
DESIGNS AND SELF-DUAL CODES WITH LONGSHADOWSCHRISTINE BACHOC AND PHILIPPE GABORITAbstrat. In this paper we introdue the notion of s-extremal odesfor self-dual binary odes and we relate this notion to the existene of1-designs or 2-designs in these odes. We extend the lassi�ation ofodes with long shadows of [12℄ to odes with minimum distane 6, forwhih we give partial lassi�ation.1. IntrodutionOne important parameter of binary odes is their minimum weight d.In the ase of singly-even self-dual odes, only unsatisfatory bounds wereknown until the notion of the shadow was introdued by Conway and Sloanein [9℄. Let C be a singly-even self-dual ode and C0 its doubly-even subode,then the shadow S of C is de�ned as S := C0? nC. One uses the additionalinformation ontained in the weight enumerator of S, whih is obtained bya linear transformation of the one of C. The best ahievement of this ideais the result by Rains [25℄ extending the well known bound of Type II odesto Type I odes.On the other hand, Elkies has studied in [12℄ the minimum weight (re-spetively the minimum norm) of the shadow of self-dual odes (respetivelyof unimodular latties), espeially in the ases where it attains a high value.In the ase of odes, let s denote the minimum weight of S, then s � n2(mod 4); Elkies shows that s � n2 and that s = n2 if and only if C is thediret sum of n2 [2; 1; 2℄ binary self-dual odes. He also lassi�es the self-dualodes suh that s = n2 � 4, and shows in partiular that their length annotexeed 22.In this paper, we propose to study the parameters d and s simultaneously.We prove that 2d + s � n2 + 4, exept in the ase where n � 22 (mod 24)where 2d + s � n2 + 8, and we all s-extremal the odes for whih equalityholds. We prove the existene of 1-designs and sometimes 2-designs in s-extremal odes. The ases onsidered by Elkies orrespond to s-extremalodes with d = 2 and d = 4. We study s-extremal odes for d = 6 and weshow in partiular that suh odes an only exist for lengths 22 � n � 44,that there is a unique suh ode for lengths 40; 42 and 44 and we providepartial lassi�ation for the other lengths. (Note that analogous results forDate: Otober 29, 2002.Key words and phrases. self-dual odes, designs, lassi�ation, shadow.1



2 CHRISTINE BACHOC AND PHILIPPE GABORITlatties an be found in [4℄). We also onstrut an isodual [42; 21; 8℄ odewith overing radius 6 related to a partiular s-extremal ode. The paper isorganized as follows : in setions 2 and 3 we de�ne the notion of s-extremalodes and we prove the existene of 1-designs and sometimes 2-designs inthese odes. In setions 4 and 5 we onsider the ase of s-extremal odeswith s = n2 � 8, we show that their length n satis�es 22 � n � 44, and givepartial lassi�ation results. At last in setions 6 and 7 we give examples ofs-extremal odes and list the odes we used for the lassi�ation. AppendiesA and B give generator matries of the odes we found. Throughout thepaper, we follow the notations of [26℄. All the omputations were done withMAGMA [5℄. 2. s-extremal odesLet C be a self-dual binary ode, whih is assumed not to be doubly evenand let S be its shadow. We denote WC and WS the weight enumerators ofC and S. From [9℄, there exists 0; : : : ; [n=8℄ 2 R suh that:(WC(x; y) =P[n=8℄i=0 i(x2 + y2)n2�4ifx2y2(x2 � y2)2giWS(x; y) =P[n=8℄i=0 i(�1)i2n2�6i(xy)n2�4i(x4 � y4)2i(1)We denote d the minimum weight of C and s the minimum weight of itsshadow. This setion is devoted to the proof of the following theorem:Theorem 2.1. Let C be a self-dual binary ode, assumed not to be doublyeven, of minimum weight d, and let S be its shadow, of minimum weight s.Then, 2d+ s � 4+ n2 , unless n � 22 mod 24 and d = 4[n=24℄ + 6, in whihase 2d+ s = 8 + n2 .De�nition 2.2. A ode whih parameters (d; s) satisfy equality in the pre-vious bounds is said to be s-extremal. In that ase, the polynomials WC andWS are uniquely determined.Examples: The s-extremal odes with d = 4 orrespond to the odes withlong shadows whih have been lassi�ed in [12℄. For d = 6, the uniquebinary self-dual [26; 13; 6℄ ode and the two binary self-dual [28; 14; 6℄, fromthe lassi�ation of self-dual odes [8℄ are examples of s-extremal odes. Theexeptionnal ase in the theorem is the ase of extremal odes (in the senseof [25℄) of length n � 22 mod 24, obtained by shortening of doubly evenextremal ones of length a multiple of 24. The following lemma providesother examples of s-extremal odes.Lemma 2.3. If C is a [24�+8; 12�+4; 4�+4℄ extremal Type II ode thenthe ode obtained by subtration of the ode (11) from C is s-extremal.Proof. By subtration of (11) to C one obtains a singly-even [24�+6; 12�+3; d℄ ode C 0 with d � 4�+ 2 suh that using notation of [3℄:C = f0; 0; C 00g [ f1; 1; C 02g [ f1; 0; C 01g [ f0; 1; C 03g;



