NEW UPPER BOUNDS FOR KISSING NUMBERS FROM
SEMIDEFINITE PROGRAMMING

CHRISTINE BACHOC AND FRANK VALLENTIN

ABSTRACT. Recently A. Schrijver derived new upper bounds for binary codes
using semidefinite programming. In this paper we adapt this approach to codes
on the unit sphere and we compute new upper bounds for the kissing number in
several dimensions. In particular our computations give the (known) values for
the cases = 3,4, 8, 24.

1. INTRODUCTION

In geometry, the kissing number problem asks for the maximum numper
of unit spheres that can simultaneously touch the unit spheredimensional
Euclidean space without pairwise overlapping. The valug,d$ only known for
n=1,2,3,4,8,24. While its determination fon = 1, 2 is trivial, it is not the case
for other values of.

The casen = 3 was the object of a famous discussion between Isaac Newton
and David Gregory in 1694. For a historical perspective of this discussion we
refer to [6]. The first valid proof of the factrs = 12", like in the icosahedron
configuration, was only given in 1953 by K. Sdte and B.L. van der Waerden in
[22].

In the seventies, P. Delsarte developed a method, initially aimed at bounding
codes on finite fields (segl[8]), that yields an upper bound-faas a solution of
a linear program and more generally yields an upper bound for the size of spher-
ical codes of given minimal distance. We shall refer to this method as the LP
method. With this method, A.M. Odlyzko and N.J.A. Sloane|([15]), and indepen-
dently V.I. Levenshtein ([13]), proveds = 240 and 4 = 196560 which are
respectively the number of shortest vectors in the root laffigand in the Leech
lattice. For other values of, the LP method gives in many cases the best known
upper bounds. However, for = 3 andn = 4 it only gives the upper bounds
3 < 13 andry < 25.
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In 2003, O.R. Musin succeeded to prove the conjectured valde 24, which
is the number of shortest vectors in the root lattizg with a variation of the LP
method (se€ [14] and the survey [18] of F. Pfender and G.M. Ziegler).

To complete the picture, let us discuss uniqueness of the optimal point con-
figurations. For dimension® and 24, uniqueness was proved by E. Bannai and
N.J.A. Sloane ([B]). Their proof exploits the fact that the LP method obtains ex-
actly the aimed value. For dimensi@nthere are infinitely many possible configu-
rations. In the regular icosahedron configuration, the angular distances between the
contact points are strictly greater than the requirg¢d, hence these points can be
moved around obtaining infinitely many new suitable configuration. This partially
explains why the determination ef is difficult. On the contrary, uniqueness of
the optimal configuration of points in dimensidris widely believed, but remains
unproven.

The LP method, which was established by P. Delsarte, J.M. Goethals and J.J. Sei-
del in [9], handles the more general problem of the determination of a bound for
the maximal number

A(n,0) = max{card(C) : C c S" twithc-c <cosffore,d € C,c#c}

of points on the unit sphere with minimal angular distafc&uch configurations

of points, also calledpherical codes with minimal angular distangeare of spe-

cial interest in information theory. The kissing number problem is equivalent to the
problem of findingA(n, 7/3).

In this paper, we define a semidefinite program (SDP for short) whose optimal
solution gives an upper bound fak(n, #) and strengthens the LP method. Com-
putational results show that for several valuesidhis SDP method gives better
upper bounds for,, than the LP method.

To be more precise, let us recall that the LP method relies on the existence of
polynomialsP}’(t), satisfying the so-called positivity property:

Q) for all finite C c S" 1, Pl(c-d)>0.
k
(c,c')eC?

These polynomials arise as zonal spherical polynomials on the sphere, i.e. the zonal
polynomials associated to the decomposition of the space of polynomial functions
under the action of the orthogonal groQgR™).

The consideration of the action restricted to a subgraupf O(R"), chosen
to be the stabilizer group of a fixed poiatc S™~!, leads us to some symmetric
matricesS;’ whose coefficients are symmetric polynomials in three variables such
that

) forall finiteC c "', Y~ Si(c-ce-d’ ) =0
(e, ,c")eCs

where the sign * 0" stands for: “is positive semidefinite”. The reason why we
obtain matrices instead of functions comes from the fact that, in the decomposition
of the space of polynomial functions on the sphere under the actié¢h ofulti-
plicities greater than appear. In fact these multiplicities are exactly the sizes of
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the corresponding matrices. Frofj (1) apf (2) we derive an SDP whose solution
gives an upper bound fot(n, 6).

