
DESIGNS AND SELF-DUAL CODES WITH LONGSHADOWSCHRISTINE BACHOC AND PHILIPPE GABORITAbstra
t. In this paper we introdu
e the notion of s-extremal 
odesfor self-dual binary 
odes and we relate this notion to the existen
e of1-designs or 2-designs in these 
odes. We extend the 
lassi�
ation of
odes with long shadows of [12℄ to 
odes with minimum distan
e 6, forwhi
h we give partial 
lassi�
ation.1. Introdu
tionOne important parameter of binary 
odes is their minimum weight d.In the 
ase of singly-even self-dual 
odes, only unsatisfa
tory bounds wereknown until the notion of the shadow was introdu
ed by Conway and Sloanein [9℄. Let C be a singly-even self-dual 
ode and C0 its doubly-even sub
ode,then the shadow S of C is de�ned as S := C0? nC. One uses the additionalinformation 
ontained in the weight enumerator of S, whi
h is obtained bya linear transformation of the one of C. The best a
hievement of this ideais the result by Rains [25℄ extending the well known bound of Type II 
odesto Type I 
odes.On the other hand, Elkies has studied in [12℄ the minimum weight (re-spe
tively the minimum norm) of the shadow of self-dual 
odes (respe
tivelyof unimodular latti
es), espe
ially in the 
ases where it attains a high value.In the 
ase of 
odes, let s denote the minimum weight of S, then s � n2(mod 4); Elkies shows that s � n2 and that s = n2 if and only if C is thedire
t sum of n2 [2; 1; 2℄ binary self-dual 
odes. He also 
lassi�es the self-dual
odes su
h that s = n2 � 4, and shows in parti
ular that their length 
annotex
eed 22.In this paper, we propose to study the parameters d and s simultaneously.We prove that 2d + s � n2 + 4, ex
ept in the 
ase where n � 22 (mod 24)where 2d + s � n2 + 8, and we 
all s-extremal the 
odes for whi
h equalityholds. We prove the existen
e of 1-designs and sometimes 2-designs in s-extremal 
odes. The 
ases 
onsidered by Elkies 
orrespond to s-extremal
odes with d = 2 and d = 4. We study s-extremal 
odes for d = 6 and weshow in parti
ular that su
h 
odes 
an only exist for lengths 22 � n � 44,that there is a unique su
h 
ode for lengths 40; 42 and 44 and we providepartial 
lassi�
ation for the other lengths. (Note that analogous results forDate: O
tober 29, 2002.Key words and phrases. self-dual 
odes, designs, 
lassi�
ation, shadow.1



2 CHRISTINE BACHOC AND PHILIPPE GABORITlatti
es 
an be found in [4℄). We also 
onstru
t an isodual [42; 21; 8℄ 
odewith 
overing radius 6 related to a parti
ular s-extremal 
ode. The paper isorganized as follows : in se
tions 2 and 3 we de�ne the notion of s-extremal
odes and we prove the existen
e of 1-designs and sometimes 2-designs inthese 
odes. In se
tions 4 and 5 we 
onsider the 
ase of s-extremal 
odeswith s = n2 � 8, we show that their length n satis�es 22 � n � 44, and givepartial 
lassi�
ation results. At last in se
tions 6 and 7 we give examples ofs-extremal 
odes and list the 
odes we used for the 
lassi�
ation. Appendi
esA and B give generator matri
es of the 
odes we found. Throughout thepaper, we follow the notations of [26℄. All the 
omputations were done withMAGMA [5℄. 2. s-extremal 
odesLet C be a self-dual binary 
ode, whi
h is assumed not to be doubly evenand let S be its shadow. We denote WC and WS the weight enumerators ofC and S. From [9℄, there exists 
0; : : : ; 
[n=8℄ 2 R su
h that:(WC(x; y) =P[n=8℄i=0 
i(x2 + y2)n2�4ifx2y2(x2 � y2)2giWS(x; y) =P[n=8℄i=0 
i(�1)i2n2�6i(xy)n2�4i(x4 � y4)2i(1)We denote d the minimum weight of C and s the minimum weight of itsshadow. This se
tion is devoted to the proof of the following theorem:Theorem 2.1. Let C be a self-dual binary 
ode, assumed not to be doublyeven, of minimum weight d, and let S be its shadow, of minimum weight s.Then, 2d+ s � 4+ n2 , unless n � 22 mod 24 and d = 4[n=24℄ + 6, in whi
h
ase 2d+ s = 8 + n2 .De�nition 2.2. A 
ode whi
h parameters (d; s) satisfy equality in the pre-vious bounds is said to be s-extremal. In that 
ase, the polynomials WC andWS are uniquely determined.Examples: The s-extremal 
odes with d = 4 
orrespond to the 
odes withlong shadows whi
h have been 
lassi�ed in [12℄. For d = 6, the uniquebinary self-dual [26; 13; 6℄ 
ode and the two binary self-dual [28; 14; 6℄, fromthe 
lassi�
ation of self-dual 
odes [8℄ are examples of s-extremal 
odes. Theex
eptionnal 
ase in the theorem is the 
ase of extremal 
odes (in the senseof [25℄) of length n � 22 mod 24, obtained by shortening of doubly evenextremal ones of length a multiple of 24. The following lemma providesother examples of s-extremal 
odes.Lemma 2.3. If C is a [24�+8; 12�+4; 4�+4℄ extremal Type II 
ode thenthe 
ode obtained by subtra
tion of the 
ode (11) from C is s-extremal.Proof. By subtra
tion of (11) to C one obtains a singly-even [24�+6; 12�+3; d℄ 
ode C 0 with d � 4�+ 2 su
h that using notation of [3℄:C = f0; 0; C 00g [ f1; 1; C 02g [ f1; 0; C 01g [ f0; 1; C 03g;



