Let F be a �nite alphabet of size q � 2. We denote by F := fa0; : : : ; aq�1g itselements. The group of permutations on q elements Sq ats on F by ai� = a��1(i).We speify a series of subgroups of Sq denoted f1g � � � � � Sq�1 � Sq, whereSq�i is the subgroup of Sq �xing a0; : : : ; ai�1 and is isomorphi to the group ofpermutations on q � i elements.Let L(F ) be the spae of omplex valued funtions on F , equiped with thesalar produt < f; g >= 1q Xx2F f(x)g(x):It is endowed with the left ation of Sq given by (�:f)(x) = f(x�). The deompo-sition into irreduible Sq-modules of L(F ) is given byL(F ) = C 1 ? L1(1)where 1 is the all-one funtion. We set z0 := 1 and we de�ne by indution anelement zi in Li, and a subspae Li+1 of L(F ) suh that the deomposition of Liinto Sq�i-irreduible modules, equals C zi ? Li+1, with trivial ation on C zi . Wenormalize as in [6℄ the zi by (zi; zi) = 1=(q � 1). Note that the zi are determinedfrom the above properties up to the multipliation by a omplex number of module1. The reursive omputation of their values shows that they an be assumed tobe real-valued, and hene are uniquely determined up to a sign. In partiular, we�x z1(a0) = 1 and z1(ai) = �1=(q� 1) for i � 1. We shall make frequent use of thefollowing properties: for i � 2, zi(a0) = 0 and, for i � 1, Pq�1j=0 zi(aj) = 0.The funtions zi are expliitly realized in [6℄ as oordinate funtions on F , seenas the regular simplex in Rq�1 .Let X := Fn. The ation of Sn on X given by(x1; : : : ; xn):� = (x�(1); : : : ; x�(n));ombined with the ation of Sq on F gives rise to a transitive ation of the groupG := Snq oSn on X . We denote by H the subgroup of G stabilizing (a0; : : : ; a0). Itis isomorphi to Snq�1 o Sn. Again we onsider the spae L(X) together with theindued ation of G (note that it is the representation of G indued by the trivialrepresentation on H), and the hermitian produt < f; g >= 1jXjPx2X f(x)g(x).Following [6℄, let, for all u 2 f0; 1; : : : ; q � 1gn, zu 2 L(X) be de�ned byzu(x) := nYi=1 zui(xi):If juj denotes the number of non-zero oordinates of u, then we have< zu; zv >=Æu;v(q�1)�juj. From (1), the subspae Pm spanned by fzu j juj = mg is G-invariantand



HARMONIC WEIGHT ENUMERATORS 3L(X) = �nm=0Pm(2)is the deomposition of L(X) into G-irreduible subspaes.We shall make use of the desription given in [6℄ of the deomposition of eahPm as H-modules. Moreover, the spaes Pm are linked to the Johnson shemesvia the following: for b 2 X , let jbj be the Hamming weight i.e. the numberof oordinates of b not equal to a0, and let S(b) be its support, i.e. the set ofoordinates i suh that bi 6= a0. LetUm := fb 2 X j jbj = mg:Note that the set Um is one orbit under the ation of H . Then, as an H-module,the spae L(Um) is isomorphi to Pm via the map: � : Pm ! L(Um) de�ned by�zu(b) = (0 if S(b) 6= S(u)zu(b) if S(b) = S(u) :Let, for 0 � l � m, Pm;l be the subspae of Pm spanned by the zu suh thatui = 1 for exatly m� l oordinates, and let L(Um)l be the image of Pm;l by �. Inthe speial ase q = 2, of ourse we only onsider the ase l = 0 and Pm;0 = Pm.From the fat that Sq�1 ats trivially on z1, the spae Pm;l is H-invariant. It isworth notiing that Pm;0 is the spae of funtions f suh that f(b) only dependson S(b), and hene an be identi�ed with the orresponding spae Pm over Fn2 .If xi denotes the funtion de�ned by xi(b) = z1(bi), the operatord := nXi=1 ��xiommutes with the ation of H and maps Pm;l to Pm�1;l. Its adjoint operator isdenoted by d�. Then, the deomposition of Pm into irreduible H-submodules isgiven by ([6℄): Pm = �ml=0 �min(m;n+l�m)k=l Pm;l;k(3)where Pm;l;k := (d�)m�k(Pk;l \ ker d):(4)In the ase q = 2, there is only the summand l = 0.We de�ne an inidene relation between the elements of X by:x � y if xi 6= a0 ) xi = yi:An easy omputation shows that the operator d indues via the isomorphism � anoperator again denoted d:L(Um)! L(Um�1)x! (df)(x) = � Xy2Umx�y f(y):(5)



4 CHRISTINE BACHOCWe take the following notations:L(Um)l := �(Pm;l)and L(Um)(k;l) := �(Pm;l;k) = (d�)m�k(L(Uk)l \ ker d)so that L(Um) =MLm L(Um)(k;l)(6)where Lm := f(k; l) j 0 � l � k � min(m;n+ l �m)g:(7) The general notion of a design in an assoiation sheme has, in the ase of thenon-binary Johnson sheme, the following ombinatorial signi�ane:Proposition 2.1. Let B � Um and let � :=PB2B B 2 L(Um) be the hara-teristi funtion of B. The following onditions are equivalent:1. For all T 2 Ut, ardfB 2 B j T � Bg only depends on t.2. � is orthogonal to L(Um)(k;l) for all (k; l) 2 Lm, k � t, (l; k) 6= (0; 0).3. PB2B f(B) = 0 for all (k; l) 2 Lm, k � t, (l; k) 6= (0; 0).Proof. This is already proved in [13℄. Note �rst that, in the deomposition(6), L(Um)(0;0) = C :1 is the one-dimensional subspae spanned by the all-one fun-tion on Um. Let � be the harateristi funtion of an element T 2 Ut. Clearly,from the above interpretation of d : L(Um) ! L(Um�1), the property requiredin 1) is equivalent to ask that < �; (d�)m�t� >L(Um) only depends on t. But< (d�)m�t�;1 >L(Um)= �(t) < 1;1 >L(Um) only depends on t sine it ounts thenumber of x 2 Um suh that T � x. From the deomposition (6),� = X(k;l)2Lm;k�t(k;l)6=(0;0) �k;l + �(t)1(8)where �k;l 2 L(Um)(k;l). This shows the equivalene of 1) and 2). Point 3) followsfrom < �; f >L(Um)= 1=jUmjPB2B f(B).Remark 2.1. Note that this is also the notion of \generalized ombinatorialdesign" as introdued by Delsarte in [5℄. The weaker property that the supports ofthe bloks hold a t-design in the lassial sense is equivalent to the orthogonality of� with the subspaes L(Um)(k;0) for k � t (sine, as was already mentionned, Pk;0is the spae of funtions f suh that f(B) only depends on S(B)).3. The alphabet F is a groupIn this setion we assume that the alphabet F has a struture of an abeliangroup (F;+), for whih a0 = 0. We assume that F is endowed with a non degene-rated symmetri bilinear map F � F ! (C � ;�)(x; y)! (x; y)(9)



