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ABSTRACT. We study self-dual codes over certain finite rings which are quotients of quadratic
imaginary fields or of totally definite quaternion fields over ). A natural weight taking two
different non zero values is defined over these rings ; using invariant theory, we give a basis for
the space of invariants to which belongs the three variables weight enumerator of a self-dual
code. A general bound for the weight of such codes is derived. We construct a number of
extremal self-dual codes, which are the codes reaching this bound, and derive some extremal
lattices of level { = 2,3,7 and minimum 4, 6, 8.

1. Introduction

Most of the lattices known for their good density share the following property : they
are [-modular for a certain level [ equal to 1 or a prime number. This means, following
[Q4], that they are even lattices such that a similarity of rate V1 sends their dual lattice to
themselves. This definition includes the even unimodular lattices, and also famous lattices
like the Coxeter-Todd lattice of dimension 12 and level 3 and the Barnes-Wall lattices
which are, after rescaling, alternatively 2-modular or unimodular.

Such lattices appear naturally in the following situation : let K be either a number field
with complex multiplication, or a quaternion field defined over a totally real number field
with all its infinite places ramified in K. We denote by x — T the canonical conjugation
on K. Let V be a (left) K-vector space of finite dimension, endowed with a non degenerate
hermitian form h(z,y). Most often, V = K" and h(z,y) = Y.._, «;¥;, or a multiple of
it. Let Dk be a maximal order of K, and let L be an O g-lattice contained in V. The
hermitian dual of L is defined by : L} = {z € V/h(z,V) € Ok }.

Then L is a Z-lattice for the scalar product : z.y = Traceg,g(h(z,y)), where Traceg g
is respectively the trace form of K/Q when K is a number field, and the compositum of
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the reduced trace of K with the trace form of its center when K is a quaternion field. We

denote it by Lz. Its dual is given by L} = DR,}@LZ, where D is the different of K. This
shows that, if this ideal is principal, and if L is hermitian unimodular, then the lattice Ly
is modular of level |dx| = Normg/q(Dx ) (the similarity being the left multiplication by a

generator of the different).

On the other hand, it is shown in [Q4] that one gets a [-modular lattices of smallest
dimension by taking (O, Traceg/g(z¥)), where K is either the quadratic imaginary field
of discriminant [ if [ = 3 mod 4, or the quaternion field over Q ramified at [ and oo if
[=2o0rl=1 mod4. It is then natural to focus on lattices which are unimodular over
these structures. Previous work was already done in this direction in [B], [Q1], [Q2], [Q3],
[F], [BQS] ; in these papers the main tools used to construct or classify such lattices are
mass formula and Kneser neighbouring.

Some previous constructions make use of codes, like in [Q3], [B] ; we want here to
generalize these constructions by defining codes over finite involution algebras which are
quotients of these maximal orders. Then self-dual codes give by “construction A” (i.e. by
taking their preimage in O% ) hermitian unimodular lattices. A suitable weight over these
finite rings permits to measure the minimum of the corresponding lattices. In section 3,
we set MacWilliams identities for these codes and derive with the help of invariant theory
Gleason-type theorems for the corresponding weight enumerator polynomial. Here the
results are very similar to those concerning self-dual codes over Zy4 (see [CS3]). This leads
to a bound for the minimal weight, and to the notion of extremal codes, which are the
codes meating this bound.

In section 4, we construct extremal codes in some special cases, which give rise to some
extremal modular lattices of level 2. 3 and 7 of minimum 4, 6, 8, some of which were not
yet known.

2. Codes over Ok /pO k. Definitions.

We take the following notations for the rest of the paper : K is either an imaginary
quadratic field, or a quaternion field of center Q ramified at co. We denote by x — T the
canonical involution on K. We fix a maximal order O of K (it is not unique if K is a
quaternion field, see [V]).

Let p be a prime number. We want to define codes over the finite ring O g /pO -, which
is a [F,-algebra endowed with an involution # — & deduced from the one on K. We first
look at its structure :

Proposition 2.1. The F,-algebra with involution O /pO i is isomorphic to the following
algebra A :

(1) K is a quaternion field and p is split in K. Then

A= My(F,) Vl‘:(i fz) 5:<_dc _ab>
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(2) K is a quaternion field and p is ramified in K. Then
A =TF,> + ulF,. with u? =0 and au = ua® for all a € e

Ve=a+ub, T=d —ub
(3) K is an imaginary quadratic field and p is split in K. Then

A=F, xF, Vz=(a,b) 7T=(ba)
(4) K is an imaginary quadratic field and p is ramified in K. Then

A =TF, 4+ ulF, with u? =0 and au = ua for all a € F,
Vr=a+ub, T=a—ub

(5) K is an imaginary quadratic field and p is inert in K. Then

A:]Fp2 T =2z’

Proof. 1t is obvious once K is completed at p. See [V] for the quaternionic case. O

The case (5) is covered by the classical coding theory. We assume in the rest of the
paper that A is one of the algebras defined in the previous proposition, and we will refer
to it by its number. The cases (2) and (4) will most often be treated together, by setting
A =TF, + uF, with ¢ = p,p? ; it is the ramified case, while the cases (1) and (3) are the
so-called split cases.

A code C of length n over A is then a left submodule of A". Orthogonality is defined
with respect to the form Y | z;7;. The code C' is said to be self-dual if C' = C+t.

Two codes are said to be equivalent if a monomial transformation sends one of them on
the other. Such a transformation is a permutation matrix where the ones can be replaced
by invertible elements of A, acting on A" from the right. We summarize in the following
the group A* of invertible elements of A :

+ulF,. ; A* ={z =a+bu|a#0}
PX]F A*:{(avb)|a7£07b7£0}

» +ulF, ; A*={z=a+bu|a#0}
2 ; AY =T,

:MZ(]FP) A* :gZZ(Fp)
IF
IF

Examples 2.3. Let A be one of the algebras (1)-(4). The following construction is the
translation in terms of codes of the lattices U defined in [M1], [M2,Chap.VIII]. Let I be a
left ideal of A, distinct from {0} and A. If A = My(F,), there are p 4+ 1 such ideals, and
the group of units of A is doubly transitive on them. If A =TF, + ulF,, there is only one
which is ulF,. If A =T, x F, there are two of them, namely F, x {0} and {0} x F,, which

are conjugate.
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We set €y = I. Then C) is a self-dual code of length one over A. In case (1), Cy is
unique up to equivalence ; in case (3), the two ideals define conjugate codes.

If Ais(1)or(3),let I' be a second non trivial ideal, distinct from I. If A is (2) or (4),
let I' = {0}. We set, for n > 2:

Cn={(z1,.,2n) € A" | Vi#j z;=2; mod I and inEO mod I'}.