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 3with S = C 01 [C 03 the shadow of C 0 = C 00 [C 02. Hene the minimum weights of S has to be greater than 4� + 3. Therefore C 0 is s-extremal sine2d+ s � 12�+ 11 = n2 + 3.More examples of known s-extremal odes will be given in Setion 7.Proof. From (1), the weights in S are ongruent to n2 mod 4, and theweights in C are ongruent to 0 mod 2. Let us denote ai the number ofodewords of weight i and bi the number of words of weight i in S. Let usde�ne s0 by s = n2 � 4s0. From (1), the onditions8><>: a0 = 1a2i = 0 for 1 � i � d2 � 1bn2�4j = 0 for s0 + 1 � j � [n=8℄(2)are linear and independant onditions on the [n=8℄ + 1 oeÆients i. Theirnumber is d2 + [n=8℄ + s0, whih is greater or equal to [n=8℄ + 1 if and onlyif 2d+ s � 4 + n2 .We now assume that the inequality 2d+s � 4+n2 holds. From the previousdisussion, the weight enumerators of C and S are uniquely determined.B�urman-Lagrange formula allows us to alulate the oeÆients of thesepolynomials. Let t := 4 + n2 � 2d. We have:(WC(x; y) = 1 + adxn�dyd + ad+2xn�d�2yd+2 + : : :WS(x; y) = btxn�tyt + bt+4xn�t�4yt+4 + : : :(3)where bt is not assumed to be non-zero. The following Lemma disusses thispossibility and onludes the proof of the theorem.Lemma 2.4. With the previous notations and assumptions, we have:ad = nd Xj;k2Nj+k= d2�1(�1)j�n2 � 2d+ jj ��d+ k � 1k �(4) bt = (�1) d2 n2n2�3d+6d� 2 Xj;k2Nj+k= d2�2(�1)j�n2 � 2d+ 4 + jj ��d+ k � 3k �:(5)Moreover, if n 6= 22 mod 24, the oeÆient bt is non negative. If n � 22mod 24 and d = 4[n=24℄ + 6, the oeÆient bt equals 0 and the oeÆientbt+4 is non zero.Proof. We have in (1) i = 0 for all i > d2 � 1. Setting x = 1 and dividingby (1 + y2)n2 the �rst equation of (1) leads to:



4 CHRISTINE BACHOC AND PHILIPPE GABORITd2�1Xi=0 i�y(1� y2)(1 + y2)2�2i = 1(1 + y2)n2 + 1(1 + y2)n2 fadyd + : : : gLet g(y) := y(1�y2)(1+y2)2 . From this last expression, we see that 0; 1; : : : ;  d2�1;�adare the �rst oeÆients of the development of 1(1+y2)n2 as a series in g(y).From the B�urman-Lagrange formula, we obtain:�ad = 1d! �d�1�yd�1  ��y � 1(1 + y2)n2 ��(1 + y2)21� y2 �d!y=0whih, after simpli�ation, beomes:ad = nd �oe�. of yd�2 in: 1(1 + y2)n2�2d+1(1� y2)d�and, �nally, leads to the announed formula.From (3), we have bt = (�1) d2�12n2�3d+6 d2�1, and a similar alulationleads to: d2�1 = �nd� 2 �oe�. of yd�4 in: 1(1 + y2)n2�2d+5(1 � y2)d�2� :We have obviously: d2�1 = �nd� 2 �oe�. of yd�4 in: 1(1 + y2)n2�3d+7(1 � y4)d�2� :It is worth notiing that, beause of the known bounds for d (see [25℄),n2 � 2d + 5 is always positive, while n2 � 3d + 7 may be negative. Takingaount of the bounds in [25℄, one easily sees that n2 � 3d+ 7 = 0 an onlyhappen when n = 24m + 22 and d = 4m + 6. If n2 � 3d + 7 < 0, theoeÆients in the development of 1(1+y2)n2 �3d+7(1�y4)d�2 are all non negative.If n2 � 3d+ 7 > 0, we have d2�1 = �nd� 2 Xj;k2Nj+2k= d2�2(�1)j�n2 � 3d+ 6 + jj ��d+ k � 1k �
= �nd� 2(�1) d2 Xj;k2Nj+2k= d2�2�n2 � 3d+ 6 + jj ��d+ k � 1k �whih shows that  d2�1 and hene bt annot be zero.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 5In the ase n = 24m + 22 and d = 4m + 6, we have bt = 0, and asimilar alulation shows that bt+4 6= 0. More preisely, we alulate bt+4 =�252m+1, and2m+1 = �12m+ 112m+ 1 Xi+2k=2m�5 + ii ��4m+ k + 1k �:3. Designs in s-extremal odesIn this setion, we study the designs ontained in the set of words of�xed weight in an s-extremal ode and in its shadow. Therefore, we makeuse of the harmoni weight enumerators WC;f introdued in [2℄. We reallthat, if f is harmoni of degree k, and if C is self-dual, the polynomialWC;f is divisible by (xy)k, and, if ZC;f := (xy)�kWC;f , one has: if k � 0mod 2, ZC;f 2 C [x2 + y2; x2y2(x2 � y2)2℄ (respetively if k � 1 mod 2,ZC;f 2 Q8C [x2+y2; x2y2(x2�y2)2℄, where Q8 = xy(x6�7x4y2+7x2y4�y6)).Theorem 3.1. Let C be an s-extremal ode. Let Ci, respetively Si denotethe set of words of weight i in C, respetively S.1. For all i, Ci and Si hold a 1-design.2. If d = n+86 , for all i � d+ 2 mod 4, Ci holds a 2-design.3. If d = n+86 , and d � 2 mod 4, for all i, Ci [ Si holds a 2-design.Proof. We reall that, from the very de�nition of the harmoni funtions,Ci is a t-design if and only if the oeÆient of xn�iyi equal 0 inWC;f , for allharmoni funtion f of degree k with 1 � k � t. One an de�ne analogouslythe polynomials WS;f . The following transformation formula, where againZS;f := (xy)�kWS;f , is proved in [20℄:ZS;f(x; y) = (�i)kZC;f (x+ yp2 ; ix� yp2 ):(6)One alulates Q8(x+yp2 ; ix�yp2 ) = i(x8 � y8). Alltogether, we obtain anexpression similar to (1) for ZC;f and ZS;f .We assume k = 1. There exists oeÆients di, suh that:8<:ZC;f (x; y) = Q8P[n�108 ℄i=0 di(x2 + y2)n2�5�4ifx2y2(x2 � y2)2giZS;f (x; y) = (x8 � y8)P[n�108 ℄i=0 di(�1)i2n2�5�6i(xy)n2�5�4i(x4 � y4)2i(7)
Clearly, sine the minimum weight of C is d, di = 0 for 0 � i � d2 � 2,and sine the minimum weight of S is s = n2 � 4s0, di = 0 for i � s0. Nowthe hypothesis on the s-extremality of the ode C implies that all the di areequal to 0 and hene that ZC;f = ZS;f = 0.