Our approach adapts the method proposed by A. Schrijver_in [21] to the unit
sphere whereas he obtains new upper bounds for binary codes from an SDP. His
work can also be interpreted in group theoretic terms, involving the isometry group
of the Hamming spac&? and the subgroup stabilizin@, . ..,0) which is the
group of permutations of the positions. It is very likely that many other spaces
of interest in coding theory can be treated likewise. The case of non-binary codes
was considered by D.C. Gijswijt, A. Schrijver and H. Tanakain [11].

The paper is organized as follows: Secfipn 2 reviews on the LP method. Section
introduces and calculates the semidefinite zonal matrices associated to the action
of H and leading to the matrices.. Sectior] # defines the semidefinite program
and its dual that establishes the desired bound. S€dtion 5 discusses computational
results.

2. REVIEW OF THELP METHOD ON THEUNIT SPHERE

We introduce the following notations. The standard inner product of the Eu-
clidean spac®" is denoted byt - y. The unit sphere

Stli={reR": 2.z =1}

is homogeneous under the action of the orthogonal gfo’) = {O € R™"*" :

0O'O = I}, wherel,, denotes the identity matrix. It is moreover two-point homo-
geneous, meaning that the orbits@fR"™) on pairs of points are characterized by
the value of their inner product. The space of real polynomial functions of degree
at mostd on S™~! is denoted byPol4(S™1). It is endowed with the induced
action ofO(R"™), and equipped with the standa®dRR")-invariant inner product

(ho) = o [ F@a@)de, @),

Wn

27.[.71,/2

wherew,, = n/2) is the surface area &f”~! for the standard measudie,,. It is
a well-known fact (see e.d. [23, Ch. 9.2]) that under the actidn (@)

(3) Poleg(S" ) =H} L H 1 ... 1 HY,

whereH]! is isomorphic to thé (R")-irreducible space

n 2
Harm} = {f € R[xy,...,zy,] : f homogeneousleg f = k, Z aang = 0}
=1 ?

of harmonic polynomials im variables which are homogeneous and have degree
k. We seth} := dim(Harmj) = ("Zf}l) - ("ZEIS)

A certain family of orthogonal polynomials is associated to the unit sphere. They
will be denoted byP’, with the convention thal;’ has degreé and is normalized
by (1) = 1. Forn > 3 these polynomials are up to multiplicative constants

Gegenbauer polynomia@,g with parameter\ = n/2 — 1. So they are given
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by Pl (t) = C"/2 "t )/C"/2 '(1), and the Gegenbauer polynomiglg can be
inductively deflned bYC3 (¢) = 1, C(t) = 2)t, and

KCNMt) = 2(k + X — 1)tCR_1(t) — (k+ 2\ —2)CR 5(t), fork >2.

They are orthogonal with respect to the weight functibr- £2)*~1/2 on the inter-
val[—1, 1]. Forn = 2 the polynomialsP* coincide with the Chebyshev polynomi-
als of the first kindl', which can be inductively defined B (¢) = 1, T1(t) = ¢,
and

Tjo(t) = =2tTjp1(t) + Th—2(t), fork =2,

and they are orthogonal with respect to the weight functibr- t2)~'/2 on the
interval[—1, 1].

The polynomialsP;'(t) are related to the decompositid (3) by the so-called
addition formula(see e.g.[[1, Ch. 9.6]): for any orthonormal basis . . ., ehﬁ) of

H?* and for any pair of points,y € 5"~ we have

4) Pz y) 72

k —

From the addition formuld {4), the positivity properfty (1) becomes obvious:

Z Pkcc Z Zel c)e;i(c

(e,c)eC? (c,c')eC? k =1
LM 2
**Z > eilde nZ<Zei(c)) > 0.
i=1 (CC’)EC2 hk i=1 \ec€C

Now we introduce the unknowns of the LP to be considered. For a spherical
codeC we define the two point distance distribution

x(u) = card{(c,d) € C*:¢c-c =u},

1
card(C)

whereu € [—1,1]. Clearly, only a finite number of(u)’s are not equal to zero,
and the positivity property can be rewritten as a linear inequality in:thg's:

(5) > a(w)PR(u) > 0.

u€[—1,1]