HARMONIC WEIGHT ENUMERATORS 5The hoie of suh a duality is equivalent to a spei�ation of an isomorphismbetween F and its group of haraters, given by x! (:; x). In partiular, we shallmake frequent use of the orthogonality relations between the haraters of F .The spae X = Fn is endowed with (x; y) :=Qni=1(xi; yi). If C is a linear odein X , i.e. a subgroup of X , C? denotes its orthogonal ode with respet to (; ):C? := fu 2 X j (u; v) = 1 8 v 2 Cg(10)We de�ne another operator on L(Um) whih will be of major importane in thegeneralized MaWilliams formulas:Definition 3.1. Let f 2 L(Um). Let Tf be de�ned, for all u 2 Um, byTf(u) := Xb2UmS(b)=S(u)(u; b)f(b)(11)Note that the operator T depends on the hoie of the duality (; ). We denoteby T the operator orresponding to the onjugate duality (x; y).Proposition 3.1. The following properties hold for the operator T :1. T1 = (q � 1)z1, Tz1 = �z1, and, for i � 2, Tzi is a linear ombination ofz2; : : : ; zq�1.2. If f = �zu, Tf(v) =Qi2S(u) Tzui(vi).3. The operator T is linear, and maps L(Um)l into itself injetively.4. For all f; g 2 L(Um), < Tf; g >=< f; Tg >.5. For all f 2 L(Um), dTf = �Tdf and d�Tf = �Td�f .Proof. We �rst prove 4.< Tf; g > = 1jUmj Xu2Um(Tf)(u)g(u)= 1jUmj Xu2Um( Xb2UmS(b)=S(u)(u; b)f(b))g(u)= 1jUmj Xb2Um f(b)( Xu2UmS(u)=S(b)(u; b)g(u))=< f; Tg > :(12)
In order to prove 1., we ompute Tz1(u). From the orthogonality relations,Tz1(u) = Pb6=a0(u; b)z1(b) = �1=(q � 1)Pb6=a0(u; b) = �z1(u). The omputationof T1 goes the same. The assertion on Tzi for i � 2 follows from 4.Let us prove 2.: we assume f = �zu. Let v 2 Um with S(v) = S(u). Thenf(v) =Qi2S(u) zui(vi) and



6 CHRISTINE BACHOCTf(v) = Xb2UmS(b)=S(u)(v; b)f(b)= Xbi 6=a0 Yi2S(u)(vi; bi)zui(vi)= Yi2S(u)(X�6=a0(vi; �)zui(vi))= Yi2S(u) Tzui(vi)(13)
whih proves 2. From 1. and 2., it follows that Tf is a linear ombination of some�zw, where the number of oordinates of w whih are not equal to 0, respetivelywhih are equal to 1, is the same as for u. Hene T maps L(Um)l into itself.Assume Tf = 0. Let S be a �xed set of m oordinates. Sine for all u 2 Um,suh that S(u) = S, Tf(u) = 0, the following system of linear equations holds:Xb2UmS(b)=S(u)(u; b)f(b) = 0 for all u 2 Um(14)We only have to prove that the matrix of this linear system is invertible. Butthis matrix is the (q�1)m� (q�1)m-symetri matrix ((u; v))u;v2Um ; it is a subma-trix of the matrix ((u; v))u;v2Fm whih is invertible sine the haraters (:; v) spanL(Fm), and hene it has full rank.We prove the equality d�Tf = Td�f ; a similar proof an be given for d. Letu 2 Um+1. Td�f(u) = X2Um+1S()=S(u)(u; )d�f()= � X2Um+1S()=S(u)(u; ) Xb2Umb� f(b)= � Xb2UmS(b)�S(u)( X2Um+1S()=S(b)b� (u; ))f(b)(15)

For a �xed b 2 Um suh that S(b) � S(u), let ib be the index in S(u) but notin S(b). Then, P 2Um+1S()=S(b)b� (u; ) = (u; b)P�2F�6=a0(uib ; �) = �(u; b), soTd�f(u) = Xb2UmS(b)�S(u)(u; b)f(b):(16)But, for a �xed b 2 Um with S(b) � S(u), we have (u; b) = (v; b) where v is theonly element in Fn suh that v � u and S(v) = S(b). Hene



HARMONIC WEIGHT ENUMERATORS 7Td�f(u) = Xv2Umv�u ( Xb2UmS(b)=S(v)(v; b)f(b)) = �d�Tf(u):(17)Remark 3.1. The operator T doesn't in general ommute with the ation ofH. We disuss this possibility in setion 5.In the ase of the binary alphabet F = F2 , and more generaly if l = 0, meaningthat f(u) only depends on S(u), one easily sees that Tf(u) = (�1)jujf(u).4. A MaWilliams type identityLet C be a linear ode in Fn and let C? be its orthogonal ode as de�ned inprevious setion. We are going to de�ne harmoni weight enumerators assoiatedto C and to prove a MaWilliams type identity for them.Let f 2 L(Uk)l \ ker d. We set, for all x 2 X = Fn,D�f(x) := Xu2Uku�x f(u)(18)Note that, if jxj � k, D�f(x) = (�1)jxj�k (d�)jxj�k(jxj�k)! f(x). If jxj < k, D�f(x) = 0.Definition 4.1. Let f 2 L(Uk)l \ ker d. The harmoni weight enumeratorassoiated to C and f isZC;f (X;Y ) := Xu2CD�f(u)Xn�juj�k+lY juj�kRemark 4.1. Note that it is not lear yet that ZC;f is a polynomial. It willderive from Proposition 4.1. In the binary ase, l = 0 is the only possibility, andZC;f oinides with the notion introdued in [1℄. The slightly more general asel = 0 over Fq is atually treated in [12℄.The following proposition is the key property needed to prove that ZC;f isa polynomial satisfying a MaWilliams type transformation formula. Its proof ispostponed to Subsetion 4.1.Proposition 4.1. Let f 2 L(Uk)l \ kerd and let u 2 X = Fn.For all i = 0; : : : ; k, Xb2UkjS(b)\S(u)j=k�i(u; b)f(b) = (q � 1)i�k � li �D�Tf(u)(19)The main property of the ZC;f is the following:Theorem 4.1. Let f 2 L(Uk)l \ ker d and let C be a linear subode of Fn.Let C? be its orthogonal ode. Then, ZC;f (X;Y ) is a homogeneous polynomial ofdegree n� 2k + l, andZC?;f (X;Y ) = 1jCjqk�lZC;Tf (X + (q � 1)Y;X � Y )(20)