6 CHRISTINE BACHOC AND PHILIPPE GABORITIn the ase k = 2, a similar argument shows that all the oeÆients butone are equal to zero. More preisely, and for later use, we have:If k = 2:8<:ZC;f (x; y) = d d2�1(x2 + y2)n2+2�2dfx2y2(x2 � y2)2g d2�1ZS;f (x; y) = d d2�1(�1) d2 2n2+4�3d(xy)n2+2�2d(x4 � y4)d�2(8)In the ase d = n+86 , the powers of (x2 + y2) and (x2 � y2) are identialin ZC;f . Hene, the polynomial ZC;f equals up to a multipliative onstant(xy)d�2(x4 � y4)d�2, and the odewords of weight � d + 2 mod 4 hold a2-design. Moreover, we have ZS;f = (�1) d2ZC;f . Hene, if d � 2 mod 4,ZS;f + ZC;f = 0 and the sets Ci [ Si hold 2-designs.Remark 3.2. A similar argument shows that, in the exeptionnal ase ofthe extremal odes of length n � 22 mod 24, the sets Ci and Si hold 3-designs (see [20℄).Let C be a singly even self-dual ode, with doubly even subode C0, thenC?0 = C0[C1[C2[C3, where Ci for i = 0; 1; 2; 3 are the osets of C0 in C?0 .We �x for instane C = C0 [ C2; then the shadow S of C is S = C1 [ C3.In the ase where C is s-extremal, the preeding theorem states that C andS hold 1-designs; in the following proposition we point out some strongerproperties of these designs for partiular s-extremal odes.Proposition 3.3. With the preeding notations, let C be a s-extremal [24�+8m; 12� + 4m; 4� + 2℄ ode for m = 1 or 2, then the set of words of givenweight in the osets C0; C1; C2 and C3, independently, hold 1-designs.Proof. From Theorem 3.1, the odewords of given weight of C = C0 [ C2hold 1-design, and therefore sine the weight of the odewords of C0 areongruent to 0 modulo 4 and those of C2 are ongruent to 2 mod 4, theodewords of given weight of C0 and C2 independently hold 1-designs. Nowsine the length n � 0 (mod 8) and C is s-extremal, the words of S haveweights ongruent to 0 modulo 4 and the two doubly even neighbors ofC: C0 [ C1 and C0 [ C3, are extremal of weight 4� + 4. By the Assmus-Mattson theorem, these two odes hold at least 1-designs, and sine C0 holds1-designs, C1 and C3 also hold independently 1-designs.Remark 3.4. In the ase of lengths 24� + 16, the preeding proposition ispartly related to Theorem 2 of [17℄.4. Codes with long shadowsIn [12℄, the odes with shadows of minimumweight equal to n=2 and n=2�4 are lassi�ed. In this setion, we onsider the ase of weight n=2�8. Suhodes are s-extremal if their minimum weight equals 6. The orrespondingproblem for latties is handled in [21℄. We prove here the following theorem:Theorem 4.1. Let C be a s-extremal ode of length n and distane d = 6.Then 22 � n � 44.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 7In the following, we freely identify a word x of F n2 and its support, andwe denote by �x the omplement of x over F n2 .From now on, we assume that C is a ode of length n, distane d = 6 andof shadow S with minimum weight s = n=2 � 8. A diret omputation ofthe oeÆients in (3) leads to: 1 = �n=2, 2 = n(n� 22)=8,WS =2n=2�15n(n� 22)xn=2+8yn=2�8 + 2n=2�13n(86� n)xn=2+4yn=2�4+ 2n=2�14(3n2 � 322n+ 214)xn=2yn=2;and a6 = n(n2 � 66n+ 1136)=48;a8 = n(n3 � 92n2 + 2684n � 23248)=128:Remark 4.2. The expression of WS shows already that n � 86. On theother hand, the bound announed in the theorem n � 44 is optimal sinethe ode of lenth 44 whih is the diret sum of two opies of the [22; 11; 6℄ iss-extremal.For any y 2 Fn2 , letNi;j(y) := fx : x 2 Ci j jx \ yj = jgand ni;j(y) := jNi;j(y)j:Sine the sets Ci are 1-designs, the numbers ni;j(y) satisfy a linear equa-tion (see Theorem 3 of [20℄):Xj jni;j(y) = iaiwt(y)n :(9)Let y be a word of C6. Then, for all x 2 C6, jx \ yj = 0; 2, and Equation(9) leads to m2 := n6;2(y) = 3(n2 � 66n+ 1128)=8:For all x 2 C8, jx \ yj = 0; 2; 4; moreover, jx \ yj = 4 if and only ifj(x+ y) \ yj = 2, so n8;4(y) = n6;2(y) = m2. With Equation (9) we an alsoalulate n8;2(y):n8;2(y) = 3(n3 � 96n2 + 2948n + 27760)=16:Now we assume that wt(y) = 8. Again, for x 2 C6, we have jx\yj = 0; 2; 4;but (9) is not enough to alulate the values of n6;j(y). From now on, we setNj(y) := N6;j(y) and nj(y) := n6;j(y). Counting in two ways the number ofelements of the set