Moreover, the number of elements Gfis given bycard(C) = >, (1 1) z(w).
Noticing the obvious conditions(1) = 1, z(u) > 0, andz(u) = 0 for cosf <
u < 1ifthe minimal angular distance @f is 6, we are led to consider the following
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linear program: For any > 1, the optimal solution of the linear program

max{ 1+ Z x(u)

u€[—1,cos 6]
6) z(u) = 0 for all but finitely manyu € [—1, cos 6],

z(u) > 0forallu € [-1,cosd],
L+ Zué[—l,cos@] IE(U)P’?(u) >0forall k = 1,..., d},

gives an upper bound fot(n, 8). The dual linear problem is
d
min{ 1+ Z I
k=1
f>0forallk=1,...,d,
S fePP(u) < —1forallu € [~1,cos 4]}

(7)

By the duality theorem (cf[[10]) any feasible solution[of (7) gives an upper bound
for the optimal solution of[(6). The dual linear program can be restated in the
following way involving polynomials:

Theorem 2.1. (see e.g[9, Th. 4.3] [7, Ch. 9] [15])
LetF(t) = Zi:o [P} (t) be a polynomial of degree at mastn R[t]. If
(@) fr >0forall k > 1andf, > 0and
(b) F(u) <0Oforall u € [—1,cosb)],
then
A(n,0) < @
fo

3. SEMIDEFINITE ZONAL MATRICES

Now we fix a pointe € S"~!, and letH := Stab(O(R"), ¢) be the stabilizer of
e in O(R™). Obviously,H ~ O(R""!) sinceO(R"~!) can be identified with the
orthogonal group of the orthogonal complemenRef

It is a classical result (see e.@. [23, Ch. 9.2]) that for the restricted actiéh to
the decomposition dflarm}! into H-irreducible subspaces is given by:

k
Harm;} ~ @ Harm} .
i=0

Hence, each of th&/}’ in (3) decomposes likewise:
(8) H =H} ' LH Lo L HE

WhereHZT‘k‘l ~ Harm?‘l. We give an explicit description of this decomposition
in the proof of Theorerp 3]2.
We summarize the situation in the following picture.
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Poleg(S™ ) = Hy L H} L ... L HY}
= Hgp' L Hyy' Lo L HpS

L HYY Lo L HY!

Lomyt

The isotypic components of thé-decomposition oPol,4(S" 1) are
Q) Zp=H)'L...LH' ~(d—k+1)Harm}™ ', fork=0,...,d.

Now we show how to associate to eaGha “zonal matrix” in view of an analogue
of the addition formula(4).

Theorem 3.1.LetZ = Ry L Ry L ... L R,, ~ (m + 1)R be an isotypic
component oPol,4(S™ 1) under the action off, with R an H-irreducible space

of dimension. Let(eg1,...,epn) be an orthonormal basis aky and let¢; :

Ry — R; be H-isomorphisms preserving the inner product®si<;(S" ). Let

eij = ¢i(eo,j), sothat(e; 1,...,e; ) is an orthonormal basis ak;. Define
60}1(%) . 607h($)

1 . .
STl ) I |

and
Z(x,y) == E(z)E(y)! € RUm+Dx(m+1),

Then the following properties hold for the mattix

(a) Z(z,y) does not depend on the choice of the orthonormal basi of

(b) The change ob; to —¢; for somei or the choice of another decomposi-
tion of Z as a sum ofn + 1 orthogonal H-submodules changées(x, y) to some
OZ(x,y)O! with O € O(R™ ).

(c)Forallg € H, Z(g(x),9(y)) = Z(2,y).

(d) (Matrix-type positivity property)

(10) Forall finite C c S™', > Z(c,d) = 0.

(c,c')eC?
Proof. (a) If (eo,1,---,€0,,) is another orthonormal basis &, then there is an
orthogonalh x h matrix O with (ep1,...,€4) = (€01, --,€0,,)0. In this case

the matrix E(z) is changed tdZ(z)O and, sinceDO! = I, the matrixZ(z, y)
stays unchanged.

(b) By Schur’'s Lemma and by the irreducibility &, there are only two possible
choices forgp;, namely¢; and—q¢;, once the subspacég are fixed.

LetZ = Sy L ... L S, be another decomposition @f, together withH -
isomorphisms)p; : R; — S; preserving the inner product dtol<,(S™~1). Then
¥ = (vo,...,1n) defines anf-endomorphism of . Again by Schur’'s Lemma,
for a suitable choice of basis iR; and by permuting rows and columns, the matrix
of ¢ is block diagonal with: blocks of size(m + 1) x (m + 1) and with the same
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(m+1) x (m+1) matrixO € O(R™*1) as blocks. This means tha{x) changes
to OE(z) and soZ(x,y) becomes) Z (z, y)O".

