SIEGEL MODULAR FORMS, GRASSMANNIAN DESIGNS,
AND UNIMODULAR LATTICES

CHRISTINE BACHOC AND GABRIELE NEBE

ABSTRACT. Siegel theta series with harmonic coefficients are vector-
valued Siegel modular forms. We use them to show that certain sections
of lattices form designs in Grassmannian space.

1. INTRODUCTION

In [2], a notion of ¢-design on the Grassmann manifold G, ,, is introduced,
generalizing the so-called (antipodal) spherical designs. Many examples of
such designs arise from lattices, the most famous ones being the designs
associated to the root lattice Fg and the Leech lattice. In both cases, these
designs can be explained by properties of the representations afforded by
their automorphism groups. In the case of the spherical designs, another
proof, due to Boris Venkov, uses the theta series of these lattices as modular
forms. Such an argument has been applied successfully to other families of
lattices (see [15] and [3]).

In this paper, we prove a similar connection between the Grassmannian
designs and certain vector-valued Siegel modular forms associated to a lat-
tice. By using the explicit description of certain spaces of vector-valued
Siegel modular forms, we can prove the existence of Grassmannian designs
in the family of the extremal even unimodular lattices of dimension 32.

2. GRASSMANNIAN DESIGNS

2.1. Definitions. We briefly recall here the notion of Grassmannian de-
signs. For a more detailled presentation, the reader is referred to [2].

Let Gy, denote the real Grassmannian space of m-dimensional subspaces
of R", together with the transitive action of the real orthogonal group
O(n,R). The starting point is the decomposition of the Hilbert-space of
complex-valued absolutely squared integrable functions L?(G,, ) under the
action of O(n,R). As an O(n, R)-module:

(1) L2(gm,n) = @y H#‘L,TL
where the sum is over the partitions u = puy > -+ > upy > 0 with even
parts ; = 0 mod 2. The spaces Hy, , are isomorphic to the irreducible
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representation Vi’ (see [6]) of O(n,R) canonically associated to p. The
degree of the partition 4 is by definition deg(p) := >, pi.

Definition 2.1. A finite subset X of Gy, s called a t-design if one of the
following equivalent properties is satisfied:

1. For all f € HY . and all p with 0 < deg(u) < t,

m,n

Jo,. F0)dp = 57 e x f(2).
2. For all f € HY, , and all p with 2 < deg(u) <t, > .x f(z) =0.

m,n

There is a nice characterization of the designs in terms of the zonal func-
tions of Gy, ,: It is a classical fact that the orbits under the action of
O(n,R) of the pairs (p,p’) of elements of G, , are characterized by their
so-called principal angles (61, ...,0,) € [0,7/2]™. We denote y; := cos?(6;).
The polynomial functions on G, , X G which are invariant under the
diagonal action of O(n,R) are polynomials in the variables (y1,...,%m).
They form an algebra isomorphic to the algebra C[Y7,...,Yy,]%" of sym-
metric polynomials in m variables. Moreover, there is a unique sequence
of polynomials p,(Y1,...,Y,,) indexed by the partitions into even parts,
such that C[Y7,...,Y,]%" = Zu Cpu, pu(1,...,1) =1, and the function :
P E Gmmn = pu(v1(0,0); .., ym(p,p')) defines, for all p’ € Gy, n, an element
of HY, . These polynomials have degree deg(u)/2. They are explicitely
calculated in [8].

Theorem 2.2. (see [2, Proposition 4.2]) Let X C Gp, be a finite set.
Then,

L3> pexPulyi(p.p). - ym(p,p')) 2 0.
2. The set X C G is a t-design if and only if for all p, 2 < deg(p) < t,

Y ppex Pulyr(p:p'); - ym(p,p)) = 0.

2.2. Some subsets of G, , associated to a lattice. Let L C R" be a
lattice. We define certain natural finite subsets of G, , associated to L, in
the following way. The spaces of m x m real symmetric, real positive defi-
nite, and real positive semi-definite matrices are denoted by S,,(R), S>(R),
S-O(R), respectively.

Definition 2.3. Let S € S;°(R). We denote Lg the set of p € G such
that p N L is a lattice, having a basis (vi,...,vm) with v; -v; = S; ;.