8 CHRISTINE BACHOC AND PHILIPPE GABORITf(x; y) : x 2 C6; y 2 C8 j jx \ yj = 4gleads to the alulation of the mean value mv of n4(y):mv = 1a8 Xy2C8 n4(y) = a6a8m2 = (n2 � 66n+ 1136)(n2 � 66n+ 1128)n3 � 92n2 + 2684n� 23248 :(10)One noties that, if x 2 N4(y), also x+ y 2 N4(y), so n4(y) is even of sizesay 2k with: N4(y) = fx1; � � � ; xkg [ fy + x1; � � � ; y + xkg:In order to prove the theorem, we �rst prove two lemmas.Lemma 4.3. Let xi and xj be elements of N4(y) with i 6= j then xi and xjdo not interset on �y.Proof. First xi and xj annot interset in their two positions on �y else xi+yand xj or xi and xj would interset in at least 4 positions. Now if xi andxj interset in one position on �y then xi and xj but also xi+ y and xj mustinterset only in one position on y whih is not possible.Lemma 4.4. The set N4(y) is, up to a permutation of the oordinates,ontained in the set S4 = ft1; : : : ; t7g [ ft1 + y; : : : ; t7 + yg:y 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0t1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0t2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0t3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0t4 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0t5 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0t6 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0t7 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1In partiular, n4(y) � 14. Moreover, if n4(y) = 10; 12 or 14, the setN4(y) is unique up to a permutation of the oordinates leaving y invariant.Proof. The set A := fx\ y j x 2 N4(y)g is a set of elements of F82 satisfyingthe onditions:� For all a 2 A, wt(a) = 4.� For all a 2 A, �a 2 A.� For all a; b 2 A, ja \ bj = 0; 2.where the last ondition is a onsequene of Lemma 4.3.It is well-known (and easy to hek) that, under these onditions, A is asubset of the set of odewords of weight 4 of the extended Hamming ode(whih has 14 elements). More preisely, a diret omputation shows that,if the ardinality of A equals 2; 4; 10; 12 and of ourse 14, the set A is uniqueup to permutation, while there are two possibilities for the ardinality 6 and8.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 9We now prove the theorem:Proof of theorem 4.1: First, by the lassi�ation of self-dual odes, wehave n � 22 beause d � 6. Suppose n � 46. Then, a8 > 0, so let y 2 C8.Then, from lemma 4.4, n4(y) � 14, whih gives mv � 14. But, from (10),mv � 14 = (n� 22)(n� 44)(n2 � 80n+ 1660)(n3 � 92n2 + 2684n � 23248)is stritly positive for n � 46, a ontradition.5. Classifiation resultsWe now prove some results on the lassi�ation of the s-extremal odesof distane d = 6; we assume that the length n is at least equal to 34. Weintrodue a few more de�nitions:De�nition 5.1. Let C be an s-extremal ode of minimum distane 6. Letnmax4 denote the maximal value of n4(y) when y runs over the set of ode-words of weight 8, and let Nmax4 := fy : y 2 C8 j n4(y) = nmax4 g.Let y 2 C8. We denote D(y) the ode generated by y and N4(y), afterdeletion of the zero oordinates (hene the length of D(y) is at most equalto 22). We denote E(y) the ode generated by y, N4(y), and N2(y), againafter deletion of the zero oordinates. We denote ED(y) the ode obtainedfrom E(y) by restrition to the support of D(y). Obviously we have D(y) �ED(y) � D(y)?.We have already seen (Lemma 4.4) that nmax4 � 14. It turns out thata high value of this number is a strong onstraint on the ode. We shallompletely lassify the odes with nmax4 = 10; 12; 14. All the odes are givenin Appendix B.Theorem 5.2. � Assume nmax4 = 14. Then, n = 36; 38; 44, and in eahase there is a unique ode up to equivalene. In the ase n = 44,it is the orthogonal sum of two opies of the shorter Golay ode withparameters [22; 11; 6℄.� Assume nmax4 = 12. Then, n = 34; 36; 40; 42, and in eah ase there isa unique ode up to equivalene.� Assume nmax4 = 10. Then, n = 34; 36; 38, there are up to equivalene 3odes of length 34, and a unique ode of length respetively 36 and 38.Generating matries are expliitely given for all these odes in the Appen-dix B.Before giving a proof of this theorem, we derive from it a lassi�ation ofthe s-extremal odes of minimum weight 6, for the lengths 40, 42, 44.Corollary 5.3. There is up to equivalene a unique s-extremal ode of min-imum weight 6 at length 44, respetively 42 and 40.



10 CHRISTINE BACHOC AND PHILIPPE GABORITn mv n mv22 14 34 224 7.68 36 3.3626 4.40 38 628 2.67 40 9.2630 1.82 42 1232 1.60 44 14Table 1. The value of mv for d = 6Proof. We give in Table 1 the value of mv omputed from (10) for d = 6and 22 � n � 44.If the length of C equals 40, 42, 44, we have nmax4 � 10. Hene Theorem5.2 exhausts all the possibilities.Proof of Theorem 5.2.Case nmax4 = 14:The following lemma is easily proved by a diret omputation:Lemma 5.4. Let D8 denote the [22; 8; 6℄ ode generated by the wordsfy; t1; t2; t3; t4; t5; t6; t7g given in Lemma 4.4. Up to the ation of the per-mutation group of D8, for eah dimension k = 9; 10; 11, there is a uniqueode Dk suh that D8 � Dk � D?k � D?8 and wt(Dk) = 6. Moreover,the ardinality of the set fx : x 2 Dk j wt(x) = 6 and jx \ yj = 2g equalsrespetively 0; 8; 24; 56 for k = 8; 9; 10; 11. The ode D11 is equivalent to theshorter Golay ode.Now let C be an s-extremal ode of distane 6 and length n, with nmax4 =14. Let y 2 Nmax4 . Then, D(y) is equivalent to D8. Let x 2 N2(y), and letI := x \ y. We have I \ t = (10) or (01) for exatly 4 of the 14 elementsof N4(y). Thus, x must interset these t outside of y; sine the t \ �y arepairwise disjoint weight 2 words, we an onlude that x is ontained in thesupport of D(y). So, E(y) = ED(y) is a ode satisfying the onditions ofLemma 5.4.But Equation 9 alulates n2(y) = (n2 � 66n+1136)=2� 2n4(y); we �ndn2(y) = �4; 0; 8; 20; 36; 56 respetively for n = 34; 36; 38; 40; 42; 44. Hene,from Lemma 5.4 we an onlude that the only possible values for n aren = 36, in whih ase E(y) ' D8, n = 38 and E(y) ' D9, and n = 44 andE(y) ' D11. Sine D11 is the only self-dual ode of length 22 and minimumweight 6, learly in the ase n = 44 the ode C an only be the orthogonalsum of two opies of this ode.We reall a lemma on the struture of self-dual odes, whih we shallapply several times. We refer to [22℄ for a proof.Lemma 5.5. Let C be a binary self-dual ode of length n = a + b. LetA (respetively B) be the ode generated by the words of C whih supports