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 3with S = C 01 [C 03 the shadow of C 0 = C 00 [C 02. Hen
e the minimum weights of S has to be greater than 4� + 3. Therefore C 0 is s-extremal sin
e2d+ s � 12�+ 11 = n2 + 3.More examples of known s-extremal 
odes will be given in Se
tion 7.Proof. From (1), the weights in S are 
ongruent to n2 mod 4, and theweights in C are 
ongruent to 0 mod 2. Let us denote ai the number of
odewords of weight i and bi the number of words of weight i in S. Let usde�ne s0 by s = n2 � 4s0. From (1), the 
onditions8><>: a0 = 1a2i = 0 for 1 � i � d2 � 1bn2�4j = 0 for s0 + 1 � j � [n=8℄(2)are linear and independant 
onditions on the [n=8℄ + 1 
oeÆ
ients 
i. Theirnumber is d2 + [n=8℄ + s0, whi
h is greater or equal to [n=8℄ + 1 if and onlyif 2d+ s � 4 + n2 .We now assume that the inequality 2d+s � 4+n2 holds. From the previousdis
ussion, the weight enumerators of C and S are uniquely determined.B�urman-Lagrange formula allows us to 
al
ulate the 
oeÆ
ients of thesepolynomials. Let t := 4 + n2 � 2d. We have:(WC(x; y) = 1 + adxn�dyd + ad+2xn�d�2yd+2 + : : :WS(x; y) = btxn�tyt + bt+4xn�t�4yt+4 + : : :(3)where bt is not assumed to be non-zero. The following Lemma dis
usses thispossibility and 
on
ludes the proof of the theorem.Lemma 2.4. With the previous notations and assumptions, we have:ad = nd Xj;k2Nj+k= d2�1(�1)j�n2 � 2d+ jj ��d+ k � 1k �(4) bt = (�1) d2 n2n2�3d+6d� 2 Xj;k2Nj+k= d2�2(�1)j�n2 � 2d+ 4 + jj ��d+ k � 3k �:(5)Moreover, if n 6= 22 mod 24, the 
oeÆ
ient bt is non negative. If n � 22mod 24 and d = 4[n=24℄ + 6, the 
oeÆ
ient bt equals 0 and the 
oeÆ
ientbt+4 is non zero.Proof. We have in (1) 
i = 0 for all i > d2 � 1. Setting x = 1 and dividingby (1 + y2)n2 the �rst equation of (1) leads to:



4 CHRISTINE BACHOC AND PHILIPPE GABORITd2�1Xi=0 
i�y(1� y2)(1 + y2)2�2i = 1(1 + y2)n2 + 1(1 + y2)n2 fadyd + : : : gLet g(y) := y(1�y2)(1+y2)2 . From this last expression, we see that 
0; 
1; : : : ; 
 d2�1;�adare the �rst 
oeÆ
ients of the development of 1(1+y2)n2 as a series in g(y).From the B�urman-Lagrange formula, we obtain:�ad = 1d! �d�1�yd�1  ��y � 1(1 + y2)n2 ��(1 + y2)21� y2 �d!y=0whi
h, after simpli�
ation, be
omes:ad = nd �
oe�. of yd�2 in: 1(1 + y2)n2�2d+1(1� y2)d�and, �nally, leads to the announ
ed formula.From (3), we have bt = (�1) d2�12n2�3d+6
 d2�1, and a similar 
al
ulationleads to:
 d2�1 = �nd� 2 �
oe�. of yd�4 in: 1(1 + y2)n2�2d+5(1 � y2)d�2� :We have obviously:
 d2�1 = �nd� 2 �
oe�. of yd�4 in: 1(1 + y2)n2�3d+7(1 � y4)d�2� :It is worth noti
ing that, be
ause of the known bounds for d (see [25℄),n2 � 2d + 5 is always positive, while n2 � 3d + 7 may be negative. Takinga

ount of the bounds in [25℄, one easily sees that n2 � 3d+ 7 = 0 
an onlyhappen when n = 24m + 22 and d = 4m + 6. If n2 � 3d + 7 < 0, the
oeÆ
ients in the development of 1(1+y2)n2 �3d+7(1�y4)d�2 are all non negative.If n2 � 3d+ 7 > 0, we have
 d2�1 = �nd� 2 Xj;k2Nj+2k= d2�2(�1)j�n2 � 3d+ 6 + jj ��d+ k � 1k �
= �nd� 2(�1) d2 Xj;k2Nj+2k= d2�2�n2 � 3d+ 6 + jj ��d+ k � 1k �whi
h shows that 
 d2�1 and hen
e bt 
annot be zero.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 5In the 
ase n = 24m + 22 and d = 4m + 6, we have bt = 0, and asimilar 
al
ulation shows that bt+4 6= 0. More pre
isely, we 
al
ulate bt+4 =�25
2m+1, and
2m+1 = �12m+ 112m+ 1 Xi+2k=2m�5 + ii ��4m+ k + 1k �:3. Designs in s-extremal 
odesIn this se
tion, we study the designs 
ontained in the set of words of�xed weight in an s-extremal 
ode and in its shadow. Therefore, we makeuse of the harmoni
 weight enumerators WC;f introdu
ed in [2℄. We re
allthat, if f is harmoni
 of degree k, and if C is self-dual, the polynomialWC;f is divisible by (xy)k, and, if ZC;f := (xy)�kWC;f , one has: if k � 0mod 2, ZC;f 2 C [x2 + y2; x2y2(x2 � y2)2℄ (respe
tively if k � 1 mod 2,ZC;f 2 Q8C [x2+y2; x2y2(x2�y2)2℄, where Q8 = xy(x6�7x4y2+7x2y4�y6)).Theorem 3.1. Let C be an s-extremal 
ode. Let Ci, respe
tively Si denotethe set of words of weight i in C, respe
tively S.1. For all i, Ci and Si hold a 1-design.2. If d = n+86 , for all i � d+ 2 mod 4, Ci holds a 2-design.3. If d = n+86 , and d � 2 mod 4, for all i, Ci [ Si holds a 2-design.Proof. We re
all that, from the very de�nition of the harmoni
 fun
tions,Ci is a t-design if and only if the 
oeÆ
ient of xn�iyi equal 0 inWC;f , for allharmoni
 fun
tion f of degree k with 1 � k � t. One 
an de�ne analogouslythe polynomials WS;f . The following transformation formula, where againZS;f := (xy)�kWS;f , is proved in [20℄:ZS;f(x; y) = (�i)kZC;f (x+ yp2 ; ix� yp2 ):(6)One 
al
ulates Q8(x+yp2 ; ix�yp2 ) = i(x8 � y8). Alltogether, we obtain anexpression similar to (1) for ZC;f and ZS;f .We assume k = 1. There exists 
oeÆ
ients di, su
h that:8<:ZC;f (x; y) = Q8P[n�108 ℄i=0 di(x2 + y2)n2�5�4ifx2y2(x2 � y2)2giZS;f (x; y) = (x8 � y8)P[n�108 ℄i=0 di(�1)i2n2�5�6i(xy)n2�5�4i(x4 � y4)2i(7)
Clearly, sin
e the minimum weight of C is d, di = 0 for 0 � i � d2 � 2,and sin
e the minimum weight of S is s = n2 � 4s0, di = 0 for i � s0. Nowthe hypothesis on the s-extremality of the 
ode C implies that all the di areequal to 0 and hen
e that ZC;f = ZS;f = 0.