Clearly, the sets Lg are finite sets. In the case m = 1, the sets Lg are
the sets of lines supporting the primitive lattice vectors of fixed norm. It is
worth noticing that these sets are unions of orbits under the automorphism
group of the lattice.

We introduce a few more notations. An m-tuple of vectors of R" is de-
noted by v(™ and the Gram matrix of its vectors by gram(v(™)). The real
vector space spanned by these vectors is Ru(™) . If the vectors of v(") belong
to the lattice L, and consist of a Z-basis of LNRv(™) | (M) ig called primitive.
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One of the aims of this paper is to study the design properties of the sets
Lg. Therefore, we have to consider sums of the type ZpELs f(p) where f
runs over the spaces Hj, .

Lemma 2.4. The following assertions are equivalent:
1. For all S € S7°(R), ZpELs flp)=0
2. For all S € S;O(R), Zv(m)eLm,pMmitive f(Rv(m)) =0
gram(v(m))=8$
3. For all S € S7°(R), 3" p(m)cpm F(Ru(M) =0
gram(v(m))=8

Proof. Two bases of the lattice L N p with the same Gram matrix are ex-
changed by an element of the automorphism group of L N p, so the second
sum differs from the first by a multiplicative factor. In the third sum,
the non primitive (™ contribute to subsums of the type ZPGLSI f(p) with

det(S") < det(S) so we can conclude by induction on det(S). 0

Remark 2.5. With the help of representation theory of the automorphism
group, one finds examples of lattices L such that all the (non empty) sets Lg
(with rank(S)< dzmT(L)) are Grassmannian k-designs (see [2]). For the root
lattices Dy, Eg, E'7 one can take k = 4, for Eg and the Barnes- Wall lattice
BWig, k =6 and even k = 10 for the Leech lattice Aoy.

It turns out that the sums of Lemma 2.4(3) can be interpreted in terms
of certain vector-valued modular forms. The next section recalls the basic
properties of these modular forms.

3. VECTOR-VALUED SIEGEL MODULAR FORMS

Let H,, denote the Siegel space

(2) Hy:={ZeM™™C)|Z'=2Z,Z=X+iY and Y > 0}
endowed with the usual action of the symplectic group Sp(m,R). If M :=
(A5) eSp(m,R) and Z € Hy, then M.Z := (AZ + B)(CZ + D).

Let (p,V,) be a finite dimensional complex representation of GL(m,C).
A V,-valued Siegel modular form for the modular group Iy, := Sp(m,Z) is

a holomorphic function f : Hy, — V), satisfying the transformation formula
flp M = fforall M €T, where

(f |o M)(Z) == p(CZ + D)™ f(MZ)

(plus a condition on the growth of f in the case m = 1). Such a modular
form has got a Fourier expansion of the type:

(3) F(Z)=7 " as(8)e(52)
S
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where e(SZ) := emtrace(57) and § runs over the set of even symmetric
positive semi-definite matrices S&" := {S € S7°(R) | S;; € Z and S;; = 0
mod 2}.

One can restrict without loss of generality to the case when the represen-
tation p is irreducible. Then, it is characterized by its highest weight, an
m-tuple p := (p1,..., i) with gy > -+ >y, and we may denote (p,, V)
this representation.

The vector space [['),,p] of these modular forms is finite dimensional.
The classical case of complex-valued Siegel modular forms corresponds to
the one-dimensional representations; the spaces may be denoted [I';,, detk]
or more briefly [T'),, k]. The direct sum A(T,,) := k=0 mod 2[T'm, k] is a C-
algebra, the structure of which is completely understood only for m = 1,2, 3.
For an arbitrary representation p, the sum A(T'),, p) := k=0 mod 2[I'm: det® ®p]
is a module over the previous algebra. Its structure is completely described
in the cases m = 2 and p = [2,0],[4,0],[6,0] (see [12], [7]).

