
Odd unimodular latties of minimum 4Christine Baho, Gabriele Nebe, Boris Venkov �Deember 19, 2000AbstratWe prove the non existene of unimodular latties of minimum 4and dimension 34 and 35.1 IntrodutionUnimodular latties have fous interest for a long time. One of the mostfasinating properties of a unimodular lattie � is that its theta series��(�) :=Xx2� q(x�x) (1)where � 2 h the upper half omplex plane and q := e�i� , satis�es an invari-ane property under the transformation � ! �1=� . If the lattie is moreovereven, then its theta series is invariant under the ation of the full modulargroup SL(2;Z), whih leads to the upper bound for the minimum of thelattie: min(�) � 2[n=24℄ + 2 (2)where n is the dimension of the lattie. The �rst ase where this bound isnot known to be tight is n = 72.It is muh more diÆult to obtain a good bound for the minimum of anodd unimodular lattie, although these latties are expeted to be not sogood as the even ones, as is observed in small dimensions. The theta seriesof suh a lattie is only invariant under the ongruene subgroup �0(4) andthe bound derived from this invariane is min(�) � 2[n=8℄ + 2 whih is�The third author thanks the Laboratoire A2X, Universit�e Bordeaux I, and theHeidelberg-Mannheim researh group Arithmetik for �nanial support.1



not sharp. Only reently, E. Rains and N.J.A. Sloane have proved that (2)holds also for the odd latties, apart from the exeptional ase n = 23 ([6℄).Their proof makes use of the theta series of the shadow of the lattie. J.H. Conway and N. J. A. Sloane have given in [3℄ the exat bound for theminimum of a unimodular lattie of dimension n � 33. In partiular theyshow that there annot exist a minimum 4 lattie of dimension 33. We shallextend here this result, proving theTheorem 1 There is no unimodular lattie of minimum 4 and dimension34 or 35.Unimodular latties of minimum 4 are known in dimensions 36, 38, 39,40 (see [5℄); the only remaining ase is n = 37.Seeking for a ontradition, we shall �rst ompute the theta series ofa putative lattie � of minimum 4 and of its shadow S. Then we shallompute the number of vetors of the lattie with presribed salar produtwith a �xed minimal vetor of S. This amounts to the omputation of ertainoeÆients of some Jaobi theta series assoiated to the lattie and thereforewe shall make use of spherial theta series ��;P where P is a harmonipolynomial.The paper is organized as follows: Setion 2 realls results on the shad-ows of unimodular latties. Setion 3 introdues a 40-dimensional evenunimodular lattie assoiated to �. Setion 4 introdues theta series withspherial oeÆients and Setion 5 derives equations on the above mentionednumbers. Setion 6 ends the proof of Theorem 1.2 ShadowsLet � be a unimodular lattie. The shadow S of � is S := (�0)� n �, where�0 denotes the even sublattie of �. If � is an odd lattie, its theta serieshas the following expression��(�) = [n=8℄Xj=0 aj�8(q)j�3(q)n�8j (3)and the theta series of the shadow S is�S(�) = [n=8℄Xj=0 (�1)j16j aj�4(q2)8j�2(q)n�8j : (4)2



where q := e�i� , �8(q) = qQ1m=1(1� q2m�1)8(1� q4m)8, and �2, �3, �4 arethe usual Jaobi theta series (see [2, Chap. 4, x 4℄).For the rest of the paper, � is a unimodular lattie of minimum 4 anddimension n � 34. We denote by m the minimum of the shadow S of � andby sm the number of vetors s 2 S with s � s = m.If A is any set of vetors, Ar is the set of vetors a 2 A with a � a = r.We start with the omputation of the theta series. For n = 34; 35, theondition that the minimum of the lattie is at least 4 determines the valuesof a1, a2, a3. If x 2 S, 2x 2 � so the minimum of S must be at least 2. Thisondition fores a4 = 0. We �nd the following theta series:For n = 34, �� = 1 + 60180q4 + : : :�S = 204q5=2 + 758200q9=2 + : : : (5)For n = 35, �� = 1 + 51030q4 + : : :�S = 420q11=4 + 1704780q19=4 + : : : (6)We now �x a vetor s 2 Sm. If s0 is another minimal vetor in S, notequal to �s, thens � s0 � s � s mod 12Z beause s� s0 2 �;and js � s0j � m� 2 beause (s� s0)2 � 4:Hene s � s0 2 f�(m� [2m℄=2); : : : ;�(m� 5=2);�(m � 2)g:We get s � s0 2 f0;�12g for n = 34and s � s0 2 f�14 ;�34g for n = 35:Let x 2 �4. Sine (s � x)2 � m and s � x is an integer, s � x 2 f0;�1;�2g.We de�ne i = 0; 1; 2; pi(s) := ardfx 2 � j x2 = 4; s � x = �igi = m� [2m℄=2; : : : ;m� 2; mi(s) := ardfs0 2 S j s02 = m; s � s0 = �ig(7)3