(c) Sincee; ;(g7 (z)) = (gei;)(z), the computation ofZ (g~ (x), g~ (y))
amounts to replace in the definition &f(x, y) thee; ; by ge; ;. SinceR; is H-
stablee; ; := ge; ;, with j = 1,..., h, is another orthonormal basis &f, and

i(er;) = di(ger;) = gdiler;) = geij = €ij-
Hence from (a) we concludg(g='(z),g ' (y)) = Z(z,y).

(@ Wehave S Z(c,) = (ZE(C))(ZE(C)Y - 0. 0

(c,c')eC? ceC ceC

The orbits of H on pairs of points on the unit sphetey € S™~! are char-
acterized by the values of the three inner productse, e - y, andz - y. By
definition the coefficients; ;(z,y) of Z(z,y) are polynomials in the variables
T1,...,%n,Y1,---,Yn. Then, property (c) of Theorem 3.1 implies that they can be
expressed as polynomials in the three variahlese - z,v =¢e -y, andt =z - y.

By Z}}, for0 < k < d, let us denote the matrix associatedZjpas defined
above, and more precisely to the decomposifion (ZrofNow we shall calculate
the matrixY,” (u, v, t) with

(11) Zp(z,y) =Y (e -z, ey, 2 - y).
Theorem 3.2. With the above notations, we have, for@i i, j < d — k,
(12) (Yk‘n)z’] (’LL, v, t) = )\i,jPinJer(U)P]n+2k(U)QZJ71(u> v, t)a
where

n—1 2 2\\k/2 pn—1 L —uv

u,v,t) = ((1 —u”)(1—wv P ,

)= (=) =) PR eeaes)

and o w
n n+2k—1 /1 n n
Nij = 7+7(hi +2khj+2k)1/2.

Wn—1 Wnp42k

Proof. We explicitly use an orthonormal basis &}, to calculateY,” (u, v, t).
Such a basis is constructed A [1, Ch. 9.8]. Let us recall the construction. For

x e S et
x=ue+\V1—u2(,

whereu = z-e and( belongs to the unit sphe 2 of (Re)+. With f € H}j‘l C
Pol<j(5"2) we associate(f) € Pol<;(S™"!) defined by:

p(f)(x) = (1= u®)*2f(Q).
Note that the multiplication byl —u?)*/2 forcesy( f) to be a polynomial function
in the coordinates of. Clearly, commutes with the action df. Hencep(H; ')
is a subspace d?ol<;,(S™~!) which is isomorphic tdlarm} . More generally,
the set{o(f)P(u) : f € Harm} !, deg P < i} is a subspace ol ;(S" 1)
which is isomorphic ta + 1 copies ofHarmZ*l. By induction onk andi there
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exist polynomialsP; (u) of degreei such thato(H; ') P;(u) = Hy', ;. Note that
this construction could be used to derive decompos@)n (8) explicitly.

We can exploit the fact that the subspaﬁﬁs are pairwise orthogonal to prove
an orthogonality relation between the polynomi&ls Then this orthogonality
relation will enable us to identify the polynomiald as multiples of Gegenbauer
polynomials. Let us recall that the measuressén' and onS™~2 are related by:

dwn(z) = (1 = u®) "2 dudw, 1 (¢).
Whenever # j we have for allf € H}*

0= [ PR Py ()
1

= o [ FQP = P () Py ) ()
1

— [ QP () / (1 — u2)F+0=3/2 By () P, (),

Sn—2 -1
from which we derive that
1
/ (1 — )M =32 P () P (u)du = 0;
-1
hence the polynomial®; (u) are proportional ta" ¥ (). We obtain an orthonor-
mal basis ofH;, |, from an orthonormal basiéf1,. .., f») of H;'~' by taking

eij = Nip(f;) P () for a suitable normalizing factox;. We compute); in a
similar way as above:

1= [ ) PP ) )