6 CHRISTINE BACHOC AND PHILIPPE GABORITIn the 
ase k = 2, a similar argument shows that all the 
oeÆ
ients butone are equal to zero. More pre
isely, and for later use, we have:If k = 2:8<:ZC;f (x; y) = d d2�1(x2 + y2)n2+2�2dfx2y2(x2 � y2)2g d2�1ZS;f (x; y) = d d2�1(�1) d2 2n2+4�3d(xy)n2+2�2d(x4 � y4)d�2(8)In the 
ase d = n+86 , the powers of (x2 + y2) and (x2 � y2) are identi
alin ZC;f . Hen
e, the polynomial ZC;f equals up to a multipli
ative 
onstant(xy)d�2(x4 � y4)d�2, and the 
odewords of weight � d + 2 mod 4 hold a2-design. Moreover, we have ZS;f = (�1) d2ZC;f . Hen
e, if d � 2 mod 4,ZS;f + ZC;f = 0 and the sets Ci [ Si hold 2-designs.Remark 3.2. A similar argument shows that, in the ex
eptionnal 
ase ofthe extremal 
odes of length n � 22 mod 24, the sets Ci and Si hold 3-designs (see [20℄).Let C be a singly even self-dual 
ode, with doubly even sub
ode C0, thenC?0 = C0[C1[C2[C3, where Ci for i = 0; 1; 2; 3 are the 
osets of C0 in C?0 .We �x for instan
e C = C0 [ C2; then the shadow S of C is S = C1 [ C3.In the 
ase where C is s-extremal, the pre
eding theorem states that C andS hold 1-designs; in the following proposition we point out some strongerproperties of these designs for parti
ular s-extremal 
odes.Proposition 3.3. With the pre
eding notations, let C be a s-extremal [24�+8m; 12� + 4m; 4� + 2℄ 
ode for m = 1 or 2, then the set of words of givenweight in the 
osets C0; C1; C2 and C3, independently, hold 1-designs.Proof. From Theorem 3.1, the 
odewords of given weight of C = C0 [ C2hold 1-design, and therefore sin
e the weight of the 
odewords of C0 are
ongruent to 0 modulo 4 and those of C2 are 
ongruent to 2 mod 4, the
odewords of given weight of C0 and C2 independently hold 1-designs. Nowsin
e the length n � 0 (mod 8) and C is s-extremal, the words of S haveweights 
ongruent to 0 modulo 4 and the two doubly even neighbors ofC: C0 [ C1 and C0 [ C3, are extremal of weight 4� + 4. By the Assmus-Mattson theorem, these two 
odes hold at least 1-designs, and sin
e C0 holds1-designs, C1 and C3 also hold independently 1-designs.Remark 3.4. In the 
ase of lengths 24� + 16, the pre
eding proposition ispartly related to Theorem 2 of [17℄.4. Codes with long shadowsIn [12℄, the 
odes with shadows of minimumweight equal to n=2 and n=2�4 are 
lassi�ed. In this se
tion, we 
onsider the 
ase of weight n=2�8. Su
h
odes are s-extremal if their minimum weight equals 6. The 
orrespondingproblem for latti
es is handled in [21℄. We prove here the following theorem:Theorem 4.1. Let C be a s-extremal 
ode of length n and distan
e d = 6.Then 22 � n � 44.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 7In the following, we freely identify a word x of F n2 and its support, andwe denote by �x the 
omplement of x over F n2 .From now on, we assume that C is a 
ode of length n, distan
e d = 6 andof shadow S with minimum weight s = n=2 � 8. A dire
t 
omputation ofthe 
oeÆ
ients in (3) leads to: 
1 = �n=2, 
2 = n(n� 22)=8,WS =2n=2�15n(n� 22)xn=2+8yn=2�8 + 2n=2�13n(86� n)xn=2+4yn=2�4+ 2n=2�14(3n2 � 322n+ 214)xn=2yn=2;and a6 = n(n2 � 66n+ 1136)=48;a8 = n(n3 � 92n2 + 2684n � 23248)=128:Remark 4.2. The expression of WS shows already that n � 86. On theother hand, the bound announ
ed in the theorem n � 44 is optimal sin
ethe 
ode of lenth 44 whi
h is the dire
t sum of two 
opies of the [22; 11; 6℄ iss-extremal.For any y 2 Fn2 , letNi;j(y) := fx : x 2 Ci j jx \ yj = jgand ni;j(y) := jNi;j(y)j:Sin
e the sets Ci are 1-designs, the numbers ni;j(y) satisfy a linear equa-tion (see Theorem 3 of [20℄):Xj jni;j(y) = iaiwt(y)n :(9)Let y be a word of C6. Then, for all x 2 C6, jx \ yj = 0; 2, and Equation(9) leads to m2 := n6;2(y) = 3(n2 � 66n+ 1128)=8:For all x 2 C8, jx \ yj = 0; 2; 4; moreover, jx \ yj = 4 if and only ifj(x+ y) \ yj = 2, so n8;4(y) = n6;2(y) = m2. With Equation (9) we 
an also
al
ulate n8;2(y):n8;2(y) = 3(n3 � 96n2 + 2948n + 27760)=16:Now we assume that wt(y) = 8. Again, for x 2 C6, we have jx\yj = 0; 2; 4;but (9) is not enough to 
al
ulate the values of n6;j(y). From now on, we setNj(y) := N6;j(y) and nj(y) := n6;j(y). Counting in two ways the number ofelements of the set