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 11lie under the a �rst oordinates (respetively the b last oordinates). Then,2(dim(A)� dim(B)) = a� b, and C has a generating matrix of the form:0�A 00 BD E1Awhere A? = A+D and B? = B +E.In setion 6 and Table 2 we give the lassi�ation of maximal self-orthogonalodes of minimum distane 6 and lengths 10 � n � 21. We will refer to thislassi�ation for in the rest of the setion.If n = 36, we have A = D8 and B has length 14, dimension 4, anddistane at least 6. Moreover, sine C and D8 both ontain the all-oneword, so does B. One shows that these onditions leave only one possibilityfor B (f Table 2). This ode B has the following property: under the ationof Aut(B), the quotient B?=B has two non trivial orbits, one onsists of thelasses of weight 2 and the other onsists of the lasses of weight 4. Theode D?8 ontains 7 words of weight 2, whih are transitively permuted byits permutation group. We an hoose suh a word for the �rst line of D;then it must be extended by a word of weight 4 of B? in order to ensurethat the minimum weight of C is 6. Hene C ontains a subode F oflength 36 and dimension 13, obtained from D8, B and one of the equivalentwords of weight 6 built up as desribed before. The �nal step onsists in theexhaustive onsideration of the maximal totally isotropi subspaes of the10-dimensional sympleti spae F?=F . The number of suh subspaes isexatly 75735, so we ould atually list them (in fat up to the ation of thegroup of F ). It is worth notiing that the next dimension 12 gives 4922775maximal isotropi subspaes whih is too big to be exhausted.If n = 38, we have A = D9 and B has length 16, dimension 6, and distaneat least 6, whih leave only one possibility. If F := A ? B, sine the spaeF?=F has dimension 8, we an diretly look at the 2295 maximal totallyisotropi subspaes and �nd a unique ode up to equivalene.Case nmax4 = 12:We selet again y 2 Nmax4 . Then, from the proof of Lemma 4.4, D(y) isequivalent to the ode with parameters [20; 7; 6℄ generated by y and ti for1 � i � 6, that we shall denote D7. It has the property that any 2-subsetI of y satis�es I \ t = (10) or (01) for either 3 or 4 of the 12 elements ofN4(y). So a word x 2 N2(y) has at most one oordinate outside of thesupport of D7. Let us denote d + 7 := dim(E(y)) = dim(ED(y)). Hene,the length of E(y) annot exeed 20 + d. Also, from Equation 9, we haven2(y) = 0; 4; 12; 24; 40 respetively for n = 34; 36; 38; 40; 42.We proeed to the lassi�ation with the following steps:1. List the possibilities for ED(y), up to the ation of Aut(D7), and usingthe properties D7 � ED(y) � D?7 and wt(ED(y)) � 6� d. We �nd 32possible odes.



12 CHRISTINE BACHOC AND PHILIPPE GABORIT2. For eah andidate ED(y), we �x a set of d odewords whih onsti-tute a basis together with a basis of D7, and we explore the possibleextensions of them to words of length 20 + d, suh that the resultingode E is ontained in its dual and has minimum weight 6.3. Among these odes E, we selet those who satisfy:� ardfx : x 2 E6 j jx \ yj = 2g 2 f0; 4; 12; 24; 40gg� For all z 2 E8, ardfx : x 2 E6 j jx \ zj = 4g � 12.We �nd, up to equivalene, nine odes E whih are andidates forE(y), with the following parameters, and orresponding n (whih isuniquely determined by the value of n2(y)):(a) [20; 7℄ and n = 34(b) [21; 8℄ and n = 36() [23; 10℄ and n = 38(d) [20; 9℄, [23; 10℄, [22; 10℄, [24; 11℄ and n = 40(e) [21; 10℄, [24; 11℄ and n = 42.4. Apply Lemma 5.5 withA = E(y) for eah of the nine possibilities foundabove. We obtain the parameters of the putative omplementary odesB. Note that we are not sure that E(y) is not stritly ontained in Abut this would inrease the dimension of B. The putative odes areodes ontained in their duals, of minimum weight greater or equal to6, with parameters: [14; 4℄, [15; 5℄, [15; 6℄, [20; 9℄, [17; 7℄, [18; 8℄, [16; 7℄,[21; 10℄. The lassi�ation of setion 6 shows that there are no suhodes with parameters [15; 6℄, [17; 7℄, [18; 8℄, [16; 7℄, that a unique odeexists with parameters respetively [21; 10; 6℄, [20; 9; 6℄ and [15; 5; 6℄,and that there are two odes with parameters [14; 4; 6℄.5. In the ase n = 34, A = D7, whih does not ontain the all-one word.So B must be equivalent to the [14; 4℄ whih does not either. Theself-dual ode C ontains as a subode the 12-dimensional ode Fgenerated by the orthogonal sum of A and B, and the all-one word.Sine dim(F?=F ) = 10, we an look at all the possibilities. In theother ases, B is uniquely determined and F := A ? B satis�esdim(F?=F ) � 10.Case nmax4 = 10:Let y 2 Nmax4 . Then, D(y) is equivalent to the ode with parameters[18; 6; 6℄ generated by y and ti for 1 � i � 5, denoted D6. Any 2-subset Iof y satis�es I \ t = (10) or (01) for either 2, 3 or 4 of the 5 elements offt1; t2; t3; t4; t5g. So a word x 2 N2(y) has at most two bits outside of thesupport of D6. Therefore, the algorithmi proedure desribed in the asenmax4 = 12 annot be diretly applied here beause at Step 2., eah basisvetor added to D6 may inrease the size of the support by 2, so too manyases our. We have to look at the situation more losely.For i = 0; 1; 2 we denote Ii the set of 2-subsets of y on whih 4 � ielements of N4(y) equal (10) or (01). We have ard(I0) = 4, ard(I1) = 16,ard(I2) = 8, and Aut(D6) permutes transitively the elements of eah Ii.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 13We denote N i2 := fx : x 2 N2(y) j x \ y 2 Iig. Let x 2 N i2. Then xhas i bits outside of the support of D6. We again denote D6 the subodeof the same length as E(y), obtained by extending the words of D6 withenough zeroes. An easy alulation shows that: ard((D6 + x) \ N2(y))equals 8 if x 2 N02 , 4 if x 2 N12 , and 2 if x 2 N22 . Also, not more than twoelements of N2(y) an oinide on y (otherwise two of them would have threeommon bits). Moreover, one heks easily that, if two elements x, x0 of N12oinide on y, then the ode generated by D6, x and x0, whih is uniqueup to Aut(D6), satis�es N4(y) = 12, so this situation an be exluded. Wean partition the lasses of E(y) modulo D6 into s0 (respetively s1, s2)lasses ontaining elements of N02 (respetively N12 , N22 ), plus s�1 lassesontaining no elements of N2(y). From the previous disussion, we have:8s0 + 4s1 + 2s2 = n2(y), 0 � s0 � 1, 0 � s1 � 4, 0 � s2 � 8. On theother hand, we have, from Equation 1, n2(y) = 4; 8; 16; 28 respetively forn = 34; 36; 38; 40.We are now in the position to alulate all the possibilities for the odeE(y). Therefore, we start with D6, and we add one by one words belongingto N2(y). At eah step, we inrease the dimension by one, and alulaten2(y) until we obtain one of the values 4; 8; 16; 28.If s0 = 1, we start with x 2 N02 and there is only one hoie up toequivalene. The resulting ode has n2(y) = 8, so it is one possibility forE(y) (it is equivalent to the maximal ode C18;1). Then, we an either adda word in N12 , else the remaining words belong to N22 . In the �rst ase, weobtain a single ode with parameters [19,8℄ and n2(y) = 16, equivalent tothe maximal ode C19, whih is not extendable; the seond ase does notlead to any ode.In the ase s0 = 0, we alulate that at most three independent words inN12 an be added and at most 6 independent words in N22 an be added.Finaly we �nd, up to equivalene, 19 odes E whih are andidates forE(y), with the following parameters, and orresponding n (whih is uniquelydetermined by the value of n2(y)):1. [19; 7℄, [21; 8℄, [22; 8℄ (3 odes) and n = 342. [18; 7℄, [20; 8℄, [22; 9℄, [23; 9℄ (3 odes), [26; 10℄, [25; 10℄, [24; 10℄ andn = 363. [19; 8℄, [21; 9℄, [25; 11℄, [26; 12℄ and n = 384. [25; 12℄ and n = 40Then, we proeed like in the steps 4 and 5 of the ase nmax4 = 12. Theodes leading to a self-dual ode of length 34 have parameters [19; 7℄, [22; 8℄(two odes). The self-dual ode of length 36 is obtained from A = C18;1and B = C18;2. The self-dual ode of length 38 is obtained from A = B =C19.Remark 5.6. In [17℄, the authors point out a doubly-even [40; 20; 8℄ odewith overing radius 7, whih turns out to be equivalent to the two equivalentdoubly-even neighbors of the unique s-extremal [40; 20; 6℄ ode. Analogously,



