
Odd unimodular latti
es of minimum 4Christine Ba
ho
, Gabriele Nebe, Boris Venkov �De
ember 19, 2000Abstra
tWe prove the non existen
e of unimodular latti
es of minimum 4and dimension 34 and 35.1 Introdu
tionUnimodular latti
es have fo
us interest for a long time. One of the mostfas
inating properties of a unimodular latti
e � is that its theta series��(�) :=Xx2� q(x�x) (1)where � 2 h the upper half 
omplex plane and q := e�i� , satis�es an invari-an
e property under the transformation � ! �1=� . If the latti
e is moreovereven, then its theta series is invariant under the a
tion of the full modulargroup SL(2;Z), whi
h leads to the upper bound for the minimum of thelatti
e: min(�) � 2[n=24℄ + 2 (2)where n is the dimension of the latti
e. The �rst 
ase where this bound isnot known to be tight is n = 72.It is mu
h more diÆ
ult to obtain a good bound for the minimum of anodd unimodular latti
e, although these latti
es are expe
ted to be not sogood as the even ones, as is observed in small dimensions. The theta seriesof su
h a latti
e is only invariant under the 
ongruen
e subgroup �0(4) andthe bound derived from this invarian
e is min(�) � 2[n=8℄ + 2 whi
h is�The third author thanks the Laboratoire A2X, Universit�e Bordeaux I, and theHeidelberg-Mannheim resear
h group Arithmetik for �nan
ial support.1



not sharp. Only re
ently, E. Rains and N.J.A. Sloane have proved that (2)holds also for the odd latti
es, apart from the ex
eptional 
ase n = 23 ([6℄).Their proof makes use of the theta series of the shadow of the latti
e. J.H. Conway and N. J. A. Sloane have given in [3℄ the exa
t bound for theminimum of a unimodular latti
e of dimension n � 33. In parti
ular theyshow that there 
annot exist a minimum 4 latti
e of dimension 33. We shallextend here this result, proving theTheorem 1 There is no unimodular latti
e of minimum 4 and dimension34 or 35.Unimodular latti
es of minimum 4 are known in dimensions 36, 38, 39,40 (see [5℄); the only remaining 
ase is n = 37.Seeking for a 
ontradi
tion, we shall �rst 
ompute the theta series ofa putative latti
e � of minimum 4 and of its shadow S. Then we shall
ompute the number of ve
tors of the latti
e with pres
ribed s
alar produ
twith a �xed minimal ve
tor of S. This amounts to the 
omputation of 
ertain
oeÆ
ients of some Ja
obi theta series asso
iated to the latti
e and thereforewe shall make use of spheri
al theta series ��;P where P is a harmoni
polynomial.The paper is organized as follows: Se
tion 2 re
alls results on the shad-ows of unimodular latti
es. Se
tion 3 introdu
es a 40-dimensional evenunimodular latti
e asso
iated to �. Se
tion 4 introdu
es theta series withspheri
al 
oeÆ
ients and Se
tion 5 derives equations on the above mentionednumbers. Se
tion 6 ends the proof of Theorem 1.2 ShadowsLet � be a unimodular latti
e. The shadow S of � is S := (�0)� n �, where�0 denotes the even sublatti
e of �. If � is an odd latti
e, its theta serieshas the following expression��(�) = [n=8℄Xj=0 aj�8(q)j�3(q)n�8j (3)and the theta series of the shadow S is�S(�) = [n=8℄Xj=0 (�1)j16j aj�4(q2)8j�2(q)n�8j : (4)2