8 CHRISTINE BACHOC AND PHILIPPE GABORITf(x; y) : x 2 C6; y 2 C8 j jx \ yj = 4gleads to the 
al
ulation of the mean value mv of n4(y):mv = 1a8 Xy2C8 n4(y) = a6a8m2 = (n2 � 66n+ 1136)(n2 � 66n+ 1128)n3 � 92n2 + 2684n� 23248 :(10)One noti
es that, if x 2 N4(y), also x+ y 2 N4(y), so n4(y) is even of sizesay 2k with: N4(y) = fx1; � � � ; xkg [ fy + x1; � � � ; y + xkg:In order to prove the theorem, we �rst prove two lemmas.Lemma 4.3. Let xi and xj be elements of N4(y) with i 6= j then xi and xjdo not interse
t on �y.Proof. First xi and xj 
annot interse
t in their two positions on �y else xi+yand xj or xi and xj would interse
t in at least 4 positions. Now if xi andxj interse
t in one position on �y then xi and xj but also xi+ y and xj mustinterse
t only in one position on y whi
h is not possible.Lemma 4.4. The set N4(y) is, up to a permutation of the 
oordinates,
ontained in the set S4 = ft1; : : : ; t7g [ ft1 + y; : : : ; t7 + yg:y 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0t1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0t2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0t3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0t4 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0t5 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0t6 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0t7 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1In parti
ular, n4(y) � 14. Moreover, if n4(y) = 10; 12 or 14, the setN4(y) is unique up to a permutation of the 
oordinates leaving y invariant.Proof. The set A := fx\ y j x 2 N4(y)g is a set of elements of F82 satisfyingthe 
onditions:� For all a 2 A, wt(a) = 4.� For all a 2 A, �a 2 A.� For all a; b 2 A, ja \ bj = 0; 2.where the last 
ondition is a 
onsequen
e of Lemma 4.3.It is well-known (and easy to 
he
k) that, under these 
onditions, A is asubset of the set of 
odewords of weight 4 of the extended Hamming 
ode(whi
h has 14 elements). More pre
isely, a dire
t 
omputation shows that,if the 
ardinality of A equals 2; 4; 10; 12 and of 
ourse 14, the set A is uniqueup to permutation, while there are two possibilities for the 
ardinality 6 and8.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 9We now prove the theorem:Proof of theorem 4.1: First, by the 
lassi�
ation of self-dual 
odes, wehave n � 22 be
ause d � 6. Suppose n � 46. Then, a8 > 0, so let y 2 C8.Then, from lemma 4.4, n4(y) � 14, whi
h gives mv � 14. But, from (10),mv � 14 = (n� 22)(n� 44)(n2 � 80n+ 1660)(n3 � 92n2 + 2684n � 23248)is stri
tly positive for n � 46, a 
ontradi
tion.5. Classifi
ation resultsWe now prove some results on the 
lassi�
ation of the s-extremal 
odesof distan
e d = 6; we assume that the length n is at least equal to 34. Weintrodu
e a few more de�nitions:De�nition 5.1. Let C be an s-extremal 
ode of minimum distan
e 6. Letnmax4 denote the maximal value of n4(y) when y runs over the set of 
ode-words of weight 8, and let Nmax4 := fy : y 2 C8 j n4(y) = nmax4 g.Let y 2 C8. We denote D(y) the 
ode generated by y and N4(y), afterdeletion of the zero 
oordinates (hen
e the length of D(y) is at most equalto 22). We denote E(y) the 
ode generated by y, N4(y), and N2(y), againafter deletion of the zero 
oordinates. We denote ED(y) the 
ode obtainedfrom E(y) by restri
tion to the support of D(y). Obviously we have D(y) �ED(y) � D(y)?.We have already seen (Lemma 4.4) that nmax4 � 14. It turns out thata high value of this number is a strong 
onstraint on the 
ode. We shall
ompletely 
lassify the 
odes with nmax4 = 10; 12; 14. All the 
odes are givenin Appendix B.Theorem 5.2. � Assume nmax4 = 14. Then, n = 36; 38; 44, and in ea
h
ase there is a unique 
ode up to equivalen
e. In the 
ase n = 44,it is the orthogonal sum of two 
opies of the shorter Golay 
ode withparameters [22; 11; 6℄.� Assume nmax4 = 12. Then, n = 34; 36; 40; 42, and in ea
h 
ase there isa unique 
ode up to equivalen
e.� Assume nmax4 = 10. Then, n = 34; 36; 38, there are up to equivalen
e 3
odes of length 34, and a unique 
ode of length respe
tively 36 and 38.Generating matri
es are expli
itely given for all these 
odes in the Appen-dix B.Before giving a proof of this theorem, we derive from it a 
lassi�
ation ofthe s-extremal 
odes of minimum weight 6, for the lengths 40, 42, 44.Corollary 5.3. There is up to equivalen
e a unique s-extremal 
ode of min-imum weight 6 at length 44, respe
tively 42 and 40.