14 CHRISTINE BACHOC AND PHILIPPE GABORITthe s-extremal [34; 17; 6℄ odes for nmax4 = 10; 12, have eah, two equivalentisodual [34; 17; 8℄ neighbors with overing radius 6; the s-extremal [36; 18; 6℄ode for nmax4 = 14 has two equivalent self-dual [36; 18; 8℄ neighbors withovering radius 6; the two s-extrema [38; 19; 6℄ odes for nmax4 = 12; 14 haveeah two equivalent isodual [38; 19; 8℄ neighbors with overing radius 7; thes-extremal [42; 21; 6℄ ode for nmax4 = 10 has two equivalent isodual [42; 21; 8℄neighbors with overing radius 6 and the unique s-extremal [44; 22; 6℄ odehas two equivalent self-dual [44; 22; 8℄ neighbors with overing radius 7.Remark 5.7. The unique [40; 20; 6℄ ode also leads to a 40-dimensional uni-modular lattie of norm 3 with a long shadow in the sense of [21℄. The on-strution is the standard Constrution A followed by a neighboring proedureusing the all-one vetor6. The lassifiation of maximal self-orthogonal odes ofdistane 6 and length up to 21In this setion we lassify maximal ( in term of dimension) self-orthogonalodes of minimum distane exatly 6 and length up to 21. Unlike self-dualodes, there is no mass formula for these odes and we proeed by indutionon the dimension. Let us denote by XC the extension of a ode C.We �rst give a general algorithm to onstrut, for not too high parameters,all the self-orthogonal [n; k; d℄ odes. Let Si be the set of inequivalent self-orthogonal [n� k + i; i; d℄ odes. The set Si+1 of the [n� k + i+ 1; i+ 1; d℄odes an be obtained through Si by the following algorithm : let C be aode of Si then one onsiders all the inequivalent odes of minimum weightd obtained by addition to XC of a representant x of the di�erent orbits ofthe quotient (XC)?=XC. All the odes of Si+1 are obtained this way sinefor any C of Si+1, the shortened ode of C in a olumn for whih there existsa word of weight d with a zero oordinate on this olumn, is in Si.Hene all the self-orthogonal [n; k; d℄ odes are obtained starting from a[n� k + 1; 1; d℄ ode.Note that by onstrution the odes have a odeword of weight d.To omplete the lassi�ation one applies the preeding algorithm withdi�erent trials on the possible dimensions. We present in Table 2 the resultsobtained for d = 6, lengths 10 � n � 21 and maximal dimension k. Notethat for lengths 6 � n � 9 only the trivial ode of dimension 1 exists.The odes obtained for lengths 19; 20 and 21 orrespond to shortened odesof the self-dual [22; 11; 6℄ shorter Golay ode. Note that we also used thealgorithm to prove that no odes exist with the same length and dimensionwith a higher minimum distane. The generator matries are given in theappendix.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 15ode n k jAut(C)j weight enumeratorC10 10 2 2304 1 + 2y6 + y8C11 11 2 2304 1 + 2y6 + y8C12 12 3 1536 1 + 4y6 + 3y8C13;1 13 3 1296 1 + 3y6 + 3y8 + y10C13;2 13 3 1536 1 + 4y6 + 3y8C14;1 14 4 384 1 + 6y6 + 7y8 + 2y10C14;2 14 4 21504 1 + 7y6 + 7y8 + y14C15 15 5 720 1 + 10y6 + 15y8 + 6y10C16 16 6 11520 1 + 16y6 + 30y8 + 16y10 + y16C17;1 17 6 96 1 + 13y6 + 25y8 + 18y10 + 6y12 + y14C17;2 17 6 120 1 + 12y6 + 25y8 + 20y10 + 6y12C17;3 17 6 11520 1 + 16y6 + 30y8 + 16y10 + y16C18;1 18 7 1536 1 + 20y6 + 46y8 + 40y10 + 16y12 + 4y14 + y16C18;2 18 7 144 1 + 19y6 + 45y8 + 42y10 + 18y12 + 3y14C18;3 18 7 2160 1 + 18y6 + 45y8 + 45y10 + 18y12 + y18C19 19 8 576 1 + 28y6 + 78y8 + 88y10 + 48y12 + 12y14 + y16C20 20 9 3840 1 + 40y6 + 130y8 + 176y10 + 120y12 + 40y14 + 5y16C21 21 10 40320 1 + 56y6 + 210y8 + 336y10 + 280y12 + 120y14 + 21y16Table 2. Maximal self-orthogonal odes with d = 67. Number and examples of s-extremal odesWe now onsider examples of s-extremal odes. The s-extremal odeswith d = 4 have been lassi�ed in [12℄. We now list the known s-extremalodes orresponding to a given d. First note that from Theorem 3.1 theunique singly-even [16; 8; 4℄ holds 2-designs.� d = 6For this minimum distane, from setion 4 odes are known to exist forlength 22 � n � 44. The two odes of length 28 hold 2-designs. Existingodes are given in the following table :n num ref n num ref22 1 [23℄ 34 � 2 [9℄,x524 1 [24℄ 36 � 3 x526 1 [8℄ 38 � 2 x528 2 [8℄ 40 1 x530 9 [8℄ 42 1 x532 19 [4℄ 44 1 x5� d = 8In that ase it is not known for up to whih length s-extremal odes do exist.The odes of length 40 hold 2-designs. We list known odes for d = 8 :