Our �rst task is to ompute these numbers for n = 34; 35. It will turnout that they do not depend on the hoie of s. In order to determine them,we need �ve equations; two trivial equations ome from the knowledge of��: X pi(s) = ard(�4)Xmi(s) = ard(Sm)� 2 (8)Some more equations will ome from theta series with spherial oef-�ients. In order to avoid the use of half integral weight modular formswe do not onsider the ones assoiated diretly to � but we introdue a40-dimensional even unimodular lattie onstruted from �.3 A ertain 40-dimensional even unimodular lat-tie.An even unimodular lattie � is obtained by gluing the lattie �0 (� isassumed to be odd, unimodular, of minimum 4 and dimension n < 39) withthe root lattie D40�n (if n = 39 one should take instead p2A1). Thenthe disriminant groups ��0=�0 �= D�40�n=D40�n are isomorphi to Z=4Z ifn is odd and to Z=2Z� Z=2Z if n is even. In order to write down thisisomorphism expliitely, we again denote by s and x some �xed minimalvetors of respetively S and �n�0. Let � : (�0)�=�0 ! (D40�n)�=D40�n bethe isomorphism de�ned by �(s) = (1=2; : : : ; 1=2) and �(x) = (1; 0; : : : ; 0).Then, for all u 2 (�0)�=�0, �(u) � �(u) � �u � u mod 2Z (beause 2s is aharateristi vetor for �, we have 4s � s � n mod 8). Let� := f(u; �(u)) 2 (�0)� ? (D40�n)�g: (9)Clearly, the lattie � is an even unimodular lattie of dimension 40. Its rootlattie is D40�n. Its vetors of norm 4 are of three types: the ones fromD40�n, the ones from �0, and the pairs (s0; t) with s0 2 S of minimal normand t 2 �(s0), of minimal norm 10 � n=4. The number of suh vetors t is239�n.4 Theta series with spherial oeÆients.In this setion we reall some basi fats about harmoni polynomials andtheta series with spherial oeÆients assoiated to even unimodular latties.4