10 CHRISTINE BACHOC AND PHILIPPE GABORITn mv n mv22 14 34 224 7.68 36 3.3626 4.40 38 628 2.67 40 9.2630 1.82 42 1232 1.60 44 14Table 1. The value of mv for d = 6Proof. We give in Table 1 the value of mv 
omputed from (10) for d = 6and 22 � n � 44.If the length of C equals 40, 42, 44, we have nmax4 � 10. Hen
e Theorem5.2 exhausts all the possibilities.Proof of Theorem 5.2.Case nmax4 = 14:The following lemma is easily proved by a dire
t 
omputation:Lemma 5.4. Let D8 denote the [22; 8; 6℄ 
ode generated by the wordsfy; t1; t2; t3; t4; t5; t6; t7g given in Lemma 4.4. Up to the a
tion of the per-mutation group of D8, for ea
h dimension k = 9; 10; 11, there is a unique
ode Dk su
h that D8 � Dk � D?k � D?8 and wt(Dk) = 6. Moreover,the 
ardinality of the set fx : x 2 Dk j wt(x) = 6 and jx \ yj = 2g equalsrespe
tively 0; 8; 24; 56 for k = 8; 9; 10; 11. The 
ode D11 is equivalent to theshorter Golay 
ode.Now let C be an s-extremal 
ode of distan
e 6 and length n, with nmax4 =14. Let y 2 Nmax4 . Then, D(y) is equivalent to D8. Let x 2 N2(y), and letI := x \ y. We have I \ t = (10) or (01) for exa
tly 4 of the 14 elementsof N4(y). Thus, x must interse
t these t outside of y; sin
e the t \ �y arepairwise disjoint weight 2 words, we 
an 
on
lude that x is 
ontained in thesupport of D(y). So, E(y) = ED(y) is a 
ode satisfying the 
onditions ofLemma 5.4.But Equation 9 
al
ulates n2(y) = (n2 � 66n+1136)=2� 2n4(y); we �ndn2(y) = �4; 0; 8; 20; 36; 56 respe
tively for n = 34; 36; 38; 40; 42; 44. Hen
e,from Lemma 5.4 we 
an 
on
lude that the only possible values for n aren = 36, in whi
h 
ase E(y) ' D8, n = 38 and E(y) ' D9, and n = 44 andE(y) ' D11. Sin
e D11 is the only self-dual 
ode of length 22 and minimumweight 6, 
learly in the 
ase n = 44 the 
ode C 
an only be the orthogonalsum of two 
opies of this 
ode.We re
all a lemma on the stru
ture of self-dual 
odes, whi
h we shallapply several times. We refer to [22℄ for a proof.Lemma 5.5. Let C be a binary self-dual 
ode of length n = a + b. LetA (respe
tively B) be the 
ode generated by the words of C whi
h supports
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oordinates (respe
tively the b last 
oordinates). Then,2(dim(A)� dim(B)) = a� b, and C has a generating matrix of the form:0�A 00 BD E1Awhere A? = A+D and B? = B +E.In se
tion 6 and Table 2 we give the 
lassi�
ation of maximal self-orthogonal
odes of minimum distan
e 6 and lengths 10 � n � 21. We will refer to this
lassi�
ation for in the rest of the se
tion.If n = 36, we have A = D8 and B has length 14, dimension 4, anddistan
e at least 6. Moreover, sin
e C and D8 both 
ontain the all-oneword, so does B. One shows that these 
onditions leave only one possibilityfor B (
f Table 2). This 
ode B has the following property: under the a
tionof Aut(B), the quotient B?=B has two non trivial orbits, one 
onsists of the
lasses of weight 2 and the other 
onsists of the 
lasses of weight 4. The
ode D?8 
ontains 7 words of weight 2, whi
h are transitively permuted byits permutation group. We 
an 
hoose su
h a word for the �rst line of D;then it must be extended by a word of weight 4 of B? in order to ensurethat the minimum weight of C is 6. Hen
e C 
ontains a sub
ode F oflength 36 and dimension 13, obtained from D8, B and one of the equivalentwords of weight 6 built up as des
ribed before. The �nal step 
onsists in theexhaustive 
onsideration of the maximal totally isotropi
 subspa
es of the10-dimensional symple
ti
 spa
e F?=F . The number of su
h subspa
es isexa
tly 75735, so we 
ould a
tually list them (in fa
t up to the a
tion of thegroup of F ). It is worth noti
ing that the next dimension 12 gives 4922775maximal isotropi
 subspa
es whi
h is too big to be exhausted.If n = 38, we have A = D9 and B has length 16, dimension 6, and distan
eat least 6, whi
h leave only one possibility. If F := A ? B, sin
e the spa
eF?=F has dimension 8, we 
an dire
tly look at the 2295 maximal totallyisotropi
 subspa
es and �nd a unique 
ode up to equivalen
e.Case nmax4 = 12:We sele
t again y 2 Nmax4 . Then, from the proof of Lemma 4.4, D(y) isequivalent to the 
ode with parameters [20; 7; 6℄ generated by y and ti for1 � i � 6, that we shall denote D7. It has the property that any 2-subsetI of y satis�es I \ t = (10) or (01) for either 3 or 4 of the 12 elements ofN4(y). So a word x 2 N2(y) has at most one 
oordinate outside of thesupport of D7. Let us denote d + 7 := dim(E(y)) = dim(ED(y)). Hen
e,the length of E(y) 
annot ex
eed 20 + d. Also, from Equation 9, we haven2(y) = 0; 4; 12; 24; 40 respe
tively for n = 34; 36; 38; 40; 42.We pro
eed to the 
lassi�
ation with the following steps:1. List the possibilities for ED(y), up to the a
tion of Aut(D7), and usingthe properties D7 � ED(y) � D?7 and wt(ED(y)) � 6� d. We �nd 32possible 
odes.