= (fj(C))2dwn—l(<) /1 A2(1 — y2)kt(n=3)/2 (Pin+2k(u))2du

Sn—2 -1

1
_ Wn-1 / )\12(1 _ u2)k+(n—3)/2 (Pin+2k(u))2du.
—1

Wn

From the addition formuld {4) applied (dPZ.’“‘”’“(u))2 one easily shows that

1
1 — 2 k+(n—3)/2 Pn+2k u 2du _ Wn+2k 7
/1( ) (FF ) wnyak-1hy T

S0 we obtain o w
)\12 _ %n n+2k—1 hn+2k
Wn—1 Wn+2k
Now we are in the situation of TheorémB.1 with
n—1 n—1 _ n—1
Ro_Hkk,Rl Hkkﬂ,...,Rd,k_Hk’d

and their orthonormal bas(go i, ..., €e0p), .-, (€d—k1,--->€d—kp). Theisomor-
phismse; are the multiplications by\; /A1) P2 (u).
Then, the coefficient:, j), with 0 <4, j < d — k, of Z}! is given by:
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—

Zy); ()

h
S eis(@)ess(y)
s=1

==

I
=
(1=

Ai(1— u2)k/2fs(C)Pin+2k(u))\j(1 . U2>k/2fs(£)P]n+2k(U)

Vo)
Il
—

h
= AP P )L w?) (1= ) ST AR
s=1

= AP PR 0) (1 - w?) (1= %) PR -9),

where we have writtey = ve + /1 — v2¢ and where we applied the addition
formula [4) to get the last equality. Now we defikg; = A\;\; and since

¢ &= (t—w)/V/(1—u?)(1 -2,

we have completed the proof. O

Remark 3.3. We would like to point out that the role of the numlaeis only to

cut Y}’ to a matrix of finite size. Indeed, does not enter in the expression of
(Yk")i’j(u, v,t). It is better to view the matrice®," as matrices of infinite size
with all finite principal minors having the matrix-type positivity property.

Remark 3.4. For the semidefinite programming bounds in Sedtion 4 we only use
the matrix-type positivity property of the matricgS. This property is preserved if
one replaced’” by AY;” A" with an invertible matrixA. So, e.g. one could replace

the expression ofYy") . (u,v,t) in (2) by the simplen‘vI Q) (u, v,t).

,J
Due to the specific choice of the unit vectodefining the subgroug, the co-
efficients ofY}" are not symmetric polynomials. We introduce the symmetrization
Sy of Y and state the announced propefty (2).

Corollary 3.5. Forall d > 0, forall £ > 0, letY;” be the matrix in Theore@.z
and letS}; be defined by

n 1 n
(13) Sy, _GZU:UYk7

whereo runs through the group of all permutations of the variables, ¢ which
acts on matrix coefficients in the obvious way. Then the matffese symmetric
and have symmetric polynomials as coefficients. We have:
(14) For all finite C c S™', Y Yi'(e-c,e-c,c-c) =0,
(c,c)eC?

and
(15)  forallfiniteC' c ™', > Sp(c-de-cd ") =0.

(070/,0”)603
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Proof. Note that(Y}") . (u,v,t) = (Y{?), (v, u,t) which gives the desired prop-
erties of S}’. Property [Qp) rephrases @14) and propdrty (15) is obtained from
(14) by takinge = ¢ € C and summing over all’ € C. O

To end this section we show that the positivity propefiy (1) is actually a con-
sequence of the matrix-type positivity propeffy (2). As shown in the following
proposition one can express the polynomigjsas a linear combination of diago-
nal elements of the matric&§® with non-negative coefficients.

Proposition 3.6. We have the following expression for the polynomigfst) in
terms of matrix coefficients of (u, v, t):

k
Wt
(16) IHOEDY i (V) g s (50, 1).

s=0
Consequently, properiff4) or property(2) implies ().

Proof. The addition formula[(4) holds for any orthonormal basig#jf. We take
an orthonormal basis aff;’ obtained by concatenation of orthormal basis of the

spacest), !, HY ', ... H,?kl. If (€51, €la,--- et 1) denotes an orthonor-
mal basis off7]'; ", we have from Theorefn 3.1

hn—l
1 S
(Yn)k s, k— Jerreyxy)= i1 elsgz(x)ezl:,i(y)
s =1
By the addition formula[(4)
1 kARt
Pl(x-y) = i Z el;,i(x)el;,z(y)
k s=0 i=1
k hnfl
= Z Zn (Y;n)k sk 5(6 xr,e-yY,x y)7
s=0 k

and hence

Since the coefficienta”~!/h? are non-negative, and since the diagonal ele-
ments of a semidefinite matrix are non-negativg, (1) is a consequerice of (14).
With the action of the permutation group of the variahles, ¢

k hnfl

hk (Sn)k s,k— s(u’v’t)'