16 CHRISTINE BACHOC AND PHILIPPE GABORITn num ref32 3 [9℄36 � 3 [19℄,[15℄38 � 8 [19℄,[15℄40 � 4 [9℄,[6℄42 � 17 [9℄,[7℄44 � 1 [9℄� d = 10The odes of length 52 hold 2-designs, the od sub(XQ47) is the ode ob-tained by subtratio of the (11) trivial ode from the extended quadratiresidu ode of length 47. Codes are only known for the following lengths :n num ref46 � 1 sub(XQ47)50 � 1 [9℄52 � 460 [18℄54 � 166 [26℄, x358 � 1 [9℄� d = 12In that ase it is not known whether a s-extremal [64; 32; 12℄ ode exists,suh a ode would hold 2-designs. For length 68, although many odes areknown, none of them is s-extremal. The only known odes are :n num ref60 � 3 [27℄,[11℄62 � 8 [11℄66 � 2 [9℄,[16℄� d � 14For d = 14, two odes are known for length 76 ([14℄,[1℄), whih ontain 2-designs, and more than 50 odes are known for length 78 from [13℄ and [1℄.For d = 16 only one s-extremal ode is known for length 86 from [10℄ andfor d = 18 one ode is obtained for length 102 from the extended quadratiresidue ode of length 104 and lemma 2.3.Referenes[1℄ A. Baartmans and V. Yorgov, "Some new extremal odes of length 76 and 78", Pro.7th Int. Workshop Alg. and Combin. Coding Theory, 18-24 June, Bulgaria, (2000),pp. 51-54.[2℄ C. Baho, On Harmoni weight enumerators of binary odes, Designs, Codes andCryptography 18 (1999), pp. 11-28.[3℄ R. A. Brualdi and V. S. Pless, Weight Enumerators of Self-Dual Codes, IEEE Trans.Inf. Th. 37 (1991), pp. 1222-1225.[4℄ R. T. Bilous and G. H. J. van Rees, An enumeration of self-dual odes of length 32,preprint.[5℄ W. Bosma and J. Cannon, Handbook of Magma Funtions, Sydney, 1995.



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 17[6℄ S. Buyuklieva and V. Yorgov, Singly-Even self-dual odes of length 40, Des. CodesCryptog., 9, (1996) , vol 9, pp. 131-141.[7℄ S. Buyuklieva,New extremal self-dual odes of length 42 and 44, IEEE Trans. Inf. Th.43 (1997), pp. 1607-1612.[8℄ J.H. Conway and V. S. Pless, On the enumeration of self-dual odes, J. Combin.Theory Ser. A 28 (1980), pp. 26-53.[9℄ J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distane ofself-dual odes, IEEE Trans. Inf. Th. 36 (1990), pp. 1319-1333.[10℄ S.T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self-dual odes, IEEETrans. Inform. Theory, 43, (1997), pp. 2036-2047.[11℄ R. Dontheva and M. Harada, New Extremal Self-Dual Codes of Length 62 and relatedExtremal Self-Dual Codes, preprint.[12℄ N. Elkies, Latties and odes with long shadows, Math. Res. Lett. 2 (1995) no. 5, pp.643-651.[13℄ T. A. Gulliver, M. Harada and J-L. Kim, Constrution of new extremal self-dualodes, preprint.[14℄ P. Gaborit and A. Otmani, Experimental onstrutions of self-dual odes, preprint.[15℄ M. Harada, New extremal self-dual odes of lengths 36 and 38, IEEE Trans. Inform.Theory, 45, (1999), pp. 2541-2543.[16℄ M. Harada, Classi�ation of extremal double irulant odes of lengths 64 to 72, Des.Codes Cryptog., 13, (1998) , n.3, pp. 257-269.[17℄ M. Harada, A. Munemasa and K. Tanabe Extremal self-dual [40,20,8℄ odes withovering radius 7, preprint[18℄ W.C. Hu�man and V.D. Tonhev, The [52,26,10℄ binary self-dual odes with an au-tomorphism of order 7, Finite Fields Appl., 7, (2001), pp. 341-349.[19℄ J.-L. Kim, New extremal self-dual odes of lengths 36,38 and 58, IEEE Trans. Inform.Theory, 47, (2001), n.4, pp. 1575-1580.[20℄ M. Lalaude-Labayle, On binary linear odes supporting t-designs, IEEE Trans. Inf.Th., 47, (2001),n. 6, pp. 2249-2255.[21℄ G. Nebe and B. Venkov, Unimodular latties with long shadow, to appear.[22℄ V. Pless, Introdution to the Theory of Error Correting Codes, Wiley, New York,3rd edition, 1998.[23℄ V. Pless, "A lassi�ation of self-orthogonal odes over GF (2), Disrete Math. 3(1972) pp. 209-246.[24℄ V. Pless and N.J.A. Sloane, On the lassi�ation and enumeration of self-dual odes,J. Combin. Theory Ser. A A18 (1975), pp. 313-335.[25℄ E. Rains, Shadow bounds for self-dual odes, IEEE Trans. Inf. Th. 44(1) (1998), pp.134-139.[26℄ E. M. Rains and N. J. A. Sloane, Self-dual odes, in Handbook of Coding Theory, ed.V. S. Pless and W. C. Hu�man. Amsterdam: Elsevier, 1998, pp. 177{294.[27℄ H.-P. Tsai and Y.J. Yiang, Some new extremal self-dual [58,29,10℄ odes, IEEE Trans.Inf. Th. 44, (1998), pp. 813-814.