where q := e�i� , �8(q) = qQ1m=1(1� q2m�1)8(1� q4m)8, and �2, �3, �4 arethe usual Ja
obi theta series (see [2, Chap. 4, x 4℄).For the rest of the paper, � is a unimodular latti
e of minimum 4 anddimension n � 34. We denote by m the minimum of the shadow S of � andby sm the number of ve
tors s 2 S with s � s = m.If A is any set of ve
tors, Ar is the set of ve
tors a 2 A with a � a = r.We start with the 
omputation of the theta series. For n = 34; 35, the
ondition that the minimum of the latti
e is at least 4 determines the valuesof a1, a2, a3. If x 2 S, 2x 2 � so the minimum of S must be at least 2. This
ondition for
es a4 = 0. We �nd the following theta series:For n = 34, �� = 1 + 60180q4 + : : :�S = 204q5=2 + 758200q9=2 + : : : (5)For n = 35, �� = 1 + 51030q4 + : : :�S = 420q11=4 + 1704780q19=4 + : : : (6)We now �x a ve
tor s 2 Sm. If s0 is another minimal ve
tor in S, notequal to �s, thens � s0 � s � s mod 12Z be
ause s� s0 2 �;and js � s0j � m� 2 be
ause (s� s0)2 � 4:Hen
e s � s0 2 f�(m� [2m℄=2); : : : ;�(m� 5=2);�(m � 2)g:We get s � s0 2 f0;�12g for n = 34and s � s0 2 f�14 ;�34g for n = 35:Let x 2 �4. Sin
e (s � x)2 � m and s � x is an integer, s � x 2 f0;�1;�2g.We de�ne i = 0; 1; 2; pi(s) := 
ardfx 2 � j x2 = 4; s � x = �igi = m� [2m℄=2; : : : ;m� 2; mi(s) := 
ardfs0 2 S j s02 = m; s � s0 = �ig(7)3



Our �rst task is to 
ompute these numbers for n = 34; 35. It will turnout that they do not depend on the 
hoi
e of s. In order to determine them,we need �ve equations; two trivial equations 
ome from the knowledge of��: X pi(s) = 
ard(�4)Xmi(s) = 
ard(Sm)� 2 (8)Some more equations will 
ome from theta series with spheri
al 
oef-�
ients. In order to avoid the use of half integral weight modular formswe do not 
onsider the ones asso
iated dire
tly to � but we introdu
e a40-dimensional even unimodular latti
e 
onstru
ted from �.3 A 
ertain 40-dimensional even unimodular lat-ti
e.An even unimodular latti
e � is obtained by gluing the latti
e �0 (� isassumed to be odd, unimodular, of minimum 4 and dimension n < 39) withthe root latti
e D40�n (if n = 39 one should take instead p2A1). Thenthe dis
riminant groups ��0=�0 �= D�40�n=D40�n are isomorphi
 to Z=4Z ifn is odd and to Z=2Z� Z=2Z if n is even. In order to write down thisisomorphism expli
itely, we again denote by s and x some �xed minimalve
tors of respe
tively S and �n�0. Let � : (�0)�=�0 ! (D40�n)�=D40�n bethe isomorphism de�ned by �(s) = (1=2; : : : ; 1=2) and �(x) = (1; 0; : : : ; 0).Then, for all u 2 (�0)�=�0, �(u) � �(u) � �u � u mod 2Z (be
ause 2s is a
hara
teristi
 ve
tor for �, we have 4s � s � n mod 8). Let� := f(u; �(u)) 2 (�0)� ? (D40�n)�g: (9)Clearly, the latti
e � is an even unimodular latti
e of dimension 40. Its rootlatti
e is D40�n. Its ve
tors of norm 4 are of three types: the ones fromD40�n, the ones from �0, and the pairs (s0; t) with s0 2 S of minimal normand t 2 �(s0), of minimal norm 10 � n=4. The number of su
h ve
tors t is239�n.4 Theta series with spheri
al 
oeÆ
ients.In this se
tion we re
all some basi
 fa
ts about harmoni
 polynomials andtheta series with spheri
al 
oeÆ
ients asso
iated to even unimodular latti
es.4



We refer to [2, Chapter 18℄, [4℄, [7℄, [8℄. The harmoni
 polynomials are thepolynomials in R[x1 ; : : : ; xn℄ whi
h are homogeneous and satisfy LP = 0where L = P �2�x2i is the Lapla
e operator. It is a 
lassi
al result that theformula Pk;�(x) = Gk((x � �); ((x � x)(� � �))1=2) (10)where Gk(t; 1) is the Gegenbauer polynomial of degree k and parametern=2� 1 de�nes a harmoni
 polynomial. For exampleP2;�(x) = (x � �)2 � 1n(� � �)(x � x): (11)We shall also need for our 
omputations the polynomial P6;�(x) relativeto the dimension 40:P6;�(x) =(x � �)6 � 516(x � �)4(� � �)(x � x)+ 15736(x � �)2(� � �)2(x � x)2 � 532384 (� � �)3(x � x)3: (12)A 
lassi
al result due to He
ke asserts that, if P is a harmoni
 polynomialof degree k and if � is an even unimodular latti
e, then��;P (�) :=Xx2�P (x)q(x�x) (13)de�nes a modular form for the full modular group SL(2;Z) of weight n=2+k.The algebra of modular forms for the full modular group is a polynomialalgebra in the elements E4, E6 of respe
tive weight 4 and 6:E4(�) = 1 + 240 1Xr=1 �3(r)q2r = 1 + 240q2 + 240 � 9q4 + : : :E6(�) = 1� 504 1Xr=1 �5(r)q2r = 1� 504q2 � 504 � 33q4 + : : : (14)The 
usp form of lowest weight is the weight 12 form:�12 = (E34 �E26)=1728 = q2 1Yr=1(1� qr)24: (15)
5