8 CHRISTINE BACHOC4.1. Proof of Proposition 4.1. We proeed by indution on i. The asei = 0 is the identity Xb2UkS(b)�S(u)(u; b)f(b) = D�Tf(u)whih derives from (16) and (17) by iteration of d�. Let us now assume the identityfor all j � i�1. From the fat that f 2 ker d and from Tdf = �dTf , we know thatTf 2 kerd. Let y 2 Uk�i. We haveXt2Uky�t Tf(t) = 0(21)whih means Xt2Uky�t Xb2UkS(b)=S(t)(t; b)f(b) = 0(22)We sum up these equations over the set of y � u, with y 2 Uk�i. Hene all theb 2 Uk suh that jS(b)\S(u)j � k� i will ontribute in the sum. We rearrange thesum over j suh that jS(b) \ S(u)j = k � j. We setS(u; j) := fb 2 Uk j jS(b) \ S(u)j = k � jg(23)and obtain: iXj=0 Xb2S(u;j)Abf(b) = 0(24)where Ab := Xy2Uk�iy�uS(y)�S(u)\S(b) Xt2UkS(t)=S(b)y�t (b; t):(25)If we denote by bS(y) the element of Fn whih is equal to b over S(y) and to a0outside, we have Xt2UkS(t)=S(b)y�t (b; t) =(bS(y); u) Xts 6=a0 Ys2S(b)nS(y)(bs; ts)=(bS(y); u) Ys2S(b)nS(y)(X�6=ao(bs; �))=(bS(y); u)(�1)i(26)and we are left with, if Sk�i := S(y) runs over subsets of size k � i,



HARMONIC WEIGHT ENUMERATORS 9Ab = (�1)i XSk�i�S(b)\S(u)(bSk�i ; u):(27)Lemma 4.1. If f 2 L(Uk)l, for all u 2 Fn,Xb2S(u;j)Abf(b) = (�1)j�k � l � ji� j �(q � 1)i�j Xb2S(u;j)(b; u)f(b)(28)Proof. The equality (28) is linear in f , so it is enough to verify it for f = �zv.The fat that f 2 L(Uk)l means that the number of non zero oordinates of v is kand that the number of oordinates of v equal to 1 is k � l. Let S := S(v); fromthe de�nition of �zv, the only b having a non zero ontribution in the left or righthandsides are the ones with S(b) = S. Hene, if jS(u) \ Sj 6= k � j, both sidesare equal to 0, so we assume that jS(u) \ Sj = k � j. Then, if L denotes the lefthandside of (28), and from the expression (27) for Ab,L = (�1)i Xb2UkS(b)=S XSk�i�S\S(u) Ys2Sk�i(bs; us)Ys2S zvs(bs)= (�1)i XSk�i�S\S(u) Xb2UkS(b)=S Ys2Sk�i(bs; us)zvs(bs) Ys2SnSk�i zvs(bs)= (�1)i XSk�i�S\S(u) Ys2Sk�i(X�6=a0(�; us)zvs(�)) Ys2SnSk�i(X�6=a0 zvs(�)):(29)
But P�6=a0 zvs(�) = �zvs(a0) sine s 2 S, and zvs(a0) = 1 or 0, respetivelyif vs = 1 or vs � 2. Hene the only subsets Sk�i having a non zero ontributionare the ones for whih S n Sk�i � fs j vs = 1g. Suh subsets exist only if vs = 1outside of S(u), and if l � k� i (sine Sk�i must over the oordinates s of v withvs 6= 1). Moreover, in that ase, sine vs = 1 outside of Sk�i, sine Tz1 = �z1 andz1(�) = �1=(q � 1) if � 6= a0,Ys2Sk�i(X�6=a0(�; us)zvs(�)) = Ys2Sk�i Tzvs(us) = (q � 1)i�j Ys2S\S(u)Tzvs(us):One sees easily that the number of Sk�i with suh a ontribution is equal to�k�l�ji�j �. Finally, L equals 0 if vs 6= 1 on S n S(u) and equals�k�l�ji �(q � 1)i�jQs2S\S(u) Tzvs(us) otherwise. Sine Tz1(a0) = �z1(a0) = �1while, for s � 2, Tzs(a0) = 0, in any ase,L = (�1)j�k � l� ji� j �(q � 1)i�jYs2S Tzvs(us):The right handside of (28) is easily omputed:



10 CHRISTINE BACHOCXb2S(u;j)(b; u)f(b) = Xb2UkS(b)=SYs2S(bs; us)zvs(bs)=Ys2S(X�6=a0(�; us)zvs(�))=Ys2S Tzvs(us):(30)
We return to the proof of Proposition 4.1. Equation (24) beomes, applyingLemma 4.1, iXj=0(�1)j�k � l � ji� j �(q � 1)i�j Xb2S(u;j)(b; u)f(b) = 0(31)and, applying the indution hypothesis to j � i� 1,(�1)i Xb2S(u;i)(b; u)f(b) = �(q � 1)i i�1Xj=0(�1)j�k � l � ji� j ��k � lj �D�Tf(u):(32)From �k�l�ji�j ��k�lj � = �k�li ��ij�, we get(�1)i Xb2S(u;i)(b; u)f(b) = �(q � 1)i�k � li �D�Tf(u) i�1Xj=0(�1)j�ij�= (q � 1)i�k � li �D�Tf(u)(�1)i(33)whih is the expression of Proposition 4.1.4.2. Proof of Theorem 4.1. We �rst prove that ZC;f (X;Y ) is a polynomial.If u 2 C satis�es n � juj � k + l < 0, let i be an integer with n� juj < i � k � l.Equation (19) of Proposition 4.1 proves that D�Tf(u) = 0, sine no b 2 Uk withjS(b) \ S(u)j = k � i an exist. We onlude from the property D�Tf = �TD�fand from the injetivity of T (see Proposition 3.1).Now we prove the transformation formula (20). Therefore, as in [1℄, we omputethe Fourier transform (over Fn) of�(u) := D�f(u)Xn�juj�k+lY juj�k(34)whih is �̂(u) := Xv2Fn(u; v)�(v):(35)The formula will then derive diretly from the Poisson summation formula:



HARMONIC WEIGHT ENUMERATORS 11Xu2C?�(u) = 1jCjXv2C �̂(v):(36)Just like in the binary ase [1℄, we �rst onsider the ase f = Æb where Æb isde�ned by Æb(u) = 1 if u = b and 0 if u 6= b. We denote by uS(b) the element of Fnwhih is equal to u on the omplementary set of S(b) and to a0 elsewhere.Lemma 4.2. Let f = Æb 2 L(Uk). Then�̂(u) = (u; b)X�k+l(X + (q � 1)Y )n�k�juS(b) j(X � Y )juS(b)j(37)Proof. Sine D�Æb(u) = 1 if b � u and 0 otherwise,�̂(u) = Xv2Fnb�v (u; v)Xn�jvj�k+lY jvj�k:(38)We an write v = b+ v0, where S(v0) is the omplementary set of S(b). Hene(u; v) = (u; b)(u; v0) and v0 an be onsidered to run over Fn�k.�̂(u) = (u; b) Xv02Fn�k(u; v0)Xn�2k+l�jv0jY jv0j= (u; b)X�k+l(X + (q � 1)Y )n�k�juS(b) j(X � Y )juS(b)j(39)where the last equality is the usual omputation of the Fourier transform of thefuntion x! Xn�k�jxjY jxj over Fn�k.Lemma 4.3. Let f 2 L(Uk)l \ ker d.�̂(u) = qk�lD�Tf(u)(X + (q � 1)Y )n�juj�k+l(X � Y )juj�k(40)Proof. Sine f =Pb2Uk f(b)Æb and from (37),�̂(u) = X�k+l Xb2Uk(u; b)f(b)(X + (q � 1)Y )n�k�juS(b)j(X � Y )juS(b)j:(41)Then juS(b)j = juj � jS(u) \ S(b)j; we set jS(u) \ S(b)j = k � i and sum overi 2 f0 : : : kg. We get�̂(u) = X�k+l(X + (q � 1)Y )n�k+l�juj(X � Y )juj�k	(u)(42)where 	(u) := kXi=0( Xb2UkjS(b)\S(u)j=k�i(u; b)f(b))(X + (q � 1)Y )k�l�i(X � Y )i(43)whih beomes, by Proposition 4.1,



12 CHRISTINE BACHOC	(u) = kXi=0(q � 1)i�k � li �D�Tf(u)(X + (q � 1)Y )k�l�i(X � Y )i= D�Tf(u) k�lXi=0 �k � li �(X + (q � 1)Y )k�l�i((q � 1)(X � Y ))i= D�Tf(u)(X + (q � 1)Y + (q � 1)(X � Y ))k�l= D�Tf(u)(qX)k�l:(44)
Replaing (44) in (42), we obtain (40).5. The operator TWe study in this setion the possibility for the operator T to be homotheti onthe spaes L(Uk)l \ ker d. This ase is espeially interesting beause Theorem 4.1an in that ase be read as a linear invariane property for a ertain polynomial(see next setion).Proposition 5.1. The following statements are equivalent:� For all k, l, there exists �k;l 2 C suh that, for all f 2 L(Uk)l \ ker d,Tf = �k;lf .� F = F2 ; F3 and (x; y) = �(xy), where � is a non-trivial harater of F , orF = F4 and (x; y) = �(trae(xy2)) and � is the non-trivial harater of F2 .If F = F2 ; F4 , �k;l = (�1)k�l2l , and, if F = F3 , �k;l = (�1)k�l(p�3)l.Remark 5.1. In terms of oding theory, the ases of the proposition are thebinary, ternary, and quaternary additive odes, with the terminology of [11℄. Wehave kept the usual notation for F , although the �eld struture has no importanehere. In partiular, the quaternary additive odes are the same as the Kleinianodes studied in [9℄.Proof. From [6℄, we know that L(Uk)l \ kerd is a H-irreduible module.Hene, T is homotheti over L(Uk)l \ ker d if and only if T ommutes with theation of H , i.e. if and only if T (h:f) = h:T (f) for all h 2 H , f 2 L(Uk)l \ ker d. Ifthis is true for all k; l, sine we have already seen that Td� = �d�T , and from thedeomposition (6), it must be true for all f 2 L(Uk). The spae L(Uk) is generatedby fÆb; b 2 Ukg. We have h:Æb = Æbh�1 , and TÆb(u) = (b; u) if S(u) = S(b), and0 otherwise. Hene it turns out that T ommutes with H over L(Uk) if and onlyif (u; v) = (uh; vh) for all h 2 H and u; v 2 Uk with S(u) = S(v). Sine thepermutation on the oordinates of the elements of Fn has no inidene on theduality (beause we assume (u; v) =Qi(ui; vi)), we are left with the ondition that(; ) must be onstant on the orbits of F �F under the ation of Sq�1, whih meansthat � := (x; x) is independant of the hoie of x 6= 0 in F , and � := (x; y) isindependant of the hoie of x 6= y 6= 0 in F . Hene, (; ) takes at most three values:f1; �; �g. Sine they form a subgroup of C � of order d = 2; 3, sine dF = 0 andsine, for eah x 6= 0, the kernel of (:; x) has order q=d, one easily sees that the onlypossibilities left are the ones listed in the proposition.We now ompute �k;l. We have already seen that Tz1 = �z1. If i � 2,Tzi(x) = Py 6=a0(x; y)zi(y) = �zi(x) + �Py 6=a0;x zi(y). But Py 6=a0 zi(y) = 0, so