Such modular forms can be constructed from lattices, in the following
way (see [4] and [5] for detailed proofs). Let L be again an n-dimensional
lattice contained in R"™. The theta series of degree m < n/2 associated to L
is:

(4) o= S es2)= Y au(S)e(52)

p(merm Sesgyen
S:=gram(v(™))

where ar(S) counts the number of v(™) € L™ with gram(v(™)) = S. Then

H(Lm) is a Siegel modular form for some congruence subgroup, which can be
taken to be the full modular group T',, = Sp(m,Z), if the lattice L is even

unimodular. The weight of H(Lm) is equal to n/2 (i.e. they are modular forms

for the representation p = det™/?).
More generally, one can construct vector-valued modular forms from a
lattice L and some spaces of harmonic polynomials.

Let C[X ] denote the polynomial algebra in the matrix variables (X ;)1<i<m.
1<j<n
with the action of GL(m,R) x GL(n,R) given by (g,h).P = P(g'Xh). The

decomposition of this space is well-known to be:
(5) CX] ~e&,F,®F}

where F}, denotes the irreducible GL(m, R)-module canonically associated
to the partition p = (p1,..., thm) with g > -+ > pp, > 0. The harmonic
polynomials are the polynomials belonging to the intersection of the kernels
of the operators

A, = _— .
(6) i kZ_l 5% 0% s

Their space is denoted H,,,, and is stable under the action of GL(m,R) x
O(n,R). Its decomposition is given by
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(7) Hmn ~GL(m,R) xO(n.R) @ Fr oVl
I
Equivalently, the polynomial functions: P : M™*"(C) — F}, satisfying
pu(u)P(X) = P(u!X) for all u € GL(m,R) span a vector space, O(n,R)-
isomorphic to V;'. We shall denote it Harmy, ,,.

Definition 3.1. Let L CR" be a lattice and P € Harmf, ,,. For m < 5 let

(8) 0= S P™)e(s2)
vmlerm
S:=gram(v(™))

where P(v(m)) stands for the value of P on the m x n matriz X, m), the
(m)

rows of which are equal to the m vectors of v(™). 0, p is called the harmonic
Siegel theta series of L with coefficients P.

Proposition 3.2. ([5]) If L C R" is an even unimodular lattice and P €

Harmf, ., then G(Lm]l € [Fm,det”/2 ®pu] is a vector valued Siegel modular
form for the full modular group.

4. HARMONIC THETA SERIES AND GRASSMANNIAN DESIGNS

In this section we show how harmonic Siegel theta series can be used to
show that certain sets Lg of sections of a lattice L provide Grassmannian
designs.

Theorem 4.1. Let L C R be an even lattice, and let m < n/2. Assume

that, for all P € Harml, ,, and all even p with 2 < deg(u) < t, G(LTIA = 0.
Then, for all my < m and all S € S%g(R), the mon empty sets Lg are

t-designs.

Proof. The space (Fh)OmR) of O(m,R)-invariant elements in Fjy is one-
dimensional if and only if p is even. We denote v, an arbitrary non-zero
vector of this space. We choose on F};, an O(m, R)-invariant hermitian form,
denoted by <, >, and we can assume v, to be of norm 1 for this form. If P €
Harmf, ,, let Py : M™*"(C) — C be defined by: Py(X) :=< P(X),v, >.
By construction, the function Py is O(m, R)-invariant and therefore defines
an element Py of L?(Gynn) by: Po(p) := Py(X,), where X, is the matrix
of any orthonormal basis of p. The mapping P — Py is an isomorphism of
O(n, R)-modules from Harmj, , to H, .

Let S € S{'°" be of rank m. There exists U € GL(m,R) such that
S = UU!. From the hypothesis, we have, for all P € Harm”

> o Pep™)=o.

wimepm
S:=gram(v(™))
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Since p, (U~ P(v(™) = P(U™' X (m)), and since U~ X, () is the ma-
trix of an orthonormal basis of the space Ro(™) we conclude that

> B®™)=o.
omerm
S:=gram(v(™))
From Lemma 2.4, the set Lg is a t-design. The assertion on the other
mg < m derives from the same argument applied to the successive images

of 95-:1; by the ®-operator. 0

In order to apply the previous theorem to concrete situations, we need
to study the spaces of vector-valued modular forms. The next proposition
shows that in general we only need to study the cusp forms. The space of
cusp forms is the space of forms f € [T'y,, 4] for which af(S) = 0 for all the
matrices S of rank smaller than m, and is denoted [T}, u]o.