1 13 13 n
g(Pk(u)+Pk(U)+Pk(t)) =
s=0
Replacingu =c-c/,v =c-c"’,t = ¢ - ¢" and summing ovefc, ¢, ") € C3 for a
codeC, we obtain[(lL) from[(R).
O



NEW UPPER BOUNDS FOR KISSING NUMBERS FROM SEMIDEFINITE PROGRAMMING 11

4. THE SEMIDEFINITE PROGRAMMING BOUND

In this section we set up an SDP whose optimum gives an upper bound for
A(n, 6) which is at least as good as the LP method.
For a spherical cod€' we define the three points distance distribution

1
z(u,v,t) = m card{(c,d,"Y e C3:¢c-d =u,c- " =v,d - " =t},
whereu, v,t € [—1, 1] and the matrix
1 u v
u 1 t],
v t 1

being the Gram matrix of three vectors on a unit sphere, is positive semidefinite.
The last condition together with the first is equivalent to the fact that the deter-
minant of the Gram matrix is non-negative, hence

@7 1+ 2uvt —u? —v? —t2 > 0.

The two point distance distribution() as defined in Sectidr] 2 and the three point
distance distributior:(u, v, t) are related byc(u,u,1) = z(u). The three point
distance distribution satisfies the following obvious properties:

x(u,v,t) >0,
2(1,1,1) =1,
z(o(u),o(v),o(t)) = z(u,v,t) forall permutationsr,

Z z(u,v,t) = card(C)?,

u,v,t

Z x(u,u, 1) = card(C).

u

Furthermore, from the positivity properti¢g (5) ahd]|(15), we have fordany:
> a(uu, )PP (u) >0 fork=1,....d,

Zx(u,v,t)Sﬁ(u,v,t) =0 fork=0,...,d,

u,v,t

where the matrixS} has size(d — k + 1) x (d — k + 1). If the minimal angular
distance of” is 6, we have moreover

z(u,v,t) =0 whenevem,v,t ¢ [—1,cosf] U {1}.

To factor out the action of the permutations of the variablas ¢ we introduce the
domains

D = {(u,v,t): =1 <u <wv<t<coshandl + 2uvt — u? —v? — 2 > 0},

Do = {(u,u,1) : =1 < u < cos b}, I =[-1,cosb],
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andm(u, v, t) with

6 if u#v#t,
m(u,v,t) =¢ 3 ifu=v#Atoru#v=toru=t=#,
1ifu=v=t

From the discussion above, a solution to the following semidefinite program in the
variablesr’ (u, v,t) = m(u, v, t)z(u,v,t) is an upper bound foA(n, 0):

1
1+ max {§ ;:pl(u, u, 1) :
u
2'(u,v,t) = 0 for all but finitely many(u,v,t) € D U Dy,

2’ (u,v,t) >0 forall (u,v,t) € DU Dy,
1

GH+32 @)D+ > e =o,

uel (u,v,t)eD
3+ a'(u,u, )PP (u) >0 fork=1,....d,

uel
SELLD+ Y (w0, 0)Sp(u,v,t) = 0 fork=0,...,d}.
(u,v,t)€DUDg

The third constraint deserves some further explanation. We have already noticed
that

card(C)? =1 + Z 2 (u,v,t) = <+Z uul),
(u,v,t)eDUDg uel
which implies
Z 2 (u,v,t) + % Zx/(u,u, 1) — (% Zx’(u, u, 1))2 >0,
(u,v,t)eD uel wel

and this is equivalent to the semidefinite condition:

1 fz uul
uel = 0.

fz (u,u,1) Z uvt+ Z (u,u,1)

uel (u,v,t)eD UEI

Remark 4.1. We want to point out that, despite of the fact t{@timplies(), as is
proved in Propositio6, the inequalities- >, . ; ' (u, u, 1) P}'(u) > 0 should

not be removed from our SDP. Indeed, the last inequalities do not imply them for
an arbitrary set of numbers’(u, v, t), unless these numbers satisfy the additional
equalities:

Zx(u,v,t) = (Zaj(u, u,1))z(t,t,1) forall ¢.

U, u
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These equalities do hold for codes, but they are not semidefinite conditions. It can
be noticed that the third constraint in the maximization problem above is a weaker
consequence of them.

Just like in the LP method, the main problem with the above SDP, is that the
unknownsz(u, v, t) are indexed by a continuous domairiof. We cannot exploit
the information that only a finite number of them are not equal to zero, because we
don’t know to which values ofu, v, t) they correspond. We solve this problem by
applying duality theory.