=1

Then, with the additional condition n =0 mod p in cases (2) and (4), C), is a self-dual
code over A. In order to prove this, let us remark that the choice of (I, I') has no importance
because of the previous remarks on the ideals of A. Let @ = (21, ..,2,) and y = (y1, .., Yn)
be two elements of Cy,. Then z.y = > " 2% = o (@i —x) (Ui —U1) + (O )T +
z1(3 %, yi)—nz1y1. The first sum belongs to IT, which is reduced to {0} ; in cases (2) and
(4), we see that C,, C C- is equivalent ton = 0 mod p. In cases (1) and (3), we can assume
that [ = Ae, I' = Ae with ¢ = e. Then e+¢e =1 and ee = 0. Writing 131 = x1(e + €)1,
iz )y + 21 (i, W) — naadn = (2 (@i — 21))eyn + xre Y (¥ — Ur) which is
zero because r; — 1 € Ae and §; — y1 € €A. In all cases we have proved the inclusion
C, C Ci, which turns to be an equality because the number of elements of C,, is exactly
VIAT"

The previous definition and proof have the advantage to be uniform. If we denote by 1
the code over F, generated by (1,1,..,1) and by PC its dual the parity-check code, it is
easy to see that in cases (2) and (4), C,, = 1 + uPC, and in case (3) C,, = 1 x PC, with
evident notations.

3. Lattices and weights

Assume that K and A are as in Proposition 2.1. To a code C of length n over A we
associate the following lattice :

Lc = {(l'l, --,lCn) €Dy | r1..t, modp € C’}

with the hermitian form : h(z,y) = 1/p>.;_, =¥, and the scalar product : z.y =
Traceg,g(h(x,y)). (Notice that a code over a given ring A can be lifted to various fields K).

Now we want to define a weight on A which measures well the minimum of the lattice L.
We have, for z in O, z.x = %xf. If  belongs to an ideal p satisfying pOx C p C Ok,
then z7 i1s always a multiple of p. So, as the union of the proper ideals of A is the
complementary set of A*, it is natural to set :

Definition 3.1. Let A be one of the rings defined in (1) ... (5). The weight w on A is
defined by :
(0)

w
w(z)
w

(z)

0
lifz e A"
pifz e A\(A* U {0})
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Remark. It is the Hamming weight in case (5).

We extend it to A™ in the standard way by setting w(z1,..,zn) = > o, w(z;). The
weight of a code C' is the minimum of the weights of its non zero elements. If K is a field
with the quotient Ok /pO g isomorphic to A, we denote by sx : O — A the canonical
surjection and extend it componentwise to O%-. We have then, for all z = (z1,..,2,) € O%,
T.x > %w(sK(m)). This minoration may not be optimal, unless it coincides with the length
function [x which is defined on A by :

Va € A, lk(a) = min{zT | sg(x) = a}

Of course, i depends on K while w does not. For all a in A, w(a) is a divisor of lx(a).
Before we look at the cases where they coincide, we will study a weaker condition, trivially
verified by g, which is the following one :

(*) Ve € A,w(z) =x.x mod p

This congruence is true in the classical coding theory cases, i.e. for the Hamming weight
over Fy, F3 with the form > z;y;, or over Fy with the form ) x;y;. It is worth remarking
here that, if (*) holds, then a self-orthogonal code has all its weights divisible by p.

Proposition 3.2. The condition (*) holds for the weight w if and only if A = My(F),
F, + ulF, with ¢ = 2,3,4, Fy x Fy, or F, with ¢ = 2,3,4.

Proof. Assume A = M3(F, ). Let = be an element of A ; then z.2 = 2T = det(z). Then, if
(*) holds, every invertible matrix should have determinant 1, which implies p = 2. Assume
that A = F, + ulF,, and let * = a 4+ ub be an element of A. Then, in the two cases (2) and
(4), z.x = 2T = aa where @ = a or a?. Then (*) implies that a@ =1 mod p for all a € Fy,
and so ¢ = 2,3,4. Finally, if A =F, x F, and z = (a,b) then z.2 = (ab, ab) and we need
p=2.

Conversely, (*) holds in those cases. O

Examples 3.3. Computation of the weight of the codes C}, : the code C; has of course
weight 1.

In case A = F, +ulF,, let z € C,,. Weset v = (z1,..,2,) with z; = a4 ub;, Y., b; =0.
Ifa #0, w(z) =n,and if a = 0, w(z) = p.wt(a) > 2p where wt is the Hamming weight.
Hence w(C,) = min(2p,n). In the case A = F, x Fy, z; = (a,b;) with >0 b; =0 ; if
a =0, w(x)=p.wt(b) and if a # 0, w(x) = wt(b) 4+ p(n — wt(b). Hence w(C,) = min(2p,n)
ifn =0 mod 2 and w(Cy,) =min(2p,n+p—1)if n =1 mod 2. In the case A = My(F,),

0 8) so that z; = (CCL dll) with Y b; = Y i, d; = 0. The det function

z +— (det(z;)); = (ad; — ¢b;); sends Cy, to the parity-check code over F,. If a = ¢ = 0,
w(z) > 2p, and if a or ¢ is non zero, w(x) = wt(det(x))+ p(n —wit(det(x))). Again we find
the same result as for the previous case.

we take e = (

The following proposition tells us when [x and w coincide. These are the interesting
cases for the construction of lattices.
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Proposition 3.4. We have w = I if and only if :
(1) I{ - Qg 00 - 2, A == ./MZ(FZ)
()IX—QQOO, :27A2F4+‘MF4
()IX (\/—_7),p:2,A:IE‘2><]F2
()I& Q()w—l—w—l—l—O p—ZA Fy, or p=3, A =TF;3 + ulfs

Proof. A necessary condition for w to be equal to [k is that the image of 97 under sg is
all of A*. Of course, we are in one of the cases of the previous proposition. We make use
of the following well-known result : if K is a quadratic imaginary field, then 97 = {£1},
unless K = Q(¢), for which 9% = {£1,+:} is cyclic of order 4, or K = Q(w), for which
0% = {£1,+tw, tw?} is cyclic of order 6 ; if K is a quaternion field over Q ramified at
oo, then 7% is cyclic of order 2,4,6, except in two cases : K = Qo the quaternion field
ramified at 2 and oo, defined by i? = —1, j2 = —1, 17 = —j7 ; the maximal order is unique
up to conjugation and equal to the so-called Hurwitz order Z[1,¢,5,(1 +¢+ j + k)/2].
Its units are {£1,+¢,+7, £k, (£1 £ 7+ 5 £+ k)/2}, a group of order 24 isomorphic to Ay
(the non trivial central extension of the alternating group A4 by {£1}). The other case is
K = Q3 o the quaternion field ramified at 3 and oo, defined by i* = —1, j2 = —3 ; the
maximal order is unique up to conjugation and equals Z[1,7,w = (—=1+ j)/2,iw]. Its units
are {£1, fw, +w? +i, +iw, +iw?} and form a quaternionic group of order 12. (The proof
goes through the classification of the finite subgroups of the real Hurwitz quaternions. See
[M,Appendice 2] or [V]).

Case (3) reduces to K = Q(v/—7) because it is the only quadratic imaginary field in
which 2 is split and the ideals above 2 are principal.

It is now easy to see that the condition s (9% ) = A* leaves the only possibilities listed
in the proposition, and that in those cases we do have [ = w. O

Remark 3.5. Of course, most often, we have I # w. For example, if K = Q3 , the
function i over O /30 takes five different non zero values. Another example is in [Q3]

with 4 = ]Fg X ]Fg.
The lattice L¢ has the following properties :

Proposition 3.6. The lattice (Lc, h(x,y)) is hermitian unimodular if and only if C = C*.
Under this condition, the Z-lattice Ly = (Lc,x.y) is even, of determinant |dg|"5/W/2
where |dg| is the discriminant of the field K. Moreover, if the different of K is principal
and L¢ is unimodular, then Ly is a |dx |-modular lattice. The minimum of Ly is bounded

by :
. ) 2
min(Lz) > min(2p, —w(C))
p

with equality if we are in one of the cases of proposition 3.4.