12 CHRISTINE BACHOC AND PHILIPPE GABORIT2. For ea
h 
andidate ED(y), we �x a set of d 
odewords whi
h 
onsti-tute a basis together with a basis of D7, and we explore the possibleextensions of them to words of length 20 + d, su
h that the resulting
ode E is 
ontained in its dual and has minimum weight 6.3. Among these 
odes E, we sele
t those who satisfy:� 
ardfx : x 2 E6 j jx \ yj = 2g 2 f0; 4; 12; 24; 40gg� For all z 2 E8, 
ardfx : x 2 E6 j jx \ zj = 4g � 12.We �nd, up to equivalen
e, nine 
odes E whi
h are 
andidates forE(y), with the following parameters, and 
orresponding n (whi
h isuniquely determined by the value of n2(y)):(a) [20; 7℄ and n = 34(b) [21; 8℄ and n = 36(
) [23; 10℄ and n = 38(d) [20; 9℄, [23; 10℄, [22; 10℄, [24; 11℄ and n = 40(e) [21; 10℄, [24; 11℄ and n = 42.4. Apply Lemma 5.5 withA = E(y) for ea
h of the nine possibilities foundabove. We obtain the parameters of the putative 
omplementary 
odesB. Note that we are not sure that E(y) is not stri
tly 
ontained in Abut this would in
rease the dimension of B. The putative 
odes are
odes 
ontained in their duals, of minimum weight greater or equal to6, with parameters: [14; 4℄, [15; 5℄, [15; 6℄, [20; 9℄, [17; 7℄, [18; 8℄, [16; 7℄,[21; 10℄. The 
lassi�
ation of se
tion 6 shows that there are no su
h
odes with parameters [15; 6℄, [17; 7℄, [18; 8℄, [16; 7℄, that a unique 
odeexists with parameters respe
tively [21; 10; 6℄, [20; 9; 6℄ and [15; 5; 6℄,and that there are two 
odes with parameters [14; 4; 6℄.5. In the 
ase n = 34, A = D7, whi
h does not 
ontain the all-one word.So B must be equivalent to the [14; 4℄ whi
h does not either. Theself-dual 
ode C 
ontains as a sub
ode the 12-dimensional 
ode Fgenerated by the orthogonal sum of A and B, and the all-one word.Sin
e dim(F?=F ) = 10, we 
an look at all the possibilities. In theother 
ases, B is uniquely determined and F := A ? B satis�esdim(F?=F ) � 10.Case nmax4 = 10:Let y 2 Nmax4 . Then, D(y) is equivalent to the 
ode with parameters[18; 6; 6℄ generated by y and ti for 1 � i � 5, denoted D6. Any 2-subset Iof y satis�es I \ t = (10) or (01) for either 2, 3 or 4 of the 5 elements offt1; t2; t3; t4; t5g. So a word x 2 N2(y) has at most two bits outside of thesupport of D6. Therefore, the algorithmi
 pro
edure des
ribed in the 
asenmax4 = 12 
annot be dire
tly applied here be
ause at Step 2., ea
h basisve
tor added to D6 may in
rease the size of the support by 2, so too many
ases o

ur. We have to look at the situation more 
losely.For i = 0; 1; 2 we denote Ii the set of 2-subsets of y on whi
h 4 � ielements of N4(y) equal (10) or (01). We have 
ard(I0) = 4, 
ard(I1) = 16,
ard(I2) = 8, and Aut(D6) permutes transitively the elements of ea
h Ii.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 13We denote N i2 := fx : x 2 N2(y) j x \ y 2 Iig. Let x 2 N i2. Then xhas i bits outside of the support of D6. We again denote D6 the sub
odeof the same length as E(y), obtained by extending the words of D6 withenough zeroes. An easy 
al
ulation shows that: 
ard((D6 + x) \ N2(y))equals 8 if x 2 N02 , 4 if x 2 N12 , and 2 if x 2 N22 . Also, not more than twoelements of N2(y) 
an 
oin
ide on y (otherwise two of them would have three
ommon bits). Moreover, one 
he
ks easily that, if two elements x, x0 of N12
oin
ide on y, then the 
ode generated by D6, x and x0, whi
h is uniqueup to Aut(D6), satis�es N4(y) = 12, so this situation 
an be ex
luded. We
an partition the 
lasses of E(y) modulo D6 into s0 (respe
tively s1, s2)
lasses 
ontaining elements of N02 (respe
tively N12 , N22 ), plus s�1 
lasses
ontaining no elements of N2(y). From the previous dis
ussion, we have:8s0 + 4s1 + 2s2 = n2(y), 0 � s0 � 1, 0 � s1 � 4, 0 � s2 � 8. On theother hand, we have, from Equation 1, n2(y) = 4; 8; 16; 28 respe
tively forn = 34; 36; 38; 40.We are now in the position to 
al
ulate all the possibilities for the 
odeE(y). Therefore, we start with D6, and we add one by one words belongingto N2(y). At ea
h step, we in
rease the dimension by one, and 
al
ulaten2(y) until we obtain one of the values 4; 8; 16; 28.If s0 = 1, we start with x 2 N02 and there is only one 
hoi
e up toequivalen
e. The resulting 
ode has n2(y) = 8, so it is one possibility forE(y) (it is equivalent to the maximal 
ode C18;1). Then, we 
an either adda word in N12 , else the remaining words belong to N22 . In the �rst 
ase, weobtain a single 
ode with parameters [19,8℄ and n2(y) = 16, equivalent tothe maximal 
ode C19, whi
h is not extendable; the se
ond 
ase does notlead to any 
ode.In the 
ase s0 = 0, we 
al
ulate that at most three independent words inN12 
an be added and at most 6 independent words in N22 
an be added.Finaly we �nd, up to equivalen
e, 19 
odes E whi
h are 
andidates forE(y), with the following parameters, and 
orresponding n (whi
h is uniquelydetermined by the value of n2(y)):1. [19; 7℄, [21; 8℄, [22; 8℄ (3 
odes) and n = 342. [18; 7℄, [20; 8℄, [22; 9℄, [23; 9℄ (3 
odes), [26; 10℄, [25; 10℄, [24; 10℄ andn = 363. [19; 8℄, [21; 9℄, [25; 11℄, [26; 12℄ and n = 384. [25; 12℄ and n = 40Then, we pro
eed like in the steps 4 and 5 of the 
ase nmax4 = 12. The
odes leading to a self-dual 
ode of length 34 have parameters [19; 7℄, [22; 8℄(two 
odes). The self-dual 
ode of length 36 is obtained from A = C18;1and B = C18;2. The self-dual 
ode of length 38 is obtained from A = B =C19.Remark 5.6. In [17℄, the authors point out a doubly-even [40; 20; 8℄ 
odewith 
overing radius 7, whi
h turns out to be equivalent to the two equivalentdoubly-even neighbors of the unique s-extremal [40; 20; 6℄ 
ode. Analogously,