Before we derive the SDP dual to the above one we recall the principle of weak
duality. We use the standard notation for the inner product of symmetric matrices:
(A, B) = Trace(AB). LetJ be a (possible infinite) set of indices, Ig&t ¢ R"™*™
be symmetric matrices with € J, letC € R™*™ be a symmetric matrix, and
let c; € R be real numbers. Suppose that the real numbgrs R are a feasible
solution of the primal problem, i.e:; = 0 for all but finitely many; < J, and
C—- ZjEJ x;S; > 0. Furthermore, suppose that the symmetric mafrig R"*"™
is a feasible solution of the dual problem, k€., S;) = ¢; forall j € J, andF" > 0.
Then, we havgjej Cjxj = <Zj€J ijj, F> < <C, F)

In our case this specializes as follows: The set of indicesis Dy U D. The
matricesS|,, ., ) are block matrices with four blocks of different type. We get one
block for each positivity constraint in the above SDP./S¢ also a block matrix
with four blocks of different type. In this case it can be simplified to three blocks.

The first block ofF” consists of the matrix b”) The second block of' is the

bi2 baa J*
diagonal matrix with coefficients, ..., aq The third block ofF' is again a block
matrix with blocksFy, . .., F; which have the same size as the matri§gs The

matrix C' is a block matrix as well. The first block &f contains the matrix{ ).

The first entry of the second block3sthe other entries in this block are zero. The
third block of C' consists of the matriceS!(1, 1, 1). The real numbers, ,, ;) are

zero if (u,v,t) € D and equal td /3 if (u,v,t) € Dy. In the following theorem

we give the SDP dual to the above one. Furthermore we apply the simplification
Sp(1,1,1) =0fork > 1.

Theorem 4.2. Any feasible solution of the following semidefinite problem gives an
upper bound o (n, ):
d
1 + min { Zak + b1y + (Fp, SP(1,1,1))
k=1
bi1 b
(hatz) =0
ap >0 fork=1,...,d,
Fp, =0 fork=0,...,d,
d d
> apPy(u) + 2012 + oy + 3> (Fi, Sp(u,u, 1)) < —1,
k=1

k=0
d

bao + Z<Fka Sl?(uv Uat)> < 0}7
k=0



14 CHRISTINE BACHOC AND FRANK VALLENTIN

where the last inequality holds for dli., v, t) € D and the second to last inequality
holds for allu € I.

Note that if the last inequality holds for dl, v, t) € D, then it also holds for
the larger domain

D' = {(u,v,t) : =1 < u,v,t < cosfandl + 2uvt — u? — v? — 12 > 0},

because the coefficients §f are symmetric polynomials.

5. COMPUTATIONAL RESULTS

In this section, we describe one possible strategy to derive explicit upper bounds
for 7, from Theorenj 42. Thereby we make use of techniques form polynomial
optimization introduced e.g. in [12] and [16] which we shall briefly recall here.

We consider the polynomials

p(u) = —(u+1/4)* +9/16,

pi(u,v,t) = p(u), pa(u,v,t) =p), ps3u,v,t)=pt),
pa(u,v,t) = 1+ 2uvt — u? — v? — 12,
and we obviously have
I = {ueR:p(u) >0},
D' = {(u,v,t) €R®: pj(u,v,t) >0, i=1,...,4}.

We say that a polynomiaf € R[zq,...,x,] is asum of squaref it can be
written asf = Zle g?, fork € Nandg; € Rlzy,...,2,]. A polynomial
p(z1,...,x,) Of degree2m is a sum of squares if and only if there is a posi-
tive semidefinite matrixQ so thatp(zy,...,z,) = 2'Qz wherez is the vector
of monomialsz = (1,z1,...,Zn, 2122, ..., Tn_1Tn, ..., T5'). SO assuring that a
polynomial is a sum of squares is a semidefinite condition.

It is easy to see that the last two conditions of the semidefinite program in The-

orem[4.2 are satisfied if the following two equalities hold:
d

d
—1 = apPi(u) = 201z = byz =3 (Fi, S} (u,u, 1)) = q(u) + p(u)ai (u),
k=1

k=0
d 4
—bay — Z(Fk, Si(u,v,t)) = r(u,v,t) + Zpi(u,v,t)ri(u, v, t)
k=0 i=1
whereq, ¢; andr, r,...,r4 are sums of squares.

It is not apriori clear that the relaxation of using this specific sum of squares
representation is strong enough. The following theorem of M. Putinar justifies our
approach.