Proof. It is immediate with the following properties : (Lc); = Lo and L} = D }@L*
(see [B]). If + € L¢, v.x = Traceg/g(h(z,z)) = 2h(z,z) € 27Z since h(z,x) € Ok,
and L¢ is even. If the different is principal generated by «, let f(z) = ax. Then L =
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DgyoLz = f(Lz) and f(z).f(y) = Traceg/g(h(az, ay)) = Tracegg(a@h(z,y)) = |dx|z.y
since a@ = |dg| ; hence a hermitian unimodular lattice is |dx |-modular.

Let  be an element of Lo. If @ belongs to pO%, then x.x > min(pO%) = 2p. If
doesn’t belong to pO%, then s (z) # 0 and z.2 > ]%'w(C). Since in the cases of proposition
3.4 we have w = [k, the previous inequality is an equality. O

Remark 3.7. In the cases of proposition 3.4, the maximal order (which is unique up to
conjugation) is principal. The lattice Le, ~ (O, Traceg/g(2y)) is isometric repectively

to: (1) Ay L Ay, (2) Dy, (3) the lattice with Gram matrix (i i), (4) Ay L Ay, (5) Ay

with the standard notations for the root lattices.

Remark 3.8. If K = Q(v/—d) where d has no square factor and —d = 2,3 mod 4, then
di = —4d and Lc/\/i is still an integral lattice. It is d-modular but not necessarily even.
It is the case if K = Q(¢), where we get unimodular lattices. The study of the codes
over the corresponding algebra Fy + ulfy reduces trivially to binary codes by the following
transformation : ¢ : Fy + ulFy — Fy x Fy defined by ¢(x + yu) = (z + y,y) which preserves
the weight.

4. MacWilliams identities and invariant theory

In this section, we study the weight enumerator polynomials related to the codes over
the algebras defined in proposition 2.1. More generally, if A = {wy = 0,wy,..,wq_1} is a
ring with an involution x — T satisfying Ty = y T, the complete weight enumerator of a

code C of length n over A is defined by ([MWS]) :

c _ so(u)_s1(u) _sa—1(u)
Weé(z0, 2150, 2d-1) = g glo(w) ggatw) poa-piw),
ueC

where, for all ¢, 0 <7 < d — 1, s;(u) is the number of coordinates of u equal to w;.
The MacWilliams identity is then :

Theorem 4.1.
Let x : (A,4+) — (C*, x) be a character of the additive group of A whose restriction to
any non zero left ideal of A is non trivial. Then :

1
Wéd_ (207 1y Zd—l) = anT(Cf)Wé(jw(ZO7 L1y ey Zd—l))7
where
M = (X('wiﬁ))ggi%—i-
<j<d—

(The matrix M operates on the d-tuples in the usual way).

Proof. 1t is a consequence of [D, Chap. 6]. It also can be proved directly as in the classical
case ([MWS, Chap.5]) using the Poisson summation formula.
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Let us go back to the cases we are interested in. For most of them, the size of A is too
large to allow us to handle the complete weight enumerator ; in view of the weight defined
in 3.1, 1t is natural to specialize it to the following three variables polynomial :

.[/‘-/vc’()(7 Y’ Z) = Z Xto(u)Ytl(u)ZtQ(u)7
ueC

where to(u) is the number of coordinates of u equal to zero, t1(u) is the number of invertible
coordinates of u, t2(u) is the number of non zero, non invertible coordinates of u. Moreover,
in the cases of proposition 3.4, the theta series of the lattice Lo expresses through We :

Proposition 4.2. Let C' be a code of length n over A. In the cases of proposition 3.4, we
have

0. = We(bo,6,,62)

where

6o = Z qu/p

z€pOxk

6, = Z qxf/p
r€l+pOx

0y = Z ¢**'?, where a € Ok and a@ = p
r€a+pOK

Proof. The theta series of a lattice L is defined by 67 = > ¢**/? where ¢ = €2'7*.
Since w = g, for each u € A we can choose v € O such that sx(v) = u and vo = w(u).
Hence we have :

eLC _ Z qzz/Q _ Z Z qh(x,x:)

r€ELc ueC I,S]((Z:):u
n —
1 o Ty
DI ED D) | (D DI
ueC z€v+pOK ueCi=1 z€v;+pOxk
In the cases of proposition 3.4, it is easy to see that the sum EIEU'—H)DK g 7 only

depends on w(u;) (see Example 2.3). With the notations of the proposition,

eLc _ Z eoto(U)glh(u)gzh(U) — WC(90791792)'
ueC

O

We forget about the case (5) which leads to the usual MacWilliams identity in two
variables over a finite field ([MWS]). Then we get :
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Theorem 4.2. Let A be one of the algebras defined in proposition 2.1. Let C' be a code
of length n over A. Then

1

XY /)= ——— MX,Y Z
WCJ-( [ ) CaI‘d(C)WC( ( [ ))
with
(1) IfA=F, +ul,
1 gq¢g—=1) ¢-1
M=11 0 -1
1 —q qg—1

(2) I A= M,y(F,)

L -1 -p) @P*-D+1)
M=1|1 P —(p+1)

1 —pp—1) pp—1) -1
(3) fA=F, xF,
1 (p—17° 2(p—1)
M=1 1 —2
1 —(p-1) p-2

Examples 4.3. The weight enumerator polynomial of the codes C,,. The code C; = I
doesn’t contain any invertible element, so

We, (X,Y,2) =X + (/A -1)Z.

We recall that the Hamming weight enumerators of 1 and PC over F, are Wy (z,y) =
2" +(g—1)y" and Wpe(z,y) = ;Wi(z+(¢-1)y,2—y) = ;((z+(g—Dy)" +(g—1)(z—y)").

Let A =T, + ulF,. We have C;, =1 4+ uPC. The words = a 4+ ub with a # 0 give a
Y™ in the enumerator polynomial and those with a = 0 give Wpc (X, Z). We get

n— n 1 n n
We, = (¢—1)¢"7'Y —{—;((X—I—(q—l)Z) + g —1)(X —2)").
Let A = F, xF,. Following [MWS],let J 4 8(a,b, c,d) denote the joint weight enumerator

of two codes A, B. Then, because C',, =1 x PC,

We, (X,Y,2) =J1.pc(X,Z,2,Y)

:]%((X +(p=1Z)" +(p—-D(Z+(p-1Y)")

# (X =2+ (o= 12 =)
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Let A = My(Fp). Let 2 = (21,..,2,) be an element of C,, with z; = (CCL

) S =
> d; =0. If a = ¢ =0, then the coordinates of & are never invertible, and the contribution
is Jpe.po(X,Z,Z,7). If a or ¢ is non zero, all the coordinates are non zero. We fix such
a couple (a,b). If we set det : C), — ), defined by det(z) = (ad; — bci)i<i<n, then the
kernel of det is of dimension n — 1 and the image is the code PC. The contribution of z
is Ywildet(e)) gn—wi(det(z)) e get when (a,b) varies (p*> — 1)p" ' Wpe(Z,Y). Finaly

p’—1
p2

W, (X.Y.2) =X + (5 = 1)2)" + L= (X = 2"

+( =" (Z + (- DY) +(p - D(Z -Y)").