HARMONIC WEIGHT ENUMERATORS 13Tzi(x) = (���)zi(x). Hene, if f = �zu 2 L(Uk)l, from property 2. of Proposition3.1, Tf = (�1)k�l(� � �)lf . In the ases F = F2 ; F4 , � � � = 1 � (�1) = 2, andin the ase F = F3 , �� � = �(j � j2) = �ip3 where j is a ubique root of 1.Remark 5.2. In the ternary ase, there are two onjugate hoies for the du-ality (; ). Sine Tf(�u) = Tf(u), we have ZC;Tf = ZC;(Tf+Tf)=2. The eigenvalueof T over L(Uk)l is the onjugate of the one assoiated to T ; but, we have seen that�k;l has a trivial real part in the ase l � 1 mod 2. Hene, in this ase, ZC;Tf = 0,and so ZC;f = 0. Note that it �ts with the fat that the set C? only depends on thehoie of the duality up to onjugation.6. Appliations to self-dual odesIn this setion, we onsider the ase of self-dual ternary and additive quater-nary odes. The binary ase was previously studied in [1℄. In these ases, Theorem4.1 shows that the polynomials ZC;f are relative invariants for the group of trans-formation ating on the Hamming weight enumerator.6.1. Ternary self-dual odes. Let M = 1p3 � 1 21 �1 � and D = � 1 00 j � wherej = e2i�=3. Let G3 be the group generated byM and D. It is well-known that, if Cis a self-dual ternary ode, then its weight enumerator WC is invariant under G3,and hene belongs to its algebra of invariants IG3 , whih is the polynomial ring inthe polynomials g4 := x4 + 8xy3, g12 := y3(x3 � y3)3 (see [11℄).We de�ne the following haraters  u;v of the group G3: u;v(M) = (�1)u  u;v(D) = jv(45)and we denote by IG3; u;v the spae of relative invariants:IG3; u;v := fP (x; y) 2 C [x; y℄ j P:M =  u;v(M)P for all M 2 G3g:(46)The following polynomials are relative invariants, as one an hek easily:p4 = y(x3 � y3) 2 IG3; 0;1p6 = x6 � 20x3y3 � 8y6 2 IG3; 1;0(47)Lemma 6.1. The spaes of relative invariants IG3; u;v are free modules overIG3 . More preisely:� IG3; 0;1 = p4C [g4 ; g12℄� IG3; 0;2 = p24C [g4 ; g12℄� IG3; 1;0 = p6C [g4 ; g12℄� IG3; 1;1 = p4p6C [g4 ; g12℄� IG3; 1;2 = p24p6C [g4 ; g12℄Proof. It follows easily from the omputation of the Molien series of theorresponding spaes (see [11℄ and [1℄ for examples of suh omputations).Proposition 6.1. Let C be a self-dual ternary ode of length n. Let f belongto L(Uk)l \ ker d. If l � 1 mod 2, ZC;f = 0. If l � 0 mod 2, let u 2 f0; 1g beequal to k + l=2 modulo 2, and let v 2 f0; 1; 2g be equal to �k modulo 3. Then



14 CHRISTINE BACHOCZC;f 2 IG3; u;v :Proof. Straightforward from Theorem 4.1, Remark 5.2 and Proposition 5.1.In the speial ase of extremal odes, we an derive from previous propositionthat ZC;f = 0 for ertain values of (k; l). We briey reall what an extremal odeis (see [11℄): if C is a self-dual ternary ode of length n, then n is a multiple of 4.Write n = 12q + 4r with r = 0; 1; 2. Then the fat that WC belongs to IG3 showsthat the minimum weight w(C) of C satis�esw(C) � 3q + 3:(48)A ode meeting this bound is alled extremal. Its weight enumerator is thenuniquely determined.Corollary 6.1. Let C be an extremal self-dual ternary ode of length n =12q + 4r. Let f 2 L(Uk)l \ ker d. Then ZC;f = 0 when l � 1 mod 2 from Remark5.2, but also in the following ases:� If r = 0: for k = 1; 2; 3 and all l � k, and for (k; l) = (4; 0); (4; 2),(5; 0); (5; 4); (6; 2); (7; 0).� If r = 1: for k = 1; 2 and all l � k, and for (k; l) = (3; 0); (4; 2); (5; 0).� If r = 2: for (k; l) = (1; 0); (2; 2); (3; 0).Remark 6.1. In view of Proposition 2.1, the property ZC;f = 0 is related tothe fat that the set of odewords of �xed Hamming weight form a design. Wereover here results already known from [5℄ and [3℄, namely that extremal ternaryself-dual odes hold generalized 3-designs and lassial f1; 2; 3; 4; 5; 7g-designs whenr = 0 (respetively for the orresponding weaker results when r = 1; 2), whihwere derived from generalized Assmus-Mattson theorems. We obtain here someadditional properties; in partiular it is worth notiing that, for instane in thease r = 0, the generalized 3-designs are atually nearly 4-designs sine the onlyproperty missing is orthogonality with L(U4)4 \ ker d.6.2. Even quaternary additive self-dual odes. Here we follow the sameline as for ternary odes, so we omit the proofs and some omments sine theyare ompletely similar. Let M = 12 � 1 31 �1 � and D = � 1 00 �1 �. Let G4 be the groupgenerated by M and D. If C is a self-dual even quaternary additive ode, thenits weight enumerator WC is invariant under G4, and hene belongs to its algebraof invariants IG4 , whih is the polynomial ring in the polynomials h2 := x2 + 3y2,h6 := y2(x2 � y2)2 (see [11℄).We de�ne the following haraters  u;v of the group G4: u;v(M) = (�1)u  u;v(D) = (�1)v(49)and we denote by IG4; u;v the spae of relative invariants. The following polyno-mials are relative invariants, as one an hek easily:q3 = y(x2 � y2) 2 IG4; 0;1r3 = x3 � 9xy2 2 IG4; 1;0(50)



HARMONIC WEIGHT ENUMERATORS 15Lemma 6.2. The spaes of relative invariants IG4; u;v are free modules overIG4 . More preisely:� IG4; 0;1 = q3C [h2 ; h6℄� IG4; 1;0 = r3C [h2 ; h6℄� IG4; 1;1 = q3r3C [h2 ; h6℄Proposition 6.2. Let C be a self-dual even quaternary additive ode of lengthn. Let f 2 L(Uk)l \ ker d. Let u 2 f0; 1g be equal to k � l modulo 2, and letv 2 f0; 1g be equal to k modulo 2. ThenZC;f 2 IG4; u;v :Here the extremal odes have weight w(C) = 2q + 2, where n = 6q + 2r.Corollary 6.2. Let C be an extremal self-dual even quaternary additive odeof length n = 6q+2r. Let f 2 L(Uk)l\ker d. Then ZC;f = 0 in the following ases:� If r = 0: for k = 1; 2 and all l � k, and for (k; l) = (3; 0); (3; 1); (3; 2),(4; 0); (4; 1); (4; 3); (5; 0); (5; 2); (6; 1); (7; 0).� If r = 1: for (k; l) = (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 2); (4; 1); (5; 0).� If r = 2: for (k; l) = (1; 0); (2; 1); (3; 0).7. Intersetion numbersJust like in the binary ase [1℄, the polynomials ZC;f and their invarianeproperties an be used to ompute ertain invariants assoiated to a �xed elementv 2 Fn and to a ode C. We �x v 2 Ut.Definition 7.1. Let v 2 Ut and u 2 Uw. We de�nen(u; v) := ard(S(u) \ S(v))e(u; v) := ardfs 2 [1::n℄ j us = vs 6= 0gand Let i = i(u; v) := t�e(u; v) and j := j(u; v) = t�n(u; v). The group H ats onUt�Uw and one an see easily that the orbits of this ation are given by the valuesof (i; j). Equivalently, in the ase t = w, (i; j) gives the relations of the non-binaryJohnson sheme [14℄. Clearly, the values of (i(u; v); j(u; v)) belong to the setKt;w := f(i; j) j 0 � j � i � t; t� w � j � n� wg:(51)Let Kt := Kt;t := f(i; j) j 0 � j � i � t; j � n� tg(52)and Lt := f(k; l) j 0 � l � k � min(t; n+ l � t)g:(53)The deomposition of the spae L(Ut) into irreduible H-subspaes given byL(Ut) = �(k;l)2LtL(Ut)(k;l) (see (6)) allows us to onsider the zonal elements asso-iated to this deomposition. These are funtions gk;l having the harateristi