We refer to [2, Chapter 18℄, [4℄, [7℄, [8℄. The harmoni polynomials are thepolynomials in R[x1 ; : : : ; xn℄ whih are homogeneous and satisfy LP = 0where L = P �2�x2i is the Laplae operator. It is a lassial result that theformula Pk;�(x) = Gk((x � �); ((x � x)(� � �))1=2) (10)where Gk(t; 1) is the Gegenbauer polynomial of degree k and parametern=2� 1 de�nes a harmoni polynomial. For exampleP2;�(x) = (x � �)2 � 1n(� � �)(x � x): (11)We shall also need for our omputations the polynomial P6;�(x) relativeto the dimension 40:P6;�(x) =(x � �)6 � 516(x � �)4(� � �)(x � x)+ 15736(x � �)2(� � �)2(x � x)2 � 532384 (� � �)3(x � x)3: (12)A lassial result due to Heke asserts that, if P is a harmoni polynomialof degree k and if � is an even unimodular lattie, then��;P (�) :=Xx2�P (x)q(x�x) (13)de�nes a modular form for the full modular group SL(2;Z) of weight n=2+k.The algebra of modular forms for the full modular group is a polynomialalgebra in the elements E4, E6 of respetive weight 4 and 6:E4(�) = 1 + 240 1Xr=1 �3(r)q2r = 1 + 240q2 + 240 � 9q4 + : : :E6(�) = 1� 504 1Xr=1 �5(r)q2r = 1� 504q2 � 504 � 33q4 + : : : (14)The usp form of lowest weight is the weight 12 form:�12 = (E34 �E26)=1728 = q2 1Yr=1(1� qr)24: (15)
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5 Equations.We derive in this setion some equations satis�ed by the numbers pi(s),mi(s). We take the notations of Setion 2 and onsider the lattie � on-struted in Setion 3. We introdue the additional notations:l4 is the number of norm 4 vetors in �.d2, d4 are the number of norm 2, respetively norm 4 vetors in D40�n.Let � belong to the vetor spae spaed by �0, and let fk := ��;Pk;� bede�ned in the previous setion. For all x 2 �2, x �� = 0 so the oeÆient ofq2 in fk is Px2�2 Pk;�(x) = Gk(0; 21=2(� � �)1=2)d2.Taking aount of the three types of norm 4 vetors in �, the oeÆientof q4 isXx2�4 Pk;�(x) =Gk(0; 2(� � �)1=2)d4 + Xx2�4Gk((x � �); 2(� � �)1=2)+ 239�n Xs02SmGk((s0 � �); 2(� � �)1=2) (16)If k = 2, the weight of fk is 20+2 = 22 so fk is a multiple of �12E4E6 =q2 � 288q4 + : : : ; the multipliity fator is exatly Gk(0; 21=2(� � �)1=2)d2 =�2(���)40 d2. We now take � = s a minimal vetor in S; the equality ofthe oeÆients of q4 leads, taking aount of the expression for G2, to theequation:Xx2�4((x � s)2 � 4m=40) + 239�n Xs02Sm((s0 � s)2 � 4m=40) =576m40 d2 + 4m40 d4 (17)whih leads to the following equation for the pi(s), mi(s):Xi i2pi(s)+239�nXi i2mi(s) =72m5 d2 + m10d4 � 240�nm2 + m10(l4 + 239�nsm): (18)If k = 4, we do not get a similar equation beause the weight is 24and the orresponding spae of usp forms is two-dimensional spanned by�12E26 and �212. If k = 6 the situation is better beause the only usp formof weight 26 is up to a multipliative fator �12E24E6 = q2� 48q4+ : : : . We6



ompute this fator with the oeÆient of q2. We get:Xx2�4G6((x � �); 2(� � �)1=2) + 239�n Xs02SmG6((s0 � �); 2(� � �)1=2) =� 532384(�23 � 48d2 � 43d4)(� � �)3 (19)This equation leads to an equation in the pi(s), mi(s) when � = s belongsto Sm:Xi G6(i; 2m1=2)pi(s) + 239�nXi G6(i; 2m1=2)mi(s) =� 532384(�23:48:d2 � 43:d4)m3 � 240�nG6(m; 2m1=2):(20)The equation (19) holds for all � in the n-dimensional spae spanned by�, so we an also view it as a polynomial identity in the oordinates of �and apply the Laplae operator orresponding to this spae. This leads toa degree 4 identity.Let Ln denote the Laplae operator in the n variables of �. We use thefollowing identity, valid for all y 2 R� ([7℄):Ln((� � �)l(� � y)k) =2l(2l + 2k + n� 2)(� � �)l�1(� � y)k+ k(k � 1)(y � y)(� � �)l(� � y)k�2: (21)and obtain an expression for Ln(G6((y � �); 2(� � �)1=2)):Ln(G6((y � �); 2(� � �)1=2)) =(30(y � y)� 5=2(8 + n))(y � �)4 +(�15(y � y) + 30=23(6 + n))(� � �)(y � �)2 +(15=23(y � y)� 15=253(4 + n))(� � �)2: (22)Then, we again take � = s and �nd a �fth equation for the pi(s), mi(s).6 Proof of Theorem 16.1 Dimension 34.The system of �ve equations found from Setion 5 on the unknowns p0(s),p1(s), p2(s), m0(s), m1=2(s) has a unique solution p0(s) = 42780, p1(s) =17300, p2(s) = 100, m0(s) = 102, m1=2(s) = 100.7