We now assume that condition (*) holds for the algebra A. Let C be a self-dual code
of length n. Then the weight of any element of C' is a multiple of p ; it is also congruent
modulo p to t;(u), which proves that the weight enumerator polynomial W¢ is invariant
under the matrix

1 0 0
P={0 ¢ 0
0 0 1

where (, i1s a root of unity of order p. One can compute the group G generated by \/1|T|1W

and P and its Molien series, which leads to the structure of the corresponding algebra of
invariants Zg (for more about invariant theory, see [MWS], [S]). It turns out that it is
always a polynomial ring.

The results are summarized in the following proposition.

Theorem 4.4. Assume A is one of the algebras given in proposition 3.2, but not a field.
The weight enumerator polynomial W of a self-dual code C of length n is invariant under
the group G generated by M and P, which has the following structure and Molien series

D(A) -
(1) f A=TF, xFy orif A= My(F2), G is a dihedral group of order 6 ; its Molien
series is ®g(\) = (1—)()(1—1)\2)(1—)\3)' The algebra of invariants is the polynomial

ring generated by We,, We,, We,, or equivalently by
if A=TF x Ty
Ph=X+4+7
P,=2XZ —(Y*+ Z%)
Py =Z(X*-Y?)
if A = My(Fy)
P =X+37
P,=X7Z-Y?
Py =Z((X + Z)* —4Y?)
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(2) If A=TF, +ulF,, G is respectively a dihedral group of order 6 if ¢ = 2, a group of
order 18 isomorphic to (Z /37 x Z|3Z) x Z/2Z if ¢ = 3, a dihedral group of order 8
if ¢ = 4 ; in all cases, the Molien series is ®g(\) = (1_)\)(1_;\1))(1_)\21)). The algebra

of invariants is the polynomial ring generated by We,, We,, We,,, or equivalently

by
ifqg=2
h=X+7Z
Q,=XZ-Y?
Qi =Y*(X - 2)*
ifqg=3
R =X+27
Ry =3Y® — Z(X*+ XZ + Z?)
Re =Y3X — Z)°
ifg=4

S1=X+3Z
Sy =2Y? - Z(X + Z)
Sy=Y*X -2Z)

Proof. The Molien series, which is the generating series of the dimensions of the homoge-
neous components of Z¢g is computed using the formula ([MWS], [S])

1 1
2e(}) = 1G] Mze:G det(I — AM)’

The polynomials given in the theorem belong to Zg, are algebraically independent, and
have the right degree. Hence they generate it, and Zg is a ring of polynomials.

5. A bound for the minimum weight of self-dual codes

Theorem 4.4 allows us to introduce the notion of an extremal self-dual code, as in the
case of codes over Fy, F3, Fy. A self-dual code over A is said to be extremal if it has the
best possible weight, under the constraint that its weight enumerator polynomial should
belong to Zg. Let us look at the first case, A = F; x Fy. The others work the same way.
If C is a self-dual code of length n over A, then

—2a—3b b
We= Y XapPr7'Pppy.
2a+3b<n

If we set y' = Y?2/X and z = Z/X, and develop this expression, we get
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Z /\a,b(l—l—z)"_2a_3b(2 —y =2 (2(1 —y)) Z Yo’ *8

2a+3b<n a,B>0

The code contains words of weight 2d if and only if one of the 7,3 with o + 8 = d is non
zero. Each 74, 1s a linear combination of the A, j with a+b < a4 8 and b < 3. Moreover,
if a4+ b= a+ 3 =d, then the terms of weight d come from Ea—l—b:d,b<,@ Aap(22 —y')ez?
and the coefficient of Ag_g g is (—=1)%=5,

Hence the linear system given by the equations v90 =1, 74,3 =0forall 1 <a 4 <d
is triangular in the unknowns A, j arranged in the lexicographic order of (a + b,b) as long
as a+b < d= 2a+3b<n. We can go up to d = [n/3].

An extremal code is a code which enumerator polynomial is a solution of this system.
Its weight is at least 2([n/3] + 1) ; but its weight enumerator is not uniquely determined
in general. In order to prove that the weight of an extremal code is exactly equal to
2([n/3] + 1), we could go further and add the set of equations 74,4 = 0 for all @ + 3 =
n/3]+ 1, 8 < n—2[n/3] —2. Now the solution is unique and we would have to prove
that one of its v, with @ + 8 = [n/3] + 1 is non zero. But the classical expression
of such a coefficient using the Lagrange formula involves here series expansions with two

variables : such formulas exist in several variables but are not so nice unless the new

3
variables expansion are diagonal, which is not the case here. In order to avoid such heavy
computations, we prefer to go through the theta series of the related lattice L¢, which will

allow us to stay in the one-variable case. We closely follow the proof of [MOS2].

Theorem 5.1. Let C be a self-dual code of length n over A. Then
(1) FA=T; xFy or A= M3(Fy), w(C) <2([n/3] +1).
(2) If A=Ts; + ulFs, w(C) <3([n/6]+ 1)
(3) fA=TFy +ulFy, w(C) <2([n/4]+1)

Proof. We will make use of the results proved in [Q4] on [-modular lattices. Let A be
such a lattice, and let 65 be its theta series. We assume that 1 + [ divides 24, and set
b= 24/(1+ 1), Let A = (n(=)(12)" = a([Tyss (1 — ") TLp4(1 — ") and let 6 be
the theta series of a [-modular lattice of lowest dimension. We denote by k¢ the weight of
6, which is respectively 4if I =1,2ifl=2o0rl =1 mod 4, 1if Il =3 mod 4. Then ([Q4,
theorem 7]) 65 belongs to C[A, 6] (and an extremal lattice is a lattice having the highest
minimum with respect to this property).

Let C be a self-dual code of length n over A. We consider the lattice L¢ defined by lifting
C to the field K of proposition 3.4. The lattice L¢ i1s then [-modular, with the following
values for the parameters ky, ko, k, the last one being the weight of 1. Moreover, we set
k/ky = n/a, which is the number appearing in the integer part of the bound.
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l kq ko k a
Fy x Iy 7 3 1 n 3
M, (Fy) 3 6 1 2n 3
F3 + ulfs 3 6 1 n 6
Fy + ulfy 2 8 2 2n 4
We set
[k/ki]
o1, — Z auek/ko—ukl/kOAu _ Zarqr_
p=0 r>0

Each «a, is a linear combination of the a, with ¢ <r, and a, appears with the coefficient
1 because the term of lowest degree of A is ¢ and that of 6 is 1.