16 CHRISTINE BACHOCproperty that gk;l(u) only depends on i(u; v), j(u; v). In our situation they areuniquely determined up to a salar multiple beause the subspaes L(Ut)(k;l) arepairwise non isomorphi. We reall that they an be onstruted the following way:take any orthonormal basis (fi) of L(Ut)(k;l), and set E(k;l)(u; v) :=Pi fi(u)fi(v).This de�nition is independant of the hoie of the basis, and hene is invariant underthe ation of H on (u; v) 2 U2t . Hene E(k;l)(u; v) is a funtion of (i(u; v); j(u; v)).In the setting of assoiation shemes, the E(k;l) are the idempotents of the non-binary Johnson sheme and its expression in terms of (i(u; v); j(u; v)) is given bythe seond eigenvalues, whih are omputed in [14℄. We reall in next propositiontheir expression in terms of Hahn and Krawthouk polynomials.Proposition 7.1. [14℄E(k;l)(u; v) = h(k;l);t(i(u; v); j(u; v));(54)where, for all (k; l) 2 Lt and (i; j) 2 Kt,h(k;l);t(i; j) = �nl��tl�Kl(t� j; q � 1; i� j)Qk�l(n� l; t� l; j)(55)where Kk, Qk are respetively Krawthouk and Hahn polynomials, given by thefollowing formulas:Kk(n; q; x) := kXi=0(�1)i(q � 1)k�i�n� xk � i��xi�Ek(n; t; x) := kXr=0(�1)r�xr��t� xk � r��n� t� xk � r �Qk(n; t; i) = �nk�� � nk�1��ti��n�ti � Ei(n; t; k)(56)
In view of appliations to odes, we shall make use of the polynomials ZC;f forf 2 L(Uk)l\ker d suh that D�f(u) = E(k;l)(u; v) for u 2 Ut. We denote by H(k;l);vsuh a funtion f . Therefore we need to ompute D�f(u) for u 2 Uw for any w � k(and not only for w = t). From last proposition, D�H(k;l);v(u) = h(k;l);t(i; j) foru 2 Ut and i = i(u; v), j = j(u; v). For the general ase u 2 Uw, we have a moreompliated and rather ugly formula:Proposition 7.2. For all w � k and all u 2 Uw, the value of D�H(k;l);v(u)only depends on (i(u; v); j(u; v)). We set againD�H(k;l);v(u) = hw(k;l);t(i(u; v); j(u; v));(57)where hw(k;l);t(i; j) = XI (q � 2)i2+j2+l2(q � 3)k3(q � 1)t�s:�w + j � ti1; i2 �� t� ij1; j2�� i� jk1; k2; k3�� jl1; l2��n� w � jt� s ��i1 + j1 + k1k �:h(k;l);t(t� j1 � k2 � l1; t� j1 � j2 � k1 � k2 � k3 � l1 � l2)(58)



HARMONIC WEIGHT ENUMERATORS 17where  = 1(q � 1)t�k�n+l�2kt�k �(59)and I =f(i1; i2; j1; j2; k1; k2; k3; l1; l2) ji1 2 [0::w + j � t℄; i2 2 [0::w + j � t� i1℄;j1 2 [0::t� i℄; j2 2 [0::t� i� j1℄;k1 2 [0::i� j℄; k2 2 [0::i� j � k1℄; k3 2 [0::i� j � k1 � k2℄;l1 2 [0::j℄; l2 2 [0::j � l1℄;i1 + j1 + k1 � k; t� (j1 + j2 + k1 + k2 + k3 + l1 + l2) � n� t;s := i1 + i2 + j1 + j2 + k1 + k2 + k3 + l1 + l2 � tg:(60)
Proof. We use the formula (dd� � d�d)jL(Uk)l = (q � 1)(n+ l � 2k)Id([6, Proposition 2.6℄). Taking aount of the fat that H(k;l);v 2 ker d, and iteratingit, we get(q � 1)t�k�n+ l � 2kt� k �H(k;l);v = ((�1)t�k dt�k(t� k)! )((�1)t�k d�t�k(t� k)! )H(k;l);v :(61)Let K := (�1)t�k d�t�k(t�k)!H(k;l);v 2 L(Ut). For all u 2 Ut,K(u) = D�H(k;l);v(u) = h(k;l);t(i(u; v); j(u; v)). We get, for all u 2 Uw,D�H(k;l);v(u) = 1(q � 1)t�k�n+l�2kt�k � Xuk2Ukuk�u Xz2Utuk�zK(z)= 1(q � 1)t�k�n+l�2kt�k � Xz2Ute(z;u)�k�e(z; u)k �K(z):(62)The parameters e(z; u), i(z; v), j(z; v) express easily in terms of:i1 := ardfi j zi = ui 6= 0; vi = 0g, i2 := ardfi j zi 6= ui 6= 0; vi = 0g,j1 := ardfi j zi = ui = vi 6= 0g, j2 := ardfi j zi 6= ui 6= 0; vi = uig,k1 := ardfi j zi = ui 6= 0; vi 6= ui 6= 0g, k2 := ardfi j zi 6= ui 6= vi 6= 0g,k3 := ardfi j zi 6= ui 6= 0; zi = vig, l1 := ardfi j zi = vi 6= 0; ui = 0g,l2 := ardfi j zi 6= vi 6= 0; ui = 0g.The formula then follows from the enumeration of all possibilities.Remark 7.1. In the ase when t � w, there is a more simple formula forD�H(k;l);v(u) oming from: d�w�kH(k;l);v = d�w�td�t�kH(k;l);v.Let Cw denote the set of words in C of Hamming weight w, i.e. Cw = C \Uw.Let v 2 Ut. We set, for (i; j) 2 Kt;w,nw;(i;j)(v) := ardfu 2 Cw j (i(u; v); j(u; v)) = (i; j)g:(63)