5 Equations.We derive in this se
tion some equations satis�ed by the numbers pi(s),mi(s). We take the notations of Se
tion 2 and 
onsider the latti
e � 
on-stru
ted in Se
tion 3. We introdu
e the additional notations:l4 is the number of norm 4 ve
tors in �.d2, d4 are the number of norm 2, respe
tively norm 4 ve
tors in D40�n.Let � belong to the ve
tor spa
e spa
ed by �0, and let fk := ��;Pk;� bede�ned in the previous se
tion. For all x 2 �2, x �� = 0 so the 
oeÆ
ient ofq2 in fk is Px2�2 Pk;�(x) = Gk(0; 21=2(� � �)1=2)d2.Taking a

ount of the three types of norm 4 ve
tors in �, the 
oeÆ
ientof q4 isXx2�4 Pk;�(x) =Gk(0; 2(� � �)1=2)d4 + Xx2�4Gk((x � �); 2(� � �)1=2)+ 239�n Xs02SmGk((s0 � �); 2(� � �)1=2) (16)If k = 2, the weight of fk is 20+2 = 22 so fk is a multiple of �12E4E6 =q2 � 288q4 + : : : ; the multipli
ity fa
tor is exa
tly Gk(0; 21=2(� � �)1=2)d2 =�2(���)40 d2. We now take � = s a minimal ve
tor in S; the equality ofthe 
oeÆ
ients of q4 leads, taking a

ount of the expression for G2, to theequation:Xx2�4((x � s)2 � 4m=40) + 239�n Xs02Sm((s0 � s)2 � 4m=40) =576m40 d2 + 4m40 d4 (17)whi
h leads to the following equation for the pi(s), mi(s):Xi i2pi(s)+239�nXi i2mi(s) =72m5 d2 + m10d4 � 240�nm2 + m10(l4 + 239�nsm): (18)If k = 4, we do not get a similar equation be
ause the weight is 24and the 
orresponding spa
e of 
usp forms is two-dimensional spanned by�12E26 and �212. If k = 6 the situation is better be
ause the only 
usp formof weight 26 is up to a multipli
ative fa
tor �12E24E6 = q2� 48q4+ : : : . We6




ompute this fa
tor with the 
oeÆ
ient of q2. We get:Xx2�4G6((x � �); 2(� � �)1=2) + 239�n Xs02SmG6((s0 � �); 2(� � �)1=2) =� 532384(�23 � 48d2 � 43d4)(� � �)3 (19)This equation leads to an equation in the pi(s), mi(s) when � = s belongsto Sm:Xi G6(i; 2m1=2)pi(s) + 239�nXi G6(i; 2m1=2)mi(s) =� 532384(�23:48:d2 � 43:d4)m3 � 240�nG6(m; 2m1=2):(20)The equation (19) holds for all � in the n-dimensional spa
e spanned by�, so we 
an also view it as a polynomial identity in the 
oordinates of �and apply the Lapla
e operator 
orresponding to this spa
e. This leads toa degree 4 identity.Let Ln denote the Lapla
e operator in the n variables of �. We use thefollowing identity, valid for all y 2 R� ([7℄):Ln((� � �)l(� � y)k) =2l(2l + 2k + n� 2)(� � �)l�1(� � y)k+ k(k � 1)(y � y)(� � �)l(� � y)k�2: (21)and obtain an expression for Ln(G6((y � �); 2(� � �)1=2)):Ln(G6((y � �); 2(� � �)1=2)) =(30(y � y)� 5=2(8 + n))(y � �)4 +(�15(y � y) + 30=23(6 + n))(� � �)(y � �)2 +(15=23(y � y)� 15=253(4 + n))(� � �)2: (22)Then, we again take � = s and �nd a �fth equation for the pi(s), mi(s).6 Proof of Theorem 16.1 Dimension 34.The system of �ve equations found from Se
tion 5 on the unknowns p0(s),p1(s), p2(s), m0(s), m1=2(s) has a unique solution p0(s) = 42780, p1(s) =17300, p2(s) = 100, m0(s) = 102, m1=2(s) = 100.7