Let Ly = (pOx)". It is a sublattice of L¢, preimage of zero by the application s
defined in §3. Using the fact that w = [k, the minimal weight w(C') of C is the smallest
integer such that Le contains a vector @ not belonging to Ly of norm z.2 = 2w(C)/p . If
we set

9L0 = Zﬁrqr
r>0
and
O =6, + Y, "
r>w(C)/p

the highest weight is obtained if 61, is a solution of the linear system («a; = ; for all
0 <@ < [k/ki]). Since it is triangular with ones on the diagonal, this solution is unique,
denoted by

(/K]
o = Z a*uek/ko—ulﬁ/koAu = eLo + Z 7*rqr;
u=0 r>[k/k1]+1

Nnow

w(C) < p([k/kr] +1) & 7 (k41 7 0-

If ¢ = A/6*¥1/%0 we have
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[k/k1]
S atat = g, g Y
=0 r>[k/ki )41

which shows that, if we develop §~F/ko 01, in powers of ¢, and set g k/ko 0Ly = D450 b5’
then B

Wk /ka 41 = Ok k41
Lagrange formula gives
1 ds—l d .
= — 2 p—Fk/ko s
T sldge! (dq (6 0r,)(4/)")(g=0-

For any ideal & of K, we denote by 6y the theta series of the lattice (2, Tracex g(27)).
Hence fy = >, co q*%. Let P be a left ideal of K of norm p. It exists in every case since p is
either split or ramified in K, and it is principal. We can take the ideal generated by 1+: in
the quaternionic case, v/—3 and (1 ++/=7)/2 in the others. The lattice (3, Tracerg(27))
is isometric to (pO, %TraceK/@(:cy)), so 0, = 8. On the other hand, 6o, = 6 in
every case except for A = My(Fy) where (O, Traceg,g(27y)) is the orthogonal sum of
two hexagonal lattices and hence 6o, = 6%, see remark 3.7. We obtain :

1 ds—l d _n ays
be = S 2ot (g (Bor/00) 7 )(a/A)60,*) ) a=0)
1 et dfo by

= gdqs—_l(—”(eoxas_n_le%_l(e%

Since g/ A has strictly positive coeflicients, since for s = [n/a] + 1, as —n — 1 > 0, and

— 0y, —= AV ) o1,
da oK /D)) {g=03

since 6o, has positive coefficients, it is enough to show that 9%_1((9;;; dadqu — 0o, d;;;) has
positive coefficients up to the index [n/al.
In every case, the quotient Ok /B has representatives of reduced norm one, so 6o, =

Oy + (NP — 1)61 49, where NP =[Ok : B]. Now

_ dbo dfy B dfy+p dfy
or—1(p K _fy, —=) = (NB —1)0%1(8 — G —=
w  (Op dq oK dq) (NP — 1)y (Op dy 1+213dq)

= (NP1 Y (g — g T

yEI+P
zEP

— (N‘B _ 1) Z (yy _ xf)qu—i—y?—i—z1ﬂ+.-+zn_1m—l
yEL+P

fvxla“vfn—lqu

If we fix an integer r and put together the terms for which z+yy+z1774+..+ x4 1Tn_1 = 1,
the coefficient of ¢" 7! is a sum of expressions nyy—(2T+21T1+..+Tn-1Tn—_1) = (n+1)yy—r
which is at least n + 1 — r since y € 1 + 8 is non zero, and hence positive up to the index

n which is more than what is needed. O
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Remark 5.2. The same method should prove, as in the classical cases, that extremal
codes do not exist when the dimension goes beyond a certain value by showing that the
next coefficient is negative.

Examples 5.3. From the previous computations, we see that the codes (), are extremal
codes in the split cases for n = 2,3,4,5 ; if A = F5 + ulF5 for n = 3,6 ; if A = Fy 4 ulfy
for n = 2,4,6. The corresponding lattices L, have minimum 4 and are extremal in the
following level and dimension : in level [ = 2, dimension 16 and 24, these are the Barnes-
Wall lattice and the lattice named Ry4 in [B] ; in level 3, and dimension 12, this is the
Coxeter-Todd lattice, found once over Z[w] (it is the construction of [CS2]) and once over
Q3,00 (it is the construction of [M1]). We find two more extremal lattices of minimum 4
over Q3 o in dimension 16 and 20. In level 7, we find three such lattices in dimension 6,

8, 10.

6. Constructions of extremal self-dual codes and lattices

In this section, we construct extremal codes over A for small length in the four cases
(1)-(4). The problem of the complete classification of these codes of a given length can be
solved by hand in small length but is better handled using mass formulas and computer
programs. Mass formulas are settled in the case A = F, + ulF, in [G].

Next we study the lattices Lo defined over the maximal orders of the fields of proposition
3.4. For p = 2, the minimum of the lattice L¢ cannot be better than 4 (proposition 3.6).
If C is an extremal code of weight greater than 4, we try to construct a lattice of minimum
w(C) as a neighbour of Le. This is a standard technique in lattice theory going back to
Kneser which extends easily to lattices over number fields or quaternion fields (see [B],
[SH]). For p =3, L¢ is extremal up to minimum 6.

6.1. The case A =T, x I,

Let C be a code of length n over A. Let C; and C5 be the two binary codes which
are the projections of C' on the two components of Fy x Fy. Since C' is an A-module,
(1,0)C C C, and C = Cy x Cy. Moreover, it is easy to see from the definition of the scalar
product that C is self-dual if and only if Cy = Ci-. For example, the codes C,, = 1 x PC
provide extremal codes of weight 4 in length 3, 4, 5. We now look for codes of weight 6.

Lemma 6.1. Let C = (C; x Cf‘ be a self-dual code over A = Fy x Fy. Then
wt(C’l) Z 3
w(C) > 6 = { wt(C{") >3
wt(C; NCL) > 6

Proof. Let & be an element of Cy. Then (z,0) is an element of C of weight 2wt(z). If «
also belongs to Ci-, then (z,z) is an element of C' of weight wt(x). Hence the conditions of
the right hand side of the equivalence are necessary. Conversely, since the weight of (z,y)
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is greater than the Hamming weight of each component, and since C' is self-dual, the first
two conditions imply that w(C') > 4. As an element of weight 4 can only be of the type
(z,x) with wt(z) = 4, the last condition suffices to show that w(C) > 6. O

Theorem 6.2. There is no extremal code of length 6 and 7 over A = F, x Fy. There is
at least one of length 8 which is C = C} x C{- where C| is the binary code of generating
matrix

100 0 1 1 0 O
0100 01 10
0 01 00 011
0 00 1 1001

Its weight enumerator is

We(X,Y,Z) =X8 +8X3Y*Z +42%(2X*Y? + 5X2Y*) +8Z3(X® +4X3Y? 4 2XY*)
+2Z4(5X* +28X7Y 2 4+ 2Y*) +875(X® + 6XY?) +42°(3X? +4Y?)
+8X2" + 78

Proof. Let k be the dimension of €. Since Ci- has weight at least 3, the columns of a
matrix of C should be distinct and non zero, hence & = 3. If n = 6, the columns are all
the elements of F3\{0} except one ; we can extend C; to the orthogonal of the Hamming
code. If n = 7, it is equivalent to it. In both cases, this implies that C; N Ci- contains
words of weight 4.