18 CHRISTINE BACHOCTable 1. The nw;(i;j)(v) for jvj = 1(i; j) (0; 0) (1; 0) (1; 1)w = 6 66 132 198w = 8 330 660 495w = 10 550 1100 330w = 12 78 156 0Table 2. The nw;(i;j)(v) for jvj = 2(i; j) (0; 0) (1; 0) (1; 1) (2; 0) (2; 1) (2; 2)w = 6 10 40 72 40 144 90w = 8 70 280 240 280 480 135w = 10 150 600 200 600 400 30w = 12 26 104 0 104 0 0From Proposition 7.2, for eah (k; l) 2 Lt, the oeÆient of xn�w�k+lyw�k inZC;H(k;l);v is: X(i;j)2Kt;w h�(k;l);t(i; j)nw;(i;j)(v):(64)The laims in Propositions 6.1, 6.2, and the desriptions of the spaes of relativeinvariants involved, an then be turned out into linear relations between the un-knowns nw;(i;j)(v). See [1℄ for examples in the binary ase. We work out examplesin the ase of even quaternary additive self-dual odes.7.1. The dodeaode. Let n = 12. It is known ([11℄) that there is up toequivalene only one [12; 6; 6℄ even self-dual quaternary additive ode, the so-alleddodeaode. We show what an be said a priori on the intersetion numbersnw;(i;j)(v) de�ned in (63) of suh a ode C by use of the method desribed insetion 7. We �x an element v 2 Ut.From Corollary 6.2, all the linear forms in (64) are equal to zero for t � 2 and(k; l) 2 Lt. Moreover, the knowledge of the weight enumerator of suh a ode CWC(x; y) = x12 + 396x6y6 + 1485x4y8 + 1980x2y10 + 234y12(65)leads to more equations: X(i;j)2Kt;w nw;(i;j)(v) = ard(Cw):(66)We �nd for t = 1; 2 uniquely determined intersetion numbers (see Table 1 and2), in aordane with the fat that, for all w, Cw holds 2-generalized designs (seeCorollary 6.2).If t = 3, the intersetion numbers are not uniquely determined (Table 3). Theydepend on one parameter x(v) = x whih is the number of weight 3 words in the



HARMONIC WEIGHT ENUMERATORS 19Table 3. The nw;(i;j)(v) for jvj = 3(i; j) (0; 0) (1; 0) (1; 1) (2; 0) (2; 1) (2; 2)w = 6 x� 1 �3x+ 15 18 3x+ 9 72 54w = 8 �3x+ 21 9x+ 63 84 �9x+ 189 336 108w = 10 3x+ 133 �9x+ 261 90 9x+ 459 360 30w = 12 �x+ 11 3x+ 45 0 �3x+ 111 0 0(i; j) (3; 0) (3; 1) (3; 2) (3; 3)w = 6 �x+ 13 72 108 36w = 8 3x+ 105 336 216 27w = 10 �3x+ 327 360 60 0w = 12 x+ 67 0 0 0oset v+C (beause learly this number equals 1+n6;(0;0)(v)). Clearly, x an takethe values 1; 2; 3; 4.If t = 4, we moreover assume that v is a minimum weight word in its oset v+C.Again, the intersetion numbers are omputed from one of them. We don't give thefull details of their expression but notie that the number of weight 6 odewords,the support of whih ontain the support of v, is a onstant (beause the supportshold lassial 5-design from Assmus-Mattson theorem) and that this number equalsn6;(2;0)+n6;(3;0)+n6;(4;0). The omputation shows that the intersetion numbers anall be expressed aÆnely in x := n6;(4;0) like n6;(2;0) = x+4 and n6;(3;0) = �2x+ 8.The weight distribution of v+C itself doesn't depend on x (see Table 4). Note that,in general, the weight distribution of v + C derives from the intersetion numbersbeause ju+ vj = juj+ i(u; v) + j(u; v)� t.We display in Table 4 the oset distribution of suh a ode. The weight of theosets is at most 4. This an be proved diretly by elementary ounting arguments,or derives from [5℄. Note that the oset distribution ould also be omputed usingDelsarte method explained in [5℄. If the oset has weight 3, it may ontain 1; 2; 3or 4 oset leaders. For the dodeaode, one �nds respetively 792, 1314, 756, 63osets of weight 3 with respetively 1, 2, 3, 4 leaders. Hene the dodeaode hasgot 540 osets of weight 4.7.2. Length 14. The extremal even self-dual odes of length 14 have weight6 and weight enumeratorWC(x; y) = x14 + 273x8y6 + 2457x6y8 + 7098x4y10 + 6006x2y12 + 549y14:(67)It is known that there is a unique one whih is F4 -linear hermitian ([11℄). Thewhole number of extremal additive odes seems huge, sine we have found 490 suhodes with the additional ondition that at least two odewords of weight 6 havethe same support ([2℄). Information on the oset distribution of suh odes ouldbe omputed in the same way as for n = 12. Here, we take v to be a odewordof weight 6. Beause v is in the ode C, additional onstraints hold for nw;(i;j)(v):sine (u; v) = i(u; v) � j(u; v) mod 2, we have nw;(i;j)(v) = 0 if i+ j � 1 mod 2;also, sine ju+ vj = juj+ i+ j � t, we have nw;(i;j)(v) = 0 if 0 < w + i+ j � t < 6.