14 CHRISTINE BACHOC AND PHILIPPE GABORITthe s-extremal [34; 17; 6℄ 
odes for nmax4 = 10; 12, have ea
h, two equivalentisodual [34; 17; 8℄ neighbors with 
overing radius 6; the s-extremal [36; 18; 6℄
ode for nmax4 = 14 has two equivalent self-dual [36; 18; 8℄ neighbors with
overing radius 6; the two s-extrema [38; 19; 6℄ 
odes for nmax4 = 12; 14 haveea
h two equivalent isodual [38; 19; 8℄ neighbors with 
overing radius 7; thes-extremal [42; 21; 6℄ 
ode for nmax4 = 10 has two equivalent isodual [42; 21; 8℄neighbors with 
overing radius 6 and the unique s-extremal [44; 22; 6℄ 
odehas two equivalent self-dual [44; 22; 8℄ neighbors with 
overing radius 7.Remark 5.7. The unique [40; 20; 6℄ 
ode also leads to a 40-dimensional uni-modular latti
e of norm 3 with a long shadow in the sense of [21℄. The 
on-stru
tion is the standard Constru
tion A followed by a neighboring pro
edureusing the all-one ve
tor6. The 
lassifi
ation of maximal self-orthogonal 
odes ofdistan
e 6 and length up to 21In this se
tion we 
lassify maximal ( in term of dimension) self-orthogonal
odes of minimum distan
e exa
tly 6 and length up to 21. Unlike self-dual
odes, there is no mass formula for these 
odes and we pro
eed by indu
tionon the dimension. Let us denote by XC the extension of a 
ode C.We �rst give a general algorithm to 
onstru
t, for not too high parameters,all the self-orthogonal [n; k; d℄ 
odes. Let Si be the set of inequivalent self-orthogonal [n� k + i; i; d℄ 
odes. The set Si+1 of the [n� k + i+ 1; i+ 1; d℄
odes 
an be obtained through Si by the following algorithm : let C be a
ode of Si then one 
onsiders all the inequivalent 
odes of minimum weightd obtained by addition to XC of a representant x of the di�erent orbits ofthe quotient (XC)?=XC. All the 
odes of Si+1 are obtained this way sin
efor any C of Si+1, the shortened 
ode of C in a 
olumn for whi
h there existsa word of weight d with a zero 
oordinate on this 
olumn, is in Si.Hen
e all the self-orthogonal [n; k; d℄ 
odes are obtained starting from a[n� k + 1; 1; d℄ 
ode.Note that by 
onstru
tion the 
odes have a 
odeword of weight d.To 
omplete the 
lassi�
ation one applies the pre
eding algorithm withdi�erent trials on the possible dimensions. We present in Table 2 the resultsobtained for d = 6, lengths 10 � n � 21 and maximal dimension k. Notethat for lengths 6 � n � 9 only the trivial 
ode of dimension 1 exists.The 
odes obtained for lengths 19; 20 and 21 
orrespond to shortened 
odesof the self-dual [22; 11; 6℄ shorter Golay 
ode. Note that we also used thealgorithm to prove that no 
odes exist with the same length and dimensionwith a higher minimum distan
e. The generator matri
es are given in theappendix.
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ode n k jAut(C)j weight enumeratorC10 10 2 2304 1 + 2y6 + y8C11 11 2 2304 1 + 2y6 + y8C12 12 3 1536 1 + 4y6 + 3y8C13;1 13 3 1296 1 + 3y6 + 3y8 + y10C13;2 13 3 1536 1 + 4y6 + 3y8C14;1 14 4 384 1 + 6y6 + 7y8 + 2y10C14;2 14 4 21504 1 + 7y6 + 7y8 + y14C15 15 5 720 1 + 10y6 + 15y8 + 6y10C16 16 6 11520 1 + 16y6 + 30y8 + 16y10 + y16C17;1 17 6 96 1 + 13y6 + 25y8 + 18y10 + 6y12 + y14C17;2 17 6 120 1 + 12y6 + 25y8 + 20y10 + 6y12C17;3 17 6 11520 1 + 16y6 + 30y8 + 16y10 + y16C18;1 18 7 1536 1 + 20y6 + 46y8 + 40y10 + 16y12 + 4y14 + y16C18;2 18 7 144 1 + 19y6 + 45y8 + 42y10 + 18y12 + 3y14C18;3 18 7 2160 1 + 18y6 + 45y8 + 45y10 + 18y12 + y18C19 19 8 576 1 + 28y6 + 78y8 + 88y10 + 48y12 + 12y14 + y16C20 20 9 3840 1 + 40y6 + 130y8 + 176y10 + 120y12 + 40y14 + 5y16C21 21 10 40320 1 + 56y6 + 210y8 + 336y10 + 280y12 + 120y14 + 21y16Table 2. Maximal self-orthogonal 
odes with d = 67. Number and examples of s-extremal 
odesWe now 
onsider examples of s-extremal 
odes. The s-extremal 
odeswith d = 4 have been 
lassi�ed in [12℄. We now list the known s-extremal
odes 
orresponding to a given d. First note that from Theorem 3.1 theunique singly-even [16; 8; 4℄ holds 2-designs.� d = 6For this minimum distan
e, from se
tion 4 
odes are known to exist forlength 22 � n � 44. The two 
odes of length 28 hold 2-designs. Existing
odes are given in the following table :n num ref n num ref22 1 [23℄ 34 � 2 [9℄,x524 1 [24℄ 36 � 3 x526 1 [8℄ 38 � 2 x528 2 [8℄ 40 1 x530 9 [8℄ 42 1 x532 19 [4℄ 44 1 x5� d = 8In that 
ase it is not known for up to whi
h length s-extremal 
odes do exist.The 
odes of length 40 hold 2-designs. We list known 
odes for d = 8 :