The code of length 8 given in the proposition is the first of a series of quasicyclic codes
satisfying lemma 6.1. Let Ds, be the code of length 2n with generating matrix [I,|A]
where A is the circulant matrix of first line 1100...0. Then it is easy to see that D, is
equivalent to its dual, that its weight is three since any line of its matrix has weight 3 and
the sum of two lines has weight 4 or 6 ; moreover, Dy, N D3- is {0} if n is prime to 3 and
is of dimension 2 and weight 4n/3 if 3 divides n. O

Now we look at the lengths 9, 10, where the bound for the weight is 8.

Theorem 6.3. There is no extremal code of length 9 over A = Fy x F,. There is at least
one of length 10 which is C = Cy x C’f‘ where C is the binary double circulant code of
generating matrix

1000011100
0100001110
0 01 00 00111
0 001 010011
0 0001 1 1001

Its weight enumerator is
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Weo(X,Y,Z)=X"" + Y1 4+ 90X*Y*Z? + 30Z2*(X°® + 6X*'Y* + X?Y* +Y?)
+30Z°%(X* + 12X2Y? + Y*) +452%(X? + Y?) + 220,

Proof. Let C' be a code of length 9 such that Cy x C’f‘ has weight 8. Then both € and
Cit have Hamming weight at least 4. Hence we can assume that the dimension of C| is
4. If a generating matrix of C; has the shape [I4|M], then the columns of M should be of
weight 3 or 4 otherwise Ci- would contain a word of weight 3. Up to equivalence, the only
possibility is to take all of them, but Ci- still contains words of weight 3 since the all-one
column decomposes as the sum of a column of weight one and a column of weight 3.

The binary code given in the proposition is a [10, 5, 4] double circulant code (see [MWS,
table 16.7). It is equivalent to its dual and its intersection with its dual is the code 1. It
is easy to check that C; x Cj- has weight 8. O

The norm of a modular lattice of level 7 and dimension m is bounded by 2([rm/6] + 1).
While up to dimension 10 a lattice reaching this bound exists (see example 5.3), it is shown
in [SH] that there is no lattice of minimum 6 and dimension 12 by a complete exploration
of the genus. A lattice of level 7, dimension 20, minimum 8 connected to the Mathieu
group Mz is known from [A], [NP] ; we rediscover it here as a neighbour of the lattice
L¢ constructed from the code of proposition 6.3 (it is clearly the same lattice from the
generators given in [A]).

More precisely, let K = Q(v/=7). We set a« = (1 + /=T7)/2 and have Ox = Z[a].
This element generates one of the two ideals of K above 2 ; we set p = Oxa. Since
the all one word belongs to C, the vector e = (1,1,..,1) belongs to L. Let Ly, = {y €
L¢ st. h(y,z) € p} and let

2
A:Lg+9K%ﬂ

Theorem 6.4. The lattice A has minimum 8.

Proof. From proposition 3.6 and 6.3, the elements of L have norm at least 8 apart from
the norm 4 elements equal to (2,0,0,..,0) up to a permutation of the coordinates and a
sign. These elements don’t belong to L{ ; hence the minimum of Lg, is 8. The hermitian
dual of Lg is (Lg)* = Lo + Ok §e ; since Normpg(z + a/2) > 1/2 for all z € O, we
have z.x > 5 for all « € (LE)*. Let us show that this lattice doesn’t contain any vector
of norm 6. Such a vector would indeed have either eight coordinates of norm 1/2 and
two of norm 1, or nine coordinates of norm 1/2 and one of norm 3/2. But it is easy to
check that, if z belongs to Ok, then Normpg/g(z + «/2) = 1/2 if and only if z = 0, —a,
Normpg,g(z + a/2) = 1 if and only if z = —1,1 — « and that Normg,g(z + a/2) = 3/2 is
impossible. Since the code C has weight 4, a vector of Lo cannot have eight coordinates
congruent to 0 modulo p and two coordinates congruent to 1 modulo p.

Since A is O g-unimodular, it is even and contained in (L )*, and hence has minimum

8.
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O

No extremal level 7 lattice is known in dimensions 14 and 18 ; in dimension 16, such
a lattice exists and can be constructed from the real quadratic field Q(v/'2) ([S]), but no
hermitian construction is known for it. The lattice L constructed from the extremal code
of proposition 6.2 has no 2-neighbour of minimum 6, since any sublattice of the form Lg
contains vectors of norm 4.

6.2. The case A = My(F;)

Codes over My (F;) reduce to codes over Fy in the following way : Let us call w an

1

element of My(Fy) of characteristic polynomial 2% 4+ z + 1, for example w = (0 1) and

1
1= ((1) (1)) an element of order 2 satisfying iw = wi. Then Fyw] ~ Fy and My(Fy) =

Fy [w]+ F [w]i. Let us call ¢ the induced isomorphism of Fy left vector spaces ¢ : Fy xFy —
M, (Fy). The non invertible elements of M3 (Fz) correspond through ¢ to the pairs (a, b)
with @ and b non zero. Hence ¢ preserves the weight, if Fy x F,; is endowed with the
Hamming weight wt. We extend ¢ to n-tuples ; if C is a code of length n over M2 (Fs),
then ¢(C) is a code of length 2n over Fy.

Lemma 6.5. The map ¢ induces a bijection between the set of codes of length n over
My (Fy) and the set of couples (C1,0) where C is a code of length 2n over Fy and o is a
permutation of the 2n coordinates which is a product of n disjoint transpositions satisfying

o(Cy) = Cy. Self-dual codes over My(Fy) correspond to self-dual codes over Fy (for the
form Y x;yi ). Moreover we have w(C') = wt(¢(C)).

Proof. If a, b belong to Fy [w] then i(a + bi) = b+ @i. The left multiplication by 7 induces
the permutation ¢ of the 2n coordinates with the prescribed properties. The reciprocal is
evident.

From (a + bi)(a' 4+ 0'7) = aa’ + bo + (ab' 4 ba' )i, we see that C' C C+ implies #(C) C
#(C)t. Reciprocally, if ¢(C) = C}, since o(Cy) = Cy, we have both C,.C; = 0 and
01.0'(01) =0. O

Different choices of the permutation o associated to a code over F, may provide non
equivalent codes over My (Fy ), unless they are conjugate by an element of the permutation
group of the code.

Self-dual codes over Fy are classified up to length 16 in [CPS]. The smallest length where
a weight 6 code exists is length 14 (there is no extremal code of length 12, as well as there
is no extremal Z[w]-unimodular lattice in dimension 24 by Feit’s classification [F]), and it
is an extended quadratic residue code.

This family of codes provides self-dual codes over Mo (Fy). If [ is a prime, [ =5 mod 8
and Q41 1s the extended quadratic residue code over Fy, then it is preserved by the group
PSIy(F;) acting on the projective line identified with the [ + 1 coordinates, while the
elements of PGIy(F;) of non square determinant exchange Q;y; and Q41 ([AM]). Such
an element has order two if and only if its characteristic polynomial has the form T2 — a,
a ¢ (F;)?, and has no eigenvector. Hence it induces a permutation which is a product of
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(I 4+ 1)/2 disjoint transpositions. Moreover, two such elements of PGIly(F;) are conjugate
by an element of PSI3(F;). The first examples are the codes Qs, Q14, Q3¢ which provide
extremal codes of weight 4, 6, 12.