The quotient (�0)�=�0 is isomorphi
 to Z=2Z� Z=2Z. The three sub-groups of order 2 de�ne three latti
es, one is � and the two others are dualone of the other; we denote them L and L�. Clearly two short ve
torss; s0 2 Sm are both in L or L� if and only if s � s0 = �1=2.Let s 2 Sm be a �xed ve
tor. LetX := fsg [ fs0; s0 2 Sm j s � s0 = 1=2g: (23)From the 
omputation of m1=2(s) we know that the 
ardinality of X is51. Let G be the Gram matrix of this set, where s is 
hosen to be the �rstof the ve
tors in X.Lemma 1 G2 = 152 G.Proof. We 
ompute G2: G2[s0; s00℄ =Px2X(s0 �x)(x�s00). The ve
tors of Smare either in �X or are perpendi
ular to X, so: G2[s0; s00℄ = 1=2Px2Sm(s0 �x)(x � s00).From the values found for m0(s) and m1=2(s), one 
an 
he
k that theset Sm is a 2-design be
ausePs0;s002Sm(s0 � s00)2 = m2s2m=n (see [7, Theorem8.1℄). Hen
e, for all �, Px2Sm(� � x)2 = msmn (� � �) = 15(� � �). Applied to�+�, this identity leads toPx2Sm(� �x)(x ��) = 15(� ��) for all �, �, and,when � = s0, � = s00, to the statement G2 = 152 G.We know 
onsider the graph with verti
es X n fsg and edges the pairs(s0; s00) with (s0 � s00) = �1=2. This graph is regular with valen
y 22 as 
anbe 
he
ked from the 
omputation of the 
oeÆ
ient (s; s0) in the identityG2 = 152 G. If A is the in
iden
e matrix of this graph and if A0 is the matrixobtained from A by adding a �rst line of zeros and a �rst 
olumn of zeros,we have G = 2I51 + 1=2J51 �A0 (24)where Ip denotes the identity matrix of size p, and Jp denotes the matrix withall its 
oeÆ
ients equal to 1 of size p. Repla
ing in the equation G2 = 152 Gand taking a

ount of the identity AJ50 = J50A = 22J50, we getA2 � 72A� 11J50 � 11I50 = 0: (25)Of 
ourse, this last identity is not possible for a matrix A with entriesequal to 0 or 1 so we 
an 
on
lude of the non existen
e of the latti
e �.8



6.2 Dimension 35.The system of �ve equations found from Se
tion 5 on the unknowns p0(s),p1(s), p2(s), m1=4(s), m3=4(s) has a unique solution p0(s) = 35289, p1(s) =15642, p2(s) = 99, m1=4(s) = 319, m3=4(s) = 99. But these numbers shouldbe even so the latti
e � does not exist.Referen
es[1℄ Ba
ho
, C. and Venkov, B. Modular forms, latti
es and spheri
al de-signs, in \R�eseaux eu
lidiens, \designs" sph�eriques et groupes, J. Mar-tinet, �ed., L'Enseignement Math�ematique, Monographie nÆ 37", Gen�eve(2000), to appear.[2℄ Conway, J. and Sloane, N.J.A. Sphere pa
kings, Latti
es and Groups.Springer-Verlag, 1988.[3℄ Conway, J. and Sloane, N.J.A. A note on unimodular latti
es, J. Num-ber Theory 72 (1998) nÆ 2, 357-362.[4℄ Ebeling, W. Latti
es and Codes. Vieweg Edition, 1994.[5℄ Nebe, G. and Sloane, N. J. A. A 
atalogue of latti
eshttp://www.resear
h.att.
om/�njas/latti
es[6℄ Rains, E. M. and Sloane, N. J. A. The shadow theory of modular andunimodular latti
es, J. Number Theory 73 (1998) nÆ 2, 359-389.[7℄ Venkov, B. R�eseaux et designs sph�eriques, notes taken by J. Martinetof le
tures by B. Venkov (1996-1997, Bordeaux), in R�eseaux eu
lidi-ens, \designs" sph�eriques et groupes, L'Enseignement Math�ematique,Monographie nÆ 37 (J. Martinet, �editeur), to appear.[8℄ Venkov, B. Even unimodular extremal latti
es, Pro
. Steklov Inst.Math. (165) (1984), 47-52.
9