18 CHRISTINE BACHOC AND PHILIPPE GABORITAPPENDIX AMaximal self-orthogonal odes of weight 6 and lengths 10 � n � 21C10 = h 10000111110111101111 iC11 = h 1100001110100111111101 iC12 = " 110000111010001001100111000110011101 #C13;1 = " 100010111111001011101110010010101000111 #C13;2 = " 101000110011001010001110100000111011100 #C14;1 = 24 10001011111100010010011001010010101000111000010100010111 35C14;2 = 24 10100000110011010100011101000000110100011100000011111111 35C15 = 264 100001110100111010001010010101001001101000011000101000101110000011001011111 375C16 = 26664 100001001011000101000101001010100010010101111001000101000101110000001100101111100000001111111111 37775C17;1 = 26664 100001010001010100100010100100010100110000011110110000011000100110010000001101111000000000000101011110 37775C17;2 = 26664 100001011011101000100010010011000100100100111001110000101000011001100000110111110110100000011011110000 37775C17;3 = 26664 100001010110110100100010101000011000100100111100110000101000011100100000110011100100000000011111111110 37775C18;1 = 266664 100001010001010100010001010010001010001100000010100011000011000001111101000000110010101111000000001010111100000000000101001111
377775C18;2 = 266664 100001010001010100010001010010001010001001000010111011000101000101010111000011000100110010000000110111100000000000001010111100

377775
C18;3 = 266664 100001010011110111010001000001111101001001000110000011000101000011001100000011010111000101000000110111100000000000001000011111

377775C19 = 26666664 10000101000101010000100010100100010100001001000010111010100010100000001100110000110000011111010000000110010101111000000000101011110000000000001010011110
37777775

C20 = 266666664
100001000011010001110100010000000011111100100100001011101010000101000000011001100000110000011111010000000010000010101011000000010010000101110000000010101111000000000000010100111100

377777775C21 =
26666666664
100001000000000011011010001000000001111110001001000001101000001000101000000011001100000011000001111101000000000100000101010110000000010001010111011000000001001101110101000000000101001111000000000000011010010101

37777777775



DESIGNS AND SELF-DUAL CODES WITH LONG SHADOWS 19APPENDIX BIn this appendix we give all the odes mentionned in theorem 5.2. Tosave spae, we onsider the odes in the form (I A) and we list only thematries A as sequenes of their rows written in hexadeimal: 1 = 0001; 2 =0010; : : : ; F = 1111. Note that depending on the length n, the �rst 4 � (n2(mod 4)) olumns of 000 have to be deleted� nmax4 = 14C36 14 : 3B29E; 38C0F; 36718; 358D4; 2EA9D; 2D774; 23CB4; 1015D;08378; 04225; 023AF; 0118A; 00AF2; 004D7; 0026F; 0016C; 000E3; 0001FC38 14 :77833; 7143C; 6DF14; 6A800; 5D291; 5BF27; 476AD; 21B1B;101B9; 09AA2; 0431B; 039B9; 006A2; 003BF; 003D5; 00265; 00159; 000D6;0007FC44 14: 293000; 3DA000; 1ED000; 3EB800; 366800; 1B3800; 3C4000;06C800; 1B8000; 152800; 127000; 000526; 0007B4; 0003DA; 0007D7; 0006CD;000367; 000788; 0000D9; 000370; 0002A5; 00024E� nmax4 = 12C34 12 : 1DA49; 1C653; 1B33B; 1AEB9; 174CF; 16A63; 11F34; 08198;042B6; 0232E; 01289; 009A7; 00711; 002CF; 00136; 001C5; 001FCC36 12 : 3B454; 38AB1; 36061; 35B30; 2EB1B; 2D42B; 23A84; 105B4;081D5; 04461; 025AA; 011CB; 0081E; 00159; 000C7; 0026C; 0038A; 003F8C40 12: E6FE7; F97E7; D47E7; CBF17; ED8F0; EA000; 87800; 5C8F0;428F0; 59800; 380F0; 004AA; 00495; 004CF; 003AB; 00354; 0020F; 001C9;001F5; 00133C42 12: 1D887F; 1C107F; 1B0800; 1A587F; 17D87F; 16B07F; 11A07F;08C87F; 04F000; 02387F; 01F87F; 00074E; 00077D; 0006A1; 0006F4; 0005C4;0005E9; 00044B; 000266; 00011E; 0000F8� nmax4 = 10:C34 10a: 1DC61; 1C330; 1B5D5; 1A99F; 1704A; 1687F; 11B2E; 0831B;04764; 0247F; 012D0; 00EAF; 00159; 000C7; 0026C; 0038A; 003F8C34 10b:1DB90; 1C0E8; 1B376; 1AF5A; 173A1; 16E29; 11ADC; 08754;046F0; 021A4; 0119B; 0083F; 004D7; 0034C; 0013A; 00067; 0009DC34 10: 1DB65; 1C231; 1B373; 1AEC1; 172F5; 16FAA; 119B9; 084E6;0440B; 020ED; 0135A; 00BB7; 00586; 00354; 0013A; 00067; 0009DC36 10: 3A800; 39B18; 3794E; 350D3; 2FA56; 2D368; 233BB; 11A85;09A26; 040A3; 038A3; 00654; 0068A; 004BB; 00557; 00532; 003E0; 000BC
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