16 CHRISTINE BACHOC AND PHILIPPE GABORITn num ref32 3 [9℄36 � 3 [19℄,[15℄38 � 8 [19℄,[15℄40 � 4 [9℄,[6℄42 � 17 [9℄,[7℄44 � 1 [9℄� d = 10The 
odes of length 52 hold 2-designs, the 
od sub(XQ47) is the 
ode ob-tained by subtra
tio of the (11) trivial 
ode from the extended quadrati
residu 
ode of length 47. Codes are only known for the following lengths :n num ref46 � 1 sub(XQ47)50 � 1 [9℄52 � 460 [18℄54 � 166 [26℄, x358 � 1 [9℄� d = 12In that 
ase it is not known whether a s-extremal [64; 32; 12℄ 
ode exists,su
h a 
ode would hold 2-designs. For length 68, although many 
odes areknown, none of them is s-extremal. The only known 
odes are :n num ref60 � 3 [27℄,[11℄62 � 8 [11℄66 � 2 [9℄,[16℄� d � 14For d = 14, two 
odes are known for length 76 ([14℄,[1℄), whi
h 
ontain 2-designs, and more than 50 
odes are known for length 78 from [13℄ and [1℄.For d = 16 only one s-extremal 
ode is known for length 86 from [10℄ andfor d = 18 one 
ode is obtained for length 102 from the extended quadrati
residue 
ode of length 104 and lemma 2.3.Referen
es[1℄ A. Baartmans and V. Yorgov, "Some new extremal 
odes of length 76 and 78", Pro
.7th Int. Workshop Alg. and Combin. Coding Theory, 18-24 June, Bulgaria, (2000),pp. 51-54.[2℄ C. Ba
ho
, On Harmoni
 weight enumerators of binary 
odes, Designs, Codes andCryptography 18 (1999), pp. 11-28.[3℄ R. A. Brualdi and V. S. Pless, Weight Enumerators of Self-Dual Codes, IEEE Trans.Inf. Th. 37 (1991), pp. 1222-1225.[4℄ R. T. Bilous and G. H. J. van Rees, An enumeration of self-dual 
odes of length 32,preprint.[5℄ W. Bosma and J. Cannon, Handbook of Magma Fun
tions, Sydney, 1995.
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odes, IEEETrans. Inform. Theory, 43, (1997), pp. 2036-2047.[11℄ R. Dont
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odes, in Handbook of Coding Theory, ed.V. S. Pless and W. C. Hu�man. Amsterdam: Elsevier, 1998, pp. 177{294.[27℄ H.-P. Tsai and Y.J. Yiang, Some new extremal self-dual [58,29,10℄ 
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18 CHRISTINE BACHOC AND PHILIPPE GABORITAPPENDIX AMaximal self-orthogonal 
odes of weight 6 and lengths 10 � n � 21C10 = h 10000111110111101111 iC11 = h 1100001110100111111101 iC12 = " 110000111010001001100111000110011101 #C13;1 = " 100010111111001011101110010010101000111 #C13;2 = " 101000110011001010001110100000111011100 #C14;1 = 24 10001011111100010010011001010010101000111000010100010111 35C14;2 = 24 10100000110011010100011101000000110100011100000011111111 35C15 = 264 100001110100111010001010010101001001101000011000101000101110000011001011111 375C16 = 26664 100001001011000101000101001010100010010101111001000101000101110000001100101111100000001111111111 37775C17;1 = 26664 100001010001010100100010100100010100110000011110110000011000100110010000001101111000000000000101011110 37775C17;2 = 26664 100001011011101000100010010011000100100100111001110000101000011001100000110111110110100000011011110000 37775C17;3 = 26664 100001010110110100100010101000011000100100111100110000101000011100100000110011100100000000011111111110 37775C18;1 = 266664 100001010001010100010001010010001010001100000010100011000011000001111101000000110010101111000000001010111100000000000101001111
377775C18;2 = 266664 100001010001010100010001010010001010001001000010111011000101000101010111000011000100110010000000110111100000000000001010111100

377775
C18;3 = 266664 100001010011110111010001000001111101001001000110000011000101000011001100000011010111000101000000110111100000000000001000011111

377775C19 = 26666664 10000101000101010000100010100100010100001001000010111010100010100000001100110000110000011111010000000110010101111000000000101011110000000000001010011110
37777775

C20 = 266666664
100001000011010001110100010000000011111100100100001011101010000101000000011001100000110000011111010000000010000010101011000000010010000101110000000010101111000000000000010100111100

377777775C21 =
26666666664
100001000000000011011010001000000001111110001001000001101000001000101000000011001100000011000001111101000000000100000101010110000000010001010111011000000001001101110101000000000101001111000000000000011010010101

37777777775



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 19APPENDIX BIn this appendix we give all the 
odes mentionned in theorem 5.2. Tosave spa
e, we 
onsider the 
odes in the form (I A) and we list only thematri
es A as sequen
es of their rows written in hexade
imal: 1 = 0001; 2 =0010; : : : ; F = 1111. Note that depending on the length n, the �rst 4 � (n2(mod 4)) 
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