20 CHRISTINE BACHOCTable 4. Coset distribution of a [12; 6; 6℄ even self-dual ode1 2 3 4 5 6 7 81 66 132 528 6601 10 40 182 424 760x 15� 3x 48 8x+ 148 432� 6x 810� 6x15 48 148 432 8109 10 11 121045 1100 408 1561080 961 504 1341040 + 8x 948 528� 3x 127 + x1040 948 528 127Altogether, the intersetion numbers for v 2 C6 depend on three positive andintegral parameters x; y; z. One of them is 2x := n6;(6;0)(v) and ounts the numberof odewords with the same support as v. Clearly this number is either 0 or 2 (theyome by pairs (u; u+v) and they are minimal). The general expression shows that,if x = 1, i.e. if the support of v is also the support of some other word in C, theny and z are uniquely determined. Note that, if C is F4 -linear, then it is the asefor all v 2 C sine wv and w2v would provide odewords with the same supportas v. If x = 0, then the fat that the intersetion numbers are natural numbersshow that y 2 [0::3℄ and z 2 [0::4℄. Among the 490 non equivalent odes found, allthese possiblities for (y; z) our. Table 5 gives the expression of the nw;(i;j) for theweights w = 6; 8. Note that the nw;(i;j)(v) for j = 6 give the weight distribution ofthe subode Cv := fu 2 C j S(u) \ S(v) = ?g:(68)7.3. Length 18. The weight of the extremal odes of length 18 is 8. There isa unique F4 -linear hermitian ode of weight 8, named S18 ([11℄). It is not knownwhether other additive self-dual odes meet this bound. We ompute the osetdistribution with the help of the intersetion numbers. Table 6 gathers the resultsup to weight 9.Proposition 7.3. Let C be an even self-dual additive quaternary ode of weight8. Then the overing radius R of C satis�es 5 � R � 6:Proof. For all i, we denote i a oset of C of weight i and by ni the numberof osets of weight i. Let Xi denote the set of weight i words in F 18. Of ourse,ard(Xi) = �18i �3i. Note that, for i = 1; 2; 3, ni = ard(Xi). We start with theweight enumerators of the osets of C of weight up to 6, omputed with the helpof the intersetion numbers. With the notations of Table 6, we ount the words ofweight 4, 5, 6. We have:



HARMONIC WEIGHT ENUMERATORS 21Table 5. Computation of nw;(i;j)(v) for v 2 C6 and w = 6; 8w = 6(i; j) x = 1 x = 0(0; 0) 1 1(3; 3) 0 �4z + 16(4; 2) 24 �4y + 2z + 24(4; 4) 42 2z + 18(5; 1) 0 2y(5; 3) 96 8y + 4z + 72(5; 5) 0 �2y + 24(6; 0) 2 0(6; 2) 12 �3y � 2z + 24(6; 4) 84 �2y � 2z + 90(6; 6) 12 y + 4
w = 8(i; j) x = 1 x = 0(2; 2) 42 2z + 18(3; 1) 96 8y + 4z + 72(3; 3) 0 4y + 8z + 48(4; 0) 12 �3y � 2z + 24(4; 2) 528 �16y � 10z + 564(4; 4) 156 �y � 4z + 84(5; 1) 192 2y � 4z + 192(5; 3) 768 �8z + 816(5; 5) 0 2y + 24(6; 0) 0 2z(6; 2) 348 5y + 8z + 312(6; 4) 312 4z + 300(6; 6) 3 �y + 3Table 6. Coset distribution for a [18; 9; 8℄ even self-dual ode1 2 3 4 5 6 7 8 91 408 816 49301 56 224 1304 33601 x 63� 3x 303� 2x 978 + 14x 3730 � 5xy z 84� 7y � 3z 288� 8y � 2z 936 + 45y + 14z 3680 + 8y � 5zt 84� 3t 288� 2t 936 + 14t 3680� 5t84 288 936 3680ard(X4) =X4 yard(X5) =X3 x+X4 z +X5 tard(X6) = 56n2 +X3 (63� 3x) +X4 (84� 7y � 3z) +X5 (84� 3z) + 84n6(69)From these equations, we getn4 + n5 + n6 = 238680:(70)But we an hek that 1+n1+n2+n3+n4+n5+n6 = 218, so we have provedthat R � 6 (it derives also from [5℄ sine 6 is the number of di�erent weights ofC? = C). Now we assume that R � 4, so that n5 = n6 = 0. For y 2 [1::4℄,we denote ny4 the number of osets of weight 4 ontaining exatly y oset leaders.Clearly, two oset leaders in a oset of weight 4 have disjoint supports beause theode has minimal weight 8, so their number is upper bounded by 4. And the sum



22 CHRISTINE BACHOCof two suh words is a odeword of weight 8, so, if v is a oset leader of a �xed osetof weight 4, y = 1 + ardfu; u 2 C8 j v � ug = n8;(0;0)(v):(71)If C8 was a 4-design, the ardinality of fu; u 2 C8 j v � ug would be a onstant.However, we an ompute its average value� := 1ard(X4) Xv2X4 ardfu; u 2 C8 j v � ug(72)by the usual formula: � = �62��2�162 �32(73)where, for v 2 U2, �2 = ardfu; u 2 C8 j v � ug = 55. This last value an be readin Table 6. Now, we haveXv2X4 y =X4 y2 = ard(X4)(1 + �):(74)Finally, we obtain the following system of equations:n14 + n24 + n34 + n44 = 238680n14 + 2n24 + 3n34 + 4n44 = ard(X4)n14 + 4n24 + 9n34 + 16n44 = ard(X4)(1 + �)(75)One an parametrize the solutions by n14 and see that it doesn't admit anypositive integral solutions.Remark 7.2. In the ase of the ode S18, one an ompute all these parame-ters. One �nds: (n14; n24; n34; n44) = (122400; 36720; 12240; 3865), and, with obviousnotations, (n105 ; n125 ; n165 ) = (24480; 38250; 765). Hene the overing radius of S18is equal to 5. It would be interesting to know if a non F4 -linear ode with overingradius 6 exists. Referenes[1℄ C. Baho, On harmoni weight enumerators of binary odes, to appear in Designs, Codesand Cryptography.[2℄ C. Baho, P. Gaborit, Extremal self-dual even quaternary additive odes[3℄ A.R. Calderbank, P. Delsarte, On error-orreting odes and invariant linear forms SIAM J.Dis. Math. 6.1 (1993), 1-23[4℄ J. Conway, N.J.A. Sloane, \Sphere pakings, Latties and Groups", Springer-Verlag, 1988[5℄ P. Delsarte, Four fondamental parameters of a ode and its ombinatorial signi�ane Infor-mation and Control 23 (1973), 407-438[6℄ C. F. Dunkl, A Krawthouk polynomial addition theorem and wreath produts of symmetrigroups Ind. Univ. Math. Journal 25 4 (1976), 335-358[7℄ J. E. Fields, P. Gaborit, W. C. Hu�man, V. Pless, On the lassi�ation of extremal evenformally self-dual odes, preprint
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