An extremal code over A of length 8 is provided by the Fy-code number 52 of [CPS] of
minimal weight 6 where the existence of the permutation o is noticed in [CPS, §E]. We
denote this Fy-code by Cjg. It is tempting to try the code Syg of [MOS1] in length 9, but
a computer search has shown the non existence of the permutation o.

Now we study the corresponding lattices over the quaternion field ramified at 3 and

oo over Q. We keep the notations of proposition 3.4 and fix the maximal order O =
Z[w]+ i1Z|w] where w = (=1 + j)/2. The three left ideals above 2 are p = Ox (1 + 1), pw,
pwz.
Theorem 6.6. The lattice L constructed from the quaternary code Qg is the Coxeter-
Todd lattice, while the lattices Lo constructed from the quaternary codes Qq4 and Cig
have neighbours of minimum 6 which are 9 g-unimodular lattices and hence extremal
lattices of level 3 and dimension respectively 28 and 32.

Proof. Since Lg, is a O g-unimodular lattice of minimum 4, it is the Coxeter-Todd lattice
(it is easy to see that the neighbouring graph over O has only two vertices. See [B] for
an analogous argument over the Hurwitz order).

The codes Q14 and Cg contain the all-one word which lifts to the vector
e=(1+1¢.,1+1) of L. We set

¢ ={y € Lc s.t. h(y,we) € p}.

The only elements of norm 4 of L¢ are, up to a permutation of the coordinates and the
multiplication by a unit of Ok, equal to y = (2,0,..,0). Since h(y,we) = (1 —4)w ¢ p, this

(143)w(141)
2

lattice has minimum 6. If a = , its hermitian dual is

(LY ={y e K" s.t. h(y, L&) € Ok} =Le + Okl(a,..,a).

The lattice Lo has two neighbours over O containing L which are both contained
in its dual. We look at the vectors of norm 4 of L¢ + Ox(a,..,«). If such a vector is
not in L¢, then, up to the multiplication by a unit, we can assume that it has the form
Z =y+(a,..,a) with y € Le. If Normg g is the norm of K, it is easy to see that, for
r € Ok, Normpg /(o — x) belongs to N/2, is equal to 1/2 if and only if 2 = w, —©, and is
equal to l if and only if t =0, —2, 14+ 2w, 1 — 1 + 2w, -2, —wi, —wt + 1 + 2w, —wi + 1 4+ 2w ;
we notice that all these elements are distinct modulo 2.

In the case of dimension 32, the rank over K is 8 and we have Z.Z > 8/2 = 4, with
equality if and only if the coordinates of y are —w or @. The image of y modulo 2 is then
a word of weight 8 of Cs with zeros at the coordinates of even index. Since this code
has weight 6, two words of weight 8 with the same support are proportional. Hence Z is
unique up to a unit and at least one of the neighbours of L has minimum 6.

In the case of dimension 7, Z.Z = 4 if and only if six of the seven coordinates of y is at
distance 1/2 from « and the remaining one is at distance 1. Again the image of y modulo
2 is a word of weight 6 or 8 which is uniquely determined by the code Q14. Modulo the
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units, we get 7 vectors of norm 4 which are congruent modulo LZ® and hence belong to
the same neighbour. O

6.3. The case A =F, + ulF,, ¢ =3,4

As described in [B], [G], a code C of length n over F, + ulF, is a triple (Cy, Cs, f) where
Cy and Cy are codes of length n over F, such that ¢, C Cy and f : C; — IF";/CQ s a
morphism satisfying C = {z + uylz € Cy andy € f(z)}. C; is the image of C' modulo
u and C5 is given by the elements of C' annihilated by u. Moreover, C' is self-dual if and
only if C; = Ci and f is symmetric (relatively to the form } z;y; over F,, where T = z
if =3 and T = 2% if ¢ = 4).

Since uCy C C, if wt is the Hamming weight over F, and p the characteristic of A, the
weight of C' satisfies

min(wt(Cq), pwt(Cs)) < w(C) < pwt(Cy)

and a suitable choice of f can make w(C') become strictly greater than wt(Cy), as in [B].
The case f = 0 is the code C' = C; + uC} ; for example the codes C), previously defined
are of this form.

Theorem 6.7.

Extremal self-dual codes exist over A = F3 + ulfs in length n = 3,4,5,6,8,9, 10,
11,13,14,16,17. The corresponding lattice L¢ is an extremal 3-modular lattice of di-
mension 2n. There is no extremal code in length 7 and 12.

Extremal self-dual codes exist over A = Fy + ulfy in length n < 12. The corresponding
lattice L¢ is an extremal 2-modular lattice of dimension 4n if n < 7 ; if 8 < n < 12,
there exists an extremal 2-modular lattice A deduced from L¢c by at most two successive
neighbourings.

Proof. We start with p = 3. Extremal codes have weight 6 in length 6 to 11. The code
C =1+ uPC provides such a code in length 6 and 9. In length 8, 10, 11, it is easy to find
a code Cy C Ci- of dimension 2 and weight 6 such that Cj- has weight 2. We can take

respectively
1 10
G = <0 2 1> '

1 0
2 1)°
0_11111111100
o011 1121211/}
Let us show that there is no extremal code in length 7. Since 7 is odd, the dimension
of (1 1s at least 2, and C; contains at least one word = of weight 3. Let us show that

C; contains necessarily another word of weight 3 disjoint from z. Let sup(z) be the
support of the word z and let p, be the projection on the complementary set of sup(z) :

— =
[NV
=)
o =
— =

—

Q

TN
O =
— =
— =
— =
N =
N =
N =
—_
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Pe(y) = (¥i)igsup(z)- We need a morphism f such that, for all y € f(z), x+uy has weight at
least 6, which means that p,(y) is non zero modulo p,(Ci-), if we go back to the definition
of w. Hence we need p,(Ci) # Fi. But, the dual of p,(Ci-) being the set of words of C;
disjoint from z, it is either {0} or Fyz' if C) contains a word z' of weight 3 disjoint from
z. Since the subcode F3x + F3z' has one zero coordinate, the dimension of C; is at least
3 ; up to equivalence (] is generated by

1110 0 0 O
0121 0 00
0 000111

But, for the four words of weight 3 generated by the first two lines, p,(Ci) is of codi-
mension 1, defined by z5 4+ 6 + x7 = 0, so, since f needs to be a morphism, any choice of
f will leave words of weight 3 in the s + ulf3 code.

We know from Feit’s classification [F] that there is no code of weight 9 over A in length
12, otherwise the lattice Lo would be Z[w]-unimodular of minimum 6 and dimension 24.
In [N1], G. Nebe has constructed a 3-modular lattice of minimum 6 in this dimension,
which turns to be a non integral Z[w]-lattice. We will construct here extremal codes of
weight 9 in length n = 13,14,16,17. The corresponding lattices L¢ are Z[w]-unimodular
and extremal of level 3 and minimum 6.