Proposition 4.2. Assume that, for all mg < m, and for all S € Sﬁlg(R),

the non empty sets Lg are t-designs. Then, the modular forms 92’7;1) are

cusp forms, when P is associated to a partition p with either p,1 > 0 or
Doy St

Proof. If S € S¢¥¢% is such that Spy1,mi1 = 0, and if S = UU’, then
the last row vector w41 of U equals 0. One has AU = U, with A the
diagonal matrix with 1 on the diagonal except the last coefficient equals 0.
If Pe H%H’n, P(U) = P(AU) = p,(A)P(U) = 0 if ptyp1 > 0 (in that
case, det divides p,). On the other hand, the polynomial P restricted to the
matrix variables X; ; with X, 1 ; = 0 belongs to a subspace isomorphic as
a GL(m, R)-module to F,%“l""’“’”), and is harmonic in these variables. Hence
the design property implies that the coefficients of G(Lr’n; 2 corresponding to
matrices S with Sy, 1,41 = 0 and of rank m are equal to zero. We can
iterate the same argument to obtain the nullity of the coefficients associated

to matrices S of lower rank.

5. EVEN UNIMODULAR EXTREMAL LATTICES

Let L be an even unimodular lattice of dimension n = 24¢+8r (r = 0,1, 2).
Since its theta series 67, belongs to the space [I'1,n/2], and since, as is
well-known, the algebra of modular forms A(T';) = C[E4, Fg], the following
bound holds for the minimum of L:

(9) min(L) < 2[n/24] + 2

A lattice is called (analytically) eztremal, if its minimum attains this
bound. This notion can be defined for other families of lattices, see the nice
survey paper [10]. Extremal even unimodular lattices are only known for
n = 8,16, 24, 32, 40, 48, 56, 64, 80 and are completely determined only up to
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n = 24 (where the unique Leech lattice satisfies this bound). In dimension
32, they form a huge family, among which 5 of them are constructed from
extremal binary codes. In dimension 48, which is the first dimension for the
minimum 6, only three of them are known. The question of the existence of
such a lattice in dimension 72 (hence of minimum 8) is still opened.

Let S € S;°(R), we denote min(S) := min{zSz!,z € Z™, x # 0}. Let f
be a non zero cusp form; we define m(f) := 3 min{min(S) | as(S) # 0}. We
set m(0) = +o00. For example, if f = 9(532, clearly m(f) > min(L)/2. In the
case of degree one, due to the explicit description of [I'y, k], it is easy to see
that:

(10) it A0, m(f) < k/12

where k is the weight of f. Applied to the forms f = 95:1)1,, it leads to the
result, due to Boris Venkov, that the sets Lg associated to extremal lattices
(here Lg = L, is the set of lines supporting lattice vectors of given norm
a) support designs of strength 10 — 4r. We introduce the following notation:

(11) min([T, o) = max{min(f) | f € [T, o).

We now consider the question of the generalization of this result to the
higher degree Grassmannian designs contained in extremal even unimodular
lattices. For the Ejg lattice and the Leech lattice, the properties of their
automorphism groups prove that they do contain respectively 6- and 10-
Grassmannian designs (see [2]). So, the first interesting case is the case of
dimension 32.

We now restrict to the case m = 2, and give the numerical results obtained
by the explicit calculations of the spaces [I's, u]o for p, = det'® ®p,, where
v runs over partitions of small degree. A formula for the dimensions of these
spaces is given in [13].

V] 0 2 4 6 8 10

v (0) ] (2,0) | (4,0) | (6,0) | (8,0) | (10,0)
dim([Tyn, 1lo) | 2 2 3 S 7 8
min([T'm, p1]o) 2 2 2 1 2(7) | 2(9)

v (2,2) | (4,2) | (6,2) | (8,2)
dim([T'y,, p]o) 2 2 4 7
min([T'y,, o) 2 2 2 4

7 @9 6.9
dim ([T 1) 3|3
min([Ty,, o) 4 2

Corollary 5.1. For all 32-dimensional even unimodular lattices of mini-
mum 4 and all S of rank < 2 the non-empty sets Lg are 6-designs.
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