Theorem 5.1. ([19])) Let K = {z € R" : pi(z) > 0,...,ps(z) > 0} be a
compact semialgebraic set. Suppose that there is a polyndpridithe formP =
q+ piq1 + - - + psqs, Whereq and all ¢;'s are sums of squares, so that the set
{z € R": P(z) > 0} is compact. Then, every polynomjalhich is positive on
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K can be written a9 = r + p17m1 + - - - + psrs, Wherer and all r;'s are sums of
squares.

Now we use these considerations to formulate a finite-dimensional semidefinite
program which gives an upper bound on the kissing numberWe fix d and
restrict the polynomialg, ¢1,r, 71, . ..,7r4 to polynomials having degree at most
N, with N > d. Then we can use the computer to find a feasible solution of this
finite-dimensional semidefinite program. A feasible solution of it is at the time a
feasible solution of the SDP in Theorém}4.2. So it gives an upper bound on the
kissing number,.

We implemented this approach and give our results in Table 5.1.

best lower | best upper bound LP SDP
n | bound known| previously known method| method
3 12 12 (Scliitte, v.d. Waerden [22]) 13 12
4 24 24 (Musin [14]) 25 24
5 40 46 (Odlyzko, Sloane [15]) 46 45
6 72 82 (0., S.[15)) 82 78
7 126 140 (O., S.l[[15]) 140 135
8 240 240 (O., S.[[15], Levenshtein [12]) 240 240
9 306 379 (Rzhevskii, Vsemirnov [20]) | 380 366
10 500 594 (Pfender [17]) 595 567

Table 5.1. Bounds on,.

The values of the last column were found by solving the above semidefinite
program for the valued = 10 and N = 10. The values of the third column
were obtained by Odlyzko and Sloane by Theofem 2.1 using the vakie30.

They pointed out that evest = 11 would suffice forn < 10. Our calculations
were performed by the progracsdp (Version 5.0) of B. Borchers[([2]) which is
available on the Internet (http://infohost.nmt.edu/"borchers/csdp.html). After solv-
ing the SDP withcsdp we checked independently whether the solution satisfies
the desired constraints. This can be done using rational arithmetic only. So our
computations give rigorous proofs of the stated upper bounds. Due to numerical
instabilities we were not able to perform this calculation for largand/or larger

d, N. The smallest values afand NV which solve the kissing number problem in
dimension3 isd = N = 5. Then, we obtain by the SDP metheg < 12.8721.

For the kissing number problem in dimensidrit is d = N = 7, and the SDP
method givesy < 24.5797.

For the lower bounds in the first column we refer to the Catalogue of Lattices of
G. Nebe and N.J.A. Sloane (http://www.research.att.com/ njas/Iattices/kiss.html).
Using the polynomiap(u) = —(u + 1/3)? 4+ 4/9 we computed upper bounds

for A(n,cos™!1/3). Hereby we improved several entries of the Table 9.2 of [7]
where all best upper bounds previously known were obtained by the LP method.
We give our results in Table 5.2. Again we used the vallies10 and N = 10 to
obtain the last column.
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best lower | best upper bound SDP
n | bound known| previously known| method
3 9 9 9
4 14 15 15
5 20 24 23
6 32 37 35
7 56 56 56
8 64 78 74
9 96 107 99
10 146 135

Table 5.2. Bounds oA (n, cos™11/3).

We were also able to improve the best known upper bounds for the so-called
Tammes problem withV spheres: What is the largest minimal ang(eV) that
can be obtained by a spherical codeS3fwith cardinality N. Let us recall that
the answer is only known foN < 12 and for N = 24 (see [7, Ch. 1]). For
N = 13, the best known lower bound 5997223593 ~ 57.1367031° whereas
the best-known upper bound 1502746114 < 58.8691870° due to K. Brdczky
and L. Szabo[[4]. We obtained(3, cos™1(0.5225)) < 12.99 usingd = N = 10,
giving the new upper bound df02101593 < 58.4999037°. Other values are col-
lected in Table 5.3; the lower bounds are taken from the homepage of N.J.A. Sloane
(http://www.research.att.com/ njas/packings/). The upper bound&vfor 14
where established in[[5].

best lower | best upper bound SDP
N | bound known previously known method
13 57.13 58.87 58.50
14 55.67 58.00 56.58
15 53.65 55.84 55.03
16 52.24 53.92 53.27
17 51.09 52.11 51.69

Table 5.3. Bounds of(N) (given in degrees).
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