In order to guess the code C, we proceed has follows. If the Hamming weight enumer-

ators of C; and Cy = Cjt are : We, (X) = Ag + A3 X3 + As XS + .. + A3[n/3]X3["/3] and
We,(X) = Bo+B1 X +BX*+..4+ B, X", the linear conditions S = (By = 1, B; = By = 0)
lead through the MacWilliams identity ([MWS]) to three linear conditions on the As;.
Hence we can add to S the extra conditions Ag = 1, A3 = .. = A3([,/31—3) which has now
a unique solution W depending on the dimension k of Cy. For each length n we take
the lowest value of k for which the coefficients of W are positive and integral and try to
construct a code €y having such a weight enumerator. We find :
*n =13, k=4, W =1+ 26X°. We recognize the weight enumerator of the dual of the
Hamming code Hj of length (3> —1)/(3 — 1) = 13. Since its minimal weight is 9, the code
C = H?,J‘ + uHjs has weight 9. This construction was first communicated to me by H.-G.
Quebbemann.

*n=14 k=4 W=1+ 4X% 4+ 60X° 4+ 16X'%2. The unknown code C; has modulo +1
two words of weight 6. We will then need a non trivial morphism f. The same discussion
as in length 7 about p,(Ci ) shows that this implies that the two words of weight 6 have
disjoint supports. Then it is not difficult to show that, up to equivalence, the only code of
weight enumerator W with, modulo £1, two words of weight 6 with disjoint supports is :

1111 1100UO0O0O0O0O0O0
Oy = 0 000001 1T1T1T1T1FQG00O0
0011224001172 2T132 0
0112024902 210101

Reciprocally, since p,, (Ci-) is the parity-check code, the symmetric morphism defined by
f(1%0%) = 05107, £(0°160%) = 10*%, and zero on the last two lines, is such that (Cy,C, f)

is a code of weight 9 over A.
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*n =15 k=4, W =1+50X° +30X'2. Here the method doesn’t work since one can

show that W is not the weight enumerator of a code.

*n=16,k=4,W = 1+32X° +48X 2. We easily construct a code of weight enumerator
W using the tetracode of generating matrix

1110
T‘<0121>‘

C. - T T T 0
'Y\o T 21 T)
Since the minimal weight of C; is 9, the code C; 4+ uCj- has minimum weight 9.
*n=17 k=4, W =1+ 18X° + 58X1'? 4 4X!5. This code was obtained by shortening

an extended Reed-Solomon code of length 9 over Fg. Its weight enumerator is equal to W.

We can take

0

R
— N
=N O

C, =

SO =
—_ o = O
o~ o
— N = O
N~ = =
=]
oo N
L V=
— NN =
SN OO
oo =
SO N N
N DN ==

2
0
2 01 0

Since the minimal weight of C} is 9, the code C; 4+ uCj- has minimum weight 9.

Now we consider the case of ¢ = 4. An extremal code over Fy + ulFy has weight 4 up to
n="7 Ifniseven, C =14 uPC is convenient. For n = 5 and 7, we can take respectively

111 1 0
G = (0 1 w © 1> '

and the dual of the Hamming code with parameters [7,3,4] ; then C = C; 4+ uCi has
weight 4.

When the length n is greater than 7, we proceed as in characteristic 3 in order to guess
the weight enumerator W of C';. We find
*n=8 k=3 W=1+6X*+48X%+9X8 A code C of weight 6 with C; having a
weight enumerator equal to W and the related 2-modular (although not integral over the
Hurwitz order) extremal lattice are constructed in [B].

*n=9,k=3 W=1+36X°+27X% We can take

C, =

_ o =
o= =
— = O
& ©

1
0
w

€ € ©
o gl -
€ g o

1
w
0

The code C = C; + qu‘ has weight 6. The lattice Lo over the Hurwitz order has vectors
of norm 4 which are, up to a permutation of the coordinates and the multiplication by a
unit, equal to (2,0,0,..,0). Moreover, since the length is odd, any vector of L¢ has at least
one coordinate in P = O (1 +¢) the ideal above 2 in the Hurwitz quaternions. Hence any
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sublattice of L of index B contains vectors of norm 4. We construct a lattice A such that
Lo /LeNA is isomorphic to O /B x O /P, or equivalently as the preimage of a self-dual
code over D /40, connected to the sequence of codes Cy C C; C Cit C Cy- where Cj
is the subcode of €' generated by the first two lines. Since this lattice is the result of
a computer search, we simply give a set of generators. If we call ey, ey, €3, the lines of
C, given above, v/2A is generated modulo 4 by f; = e; + (0,0,0,0,0,0,u*w, u’®w, udw),
f2 = e2+(0,0,0,0,0,0,0, u*w, u? + uw), ues, v Ci- and u?Cy-. Tt is O x-unimodular and
has minimum 6 ; this last statement was verified using PARI. The lattice V2ANV2L¢ s
generated modulo 4 by ufi, ufs, ues, u?Ci- and u3Cj.

*n=10,k=3 W =1+15X°+45X®% + 3X!° We can take

11 1 1 1 1 1 1 1 1
Ci=10 1 w w 0 0 1 w w 0
01 o w1 w 0 0 0 w

The code C' = C 4+ uCi- has weight 6. Since the all-one word belongs to Cy, the lattice
L¢ contains e = (1,1,..,1). The sublattice L, has minimum 6 and its hermitian dual is
Lo 4+ P~ 'e. Since mingep, Normpy,g((1 4 i)/2 — x) = 1/2, any vector z belonging to
Lc + P 1e but not to L satisfies z.2 > 10/2 = 5 ; hence a neighbour of Lo containing
L is of minimum 6.

*n=11,k=3 W =1+3X°+45X®% + 15X!°. We can take

1 00
1 1
0 1

o & =
E = o

1 1
Ci=10 0
0 1

E o=

1 1 1
1 1 1 w
0 1 w 0
The code C' = C) + uCi- has weight 6. We proceed as in length 9 to construct A, using
the subcode generated by the two first lines e; and e; of C';. One can take the lattice A
generated by e; + (0,0,—2,0,—2,0,0,0,0,0,u?), e2 + (0,0,0,0,0,0,0,u>,0, —2, —2), ues,
u2C1J‘ and u3COJ‘.
*n=12 k=4 W =14+6X°4135X%490X!% +24X'2. If we denote by e5 a generating

matrix of the hexacode,

— oo
€ & =
€ — &
— & &

o = O

1
€g — 0
0

we can take for C}

i €g €g
¢i= <1...1 0...0)'

Since this code has, modulo units, two words of weight 6 with disjoint supports, the
morphism f defined by f(1°0°) = 10°10° and f(z|z) = 0 for all € eg is symmetric and
the code defined by (C, Ci-, f) has weight 8. We can construct a lattice A of minimum 8 of
the form LE + P~y which is 2-modular ; but a more elegant construction, communicated
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to me by H.-G. Quebbemann, is the following : take the Leech lattice L with its structure
over the Hurwitz order (see [Q1]), and take A = {(z,y) € L x L s.t. + =y mod BL}.
Then A is O g-unimodular of minimum 8. The explicit construction of the Leech lattice
over the Hurwitz order, which makes use of the eg code, shows that A and L¢ share a
sublattice of index §3%. O

Remarks 6.8. The method developped in the previous proof fails to give an extremal
code over F3 + ulFs in length 18 since one can show that any code (Cy,Cj, f) such that
the weight enumerator polynomial of C; equals the candidate W has weight at most 9.
We have constructed an extremal lattice of level 3 in all dimensions 26 < 2n < 34,
except the dimension 30 ; such a lattice exists and is constructed in [N2, theorem 9.1].
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