The quotient (�0)�=�0 is isomorphi to Z=2Z� Z=2Z. The three sub-groups of order 2 de�ne three latties, one is � and the two others are dualone of the other; we denote them L and L�. Clearly two short vetorss; s0 2 Sm are both in L or L� if and only if s � s0 = �1=2.Let s 2 Sm be a �xed vetor. LetX := fsg [ fs0; s0 2 Sm j s � s0 = 1=2g: (23)From the omputation of m1=2(s) we know that the ardinality of X is51. Let G be the Gram matrix of this set, where s is hosen to be the �rstof the vetors in X.Lemma 1 G2 = 152 G.Proof. We ompute G2: G2[s0; s00℄ =Px2X(s0 �x)(x�s00). The vetors of Smare either in �X or are perpendiular to X, so: G2[s0; s00℄ = 1=2Px2Sm(s0 �x)(x � s00).From the values found for m0(s) and m1=2(s), one an hek that theset Sm is a 2-design beausePs0;s002Sm(s0 � s00)2 = m2s2m=n (see [7, Theorem8.1℄). Hene, for all �, Px2Sm(� � x)2 = msmn (� � �) = 15(� � �). Applied to�+�, this identity leads toPx2Sm(� �x)(x ��) = 15(� ��) for all �, �, and,when � = s0, � = s00, to the statement G2 = 152 G.We know onsider the graph with verties X n fsg and edges the pairs(s0; s00) with (s0 � s00) = �1=2. This graph is regular with valeny 22 as anbe heked from the omputation of the oeÆient (s; s0) in the identityG2 = 152 G. If A is the inidene matrix of this graph and if A0 is the matrixobtained from A by adding a �rst line of zeros and a �rst olumn of zeros,we have G = 2I51 + 1=2J51 �A0 (24)where Ip denotes the identity matrix of size p, and Jp denotes the matrix withall its oeÆients equal to 1 of size p. Replaing in the equation G2 = 152 Gand taking aount of the identity AJ50 = J50A = 22J50, we getA2 � 72A� 11J50 � 11I50 = 0: (25)Of ourse, this last identity is not possible for a matrix A with entriesequal to 0 or 1 so we an onlude of the non existene of the lattie �.8



6.2 Dimension 35.The system of �ve equations found from Setion 5 on the unknowns p0(s),p1(s), p2(s), m1=4(s), m3=4(s) has a unique solution p0(s) = 35289, p1(s) =15642, p2(s) = 99, m1=4(s) = 319, m3=4(s) = 99. But these numbers shouldbe even so the lattie � does not exist.Referenes[1℄ Baho, C. and Venkov, B. Modular forms, latties and spherial de-signs, in \R�eseaux eulidiens, \designs" sph�eriques et groupes, J. Mar-tinet, �ed., L'Enseignement Math�ematique, Monographie nÆ 37", Gen�eve(2000), to appear.[2℄ Conway, J. and Sloane, N.J.A. Sphere pakings, Latties and Groups.Springer-Verlag, 1988.[3℄ Conway, J. and Sloane, N.J.A. A note on unimodular latties, J. Num-ber Theory 72 (1998) nÆ 2, 357-362.[4℄ Ebeling, W. Latties and Codes. Vieweg Edition, 1994.[5℄ Nebe, G. and Sloane, N. J. A. A atalogue of lattieshttp://www.researh.att.om/�njas/latties[6℄ Rains, E. M. and Sloane, N. J. A. The shadow theory of modular andunimodular latties, J. Number Theory 73 (1998) nÆ 2, 359-389.[7℄ Venkov, B. R�eseaux et designs sph�eriques, notes taken by J. Martinetof letures by B. Venkov (1996-1997, Bordeaux), in R�eseaux eulidi-ens, \designs" sph�eriques et groupes, L'Enseignement Math�ematique,Monographie nÆ 37 (J. Martinet, �editeur), to appear.[8℄ Venkov, B. Even unimodular extremal latties, Pro. Steklov Inst.Math. (165) (1984), 47-52.
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